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Abstract. We classify the action of one parameter isometry groups of 
Gravitational Instantons, complete non singular positive definite solutions of 
the Einstein equations with or without A term. The fixed points of the action 
are of 2-types, isolated points which we call "nuts" and 2-surfaces which we call 
"bolts". We describe all known gravitational instantons and relate the numbers 
and types of the nuts and bolts occurring in them to their topological 
invariants. We perform a 3 + 1 decomposition of the field equations with 
respect to orbits of the isometry group and exhibit a certain duality between 
"electric" and "magnetic" aspects of gravity. We also obtain a formula for the 
gravitational action of the instantons in terms of the areas of the bolts and 
certain nut charges and potentials that we define. This formula can be 
interpreted thermodynamically in several ways. 

1. Introduction 

There has been considerable interest recently in "Instantons" in Yang-Mills 
Theory [1-3]. They may be defined as non singular solutions of the classical 
equations in 4-dimensional Euclidean space. They provide stationary phase points 
in the path integral for the amplitude to tunnel between two topologically distinct 
vacua [4, 51 and they may play a role in confinement. Instantons also contribute 
to the anomalous divergence of the axial vector current [2] and they may lead to 
the decay of baryons into leptons. Because gravity and supergravity are gauge 
theories like Yang-Mills it seems reasonable to suppose that gravitational 
instantons may play a similar important role. We shall define a gravitational 
instanton to be a non singular complete positive definite metric which satisfies the 
classical vacuum Einstein equations or the Einstein equations with a A term. The 
A term can be regarded as a Lagrange multiplier for the 4-volume V or it may arise 
from the Lagrangians of certain supergravity theories [6, 7]. One class of 
gravitational instantons that has been extensively studied already is the Kerr- 
Newman family of metrics [7-t2]. In these solutions one can remove the apparent 
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singularity at the horizon and obtain a complete positive definite metric by 
identifying the imaginary time coordinate periodically. This leads to a new 
approach to the thermal aspects of black holes which have been discovered by 
other methods. 

Nearly all known gravitational instantons possess continuous symmetry 
groups of at least two parameters [11, 14-19]. In this paper we shall give a 
classification scheme based on the existence of at least a one parameter group. This 
enables us to determine two kinds of basic object, one that we call a "nut" after the 
self-dual Taub-NUT solution [10, 11] which is the canonical example and the 
other which we call a "bolt", for obvious reasons. The canonical example is the 
Schwarzschild solution. In cases where the symmetry group is more than 
1-dimensional, different choices of one-parameter subgroup may lead to different 
numbers and locations of nuts and bolts. However there are two topological 
invariants, the Euler number )~ and the signature z, which can be expressed as sums 
over the nuts and bolts with certain coefficients. Roughly speaking, the Euler 
number is the sum of the number of nuts, the number of antinuts and twice the 
number of bolts while the signature is a measure of the number of nuts minus the 
number of antinuts. 

The existence of these two kinds of basic objects reflects a certain symmetry in 
the theory analogous to duality invariance in electromagnetism. One can think of 
bolts as being the analogue of "electric" type mass-monopoles and the nuts as 
being gravitational dyons endowed with a real electric type mass-monopole and 
an imaginary "magnetic" type mass-monopole. The presence of magnetic type 
mass introduces a Dirac string-like singularity in the metric. This can be removed 
by appropriate identifications and changes in the topology of the spacetime 
manifold. However the metric cannot then be asymptotically flat in the usual 
sense. This means that the nuts unlike the bolts cannot occur in the classical 
regime. However one might imagine that quantum fluctuations of the metric might 
lead to the appearance and disappearance of nut-antinut pairs. 

Gravitational Instantons can be interpreted as the stationary phase metrics in 
the path integrals for the partition functions, Z, of the thermal canonical ensemble 
[12] and the volume canonical ensemble [6]. In these cases the action of the 
instanton gives the dominant contribution to - l o g  Z. We shall relate this action 
to the areas of the bolts and to the charges and potentials of the nuts. From this it 
follows that the bolts have an intrinsic gravitational entropy equal to one quarter 
the sum of their areas. This generalises the results obtained for black holes and 
cosmological event horizons [12, 13, 20]. 

2. Nuts and Bolts 

We shall consider an oriented manifold M with a positive definite metric 9~b which 
admits at least a one-parameter isometry group G. We shall denote by #~ : M ~ M  
the action of the group, where • is the group parameter and we shall denote by 

8 8 
K = K ~ - the Killing vector. The isometry group G is said to have a fixed 

Ox" 8~ 
point where K = 0. At a fixed point p the action of #~ on the manifold M gives rise 
to an isometry #~* : Tp(M)~Tp(M) where Tp(M) is the tangent space at p. #~, is 
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generated by the antisymmetric matrix K~; b. Antisymmetric 4 x 4 matrices can 
have rank 0, 2, or 4. The zero case is not interesting because it would imply that the 
Killing vector K was zero everywhere and that the action of the group G was 
trivial. This follows because #~, would be the identity and because # commutes 
with the exponential map at p, i.e. 

#~ o expX = exp (#~,(X)) 

VX T,. 
In the case that K~; b has rank 2 there will be a 2-dimensional subspace T 1 of 

I~(M) which is left unchanged by #~*. The action of #~, will rotate T2, the 
2-dimensional orthogonal complement of T 1 into itself. Thus #3* has the canonical 
f o r m  

f ° 
1 

&* = 0 

0 \ 

o : t 
0 . , (2.1) 

Cos K'C s i n  g z  I 
/ 

- s i n  ~:z cos ~ r /  

where ~: is the surface gravity and is given by the non zero skew eigen value ofKa; b 
in an orthonormal frame. From this one can see that #~, and hence & must be 
periodic with a period 2rc~- 1. The image of T 1 under the exponential map will not 
be moved by #, and so will constitute a 2-dimensional oriented totally geodesic 
sub manifold of fixed points. We shall call such a 2-dimensional fixed point set a 
bolt. A simple example is provided by the horizon 2-sphere of the Euclidean 
Schwarzschild solution with G being the periodic group of imaginary time 
translations [8, 12]. 

In the case that Ka; b has the maximal rank 4 there can be no directions at p 
which are left invariant under #3". Thus p must be an isolated fixed point. We shall 
call it a nut after the fixed point at the centre of the Euclidean self-dual Taub-NUT 
solution [10]. In this case there will be two orthogonal 2-dimensional subspaces T 1 
and T z which are mapped into themselves by #**. The canonical form is 

\ 
cos ~qz sin ~qz 0 0 

- sin ~c,~c cos ~qv 0 u 

0 0 COS/£2 ~ sin ~2-c) ' 

0 0 - sin ~cez cos ~%'c/ 

(2.2) 

where/~1 and K 2 are the skew eigenvalues of Ka; b in an orthonormal frame. For 
some purposes it is convenient to sub divide nuts into 2 classes - "nuts" and 
"antinuts" - depending on whether the sign of ~c 1 ~c 2 is positive or negative respec- 
tively. Unless we explicitly say otherwise we shall call both classes nuts. 

If ~:1 ~c 21 = pq-  1 where p and q are relatively prime integers, the action of & will 
be periodic with period fl = 2rcpa:[ 1 = 2rcqtc 21. We shall call this a nut of type (p, q). 

If ~q~:21 is irrational, the orbits of a vector X in Tp under the action of G *  is 
dense in the torus C(X) consisting of all vectors Y of the form 

#1 , °#2 *(X) (2.3) 
~I ~2 
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where 

1 __ {- -s in01zl  cosKlz 1 0 0 , (2.4) 

#~* - 0 1 

\ o  0 0 ( oo Oot 
2 1 0 (2.5) 

#z2* = 0 COS/£2"g2 s i l l /~2T2  " 

0 - sin K2z 2 COS K2~C2/ 

All scalar invariants of the metric must be constant over each torus in M of the 
form exp C(X) for each X ~ T,(M). Because scalar invariants characterize the metric 
it follows that #~ • and #2 ,  must actually correspond to independent isometries #~ 
and #2 of the metric 9~b on M. One could then take appropriate  combinations of 
the Killing vectors K 1 and K 2 such that the orbits were periodic. We shall therefore 
consider only periodic isometry groups. 

The antisymmetric tensor Ka; b can be decomposed into self dual and antiself 
dual parts. 

K. ;b=K~ + K ~ , (2.6) 

where 
+_ 1 1 c;d 

K a b = g ( K a ; b  + 2 g ,  abca K ) .  (2.7) 
At a bolt 

K + ~ + , b _  ~-- r~-,b (2.8) 
a b ~  --ZXab-X . 

At a nut 

K + Z  +,b-.~ T,--Z-ab (2.9) a b ~  l~Xab,~X 

while at an antinut 

K + l ( + a b . ~ T g - K ' - a b  (2.10) 
ab~X ~ *Xab~  . 

A nut is said to be self-dual if K ~  is zero. Then p = q = _+ 1. If  the curvature is self- 
dual - i.e. if 

Rabca - & e  l~e f  (2.11) 
- -  2~abef  ~ cd 

then Ka; b is self-dual everywhere if it is self-dual at one point. Similar remarks 
apply to anti self-dual anti-nuts which have p = - q = + 1. 

3. E x a m p l e s  

The examples of Schwarzschild and the self-dual Taub -NUT solutions have 
already been mentiod. The metric of the Schwarzschild solution can be written in 
the form 

ds 2 = (1 - 2Mr-  1)dz2 + (1 - 2Mr-  1)- 1dr2 + r2(dO z + sin 20d~2). (3.1) 
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The apparent singularity at the horizon r = 2M can be removed by identifying z 
with a period 8rcM [7, 1 0, 1 1 ]. The radial coo rdinate then has the range 2M < r < to 
and the topology of the manifold is R2x  S 2. The isometry group is 0(2)@ 0(3) 
where the 0(2) corresponds to translations in the periodically identified imaginary 
time z and the 0(3) corresponds to rotations of the 0 and ~b coordinates. 

The Killing vector ~ has unit magnitude at large radius and has a bolt on the 

horizon r = 2M which is a 2-sphere of area 16riM 2. The surface gravity ~c = (4M)-1 

and the period/3 is 8rcM. A typical Killing vector of 0(3), for example ~ ,  is zero 

on a non compact 2-surface, the axis, 0 = 0  or re. We shall not consider Killing 
vector which have non compact bolts. One can also take linear combinations 

p - 1 4 M ~  + q - 1  ~_~. These will have a nut of type (p,q)at  the northpole 0 = 0  of 

the horizon r = 2M and an antinut of type (p, - q) at the southpole, 0 = re, of the 
horizon r = 2 M .  

The Kerr solution with mass M and (imaginary) angular momentum = iteM 
has a Euclidean section with metric 

ds 2 = (r 2 - cd cos 2 0) (dr2 A - 1 + dO 2) 

+ (r 2 _ e2 cos z 0)- 1 [A (dr + c~ sin 20dc~) 2 + sin z 0((r 2 - e2)d 49 - adz)Z], (3.2) 

where 

A = r e - 2 M r -  o: z . (3.3) 

The apparent singularity at the horizon 

r = r + = M + (M 2 -I- CZ2) 1/2 (3.4) 

can be removed by identifying the points (r, z, 0, ~b) with (r, z + 2rc7, 0, ~b + 2n~O) 
where 

7 = 2 M r + (  M 2  +~2)-  1/2 (3.5) 

and 

~-~ = o~(r 2 _ ~ 2 ) -  1 (3.6) 

d~ 
is the imaginary angular velocity ~ of the horizon. This identification gives the 

manifold topology R 2 x  S a, the same as that of the Euclidean Schwarzschild 
solution. By the No Hair Theorems these are the only solutions which are 
asymptotically flat in the conventional sense. 

The isometry group is 0(2)@ 0(2) and is generated by ~ and the corotating 

vector K =  ~ + O ~ .  K is zero on the horizon which is the Killing 2-sphere 

r = r +  with area A=4r f f r2 -~2) .  The surface gravity tc=7 -1 and the period 

/~ = 2re 7. The time translation Killing vector @ has unit magnitude at large radius 
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and for non zero c~ has 2 isolated fixed points at the north and south poles of the 
horizon. One of these is a nut and the other an anti-nut, which is being determined 
by the choice of orientation and the sign of ~. The surface gravities are 

rc i = 7-1 , (3.7) 

~c 2 = __ f2 . (3.8) 

If M and ~ are such that 732 = q/p, where q and p are relatively prime integers 
the nut and anti-nut will be of type (p/q) and (p, - q) respectively and the period 
will be 2~p7 = 2rcqf2 - 1. 

The self-dual Taub-NUT metric can be written in the form 

ds 2 = (r -- n) (r + n) -  ~ (dr + 2n cos 8d q~) 2 

+ (r 2 - n z) (d8 z + sin 2 8d~  2) 

+ (r + n) ( r -  n ) -  1dr2 . (3.9) 

The Dirac string singularity at the northpole (8=0) can be removed by 
introducing a new coordinate 

"c' = "c + 2n qS. (3.10) 

Similarly the Dirac string singularity at the southpole (8 = re) can be removed by 
introducing a new coordinate 

~" = z -2 n~b .  (3.11) 

Because ~b is identified modulo 2re, ~' and I:" must be identified modulo 8rcn. These 
identifications and overlapping coordinate patches give the surfaces of constant 
r > n  the topology of 3-spheres with (r(2n) -1,8,~b) being Euler angles. The 
apparent singularity at r - -n  is in fact just the origin in hyperspherical polar 
coordinates. The topology of the manifold is R 4. The curvature is self-dual with 
the orientation defined by the positively oriented orthonormal basis 

o3 ° = (r + n) 1/2 (r - n) - 1~2dr, (3.12) 

c9' = ( r 2 - n 2 )  1/2 cos 2nn dS+sin 2n sinSdq~ , (3.13) 

o 9 2 = ( r 2 - n 2 ) l / 2 ( - s i n ( ~ n ) d 8 + c o S ( ~ n ) S i n 8 d @  , (3.14) 

co 3 = (r - n)l/2(r + n)- 1/2 (dr + 2n cos 8d q5) . (3.15) 

The isometry group is isomorphic to U(2)=(U(1)® S U ( 2 ) ) / Z  2. The U(1) group is 
0 

generated by the Killing vector ~ which is normalized to have unit magaaitude at 

large r. It has a single self-dual nut fixed point at the origin r = n .  The surface 
gravity ~:1=~2=(4n)-1 the period f l=8~n .  The SU(2) acts transitively on 

3-spheres of constant r. A typical Killing vector ~ also has a single fixed point at 
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the origin r = n but this time it is an anti-self dual anti-nut with tq = -~c 2 --1 and 
period 2re. 

Another metric of Taub-NUT form is [18] 

ds 2 =(r  2 - n 2 ) ( r - 2 n )  - l ( r -  ½n) 1dr2 

4- (r  2 --  n 2) (dO 2 q- s i n  2 0 d ~  2) 

+ (r - 2r) (r - ½n) (r 2 - n 2)- l(dz + 2n cos OdO)2 . (3.16) 

The curvature is not self-dual. The Dirac string singularities on the axis can be 
removed by identifying "c with period 8rcn. As before this makes the surfaces of 
constant r > 2n into 3-spheres. The apparent singularity at r = 2n corresponds to 
these 3-spheres collapsing to a 2-sphere. The isometry group is the same as for the 

0 
self-dual Taub-NUT solution. The Killing vector ~zz has unit magnitude at large r 

and has a bolt of area 12rcn 2 at r = 2n with surface gravity i~ = (4n)-1. The Killing 
g .  

vector ~ is a typical generator of the SU(2) group. It has a nut of type (1, 2) at the 

north pole, (0=0)  and an antinut of type (1, - 2 )  at the southpole. 
The mult i-Taub-NUT metric [11] can be written in the form 

ds 2 = V(d~ + o~. dx) z + V -  1 d x .  dx  , (3.17) 

where 

V -1 =1 + ~ 2nilx-xi1-1 (3.18) 
i 

and 

curl ¢0 = grad (V- 1). (3.19) 

The x i denote the distances in the 3-dimensional metric d x . d x  the i'th nut 
with parameter ni and the grad and curl operations are also performed in this 
metric. The vector field oJ(x) will have Dirac String singularities running from each 
nut. If the nut parameters n~ are equal to a single value n the singularities can all be 
removed by identifying z with period 8~n. A large surface which surrounds all 
the nuts acquires the topology of the lens space L(I, s) a 3-sphere with s points 
identified, where s is the number of nuts. Thus the metric is not asymptotically flat 
in the usual sense. The curvature is self-dual. In general for s > 3 the only Killing 

vector will be ~ .  This has unit magnitude at large values of r and a self-dual fixed 

point at each nut with ~1 = ~c2 = (4n)-1. 
Another family of self-dual metrics can be obtained from the mult i-Taub-NUT 

form by omitting the constant term 1 in V-1 in Eq. (3.18) [21]. Again to obtain a 
regular metric the n i have all to be equal but in this case they can be made equal to 
one by rescaling the coordinates. The topology and the nuts are the same as for the 
corresponding mult i-Taub-NUT solutions, however unlike the mult i-Taub-NUT 
case, these metrics are Asymptotically Locally Euclidean (A.L.E.). This means that 
they are asymptotic to Euclidean space identified under a discrete sub group of 
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SO(4). In fact they are the most general family of self-dual A.L.E. spaces with these 
identifications. Other self-dual A.L.E. instantons with different identifications have 
been found implicitly by Hitchin [22] but explicit metrics are not yet known. 

When s = 1 one obtains flat space. When s = 2 one obtains the Eguchi-Hanson 
metric [16, 17]. The metric can be written as 

?,2 
dsZ=(1 -a4r -4 ) -  l dr2 +(t  -a4r-~)---~(d~ + cos OdqS)2 

/.2 
+ ~ (dO 2 + sin 20d 02) . (3.20) 

The apparent singularity at r = a can be removed by identifying ~p modulo 2re 
rather than modulo 4re as is usual for Euler angles on S 3. The identification makes 
the surfaces of constant r > a into RP 3, a 3-sphere with antipodal points identified. 
At large values of r the metric tends to that of flat Euclidean space, points reflected 
in the origin being identified. The surface r = a is a 2-sphere. 

The isometry group is U(2)=(U(1)x SU(2))/Z 2 the same as for Taub-NUT 
space of which this metric is a limiting form. The U(1) subgroup is generated by 

the Killing vector ~ which has a bolt on the 2-sphere r =  a of area rca 2 with 

surface gravity ~c = 1 and period 2rc. The Killing vector ~ ,  a typical generator of 

the SU(2) group, has 2 isolated fixed points, self dual nuts at the north and south 
poles of the 2-sphere r =  a. These have ~c 1 = ~% and the period is 27r. 

We now turn to complete non-singular solutions of the Einstein equations with 
positive A term: 

Rab = Agab ; A > 0 .  (3.21) 

These are all compact [23]. 
The simplest example is a 4-sphere of radius 31/2A -1/2 in 5-dimensional 

Euclidean space. This is the analytic continuation of de Sitter space [20]. The 
isometry group is the SO(5) of rotations about the origin in 5-dimensional space. 
These are generated by 5 x 5 anti-symmetric matrices which can have rank 0, 2, or 
4. The zero case is trivial. In the case of rank 2 there is a 3-ptane through the origin 
of R s which is not moved by the rotation. The intersection of this with the 4-sphere 
is a bolt which is a 2-sphere with area 12rcA-1. With the normalization of the 
Killing vector from 0(5), the period is 2re, the surface gravity is 1. However for 
physical applications [20] it may be convenient to choose the Killing vector to 
have unit magnitude on the orbit which is a geodesic. In this case the period is 
2~31/z A -  1/z. The surface gravity is (A/3) 112. If the matrix is of rank 4, there will be 
one direction through the origin in R 5 which is left unchanged by the rotation. The 
intersection of this direction with the 4-sphere will constitute a nut and an antinut. 

The next example is complex projective plane, CP 2, with its standard Kaehler 
metric [14, 15] which has an anti-self-dual Weyl tensor. This can be realized as 
C3-{0}  with coordinates Z1, Z2, Z 3 factored by the equivalence relation 
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(Z D Z2, Za)=-(2ZI,  J.Z2, •Z3) , J~EC-{0}. The isometry group is SU(3) /Z  3 which 
acts on the coordinates in the standard manner. This is generated by traceless anti- 
Hermitean matrices. Such matrices can be divided into two classes, those with two 
equal eigenvalues and those with 3 unequal eigenvalues. In the case one gets an 
anti-self-dual antinut which can be taken to be at the "origin" (0, 0, Za) and a bolt 
at "infinity" which is the 2-sphere (Z 1, Z2, 0). In the latter case one gets 3 isolated 
fixed points two of which will be antinuts and one a nut. They can be located at the 
origin (0, 0, Z3) , the northpole of infinity (Z1, 0, 0) and the southpole (0, Z2, 0). 

One can describe these fixed points in more detail by introducing coordinates. 

0 . 2 Z 1 / Z 3 = r c o s ( - ~ ) e x p t ( t p +  ~ ) / ,  (3.22) 

Z z / Z  3 = r sin ~ exp i(~p- ~b)/2. (3.23) 

The metric then takes the form 

ds 2 = drZ(1 + ~Ar2) - 2 + ¼r2(1 + ~Ar2) - 2(d ~ + cos OdO) 2 

+ ¼rZ(1 + ~Ar z ) -  z (dO 2 + sin 20d~2). (3.24) 

The Killing vector ff~- corresponds to a generator of SU(3) with 2 equal 

eigenvalues. It has an antiself dual nut at r = 0  with surface gravity ~:1 = - ~c2=½ and 

period 472. It has a bolt at r = oe with area 67cA- 1 and ~: = ½. The Killing vector Cq5 

corresponds to a generator of SU(3) with 3 unequal eigenvalues. It  has a self-dual 
nut at the origin r = 0  with lq = ~c 2 = 1 and period 2re. It  is an antinut of type (1, - 2) 
at the northpole of the sphere at infinity r =  o% 0 = 0  and an antinut of type (1, - 2 )  
at the southpole r = o% 0 = ~z. 

Our next example is the metric product  of two 2-spheres each with radius 
A -  z/z and area 4rcA- 1. It can be regarded as a limiting case of the Schwarzschild- 
de Sitter solution [15] with the surface gravities of the black hole and cosmologi- 
cal horizons equal. The isometry group is SO (3)®SO (3), the two factors acting on 
the 2-spheres independently. A circle subgroup of the full isometry group can be 
projected into circle subgroups in the two factors. If one of these projections 
consists of the identity only, the corresponding Killing vector has 2 bolts which are 
2-spheres of area 4~zA-1. In the other case there will be 4 isolated fixed points, two 
nuts and two antinuts. 

The only other known gravitational instanton with positive A is an S a bundle 
over S 2 discovered by Page [19] as a limiting case of the Kerr-de Sitter solution. 
The metric can be written in the T a u b - N U T  form: 

= 3 (1 + v 2 ) {(1 - v 2 cos 2 0) (3 - v 2 - v2(1 + v 2) cos 2 O)- ldQ 2 ds 2 

+ (1 - v z cos 2 Q) (3 + 6v 2 - v 4) - ~(dO 2 + sin 20dJp 2 ) 

+ (3 - v z - vZ(1 -t- v 2) c o s  2 O) (3 + ]j2) - 2(1 _ •2 c o s  2 0)  - 1 s i n  2 

• ¼(d~p + cos Od(p) 2 },  (3.25) 
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where v is the positive root of 

v 4 + 4v3 _ 6v 2 + 12v - 3 = 0 (3.26) 

which works out to be 

0.2817. 

The surfaces of constant Q, 0 < ¢ < re, are 3-spheres on which (~, 0, q~) are Euler 
angle coordinates. The apparent singularities at Q=0  and Q=Tz are where the 
3-spheres collapse to 2-spheres. 

The isometry group is U(2)=(U(1)®SU(2)) /Z z, the same as for Taub-NUT.  

The Killing vector ~ generates the U(1) subgroup and has bolts at the 2-spheres 

= 0 and p = ~ with areas 

12rc(1 - v 4) (3 + 6v 2 - v 4 ) - 1A - 1 (3.27) 

g 
The Killing vector ~ ,  a typical generator of the SU(2) subgroup, has 4 isolated 

fixed points at 0 = 0  or zc and ¢ = 0  or re. Two of these are nuts and two antinuts. 
Compact  gravitational instantons with negative or zero A are known but they 

cannot admit any continuous isometry group. We shall therefore not consider 
them in this paper. 

Non compact  solutions with negative A are also known. These may admit 
continuous isometrics but they do not seem to play a role in path integrals. 

4. Topological Invariants 

There are two topological invariants which can be expressed as integrals of the 
curvature of a 4-dimensional metric. For  a compact manifold these are the Euler 
number 

Z=(1287z2 ) -  1 o[ ~eyo eghl~abcd 1/-7,34.~ (4.1) 
° a b a ' e f g h ~ c d J ~  V f f ~  

M 

and the signature (sometimes called the index) 

z=(96rc2)- 1 S o o c d e f t ~ a b  1/~.4'*~. (4.2) 
~t~abcdC. a'~ e f l /  ~ ~ " 

M 

For  non compact  manifolds there are additional boundary terms. For X these 
are [243 

(128rcz)- 1 S (RabcaKaCnbn,~ + 64 det K~,) [ /hd3x ,  (4.3) 
0 M  

_ c d where n a is the outward directed normal to the boundary OM, K , b -  n~;,~h,,h b is the 
second fundamental form and h,, b =9, ,b-  n,~nb is the induced metric on ~M. For  
the boundary terms are [25] 

_ 2(96~z2)-1 ~ R~bcdecd~YnaneKby ]/~dax _ tl(O), (4.4) 

where r/(s) is a quantity constructed from the eigenvalues of a certain differential 
operator on the boundary OM. 
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The Euler number in the alternating sum of the Betti numbers 

p = 4  

z[M]  = ~ ( -  1)PBp, (4.5) 
p=0 

where the p'th absolute Betti number, Bp, is the rank of the p'th absolute homology 
group Hp(M). It is also the rank of the 4 - p ' t h  relative cohomology group 
H4-P(M, ~?M). These cocycles may be represented by closed 4 - p  forms which 
vanish on the boundary ~?M and which are not the exterior derivative of a 4 -  p -  1 
form which itself vanishes on the boundary. For a compact manifold without 
boundary B o =B  4 = 1 and B 1 =B  3. B 1 = 0  if the manifold is simply connected as in 
all our examples. If there is a boundary B o=1 and B4=0. In a compact 
manifold without boundary Bp is equal to the number of linearly independent 
harmonic p-forms. 

In the case of a compact manifold without boundary • may be defined as the 
signature of the quadratic form on Hz(M) given by the intersection number 
between two 2-cycles, i.e. the number of times they intersect, intersections being 
counted positive or negative according to whether or not the orientation of the 
tangent space of the intersection point agrees with the orientation arising from the 
tangent planes to the two 2-surfaces. In the case of the intersection number of a 
cycle with itself one slightly distorts one copy of a representative of the 2-cycle so 
that it intersects the other copy transversely. A necessary and sufficient condition 
that the manifold admit a spinor structure is that the self intersection numbers of 
the 2-cycles must be even for simply connected manifolds [26]. 

z is also equal to the quadratic form on H2(M) defined by the cup product. If 
one represents two elements of H2(M) by closed 2-forms, then the cup product 
is just 

M 

From this it follows that z is equal to the number of linearly independent self-dual 
harmonic 2-forms minus the number of antiself dual ones. 

In the case of a manifold with boundary 0M, the cup product may be defined 
between H2(M) and H2(M, (?M) by the above formula, i.e. between closed 2-forms 
which are not the exterior derivatives of 1-forms and closed 2-forms which vanish 
on 0M. With the natural injection H2(M, c3M) into H2(M), this defines a quadratic 
form on H2(M, OM). The quadratic form may have zero eigenvalues but ~ may be 
defined as the number of positive eigenvalues minus the number of negative 
eigenvalues [25]. The definition of r by homology for manifolds with boundary is 
simply the dual of the above. One can define the intersection number between a 
cycle in the absolute homology group H2(M ) and one in the relative homology 
group H2(M, c3M) i.e. the group of equivalence classes of 2-chains whose boun- 
daries lie in 6M and which are not the boundaries of 3-chains. With natural 
injection of H2(M ) into H2(M, ~3M) this defines a quadratic form on Ha(M ). The 
quadratic form will have zero eigenvalues corresponding to elements of H2(M ) 
which are homologous to elements of H2(0M) but r will be equal to the number of 
positive eigenvalues minus the number of negative eigenvalues. 
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The values of Z and z for the examples in the previous section are 

Schwarzschild and Kerr Z = 2 z = 0  

Self-dual Taub-NUT Z= 1 z = 0  

Multi-Taub NUT Z = s r = s - 1 

Non self dual Taub-NUT X = 2 z = 1 

Eguchi-Hanson )~ = 2 z = 1 
S 4 )~=2 ~=0  

C P  2 ;g=3 z = - t  

S 2 x S  2 ; (=4 z = 0  

Twisted S 2 x S 2 2 = 4  z = 0 .  

The relevance of ;( and ~ to our nuts and bolts classification is given by various 
fixed point theorems which relate them both to the zeros of vector fields on the 
manifold. For  isometries these theorems take particularly simple forms [27-30]. 
On a compact manifold the Euler number is given by 

z [ M ]  = N +  + N _  + ~ )h- (4.6) 
i 

Where N + and N_ are the number of nuts and antinuts and Zi is the Euler number 
of the i'th bolt. In all our examples Zi = 2. Indeed this will necessarily be the case if 
the manifold M is simply connected and if the bolt can not be continuously 
deformed to a point (it can be so deformed in S 4 but not in the other examples). 
This is the analogue of the theorem that the horizon of a black hole metric with 
Lorentz signature ( - +  + +)  must have an event horizon that is topologically 
spherical [31]. This formula also holds for manifolds with boundary 0M provided 
that the Killing vector field is either everywhere tangential to the boundary (as it is 
in all our examples) or is everywhere transverse. The theorem for signature is 
rather more complicated. On compact manifolds 

r =  ~ - c o t a n p O c o t a n q O +  ~ Ycosec20, (4.7) 
nuts bolts 

Y is the self intersection number of a bolt and 20 is the group parameter. 
Equation (4.7) holds for all values of 0. If one expands in powers of 0 the first 

two terms give 

Z _ ( p q ) - l +  Z Y = 0 ,  (4.8) 
nuts bolts 

1 --1 x(Pq +qp-1 )+½ ~ Y = z .  (4.9) 
nuts bolts 

0 
Applying (4.8) to the Killing vector ~ in CP 2 which has an antinut with 

- p  = q = 1 and a bolt one finds that the self intersection number of the bolt must be 
- 1 .  This shows that CP 2 does not admit a spin structure though it can have a 
generalized spin structure [32-33]. 

In the case of a non compact there is an additional boundary term t/(0, 0) in Eq. 
(4.7). The quantity r/(0, s) is formed out of the eigenvalues of a certain differential 
operator on the boundary ~M [25]. 
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5. Duality 

0 
The action of the group G with Killing vector K = ~ z  defines a fibering n : M  

- C - , B  where C is the fixed point set of/~. In other words B is the 3-dimensional 
space of non-trivial orbits of G. The manifold B inherits a metric 

hab :gab  -- V -  1KaK b , (5.1) 

where V = K " K  a. The metric gab on M can then be written locally in the form 

ds z = V(dz + (J,)idxi) 2 -t- V -  t ~ f i j d x i d x J  , (5.2) 

where {x i} are coordinates on B, 7ij = Vhij and co i are independent of the fourth 
coordinate z. The vector field co i in B is defined up to a "gauge transformation" 

z '=  z + 2(x') (5.3) 

under which 

o)'i = co~-  ~ x  ~ ,~. (5.4) 

The twist field Hi j--Oicoj-~joa~ is gauge invariant. It can be expressed as 

H,~ = 2Ke; fh  ~ h~ V -  1 . (5.5) 

For  the rest of this section we shall work in the 3-dimensional space B. Indices 
i,j, k etc. will be raised or lowered by ~'ij and covariant differentiation with respect 
to 7~j will be denoted by it- Using the 3-dimensional alternating tensor one can 
define a twist vector H i by 

H _  ±ojku  (5.6) i - -  2~i  l ~ j k  " 

This obeys the conservation equation 

H i l l : 0 .  (5.7) 

One can therefore define the nut charge within a 2-surface L by 

N = ( S ~ ) - I  ~ H i d f f l .  (5,8) 
L 

In the case of a nut of type (p, q) 

n = (8rtpq)- l f i .  (5.9) 

For a bolt with self intersection number Y 

N = (8u)- ~ Y f i .  (5.10) 

These formulae are obtained by expanding the metric in a Taylor series in 
normal coordinates about the fixed point set. From them one can see that Eq. (4.8) 
is an expression of the fact that a compact manifold has zero total nut charge. 
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One can project the field equations, Rab=Ag~b, into B 

V-  1RabK"Kb = -- VVi~ log V + ½ V3 HiH i , (5.11) 

C d R~eh *hj - 3R~j - ½ V-  2 ViiVj + 7,j Vk V k log V 

1 2 1 2 k (5.t2) + ~ V H f l j -  ~ V HkH 7~j, 

V -  t/2 R~dh~Kd = ! r/- ~ op~ r7 r4 2-- ~ "v**q, (5.13) 

where 3Rij is the Ricci tensor of the metric 7~. 
Adding (5.11) and (5.12) one obtains an expression for the 4-dimensional action 

of the metric 

i -  1 1 
16rc MS ] / g d * x ( R - 2 A ) - 8 7  .f K ] ~  d3x (5.14) 

~M 

P 
- 16r~ ! V T d 3 x ( 3 R - 2 A V - 1 - ½ V - 2 V I V V I V - ½ V 2 H f l i )  

/~ f k ~d2x (5.t5) 
8re 0B 

where bah is the induced metric and K = K~ is the trace of the second fundamental 
form of OM in the metric 9,b and cij is the induced metric and k = k I is the trace of 
the second fundamental form in the metric 7ij. To obtain the field Eqs. (5.11)-(5.13) 
one requires that ~f be stationary under variations of 7ij, V and H i subject to the 
constraint (5.7). That expresses the fact that H is the curl of co v One therefore 
defines a new quantity I by adding the constraint multiplied by a Lagrange 
multiplier 

- - -  ~V Hil l  ) 16n ! - 2 V - 1 A  

f (5.16) 
87~, 16n 

Variation of H i gives the equation 

V2Hi = V/~p. (5.17) 

We shall therefore call ~p the nut potential. The fact that the nut potential exists is 
equivalent to the field equation R,bKah ~ = 0. One then rewrites I as 

16n ! ]//~'/d3x(3R-2V-1A-½V-2(VyV~V-V~voVitP)) 

1 1 - i 2 k + /~j~, ~w v-  dG,. (5.18) 177 

Variation of V and 7ij in (5.18) gives the field equations 

a b__ R,bK~Kb = A V  and R~bh~he-Ah~d . 
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Variation of ~ in (5.18) gives the constraint 

Vi(V-  Zv?i)=O . (5.19) 

One can therefore regard (5.18) as the effective action for a 3-dimensional relativity 
theory with metric ylj on B and non-linear fields ~ and V. 

The term 

V -  2( ~ V V ~ V -  V ~ V ~ )  (5.20) 

in (5.t8) is the Lagrangian of an 0(2, t) non-linear a model. That  is (5.20) can be 
regarded as the metric on 2-dimensional de Sitter space with coordinates V and ~p. 
This metric has the 3-parameter group of isometrics SL(2R)  which can be realized 
as the following: 

1. Translations t p ~ p + a  (5.21) 

V-* V ; (5.22) 

2. Dilations ~p-*btp (5.23) 

V-- ,bV ; (5.24) 

3. The Ehlers Transform 1-34, 35] 

~p + b(V z - ip 2) 
~P-~ (1 -- btp) 2 - b zV  2 ' (5,25) 

V 
V ~  (1 - b~p) 2 - b 2 V ~ ' (5.26) 

Corresponding to these 3 symmetries of (5.20) there will be three Noether currents 

i _ _ V-  2 (5.27) J r -  Vill ) , 

i _ J D  - -  V -  1 V i V - 1 I ) V -  2V i I~  , (5.28) 

j i  E = 2 1 D V -  1 v i v  _ V -  2(1])2 ~- V 2) Vilt) . (5.29) 

If A = 0, these are symmetries of the effective action I and so the Noether  currents 
are all conserved in the metric Vii 

i _ i _ i _ (5.30) J r l l i  - JDII/-- J N l i  - -  0 . 

If A is non zero, it breaks the symmetry under the dilation and Ehler's transforms. 
Thus 

J~ l l i=0 ,  (5.31) 

J i l l /=  2V-  1A, (5.32) 

J ~ t l l  = 2tpV- 1A . (5.33) 

In the vacuum case the symmetry under the 3-parameter group expresses the 
duality between the electric aspects of gravity, characterized by V, and the 
magnetic or nut aspects characterized by ,p. A particularly simple case is when 
V =  ~p. Then Yi~ is the flat metric and one obtains the two families of multi Taub- 
N U T  metrics. 
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6. Action and Entropy 

In the case of a compact manifold M integration of Eq. (5.32) gives the total action, 
i 

1 
i = - ~  ~ A l/gd4x (6.1) 

1 A 
- ~ f l ! ~ V T d a x  (6.2) 

1 
-- 16nl3 SsJ~dai. (6.3) 

The boundary B will consist of a disjoint set of 2 spheres around each nut and each 
bolt. Thus 

i-- 1 
16n/? Z Q. ,  (6,4) 

n 

where the dialation charge of the n'th nut and bolt is 

Judal . (6.5) 
0Bn 

The Q.'s are not invariant under the translation t p ~ p  + a but in the case of a bolt 
one can define an invariant quantity 

M. = 8nQ. - ~p.N. , (6.6) 

where tp. is the value of the nut potential at the n'th bolt and N. is its nut charge. 
The quantity M. can be regarded as the "mass" of the n'th bolt. It can be 
represented as an integral of the 2-form over the bolt 

1 
M. = ~  ~ KC;ddZca. (6.7) 

M. obeys the Smarr relation 

2~M.=A.  . (6.8) 

A. is the area of the n'th bolt. Thus 

= E - ¼ a . -  E ½~P.N./~ + E - ½~PnNnfl 
bol ts  bol ts  nu ts  

= Z - ¼ A . -  Z tPY/~2 h°/32 (6.9) 
bolts bolts 1 6 ~  -- n~ 16zcpq " 

This generalizes the formula 

~? = - ¼A (6. t0) 

which was found for S 4 [12]. 
Equation (6.9) can be interpreted thermodynamically in at least two ways. In 

the first approach one regards the A term as part of the dynamics of theory. One 
then defines the partition function Z for the canonical ensemble, 

Z =  ~ (g, lg,) , (6.11) 
n 

where Jg,) is an orthonormal basis of states for the gravitational field with the 
given value of A. In this case, unlike the normal thermal canonical ensemble, there 
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is no externally imposed temperature or chemical potential. The partition function 
Z simply counts the total number of states Ig,). Since each of these is equally 
probable, the probability P,  = Z -  t and thus the entropy S = - Z P,  log P,  = log Z. 
The partition function Z can also be represented as a path integral over all metrics 
g on a compact manifold M 

Z =  S d[g] exp - I [ 9 ]  • (6.t2) 
By the stationary phase approximation one would expect the dominant contri- 
bution to come from metrics near a solution, go, of the classical Einstein field 
equations and the value of Z to be given approximately by exp - ] [ 9 o ] -  Thus 

s= -i[go] 
= Z ¼A,+ E q~yfl2 (6.13) 

bolts bolts 16u 

+ Z ~pfi~ (6.14) 
,,ts 16rcpq" 

This shows that not only do bolts have an entropy equal to ¼ of their area, as was 
found for de Sitter space [12, 20], but there is also a contribution from the N U T 
charges of both nuts and bolts. Because of the translational freedom ~ ~ p  + a, this 
latter contribution to the entropy cannot be attributed to individual nuts and 
bolts, but its total value is invariant, since the sum of the NUT charges is zero for a 
compact manifold. 

One can also regard the A term as not being part of the field equations but as 
Lagrange multiplier or chemical potential for the 4-volume V In this case, one can 
form the partition function for the volume canonical ensemble as 

AV. 
Z[A] = Z (g,  lexp - ~ -  Ig,) • (6.15) 

n 

As before, one can represent Z[A] as a path integral over all metrics and by the 
stationary phase approximation one expects the dominant contribution to log Z 
to be - l [ g o ]  where go is a solution with the given value of A. On dimensional 
grounds 

AV° - f (6.16) 
][g0] - 8zr 8xA ' 

where f may depend on the topology of the manifold and on the particular class of 
solutions (if there is more than one) but it is independent of A. From Z[A] one can 
calculate the expectation value of the volume in the ensemble 

( V )  = - 8 7 r ~ l o g Z .  (6.17) 

With the stationary phase value for log Z one obtains 
( V)  = V o . (6.18) 

One can also form an "entropy" for the canonical ensemble 

S v = - ~ P, l o g P , ,  (6.19) 

where the probability of being in the n'th state, P,, equals 

Z_I  exp _ (AV,) (6.20) 
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Thus 

S v = _ _ A 2  0 1 ?~(A-  logZ) (6.21) 

using the stationary phase value one obtains 

Sv= - 2i[9o3. (6.22) 

This differs by a factor 2 from entropy in the canonical ensemble in which A was 
regarded as part of the field equations. 

A physical interpretation of S v can be obtained in the following way. Let 
N(V)dV be the number of states of the gravitational field with volumes between V 
and V+dV. Then Z[A] can be regarded as the Laplace transform of N(V) 

7  Avtdv Z [A] = j N(I 0 exp - ~--~-] . (6.23) 
o 

Thus N(V) is the inverse Laplace transform 

l +'®. (AV)~_~ 
N(V)= _f Z[A]  exp d A .  (6.24) 

09 

The contour in Eq. (6.24) should be taken to pass to the right of the essential 
singularity at A=0.  The dominant contribution to N(V) will come from the 
stationary points of (6.24) which occurs at 

A = A  s 

for which 

V 
8~ 

(6.25) 

just given by the total dilation charge 

ai 
6b - fib (6.28) 

= ~ J~da, (6.29) 

= QD (6.30) 

= 0 .  (6.31) 

However, under a dilation gab--+k2gab, i[k2g,b]=k2][gab ]. This shows that the 
action i[g] must be zero for a solution of the field equations that is asymptotically 
flat in the 4-dimensional sense. The Positive Action Theorem [36-41] then implies 

01ogZaA I ~ /  . (6.26) 

The value of the integrand at the stationary phase point is exp S v. Thus 

log N(V) ~ S v . (6.27) 

In the case of a compact manifold the dilation symmetry was broken by the 
presence of the A term. In the non-compact case one is interested in situations 
where the metric is asymptotically fiat, either in the 3 or 4 dimensional senses. 
Both these require that A =0. In the 4-dimensional case, the boundary conditions 
are dilation invariant. This means that the change of the action under a dilation is 
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that the metric is flat if it is asymptotically Euclidean i.e. it approaches the 
standard flat metric on R 4 outside some compact subset in which the topology 
may differ from that of R 4. If the metric is asymptotically locally Euclidean, i.e. 
outside of a compact subset it approaches the standard flat metric on R 4 identified 
under some discrete subgroup SO(4) which acts fl-eely, then the Generalized 
Positive Action Conjecture [42, 43] implies that metric must be self-dual or anti- 
self-dual. 

One is also interested in metrics which the "spatial" metric approaches a flat 
3-dimensional metric and in which V approaches some constant value which can 
be normalized to unity by an appropriate choice of/3. 

The boundary condition V--1 at infinity is not preserved under the dilation 
transformation. To impose this constraint one can define a new quantity 

L ~ #Vi/cd2x'  (6.32) I'=~+ 
oo  

where # is a Lagrange multiplier. If one requires I' to be stationary under 
variations of V which do not vanish on the boundary one obtains 

# = -- gln~V -2 . (6.33) 

Then 

6I 6I' 
3b - fib (6.34) 

M 
= fit + 1~  f #V ]/cd2x (6.35) 

/3 
- 16rc S Vii niV-1 ]/-~d2x (6.36) 

(6.37) 

where 

= 

1 
Moo- 8re ~ Vin'V-1 ~fcdZx" (6.38) 

Thus 

I=½/3M~.  (6.39) 

This generalizes the results obtained in reference [12-1 and it can also be applied to 
spaces such as Taub-NUT which are not asymptotically flat in the usual sense be- 
cause the boundary surface at infinity cannot be embedded (even locally) in flat 
space. For  Taub-NUT it gives a value of 4rcN 2 in agreement with an unpublished 
calculation by Lincoln Davis. As in reference [12] one obtains an entropy equal to 
1/4 the area of the event horizon for the Schwarzschild and Kerr solutions. 

One can also integrate the divergence of Ehler's current over the manifold. For  
a compact manifold this gives: 

~pA ]/~d4x= E 8ZC~nM.- E 4mpZN. • (6.40) 
bolts nuts 

+ 
bolts 

We have not found a physical application for this result, 
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