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A b s t r a c t  Previous research on topology optimization fo- 
cussed primarily on global structural behaviour such as stiffness 
and frequencies. However, to obtain a true optimum design of a 
vehicle structure, stresses must be considered. The major difficul- 
ties in stress based topology optimization problems are two-fold. 
First, a large number of constraints must be considered, since un- 
like stiffness, stress is a local quantity. This problem increases the 
computational complexity of both the optimization and sensitiv- 
ity analysis associated with the conventional topology optimiza- 
tion problem. The other difficulty is that since stress is highly 
nonlinear with respect to design variables, the move limit is essen- 
tial for convergence in the optimization process. In this research, 
global stress functions are used to approximate local stresses. The 
density method is employed for solving the topology optimization 
problems. Three numerical examples are used for this investi- 
gation. The results show that a minimum stress design can be 
achieved and that a maximum stiffness design is not necessarily 
equivalent to a minimum stress design. 

1 I n t r o d u c t i o n  

Topology optimization has been extensively studied with 
stiffness and frequency considerations in the literature (Park 
1995; Bendsee and Kikuchi 1988; Ma et al. 1995; Dfaz and 
Kikuchi 1992; P~ozvany et al. 1992; Jog et al. 1994; Mlejnek 
and Schirrmacher 1993; Yang and Chahande 1995; Yang and 
Chuang 1994; Gea 1994; Wang el al. 1996). It was demon- 
strated that  a light weight and high stiffness design can be 
achievable. However, a high stiffness design may result in low 
durability, if stress is not considered in the design process. 

There has been relatively little research done on stress 
based topology optimization problems and among them only 
truss elements which are seldom used in the automotive 
industry have been investigated (Cheng and Jiang 1992~ 
Sankaranaryanan el at. 1992). Rozvany et al. (1995) pro- 
posed a new optimality criteria method DCOC to perform 
stress based topology optimization. Harzheim el al. (Baum- 
gartner et al. 1992; I-Iarzheim and Graf 1995) used a biologi~ 
cal growth concept and an optimality criteria method to de- 
termine the optimal topology for the reduction of structural 
peak stress. The Young's moduli were varied as functions of 
stress to obtain the fully stressed design. The drawback of 
this method is its lack of generality. It is unable to handle 
other design criteria such as stiffness and frequency. 

Stress based topology optimization problems are faced 
with two major difficulties: stress is a local quantity and 
stress is highly nonlinear with respect to the design variables. 
Because of its high nonlinearity, the move limit needs to be 
considered with special care to ensure convergence. Unlike 
stiffness, since stress is a local quantity, a large number of 

constraints must be considered. By increasing the complex- 
ity of both the optimization algorithm and sensitivity analy- 
sis, these problems add to the computational time associated 
with the topology optimization, which already considers a 
large number of design variables. This research considers 
stress reduction in the topology optimization process. The 
local stresses are first transformed to a global stress func- 
tion which is then used in the optimization process. Two 
global stress functions are investigated: the Kreisselmeier- 
Steinhauser function (KS) and the function proposed by Park 
and Kikuchi (KK) (Park 1995). The density method or the 
engineering method is used to perform the topology optimiza- 
tion (Mlejnek and Schirrmacher 1993; Yang and Chahande 
1995; Yang and Chuang 1994) and MSC/NASTt~AN is used 
to conduct the finite element analysis. The continuum adjoint 
variable method is employed for efficient sensitivity analysis 
(Yang and Chuang 1994; Haug e$ al. 1986) which is briefly 
discussed in the following section. Three optimization prob- 
lems are formulated, optimized, and discussed. 

2 O p t i m i z a t i o n  f o r m u l a t i o n s  

One of the solutions for solving the local stress problem is to 
transform the stresses to a global stress measure. The global 
stress measure is then treated as the only constraint in the 
optimization process. The advantages are obvious. It reduces 
the burden for the optimization algorithm and solves a topol- 
ogy optimization problem similar to that  in the literature. It 
also reduces the computational cost for calculating the ele- 
mental stress sensitivities which are quite intensive consid- 
ering the numbers of design variables and constraints. The 
disadvantage is that it is difficult to find a general and robust 
function that can be applied to all cases for stress reduction. 

Two global stress functions are investigated: the 
Kreisselmeier-Steinhauser (KS) and the function proposed by 
Park and Kikuchi (KK) (Park 1995). The KS function is in 
the form of 

g . f /(~) 
i ~ er Smax(O-) 

Gks = Pin  , (1) 
i=1 

where N is the number of finite elements in the design do- 
main, c~ is the stress, fmax(a) is the maximum von Mises 
stress, and f i (~ )  is the yon Mises stress for each finite ele- 
ment. The parameter p determines the difference between the 
original function and its approximation. When a high value 
of p is used, the peak stress is weighted more heavily. How- 
ever, it often leads to oscillation or even divergence during 
the optimization iterations. The oscillation results from the 
high nonlinearity of the global stress function. Here, p = 20 
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is chosen, as selecting the optimal p is beyond the scope of 
this research. 

The mathematical form of the KK function, which is the 
p-norm of local stresses, is written as (Park 1995) 

1 

akk = t ~ J  dO , (2) 

where D is the design domain, and p = 20 as before. 
One compliance minimization and two stress optimization 

problems are formulated and discussed as follows. 

2.1 Compliance minimization problem (CM) 
The compliance topology optimization problem is the most 
common in the literature. It is solely used for benehmarking. 
The optimization formulation is 

min C ,  

subject to [ pdO < MO , (3) 

12 
where C is the compliance, O is the design domain, p is the 
material density, and/140 is the total material usage. Note 
that the compliance minimization problem is equivalent to 
the stiffness maximization problem and that stresses are not 
considered in this case. 

2.2 Stress minimization problem (SM} 
Instead of compliance, stress is chosen as the objective func- 
tion. The optimization problem is as follows: 

min G, 

subject to [ p d O < M 0 ,  (4) 
G J  

12 
where G is the global stress function of von Mises stress. 

2.3 Compliance and stress minimization problem (CSM) 
To consider structural stiffness and stress, a linear, weighted 
function is employed as the objective function 

min c 1C + e 2G, 

subject to [ p d O  < M0, (5) 
/2 

where c 1 and c 2 are the weighting factors for the compli- 
ance and the global stress function, respectively. Since stress 
minimization is a major concern, a larger weighting factor is 
assigned to global stress function, i.e. c 1 = 0.3, c 2 = 0.7. It is 
noted that many combinations of c 1 and c 2 can be selected, 
however, it is beyond the scope of this research. 

3 Design sensi t ivi ty  analysis  

Sensitivity analysis plays a major role in the topology op- 
timization process. Efficient and accurate sensitivity can 
achieve fast convergent results, which translates to major 
cost savings. Since only one stress function is treated, the 
continuum adjoint variable method is used to achieve com- 
putational efficiency (Yang and Chuang 1994; Haug et al. 
1986). The design variable for the density method is the 

normalized material density of each finite element. In the 
following, the design sensitivity of the global stress function 
with respect to the normalized density p is derived. 

The variational form of the elasticity problem is written 
a s  

ap(z,~) =s for a l l~E  Z, (7) 

where 

ap (z, ~) = [ ~r ij (z)r ij (~) dO,  (8) 

12 
and 

tp(~)  = [ FT~dO.  (9) 
4 1  

12 

In (7)-(9), z and ~ are the real and virtual displacement 
vectors, Z is the space of kinematically admissible .displace- 
ments, p E 1% is the normalized material density, a zj and r 
are stress and strain tensor, respectively, and F is the exter- 
nal loading. The first-order variation of (7) with respect to 
the density variables is written as (Haug eta/.  1986) 

ap(z', ~) = s - a~p(Z, ~), (10) 

where 

ap(z',~) = / criJ(zt)ciJ(~) dO, (11) 

12 

f}p(~) = f F 'T~dO,  (12) 

12 

and 

a~p(Z,g) = f c iJ (z ) (Di jks  (13) 

12 

where D ijks is the elasticity tensor and (Dijkl) I is its deriva- 
tive. 

The first-order variation of the stress functional G = 
f g(p, z) dO is 

G I = . [g l  + gzz I dO. (14) 

Based on (14), the adjoint equation for the stress functional 
is defined as 

ap(a,A)--  f g ~ A d O ,  for a t l a s  Z,  (15) 

where A is the virtual displacement and Z is the space of 
kinematically admissible displacements. 

By setting A = z ~ E Z in (15) and ~ = A E Z in (10) 
and then using the symmetry property of the energy bilinear 
form ap(*,* ), the design sensitivity of the stress function with 
respect to design variables is written as 

= s - a~p(z, A) + f g '  G I dO. (16) 

Unlike the compliance sensitivity (Yang and Chuang 1994; 
ttaug et al. 1986), (16) shows that one additional finite ele- 
ment analysis (FEA) is required for obtaining the stress sen- 
sitivity. 
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4 N u m e r i c a l  e x a m p l e s  a n d  d i s c u s s i o n  

Three numerical examples were used to investigate the ef- 
fects of the move limit,  global stress function, and different 
optimization formulations. The terminat ion criterion for op- 
t imization is the maximum iteration number which is chosen 
as 10 for all cases. The detailed finite element and other 
design information are given in the following. 

,t.1 PI: clamped solid beam 

The first example is a clamped solid beam with concentrated 
loads applied at the centre, as shown in Fig. 1. The finite 
element model includes 1107 grid points and 640 8-node HEX 
elements. The material  usage for this example is limited to 
50%. 

. . j ~  ~:i/~ ~"" 
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yH .............. ~ X 

Fig. S. Simplified body structure 

F 
Fig. 1. Clamped solid beam 

,1.2 P2: clamped shell beam 

The second example is a clamped shell beam with loading 
applied at the centre of the top surface, as shown in Fig. 
2. The finite element model includes 1377 grid points, 1280 
CQUAD4 elements, and more than  6700 degrees of freedom. 
The material  usage for this example is limited to 70%. 

133 

128 ,~,,\ *_ csM (o.i) 
, , \  . _.-....__._~.~___L~163 
' ~ \  o~ SM (o.z) 

:~ ~ .... ~ _ _t~._~?_-~) 

~ -~_ ", ~. 7 a . . 
"~'8. '-"-~.-. ' , ." '.'. .." "~ 5t ~ 113] ..... ": : :<.  ~ ~ .  >: : 8  

108 " " .  - 

103 i ' E , i ' i ' k , i , i i i 

0.0 1.0 2 .0  3 .0  4 .0  5.0 6.0 7 .0  8.0 9 .0  I0.0 

I t e r a t i o n  N u m b e r  

Fig. 4(a) Solid beam stress 

2200] ~ 

zloo~ . . . . . .  .-"~ 

2000 ~ ~ r , : . 7  ~ " " " " .... ~ " 

Fig. 2. Clamped shell beam ~ 19oo ~ ' , ~  " " 
�9 CSM (o.1) I 

�9 ~ ' \ I ~ SM (o.~) J 1800- ' . . . . . . . . . . . . . . . . . . . . . . . . .  = ~ " t  ~ __=_  _ ~y__(_o:~) 
4.3 P3: simplified vehicle body struclure ~ 1700- ". ~ .  I -~  -_C_SM _~?_..z) I 
The third example is a simplified vehicle body structure with 
torsional loads, as shown in Fig. 3. The finite element model ~ . .  ~ ] __, _c_M . . . .  [ 1000- '~. ~ ~ L 
includes 5456 QUAD4 and 20 TI~IA3 elements, 5508 grid .... ~ ' - .  ~ I 
points, and more than 33,000 degrees of freedom. The design 1500- -8. -8- _ ---*~--_~._~ 
is to minimize stress and compliance with 25% material usage 
constraint imposed on the floor panel, i.e., the floor panel is 
the design domain.  

4.4 Move limit 

The move limit is the parameter  to determine how far the 
current design can go in one design iteration. For a compli- 
ance minimization problem, the move limit can be very large, 
e.g. 50%. Unfortunately, it cannot be applied to the stress 
problem because of its high nonlinearity. Two move limits: 
10% and 20% are used in this study. 

1400 I ' I ' ' i i ' ~ ~ - -' - 
0 .0  1.0 2[0 3.0 41.0 5[0 6 .0  7 .0  8 .0  9 .0  10.0 

Iteration Number 
Fig. 4(b) Solid beam compliance 

Figures 4a to d show the design histories for the peak 
stress and the compliance. Figures 4a and b are for the solid 
beam example (P1) and Figs. 4c and d are for the shell beam 
example (P2). It  is observed that, in general, the variations 
in stresses are larger than those in compliances and that  the 
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10% move l imit is more stable  than the 20% move limit. The 
stress variations may  depend on the choice of  parameter p 
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for the global stress function.  A large parameter p or a large 
move limit ma y  result in a divergent solution.  Comparing 
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~0.0 model than for the solid element model. In the following, a 
10% move limit is employed unless otherwise specified. 
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the CSM and SM with fixed move limit, the CSM formula- 
tion is more stable than the SM. This may result from the 
contribution of a smoother compliance function to the objec- 
tive function of CSM. It is also found that more drastic stress 
jumps occur during the design iterations for the shell element 

4.5 Global stress function 

Two global stress functions were studied. The KS function in 
(1) and the KK function in (2) were applied and compared. 
The results are shown in Figs. 5 to 7 for P1, P2, and P3, 
respectively. It is noted that both global stress functions pro- 
duce comparable results. The stresses for all three problems 
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Fig. 9(b) Material distribution for P2 (SM, KK) 

were reduced and convergent results were reached. The peak 
stresses for P1 and P2 are reduced by more than 15% and 
for P3 the peak stress is reduced by more than 40%. 

The material distribution results of the SM formulation 
for all examples are shown in Figs. 8 to 10. Similar topology 
contours were obtained for both KS and KK stress functions. 
Figures 8a and b show the optimal material distributions of 
P1, using the KS and KK global stress functions, respectively. 
Figures 9a and b and Figs. 10a and b are the optimal material 
distributions for P2 and P3, respectively. 

4.6 Optimizalion problems 
Three optimization formulations were implemented: CM, 
CSM, and SM. The design histories for all examples are 

Fig. 9(e) Stress distribution for P2 (SM, KS) 

shown in Figs. 5 to 7. In general, the results show that  the 
stress increases if the compliance is the objective function 
(CM) and the compliance increases if the stress is the objec- 
tive function (SM). The CSM formulation shows that it can 
improve both stiffness and stresses. 

It is noted that the final topologies for SM and CM are 
quite different. This indicates that the maximum stiffness de- 
sign is not equivalent to the minimum stress design. Figures 
8a and c, Figs. 9a and c, Figs. 10a and c show the optimal 
material distributions of SM and CM for P1, P2, and P3, 
respectively. 

It is also noted that the patterns for final material and 
stress distribution are similar for both CM and SM. Figures 
8a and e, Figs. 9a and e, and Figs. 10a and e show the optimal 
material and stress distributions of SM for P1, P2, and P3. 
Figures 8c and d, Figs. 9c and d, and Figs. 10c and d show the 
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optimal material and stress distributions of CM for P1, P2, 
and P3, respectively. The CSM results are between those of 
SM and CM as expected and thus are omitted. 

5 Conc lus ions  

The stress based topology optimization problem has been 
investigated. Based on the numerical investigation, the fol- 
lowing observations and conclusions are drawn. 

�9 Reduction of both the peak stress and the structural com- 
pliance is achievable. 

�9 The maximum stiffness design is not equivalent to the min- 
imum stress design. 
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Fig. 10(e) Stress distribution for P3 (SM, KS) 

�9 Treating stress as the objective function may reduce the 
peak stress, however, the structural stiffness may deterio- 
rate. 

�9 Considering both compliance and stress (CSM), not only 
gives better results, but also provides numerical stability 
and results in faster convergence. 

�9 Three examples show that both the KS and the KK global 
stress function are comparable and can achieve stress re- 
duction. 

�9 Numerical results show that final topology contours are 
similar to final stress contours. 

�9 The global stress function is highly nonlinear and is sensi- 
tive to the optimization move limit. To ensure convergence, 
10% move limit was used in this study. 
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