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Regular pairs behave like complete bipartite graphs from the point of view of bounded degree 
subgraphs. 

1. I n t r o d u c t i o n  

The Regularity Lemma [16] is a powerful tool in Graph Theory and its appli- 
cations. It basically says that every graph can be well approximated by the union 
of a constant number of random-looking bipartite graphs - -  called regular pairs 
(see the definitions below). 

These bipartite graphs share  many local properties with random bipartite 
graphs, e.g. most degrees are about the same, most pairs of vertices have about 
as many common neighbours as is expected in a random graph, and so on. These 
particular local properties imply other ones. Most importantly, they imply that 
every fixed bipartite graph H can be found as a subgraph in any large enough 
regular pair G (with a given positive density). 

This however is not an :exclusive property of regular pairs, or that  of random 
graphs, since classical Extremal Graph Theory tells us that  any given bipartite 
graph H is contained as a~subgraph in all large enough dense graphs (KSvs S6s- 
Turs [8] and ErdSs-Stone [9]). The power of using the Regularity Lemma becomes 
apparent only when extended to much larger subgraphs H. Two examples are the 
theorem of Chvs [6] stating that  all bounded degree 
graphs have linear Ramsey numbers, and the Alon-Yuster theorem [4] providing 
ahnost perfect coverings of a large G with copies of a small H. 
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Some new papers deal with embedding problems where H and G have the 
same order (spanning subgraphs). Classical Ramsey-Turs theory tells us that  this 
is hopeless (the Ramsey and Turs numbers are huge) unless H is small in some 
sense. Two natural classes of such small H are trees (forests) and bounded degree 
graphs. An example for the first one is the proof of the Bollobs conjecture on 
spanning trees [11]. Examples for the second one are papers of the same authors 
on the P6sa-Seymour conjecture [12, 13] and on the Alon-Yuster conjecture [14]. 
These papers use a randomized version of the greedy algorithm to embed most 
vertices of H and then finish the embedding by using a Khnig-Hall argument. The 
proofs were further refined to lead to the tool called Blow-up Lemma in this paper. 
It basically says that  regular pairs behave like complete bipartite graphs from the 
point of view of bounded degree subgraphs. 

1.1. N o t a t i o n s  

All graphs are simple, that  is, they have no loops or multiple edges, v(G) 
is the number of vertices in G (order), e(G) is the number of edges in G (size). 
deg(v) (or degG(v)) is the degree of vertex v (within the graph G), and deg(v,Y) 
(or degG(v,Y)) is the number of neighbours o fv  in Y. 5(G),A(G) and t(G) are the 
minimum degree, maximum degree and average degree of G. N(x) (or NG(x)) is 
the set of neighbours of the vertex x, and e(X, Y) is the number of edges between X 
and Y. A bipartite graph G with color-classes A and B and edges E will sometimes 
be written as G =  (A,B,E). For disjoint X,Y,  we define the density 

e(X,Y) 
d(X ,  Y )  - I-X[: IYI 

The density of a bipartite graph G =  (A,B,E) is the number 

IEI 
d(G) = d(A,  B )  : [ A I  . [BI' 

For two disjoint subsets A,B of V(G), the bipartite graph with vertex set AUB 
which has all the edges of G with one endpoint in A and the other in B is called 
the pair (A,B). 

A pair (A, B) is e-regular if for every X C A and Y C B satisfying 

IX[ >elAI and IY] > e[BI 

we have 

[d(X,Y) - d(A,B)[ < e. 
A pair (A, B) is (e, 5)-super-regular if for every X C A and Y C B satisfying 

IxI > ~IAI and [YI > ~[B] 
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we have 

e ( X , r )  > 5lXllYl, 

and furthermore, 

d e g ( a ) > 5 1 B  I fora l l  a ~ A ,  and d e g ( b ) > 5 t A  [ for all b ~ U .  

H is embeddable into G if G has a subgraph isomorphic to H ,  that  is, i f  there 
is a one-to-one map (injection) ~:  V(H)--~ V(G) such that  {x,y} E E (H }  implies 
{~(x), ~(y)} C E(G).  The cardinality of a set S will mostly be d , , o t e a  by I!SI!, but 
sometimes we write ~S .  

1.2. T h e  B l o w - u p  Lemma 

Theorem 1 (Blow-up Lemma). Given a graph R o f  order r and positive parameters 
5, A, there exists a positive e = e(5,A,r) such that the following holds. Let  ~.1, 
n2, ..., nr be arbitrary positive integers and let us replace the vertices v l ,  v2, ..., 
vr of R with pairwise disjoint sets V1, 1/2, ..., Vr of sizes nl ,  n2, . . ,  ~r (blo~ffng 
up). We construct two graphs on the same vertex-set V -- UV i. The f~rst graph R 
is obtained by replacing each edge {vi, vj } of R with the complete bipartite graph 
between the corresponding vertex-sets Vii and Vj. A sparser graph G is coustructed 

by replacing each edge {vi, vj } arbitrarily with an (e, 6)-super-regular pair between 

Vi and Vj. I f  a graph H with A(H)  < A is embeddable into R then it is already 
embeddable into G. 

1.3. Sketch of proof 

The classical proofs using the Regularity Lemma for embedding a graph H 
into a graph G typically follow a greedy embedding algorithm like this: For the 
location of the first vertex of H select a typical vertex Vl of G - -  that  is, any vertex 
with a typical degree. After having embedded k vertices of H into v l , . . . , v  k of 
G, select Vk+ 1 from the appropriate color class of G to be any vertex with a large 
degree into the common neighbourhood of the already selected vertices in the same 
color class. This selection guarantees that  all selected vertices in the same color 
class have a large common neighbourhood, and thus not only do we end up with 
a copy of the desired H,  but we may obtain many such copie s (proport ion~ to 

order(G)~ This can easily be extended from embedding biparti te graphs 
to embedding graphs with a higher but fixed chromatic number. We' will ~se a 
randomized version of this greedy algorithm. 

Let n = ~ n i .  We will assume that IV(H)I--IV(G)I =n. We embed the vertices 
of H one-by-one by following a randomized greedy algorithm (RGA), which works 
smoothly until there is only a small proportion of V(H)  left, and then i t  may get 
stuck hopelessly. To avoid this, we will set aside a positive proportion of speciaI 
vertices of H called "buffer vertices". 
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In Phase 1 of the RGA we will embed the vertices of H one-by-one into G until 
all non-buffer vertices are embedded. For each x not embedded yet (including the 
buffer vertices) we keep track of an ever shrinking host-set Vt,x that  the image of 
x is confined to at time ~. These sets are defined in the following natural way. ]f 
x is to be embedded into V/, then for each t we define an auxiliary set Ct,z to be 

the intersection of V/with the common neighbourhood (in G) of the images of the 
neighbours of x (in H) already embedded by time ~. Clearly x must be embedded 
into the set of vertices in C~,x still unused by time t. This set is the set ~,z.  Now 

if x is embedded at time ~ then we select the image of x randomly (uniformly) 
from V~-l,x. While the sets Ct,~ are all large by the regularity condition, ~ ,z  - -  
the unused part of C~,~ - -  may get very small or even empty if we use a greedy 
algorithm. This is the reason we use a randomized algorithm; the randomization 
ensures that we do not delete vertices from the host-sets ~,x in a worse case manner, 
but only proportionately to the time t. Some exceptions to this proportionality 
may be accidentally created, and then we immediately deal with these exceptional 
vertices by putting them into a first-in first-out queue (FIFO) q(t) whose vertices 
have a priority at the selection of the next vertices to be embedded. 

This embedding is continued in Phase 1 until all non-buffered vertices are 
embedded, unless the queue gets too long, in which case we abort the algorithm. 
T will denote the (random) last moment of Phase I. In Phase 2, we embed the 
leftover n-T vertices by using a K6nig-Hall type argument. 

2. P r o o f  

We are given the parameters r = IV(R)], and r of the super-regularity 

condition. We define several new parameters: 6t,6t/,6 "/ are used by the RGA 
algorithm and n by the K6nig-HM1 argument of Section 2.7, while n0 and "y are 
auxiliary parameters. The parameters have the following order: 

(1) c << ~ << ~ << 6 "t << 6" << 5 / << 6 

where a ((j3 means that a is small enough in terms of ft. One possible choice is 
the following: 

61 6/'+1 6t I 6 m (6t)3/' - 4 r 2 Z X 2 '  = ( 6 ' ) 2 '  = ( 6 ' ) 3 '  = = . 

We fix a threshold n0 > 1/61 and will always assume that e < eo(6, A,r, no). For 
easier reading, we mostly use the letter z for vertices of H, and the letter v for 
vertices of the host graph G. 

Given an embedding of H into R, it defines an assignment 

4: V(H) V2,..., 
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and we want to find an embedding ~ of H into G compatible with r tha t  is, a map 

~ : V(H) ~ V(G), ~ is one-to-one 

such that  ~ ( x ) e  r  for all x e V(H) ,  and {x,y} e E(H) implies {p (x ) ,p (y )}  �9 

E(G). We will call the sets ~ clusters, and write Xi = r  ( ~ )  for i =  1,2, . . .  ;r .  

2.1. P r e p r o c e s s i n g  

Before we star t  the RGA algorithm, we order the vertices of H into a sequence 
S = (Xl,X2,...,Xn) which is more or.less, but not exactly, the order in which the 

vertices will be  embedded. Let mi = [51niJ and m = ~ m i .  For each i, choose a 
set of mi vertices in Xi such that  any two of these altogether m vertices are at a 
distance at least four in H.  The only restriction we make is that  no vertex of Xi 
should be chosen that  is a neighbour of any vertex in any other Xj of size less than 

ni/(2rA). (This only excludes less than half the ni vertices of Xi, and its relevance 
can only be seen later.) Selecting such a subset of mi vertices is possible, for H is 
a bounded degree graph. �9 

These vertices b l , . . . , bm will be called :the 'buffer vertices, and they will 
be the last vertices 'in S. The sequence S starts with the neighbourhoods 
NH(bl),NH(b2),...,NH(bm). The length of this initial segment of S will be de- 

noted by To. Thus TO = E ]Ntt(bi)[ <_ Am. If Mi is the number of vertices of Xi 
i=1 

in this initial segment then it is easy to see that  Mi < 2r2A25Ini. 
The middle of S is an arbi trary ordering of the remaining vertices of H.  

(When certain images are a priori restricted as in Remark 13 in Section 3, we also 
list the restricted vertices at the beginning of S right after the neighbours of the 
buffer vertices.) 

2.2. T h e  R G A  a l g o r i t h m  

At time 0, set q ( 0 ) = Q ( 0 ) = 0 ,  and Co,x=Vo,x=r for all xEV(H) .  

Phase 1. 

For t >_ 1, repeat  the following two steps. 

Step 1 - -  Extending the embedding: Select the vertex s(t) of H to be embedded 
at t ime t in the following way. 

1. If q ( t - 1 ) # 0  then s(t) is the first element of q(t-1) .  
2. If q( t -1 )=~  then s(t) is the first unembedded vertex in the sequence S. 



114 3J~NOS KOML0$, GABOR N. S.&RKOZY, ENDRE SZEMER]~DI 

Now assume that  s(t)-= x was selected. Consider those vertices v E Vt-l,x for 
which 

(2) degG(v, ]/t-l,y) > 5]Vt-l,yI 

holds for all y for which {x, y} E E(H) and y is still unembedded. Pick one such v 
randomly (uniformly) as the image ~(x). 

Step 2 - -  Updating: For each unembedded vertex y, set 

Ct-l ,y  A NG(~(x)) if {x,y} E E(H)  
Ct,y = Ct-  l,y otherwise, 

and 

Vt-l,y N NG(9~(x)) if {x ,y}  E E(H)  
Vt,y = V~-l,y \ {p(x)} otherwise. 

(That  is, Yt,y = Ct,y \ {V(s(u)) :u ~_ t}.) Define the leftover sets 

L d Y d  = \ : < t}. 

To obtain q(t), remove from q(t-1)  the just embedded x (if q ( t - 1 ) r  O), and append 

to q ( t -  1) all unembedded vertices y • q ( t -  1) such that  I~,yt <- 5"lLt(r Set 

Q(t) = Q ( t -  1) Uq(t), qi(t) =q(t)  MXi, and Qi(t) = Q(t) NXi.  

If  for some i, IQi(t)[ > 5mini, then set T = t  and halt with failure. 

Else, if there are no more unembedded non-buffer vertices left, then set T = t  
and go to Phase 2, otherwise set t*---t+l and go back to Step 1. 

End of Phase 1 

Phase 2. 

Find a system of distinct representatives for the sets VT,y for all unembedded y and 

halt with success. If there is no such set of distinct representatives then halt with 
failure. 

End of RGA 

We claim that this algorithm finds a good embedding of H into G with 
high probability. Recall that  we fixed an no (arbitrarily) and assumed that  c _< 
~O(6, A,r,  no). 

Claim 2. There are positive constants/if, A, depending on 6,A,r  but not on s and 
the hi, such that Phase i succeeds with a probability exceeding 1 - ~ i  (t(~) ;~n~ , and 

ph so 2 s e eeds  ith a p obabiiity ox   din  1 -  + 

Claim 2 clearly proves the Blow-up Lemma, since by choosing a large enough 
no and then a small enough e guarantees that  the failure probability for the RGA 
algorithm is very small. In :par t icular ,  the algorithm succeeds with a positive 
probability. , : .  
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2.3. S o m e  s imple  fac ts  

We start  with the most important property of super-regular (and regular) pairs. 

Fact 3.. Let (A,B) be an (G6)-super-regular pair. Then for any Y CB,  IYI >s[B] 
we have 

# { x  e A:  deg(x, Y) ~ 51YI} < elAI. 

Now let T(x) denote the time in which x is embedded in Phase 1, if x is 
not embedded in Phase 1 then write T(x) = T + 1. While Claim 2 says that  the 
(combined) queues Qi(T) at the end of Phase 1 are small (that is, Phase 1 concludes 
with success) with probability close to 1, the following trivial fact, that  follows from 
the halting rule of the algorithm, says that  the (combined) queues one step earlier 
are all necessarily small. 

Fact 4. For all i, 

1)1 < 6"'mi 

This, together with the fact that the only buffer vertices that  may ever get 
used up in Phase 1 are the ones that  ever get into the queue, implies the next fact. 
Let us write Ai for the set of vertices of ~ unembedded in Phase 1, and A+ for the 
set of all unembedded vertices: 

(3) d i = L T ( y i )  , and A + = U .  Ai. 

Fact 5. For all i and t ~ T, 

(4) ILt(Vi)l >_ tAil >_ mi - IQi(T - 1)1 _> (1 - 5")m i. 

Hence, if  m i > 1 then IAil >5'ni/3. 

Fact 6. If  xEQ(T)  then IA+NCT(x)_I,xI<6"Ir 

Indeed, xCQ(T) means that xEq(t) for some t < T ( x ) - l .  Hence ]VT(x)_l,xl < 

5"[r and then [A+ n VT(x)_l,z[ < 5"lr It remains to note that  A+ A 

VT(x)_I,x=A+nCT(x)_I,x since Vt,x=Ct,xnLt(r for all t<T(x) .  

The following two observations will be used repeatedly. They trivially follow 
from the description of the RGA algorithm. 

Fact 7. For all x and all t < T ( x ) -  l, 

fCt,xF > 5ICt-l,~l and 1�89 > 5]Vt-l,~l. 

Let us write ~(t ,x) for the number of neighbours (in H) of x embedded by 
time t: 

(5) v( t ,x)  = •{u < t :  {x,s(u)} e E(H)} .  
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Fact  8. Let x E V ( H )  and t < _ T ( x ) - i  be arb i t ra ry .  Then 

The next important lemma says that during Phase 1 the host-sets Vt,m cannot 

get too small. (This is just a formal property of the algorithm, and it does not 
reflect successful performance. Poor performance of the algorithm is manifested by 
a premature termination of Phase I.) 

L e m m a  9. For  all i and x E X i ,  

IVT(~)-I,xl > 5A5" I&I -  IQi(T- 1)I. 

Hence, whenever the RGA algorithm selects a ver tex  from a cluster ~ of  size 
n i > 1/6' then it selects randomly from a set  of  size greater than ~/n i. 

Proof .  Wr i t e  t = T(x) - 1 and assume first t h a t  x ~ q(t). Hence x ~ Qi(t). Thus  

IVt,x] > 5"lLt(Vi)l. If, on the  o ther  hand,  x e q(t) then  let  t' = m i n { u :  x e q(u)} be 
the  t ime  when x got  into the  queue. By the  defini t ion of the  queue, 

IVt,-1,xl > 6"[Lt,-z(gdl >__ 5"l&l. 

If t t = t t hen  by  Fac t  7 we have 

IVt,xl > 61Vt-l,xl = 6lVt,_z,z[ > 66"lAil. 

If  t '  < t  t hen  t t _<T L 1, and  we have 

(6) 

(7) 

I~i,xl > ~a jv t , - 1 , x l  - ]v~ n { ~ ( s ( u ) ) :  t' < ~ < t}L 

> 6A6"lAil- Iqi(t')I>_ 6A6"IAit- IQi(T- 1)l, 

since x got into the  queue at  t ime  t l, is st i l l  in the  queue at  t ime  t, and  as long as the  
queue is not  t o t a l l y  e m p t y  only the  e lements  of q(t') can be se lec ted  for embedding .  

This  proves the  inequali ty.  To prove the  las t  c la im of the  temma,  no te  t h a t  at  
mos t  Aeni vert ices v iola te  (2), and  hence the  a lgo r i thm selects f rom a set  of size 

grea ter  t han  6A6"IAi I - IQi (T-1) I -Aeni  > ( 6A 6"6'/3--6m6'--Ae)ni >>_ ~/ni (provided  
mi >_ 1 and e is smal l  enough).  I 
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2.4. T h e  m a i n  l e m m a  
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The sets Ct,x are easy to handle (see Fact 8), but the sets Vt,x are hard to 
control. We estimate the probability that  too many host-sets Vt,x C Vi get smal] by 
observing that in this case the "trace" of these x's on the eventual leftover set of 
vertices - -  that  is, the intersections of the sets Ct,x with LT(Vi)  - -  would be small, 
which would have a negligible probability if we could somehow fix the leftover set 
LT(Vi ). Thus, the following lemma will play a key role in the proof. Its proof is 
postponed to the end of Section 2. 

Lemma 10 (Main Lemma). We are g/yen integers p and i, a set A C Vi, IAI > 5-Acni ,  
and a set X C Xi of p vertices any two at a distance (in H)  greater than two. Then, 

2.5. Smal l  c lu s t e r s  

Assume ~ < l /n0 ,  and let V/ be a "small " cluster, that  is, a cluster of size 

ni < no. The RGA algorithm gets stuck on If/ if either IQi(T)] > 5ram/(s tuc  k in 
Phase 1), or we cannot find a system of distinct representatives from the leftover 
sets VT,x, x E Xi  \ {s(u) : u _< T} (stuck in Phase 2). Neither one of these two 

possibilities will occur if Ct,x = V/ for all x E Xi and all t < T ( x ) -  1 (which 

implies Q i ( T ) =  0). This, in 

neighbourhood N u ( X i ) =  U 
xEX~ 

g n ( v i )  = N NG(v).  Hence 
vEV~ 

according to Lemma 9, by 

turn, will certainly happen if each element in the 

N H (x) is selected from the common neighbourhood 

the probability of failure on Vi is upper bounded, 

lr \ Nn(ydl 

yeNu(x ) 71r 

(This was not a perfect  deduction, for Lemma 9 makes the assumption nj >_ 1/5 t 

~bout the sizes of the neighbour-sets Vj = r  This, however, does not make the 
obtained upper bound invalid, for the contribution to the above probability of 'a  
neighbour-cluster ~ of size less than 1/51 is 0, since the conditions n i e <  1, n je<  1 
imply that  the super-regular pair {V~,Vj} is in fact a complete bipartite graph.) 

Now the regularity condition implies deg(v,Vj)_> ( 1 -  e)IVjt for all v E V/ and 
all neighbour clusters Vj. Hence 

Ir \ Nn( )l < 
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Since also tNU(Xi):l <  lXil < Ano, the probabili ty of failure on V/ is less than 

A2n0e]7, which can be made arbitrarily small by choosing a small enough ~. We 
proved the following lemma. 

Lemma U .  Let ni = [Vii < no, and assume c < 1~no <_ ~. The probability that the 
RGA algorithm fails on Vi is less than A2n0~/@ 

2.6. A n a l y s i s  o f  P h a s e  1 

The following lemma immediately implies that  Phase I succeeds with proba- 
bility 1 - o(1). 

Lemma 12. Let rn i > 1 (that is, ni >_ 1/ 6t ). Then, for any integer p, 

P(IQi(T)I >_ p) < 4n~(Ae/7)P/(A2+]). 

Indeed, let us apply Lemma 12 with p =  [6"mi]. We get the est imate (using 
Lemma 11) 

P(Phase  1 of the RGA algorithm ends with failure) 

= P(IQi(T)I > 6"'mi for some i) 

(8) < A2noe/7 ~ 1+ ~ 4hi(At~7) p/(A2+I) < ~ ( K a )  An'. 
hi<l~6' hi>_1~61 i 

For the analysis of Phase 1, it remains to prove Lemma 12. 

P roof  of Lemma 12. Write p '  = [p / (A 2 + 1)1. Given a set X C Xi, IXI = p, let 
us estimate the probability P ( X  C Q(T)). Use the greedy method to select a 

subset X I C X of pl vertices such that  any two vertices of X / are at a distance 
more than two. Using (4) and Fact 6 we see that  the probabili ty P ( X  ~ C Q(T)) 
is upper bounded by the probability of the event that  there exists an A C ~ ,  

IAt >mi /2>6-A~n i  such that,  for all x E X ' ,  

26// 6A 
IA n CT(~)-~,~I _ 6"n~ < -7.~ _< ~-.~ < 6~JAI. 

For a given A this probability is at most (Ae/~/)P' (by the Main Lemma).  The 
number of choices for X and A is less than 4n~; hence Lemma 12. I 
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2.7. A n a l y s i s  o f  P h a s e  2 

Let B be the set of unembedded vertices at the beginning of Phase 2, and let 
Bi = B A Xi. Note that  all these vertices are buffer vertices. (On the other hand, 
while most buffer vertices are unembedded since they are at the end of the sequence 
S, not necessarily are all unembedded, for some may have got into the queue and 
got embedded.) For such a vertex x, write V(x)  = liT, x for the host-set at the 

beginning of Phase 2. Hence V(x)  C Ai for all x E Bi, and ]Bi] = IAi] (the sets Ai 
were defined in (3)). Let ~-~7- 

For each i, we would like to select a system of distinct representatives from 
the sets {V(x) : x E Bi}. The Khnig-Hall condition for the existence of such 
representatives clearly follows from the following three conditions. For all i, 

(9) IV(x)] > tc[Ai] for all x G Bi, 

(10) x ~ x V ( X )  > ( 1 - ~ ) I A i t  fo ra l l subse t s  X c Bi, [Xj > t~Idit , 

(11) U Y(x )  = Ai for all subsets X C Bi, [XI > (1 - t~)Igil. 
xEX 

Because of Lemma 11, we can restrict our attention to clusters V/of  size ni >_ no( > _ 
1/5'). 

Proo f  of (9). For all x C Bi we have V(x)  = VT, x = VT(x)_I,x, and thus Lemma 9 

implies that  IV(x)l > ~/ni >_ t~ni for all x E Bi, proving (9). Note tha t  this always 
holds, not only with large probability. 

P roo f  of  (10). To prove tha t  (10) holds with a large probability, let i be fixed and 

estimate,  for fixed sets X C Bi, IX] = p > ~]Ail, and A'  C Ai, IA't >_ nlAil, the 
probabili ty of the event that  

A I N V ( x ) = O  for a l l x E X .  

Since ]Ai]> 5'hi~3 by Fact 5, we have (for small enough 6) IA'I > 5 -Ar  and we 
can apply the Main Lemma. Hence the probabili ty in question (given successful 

completion of Phase 1) is at most (Ar p < (As~"/) ~5'n~/3. (Note tha t  we used 
here again the identity A+nVT,  x = A + n C T ,  x for all x E B . )  Thus, the probabil i ty 

that  (10) fails for some i is at most 

(12) 1 +  
hi<l~61 ni~l/51 i 

Proo f  of (11). We want to prove that,  with a large probability, every vertex a E Ai 
belongs to many sets V(x) ,  x E B i .  In fact, we will show this for every vertex aE  V/. 
For this purpose, let us fix i, a set X C Bi, IX[ >_ (1 - ~)lBil, and a vertex a C V/, 
and let us estimate the probabili ty that  for all x E X ,  a ~ V(x) .  
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The event a C V(x)  is equivalent to 9~(Nit(x)) C NG(a). Let us fix x E X, 
and denote its neighbourhood by Z = {Zl , . . . ,z t} .  Since a is a buffer vertex, its 
neighbours, the z's, are all embedded in the first To steps of the RGA Ugorithm. If 
a vertex z E ZOXj is still unembedded at t ime t, ( that is, t < T ( z ) - l )  then, since the 

total number of vertices embedded into Vj in the first To steps is Mj < 2r2A26'r~j, 
we have Ivt,zl >_ Ic t ,z l -Mj,  whence, by Fact 8, 

IVt,z[ > 6Anj -- 2r2A26'nj > 6Anj/2.  

Consequently, all queues are empty during this first stage of the algorithm, and so 
the first TO points are embedded in their original order. 

As we embed the vertices zl ,z2, . . . ,  we would like to see if they get into 
W = NG(a). But there may be some edges between them, so it is a good idea 
to make sure that their degrees into W are also large. The easiest way to ensure 
this would be to run the RGA algorithm with initial sets Wz = r  rather than 
the full r  (restriction of the process to W). While such a modification of the 
RGA algorithm may work for a specific a, the number of a is ni (even for a fixed 
i), and we cannot modify the RGA to work simultaneously for all a E 1~. However 
we will show that  this happens with a positive probability. In other words, we show 
that,  with a positive probability, the original RGA algorithm has the following three 
additional properties for all z C Z. 

(13) ~(z) �9 W. 

(14) dega(~(z) ,  VT(z)_l,y KI W) > 5lVt_l,y KI W I 

for atl y �9 Z embedded after z (that is, (2) holds with the sets restricted to W). 

And finally, if z �9 Z is unembedded at time t _< TO, then 

(a5) Ict,  n > 5 (t'Z)lWzl >- 5 lWzl >- 6A+II~(z)], 
where u was defined in (5). (That is, Fact 8 holds with the sets restricted to W.) 
Note that  (15) and z � 9  would imply 

lVt,z N W I >_ 6A+lnj -- Mj > (6 A+l - 2r2A26')nj > 6A+lnj /2 .  

Indeed, we have these properties preserved inductively if only at t ime t when 
a z E Z is embedded we happen to choose z from the set Vt-l,z A W of size greater 

than 6 A+z I~(z)[/2 - -  unless we choose such a z in a way that  the degree condition 
(14) is violated. Given an arbitrary past, the (conditional) probability that  z is 

indeed selected from this small set is greater than 6A+1/2, and the probability that  
the selection violates the degree condition is, by the regularity condition, less than 
Ae/7 .  Hence the (conditional) probability that  conditions (13), (14) and (15) will 
all be satisfied for all z �9 Z (conditioned" under an arbitrary past) is greater than 

tt = (6 A + I / 2 -  Ae/7)  A, since conditional probabilities always multiply. 



BLOW-UP LEMMA 121 

Also, the neighbourhoods N(x) are disjoint for different x ~ X,  for the points  
z C X were at least four apar t  in H.  Hence the above lower bounds  on the 
condit ional  probabilities of success are valid even when condit ioned under  the full 
pas t  (when at t ime t we s tar t  embedding the  ne ighbourhood Z=N(x)  for a new z, 
we s tar t  fresh with Ct-l,z = r  for all z E  Z). Hence we can mult iply  the upper  
bounds  1 - #  on the  condit ional  failure probabilities and get t ha t  the probabi l i ty  
tha t  none of the events ~(NH(x))C Na(a) will occur is less than  

! 

( 1  - #) pXI < (1 - p)5'n~/4. 

Finally, writ ing h(x) = - [ x l o g x  + (1 - x)log(1 - x)], the probabil i ty tha t  (11) fails 

on F~ (with I~1-> 1/5') is less than 

~i(;ini) (1-1t)5'ni/4 < niexp{(h(e~) - ph'/4)ni} <_ niexp{-#5'ni/8}. 

Thus,  the probabil i ty tha t  (11) fails on some V/ is less than  

E e -Ani +Kc.  | 

hi'no 

2.8. P r o o f  o f  t h e  M a i n  L e m m a  

Let E(x) denote the event {IA N CT(x)_l,zl < 5ZXlAI}, and write E(X) = 
nxcXE(X ). We want  to  get the est imate P(E(X)) < (Ae/7)P (recall t ha t  p =  IXI). 

Let  E(t,x) be the event {IAACt,xl <5~'(t,X)lA]} , and define the r andom instance 

r (x )  --- inf{t : E(t, x)}. 

If  there is such an instance then write k(x)= s(T(x)) for the vertex tha t  "killed" z. 
Note tha t  k(x) is a neighbour of x in H and the map k(x) is one-to-one (and hence 
so is r) .  

Now let us fix a map ko :X ~ V(H), ko(x) E NH(X ) for all z C X.  We will show 
tha t  

P(E(X) n {k = ko on X})  < (~/ '~F. 

This will prove the Main Lemma,  for the number  of such maps  k0 is at  most  AP. 

We embed the vertex y = ko(x) at t ime r (x) ,  but  we already know at t ime 
t = T(x) - 1 tha t  y will be embedded in the next step. At  tha t  t ime the event 

E(t,x) is still false, tha t  is, we still have {tAnCt,x[ >5"(t'X)lA[}, and hence the set 

Y=AACt,x is of size greater than  elr In the next  step y will be embedded  into 

a vertex v with degG(v,Y ) <hlYI .  But  there are at most  ~tr such vertices out  
of  the more than  7[r vertices v is to be selected from. Thus  the (conditional) 
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probabil i ty (given the full past  until t ime T ( x ) -  1) tha t  such a v is selected is less 
than  ~/7. Hence, the probabil i ty tha t  this happens for every x E X is less than  
(c/7) p as claimed. I I  

R e m a r k .  A formally simpler way to present the above proof  would be to use 
induct ion on n to prove the inequality 

P ( I A n C T ( x ) _ I , x I < S A ] A ]  fo ra l l  x c X )  _< H ( d e g ( x ) c / ~ / ) "  
xEX 

(Simply check if s ( l )  is the neighbour of any vertex in X or not,  and apply 
induction.) 

3. C o n c l u d i n g  r e m a r k s  

R e m a r k  13. When using the Blow-up Lemma, we usually need the following 
strengthened version: Given c > O, there are positive numbers e - - r  and 
a = a(5, A, r, c) such that the Blow-up Lemma in the equal size case (all [V~ [ are the 
same) remains true if for every i there are certain vertices x to be embedded into 
Vi whose images are a priori restricted to certain sets Cx C Vi provided that 

(i) each Cx within a ~ is of size at least civil, 
(ii) the number of such restrictions within a Vi is not more than aIVi I. 
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