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Difficulties in truss topology optimization with stress, local 
buckling and system stability constraints 

G . I . N .  R o z v a n y  

FB 10, Universit~it Essen, Postfach 103764, D-45117 Essen, Germany 

A b s t r a c t  A serious difficulty in topology optimization with 
only stress and local buckling constraints was pointed out recently 
by Zhou (1996a). Possibilities for avoiding this pitfall are (i) in- 
clusion of system stability constraints and (ii) application of im- 
perfections in the ground structure. However, it is shown in this 
study that the above modified procedures may also lead to er- 
roneous solutions which cannot be avoided without changing the 
ground structure. 

1 I n t r o d u c t i o n  

Zhou (1996a) has shown that  topology optimization of dis- 
cretized trusses with only stress and local buckling con- 
straints is rather meaningless for the following reasons. 

�9 The supposedly "optimal" solution turns out to be unstable 
and hence for practical purposes useless, due to hinges along 
isolated compression members (with vanishing members in 
their neighbourhood). 

�9 If we restore the stability of these solutions by hinge cancel- 
lations along such members, then their buckling length and 
the corresponding slenderness ratio increases, and hence the 
buckhng stress decreases so drastically that  this modified 
solution becomes highly nonoptimal. 

�9 The actual (stable) optimal solution for the given ground 
structure looks entirely different from the above (unstable) 
optimal solution obtained for stress and member buckling 
constraints. 

It seems reasonable to assume that such unstable optimal 
solutions can be avoided if system s~ability constraints are 
also added to the formulation. Another option for preventing 
solutions that  are in stable equilibrium under the considered 
load only, is the introduction of imperfections into the ground 
structure. It will be shown, however, that even these modified 
formulations may lead to a nonoptimal solution. 

2 I l l u s t r a t i v e  e x a m p l e  

For computational simplicity and to improve clarity, we con- 
sider the elementary ground structure (Dorn et al. 1964) 
shown in Fig. la.  If we impose only stress and local buckling 
constraints, then the solution in Fig. lb  is obtained, which is 
similar to Zhou's (1996a) result and is unstable. With a view 
to preventing such unstable solutions, the effect of system 
stability constraints is discussed in Section 3 (Appendix A) 
and the consequences of imperfections in Section 4 (Appendix 
B). 

r / / / ~  

P 

A 

A 

~ ' / / /  

I. h 

~P 

v. 

J, (5~) (b) 

(c) -Z-- 
(d) 

(e) 

Y// / /  

Fig. 1. Illustrative elementary example 
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3 A l l o w a n c e  for  s y s t e m  s t a b i l i t y  

If additional system stability constraints are included, then 
the horizontal bar also takes on a nonzero cross-sectional 
area. This can be simply computed by considering the state 
of equilibrium for a small horizontal displacement at the in- 
ner joint (R in Fig. lc). Details of this derivation and a 
numerical example are given in Appendix A. 
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It should be mentioned that realistic topology optimiza- 
tion problems would have a more complex ground structure 
(like the one in Fig. le), but these would be subject to the 
same difficulty�9 

We can conclude from the results in Appendix A that 

�9 in the considered problem the inclusion of a system stability 
constraint indeed gives a more economical solution (Fig. 
la)  than the nominal optimal Solution (Fig. lb)  with hinge 
cancellations for stability (Fig. lf). 

�9 However, the horizontal bar turns out to be so slender that 
it would certainly buckle, before exerting a stabilizing effect 
on the system, in a real world situation. 

To overcome this unrealistic design, one would have to 
introduce imperfections in the ground structure (see Section 
4). This could be avoided only if the bracing system consisted 
of purely tensile members. Such a design is rarely possible 
in realistic problems, although in the considered example the 
ground structure could be modified in the manner shown in 
Fig. lg, which would ensure that  one of the horizontal bars is 
always in tension. This bar would stabilize the system even if 
it had the small cross-section obtained in the above example. 

4 Use  o f  i m p e r f e c t i o n s  to  ensu re  s t a b i l i t y  of  t h e  
n o m i n a l  o p t i m a l  s o l u t i o n  

One of the doubtful features of the solutions in Section 3 is 
the fact that the horizontal bracing member is not subject 
to limitations by permissible or buckling stresses, because it 
is subject to a zero force until the vertical member buckles. 
A more realistic solution is obtained, which corresponds to 
current design philosophy, by introducing imperfections. 
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Fig. 2. Modified layout problem with imperfections 

An example of such an imperfection A 0 is shown in Fig. 

2a and the geometry, as well as the magnitude of the hori- 
zontal forces to be kept in equilibrium, under an additional 
horizontal displacement (A1) in Figs. 2b and c. 

Details of the derivation and a numerical example are 
given in Appendix B. The above results show that in the 
considered example the volume of the solution with hinge 
cancellations (Fig. lf)  is significantly smaller than the one 
given by system stability (Fig. la) with imperfections for the 
original system. 

N o t e  1. Instead of considering Euler-buckling of the bars, an 
alternative, and more realistic, approach is to assume imper- 
fections (curved bars with excentrieities dl0 and d20 in Fig. 
2d and d30 in Fig. 2e) and then enforce permissible stress and 
stability conditions for these imperfect bars. However, this 
would not change significantly the conclusions of this paper. 

N o t e  2. The introduction of another type of imperfection 
(small force in the horizontal direction at the joint, see Fig. 
2f) would result in similar findings. 

5 C o n c l u d i n g  r e m a r k s  

* The above examples show that  even the introduction of sys- 
tem stability constraints and/or  various types of imperfec- 
tions in the original ground structure does not necessarily 
give the true optimal solution because some solution with 
hinge cancellations may have a lower weight. 

�9 If we introduce system stability constraints without imper- 
fections, then the solution without hinge cancellations (Fig. 
la) is nominally more economical (for realistic geometrical 
proportions) than the solution with hinge cancellation (Fig. 
lf).  However, the former is unrealistic because it does not 
allow for the instability of members required for bracing 
only. This is because these members are subject to zero 
forces, until buckling takes place. 

�9 Once imperfections are introduced, some solution with 
hinge cancelations may be much more economical than the 
optimal solution for the original ground structure. 

�9 It is not practical to locate systematically the best structure 
with hinge cancellations for large ground structures (used in 
topology optimization) because one would have to consider 
in a discrete procedure all combinations of hinge removals, 
which would be prohibitively expensive. 

�9 Using some criterion for hinge removal during an iterative 
procedure may result in large errors because, once a hinge is 
removed, there exists no systematic method for reinserting 
it. 

�9 The above results are preliminary ones and should be 
treated with caution, because they are based on solid 
(square) cross-sections, having partly very high slenderness 
ratios. The relative economy of solutions without hinge 
cancellation (but with system stability constraints and im- 
perfections) is likely to be more favourable if thin-walled or 
tubular cross-sections are considered. These will be treated 
in a more detailed study. 

�9 The long horizontal member (RQ in Fig. lc) would be sub- 
ject to substantial bending stresses due to selfweight, which 
should also be taken into consideration, unless some verti- 
cal suspension is provided. The effect of selfweight can 
be treated efficiently (e.g. Rozvany and Zhou 1992) by the 
D'COC method (Zhou and Rozvany 1992/93). 



�9 The difficulties outlined by Zhou (1996a) and in this 
note also affect the topology (more correctly: "general- 
ized shape") optimization of perforated plates under plane 
stress, which also results in very slender bar-like formations 
in compression. This can be seen in two examples given in 
Fig. 3. For the above reason, it is extremely important to 
treat the considered problems effectively in most branches 
of topology optimization. 
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Fig. 3. Examples of generalized shape optimization of perforated 
plates under plane stress: (a) after Olhoff, Bendsce and Ras- 
mussen (1992); (b) after Rozvany et el. (1993) 

�9 An additional difficulty with local buckling constraints is 
caused by singular solutions (Sved and Ginos 1968; Kirsch 
1990; Cheng and Jiang 1992). These are due to the fact 
that, once a cross-sectional area becomes zero in an opti- 
mal solution, the permissible stress in the corresponding 
stress constraint jumps from a finite given vMue (the per- 
missible stress C~p0 for tensile members) to infinity. The 
above problem becomes even more severe for compression 
members with buckling, because in that case the permissi- 
ble stress jumps from a near-zero value (very slender mem- 
bers) to infinity (vanishing members). The relation be- 
tween permissible stress (gp) and cross-sectional area (A) 
or member force (F )  is shown graphically for tension and 
compression members, respectively, in Figs. 4a and b. A 
method for making the feasible set nonsingular was sug- 
gested by the author (Rozvany and Kirsch 1994), in which 
smooth envelope functions (broken lines in Fig. 4) replace 
the discontinuous functions for gp(A). One such smooth 
function proposed was Crp = CrpO exp(Ao/A ) where A 0 is a 
prescribed very small area value. 

�9 The author and Zhou are working at present on methods for 
overcoming the pitfalls outlined in this paper. An impor- 
tant idea by Zhou for possible automatic hinge cancellation 
be discussed elsewhere (Zhou 1996b, Zhou and Rozvany 
1996). 
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Fig. 4. The relation between permissible stresses (~rv) and cross- 
sectional areas (A) or member forces (F) in topology optimization 
(continuous lines) and corresponding smooth envelope functions 
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A p p e n d i x  A.  A l lowance  for  s y s t e m  s t a b i l i t y  

The horizontal force H 1 generated by moving the joint R in 
Fig. lc horizontally by A is given by 

H 1 = 2 P A / L ,  (1) 

(see Fig. ld  for the relevant force diagram). The same dis- 
placement generates a stabilizing force of 

H 2 : A E a / h ,  (2) 

in the bar RQ, where E is Young's modulus for all bars, a 
the cross-sectional area of the horizontal bar and h its length. 
The system remains stable if the latter force is greater than 
the former, i.e. 

H 2 - H 1 > 0. (3) 

The limiting case H 2 - H 1 : 0 then implies 

2 P A / L  = A E a / h ,  (4) 

giving 

a --- 2 P h / E L .  (5) 

This means that the horizontal bar must take on at least the 
cross-sectional area in (5) for system stability. 

A.1 Dimensioning of the vertical bars 

We assume that  the vertical bars are governed by Euler- 
buckling, for which the well-known critical force (Fk) and 
Euler stress (ae) are 

zc 2 E I ~r 2 E 
F k -  L2 , e r e -  A2 , (6) 

with 

A= _ ,  i =  , 7) 

where I is the moment of inertia and A the area of the cross- 
section. Considering square cross-sections with a side length 
of d, we have 

A : d  2, I : d 4 / 1 2 = A 2 / 1 2 ,  i = d / v / - ~ ,  

7r 2 E A 2 7r 2 E I 7r 2 E A 
Fk -- 12L2 , ~e = "L2 A -- 12L2 �9 (8) 

Then the area requirement A for a given axial force P be- 
c o m e s  

~r V E ' (9) 

A.2 Check on the optimality of the considered layout (Fig. 
la)  

It follows from (5) and (9) that  the total  truss volume be- 
comes 

2L 2 1/1/1/1/1/1/1/1/1/i~ 2h2p (10) 
V1 --- - ~ -  V --E - + L E 

Considering the modified solution with a longer vertical bar 
without a hinge (Fig. lf),  we have by (9) with L --r 2L 

A2 = V~ = . (11) 
7rV E ' ~ V E 

Clearly, the second solution is more economical if 

2L2 tl~_PP 2h2P 
- -  ~ < - -  (12) 

LE ' 

or 

12L6E 
pTr2h------ ~ < 1. (13) 

This means that  for large values of h /L  and/or  P / E L  2 the 
solution in Fig. I f  is optimal and hence even an additional 
system stability constraint without hinge cancellation would 
yield a nonoptimal solution. 

A.3 Consideration of additional permissible stress (e.g. yield 
stress) constraints 

For low slenderness ratios (i.e. for large compressive member 
forces), the permissible (or yield) stress ~p has a lower value 
than the Euler buckling stress (ere). This is shown in Fig. 5, 
which represents graphically the cross-sectional area A/force 
F relation for a typical truss element. If the permissible 
stress governs the design, then the cross-sectional area of the 
vertical members becomes 

A = P ,  (14) 
r 

B 

- " V  C F  
D 

Fig. 5. Cross-sectional area/member force relation for trusses 

and the corresponding total  volume 

2LP 2h2p 
'/3 = - -  + - -  (15) 

~p L E  

If the bar in Fig. I f  is still governed by the Euler stress, then 

V3 < 1/2, (16) 

with (11) and (15) implies that  the solution in Fig. I f  is op- 
timal. However, ff the bar in Fig. I f  is also governed by the 
permissible stress constraint, then the total volume becomes 

2LP 
I /4= ap " (17) 

This is always lower than 1/3 in (15) and hence the solution 
in Fig. If  is optimal. 



A.4 Numerical example 

Consider the problem in Fig. l a  with P = 200 kN, L = 3 m, 
E = 210000 N/mm 2 and trp = 240 N/ram 2. The material 
properties are given by the relevant German design standard 
(DIN 18800 for the steel St 37). Then the limiting case for 
(13) gives 

h =  1 0 ~ ( 1 2 x 3 0 0 0 6 x 2 1 0 0 0 0 ~  1/4 
~ ~ 2000--~ ] ----- 174.66m, (18) 

which is well outside the realm of practical structures. For 
shorter horizontal bars (with h < 174.66 m), the layout in 
Fig. l a  is more economical than the one in Fig. 1s The cross- 
sectional area for the vertical member by (9) would become 

A = 30:0 i 12x  200000 = 3228.25mm2 (19) 
/ 

210000 i 

and the corresponding stress 

200000 _ 61.953 N /mm 2 , 
- 3228.2~ 

which is much smaller than the permissible (yield) stress of 
240 N/mm 2. Taking a realistic value for h by adopting h =12 
m, (5) gives for the cross-sectional area the horizontal bar 

2 x 200000 x 12000 = 7.62mm 2 (20) 
a = 210000 x 3000 

A p p e n d i x  B. M o d i f i e d  t r u s s  w i t h  i m p e r f e c t i o n  

Assuming a small initial horizontal imperfection A 0 at the 
joint (Fig. 23), we have a force H 0 in the horizontal member 

2AoP (21) 
H 0 -  L 

For an additional displacement of A 1 (Fig. 2b), we have the 
horizontal force 

2(A0 + A1)P (22) 
Ha= L 

The stabilizing force generated by strains in the horizontal 
member becomes 

H 4 = A1Ea/h.  (23) 

The forces H 3 and H 4 are shown graphically in Fig. 2c. Equi- 
librium is reached if 

H 3 - - - / /4 ,  (24) 

implying 

2AoPh (25) 
A1-- E a L - 2 P h "  
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The result in (25) assumes that  the lines representing H 3 
a n d / / 4  in Fig. 3c do intersect for A 1 > 0, which implies the 
additional condition for stability 
Ea 2P 2Ph 
T > T or a > E----L-' (26) 

For a given value of "a", A 1 can be calculated from (25) and 
then H 3 from (22). Then "a" must also satisfy the conditions 

a > - -  H3 and a _ > - - .  H3 (27) 
ap ere 

Considering the solution with hinge cancellation (Fig. lf), 
the cross-sectional area A must satisfy the~ conditions 

P P 
A > - -  and A > - - .  (28) 

~p ae 

B.1 Numerical example 

We consider again the problem in Fig. l a  with P = 200 kN, 
L = 3 m, E - =  210000 N/ram 2, h = 20 m and Crp = 240 

N/mm 2. The imperfection A 0 in Fig. 23 will be assigned the 
value A 0 = 30 mm (which is 0.5% of the combined length of 
the vertical members). The relevant equations on the basis 
of (25), (22) and a modified version of (9) are 

2AoPh 2(A 0 + A1)P  
H 3 -  L ' A I =  E a L - 2 P h '  

h_,12/5  
a = ~ r V  E ' 
giving the values 

A 1 ---- 0.12542543 ram, 

a -- 3049.9804 mm 2 , 

o r  

H 3 = 4016.72339N, 

c~ = 1.316967N/ram 2 . 

(29) 

(30) 

(31) 

The latter agrees with the Euler-stress qe given by (8). The 
above stress value is considerably smaller than the yield stress 
(~p = 240 N/mm2). 

By (19) and (30), the total volume of this design is 

V 1 = 3228.25 • 6000+3049.98 x 20000 = 80369100mm 3 .(32) 

For the solution with hinge cancellation (Fig. lf), (11) gives 

V 2 = 38739017 mm 3 , (33) 

which is less than half of the nominal optimal solution for the 
original ground structure with imperfections. 
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