MAXIMAL ARCS IN DESARGUESIAN PLANES OF ODD ORDER DO NOT EXIST

SIMEON BALL, AART BLOKHUIS and FRANCESCO MAZZOCCA*

Received January 29, 1996

For q an odd prime power, and $1 < n < q$, the Desarguesian plane $PG(2,q)$ does not contain an $(nq-q+n, n)$ -arc.

1. Introduction

 $A(k,n)-arc$ in a projective plane is a set of k points, at most n on every line. If the order of the plane is q, then $k < 1 + (q+1)(n-1) = qn - q + n$ with equality if and only if every line intersects the arc in 0 or n points. Arcs realizing the upper bound are called *maximal arcs.* Equality in the bound implies that $n | q$ or $n = q+1$. If $1 < n < q$, then the maximal arc is called non-trivial. The only known examples of non-trivial maximal arcs in Desarguesian projective planes, are the hyperovals $(n=2)$, and, for $n>2$ the Denniston arcs [2] and an infinite family constructed by Thas [5, 7]. These exist for all pairs $(n,q) = (2^a, 2^b)$, $0 < a < b$. It is conjectured in [6] that for odd q maximal arcs do not exist. In that paper this was proved for $(n,a) = (3,3^h)$. The special case $(n,q) = (3,9)$ was settled earlier by Cossu [1]. In a recent paper on sets of type (m, n) [3] this conjecture is labeled "most wanted" research problem. In this note we shall show that the conjecture is true in general.

We shall consider point sets in the affine plane $AG(2,q)$ instead of $PG(2,q)$. This is no restriction; there is always a line disjoint from a non-trivial maximal arc. The points of $AG(2,q)$ can be identified with the elements of $GF(q^2)$ in a suitable way, so that in fact all point sets can be considered as subsets of this field. Note

Mathematics Subject Classification (1991): 51 E 21, 51 A 30, 05 D 05, 05 B 25

^{*} Supported by Italian M.U.R.S.T. (Research Group on *Strutture geometviche, combinatoria, loro applicazioni)* and G.N.S.A.G.A. of C.N.R.

that three points a, b, c are collinear, precisely when $(a-b)^{q-1} = (a+c)^{q-1}$ If the direction of the line joining a and b is identified with the number $(a - b)^{q-1}$, then a one-to-one correspondence between the $q+1$ directions (or parallel classes) and the'different $(q+1)$ -st roots of unity in $GF(q^2)$ is obtained.

We finish this introduction with a short discussion on Lucas' theorem and Hasse derivatives.

Lucas' theorem gives the value of binomial coefficients modulo a prime: Let $a = a_0 + a_1p + a_2p^2 + \dots$ and $b = b_0 + b_1p + b_2p^2 + \dots$ be the *p*-ary expansion of the numbers a and b, where \overrightarrow{b} is a non-negative integer. Then

$$
\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \dots \pmod{p}.
$$

This can be proved by expanding $(1+x)^a$ and using $(1+x)^r = 1+x^r$ whenever r is a power of the characteristic p (cf. [4], Section 5).

In particular we have the following,

$$
(-1)^i\binom{r-1}{i} = 1 \pmod{p} \text{ for } r = p^e, 0 \le i < r,
$$

and, more generally

$$
(-1)^i \binom{r-j-1}{i} = \binom{i+j}{i} \pmod{p} \text{ for } r = p^e, 0 \le i, j < r.
$$

Hasse derivatives cope with the problem that over a field of characteristic p the p-th and higher ordinary ,derivatives of a polynomial vanish identically. The k-th Hasse derivative H_k (with respect to the variable x) is a linear operator on polynomials defined by $H_k(x^n)=(\frac{n}{k})x^{n-k}$ if $k\leq n$, and 0 otherwise. If f and g are two polynomials then:

$$
H_n(f g) = \sum_{k=0}^n H_k(f) H_{n-k}(g).
$$

From this it can be seen that $(x-a)^k | f$ if and only if $H_i(f)(a) = 0$ for $i = 0, 1, ..., k-1$.

2. Some useful polynomials

Let $\mathcal B$ be a non-trivial $(nq-q+n,n)$ -arc in $AG(2,q) \simeq GF(q^2), q = p^h$. For simplicity we assume $0 \notin \mathcal{B}$. Let $\mathcal{B}^{[-1]} = \{1/b | b \in \mathcal{B}\}$. Define $B(x)$ to be the polynomial

$$
B(x) := \prod_{b \in \mathcal{B}} (1 - bx) = \sum_{k=0}^{\infty} (-1)^k \sigma_k x^k
$$

where σ_k denotes the k-th elementary symmetric function of the set \mathcal{B} , in particular $\sigma_k = 0$ for $k > |\mathcal{B}|$. Define the polynomials F in two variables and $\hat{\sigma}_k$ in one variable by

$$
F(t, x) := \prod_{b \in \mathcal{B}} (1 - (1 - bx)^{q-1} t) = \sum_{k=0}^{\infty} (-1)^k \hat{\sigma}_k t^k
$$

where $\hat{\sigma}_k$ is the k-th elementary symmetric function of the set of polynomials $\{(1 - bx)^{q-1} \mid b \in \mathcal{B}\}\$, a polynomial of degree at most $k(q-1)$ in x. Again, $\hat{\sigma}_k$ is the zero polynomial for $k > |\mathcal{B}|$. For $x_0 \in GF(q^2) \setminus \mathcal{B}[-1]$ it follows that $F(t, x_0)$ is an *n*-th power. Indeed, if $x_0=0$ this is clear, and if $x_0\neq 0$ then $1/x_0$ is a point not contained in the arc, so that every line through $1/x_0$ contains a number of points of \mathcal{B} that is either 0 or *n*. In the multiset $\{(1/x_0 - b)^{q-1} | b \in \mathcal{B}\}\)$, every element occurs therefore with multiplicity n, so that in $F(t, x_0)$ every factor occurs exactly n times.

For $x_0 \in \mathcal{B}^{[-1]}$ we get that $F(t, x_0) = (1-t^{q+1})^{n-1}$, for in this case every line passing through the point $1/x_0$ contains exactly $n-1$ other points of \mathcal{B} , so that the multiset $\{(1/x_0-b)^{q-1}\}\)$ consists of every $(q+1)$ -st root of unity repeated $n-1$ times, together with the element 0. This gives

$$
F(t,x_0) = \prod_{b \in \mathcal{B}_1} (1 - (1/x_0 - b)^{q-1} x_0^{q-1} t) = (1 - x_0^{q^2 - 1} t^{q+1})^{n-1} = (1 - t^{q+1})^{n-1}.
$$

From the shape of F in both cases it can be seen that for all $x_0 \in GF(q^2)$, $\hat{\sigma}_k(x_0) = 0, 0 < k < n$, and since the degree of $\hat{\sigma}_k$ is at most $k(q-1) < q^2$, these functions are in fact identically zero. The first coefficient of F that is not necessarily identically zero therefore is $\hat{\sigma}_n$.

The main idea of the non-existence proof is to show that $\hat{\sigma}_n^2$ is a p-th power. Together with the fact that B divides $\hat{\sigma}_n$, and the observation that $\hat{\sigma}_n$ is not identically zero, this leads swiftly to a contradiction for $p\neq 2$.

Since $\hat{\sigma}_n(0) = \binom{|\mathcal{B}|}{n} = \binom{nq-q+n}{n} = 1$, by Lucas' theorem, it is not identically zero. On the other hand the coefficient of t^n in $(1-t^{q+1})^{n-1}$ is zero, so $\hat{\sigma}_n(x_0)=0$ for $x_0 \in \mathcal{B}^{[-1]}$, in other words, B divides $\hat{\sigma}_n$. Let $Q = \hat{\sigma}_n/B$. Then Q is a polynomial of degree at most $n(q-1) - nq + q - n = q - 2n$.

 $\mathcal{F}_{\mathcal{F}}(x)$, $\mathcal{F}_{\mathcal{F}}(x)$, $\mathcal{F}_{\mathcal{F}}(x)$,

Define the power sums corresponding to σ_k and $\hat{\sigma}_k$:

$$
(1) \quad \pi_k = \sum_{b \in \mathcal{B}} b^k \quad \text{and} \quad \hat{\pi}_k = \sum_{b \in \mathcal{B}} (1 - bx)^{k(q-1)} = \sum_{i=0}^{k(q-1)} (-1)^i {k(q-1) \choose i} \pi_i x_i^i.
$$

For future use we collect the relevant divisibility relations.

Lemma 2.1. *The following polynomials are divisible by* $x - x^{q^2}$ *:*

- 1. $\hat{\sigma}_k$, unless $n \mid k$ or $(q+1) \mid k$;
- 2. $\hat{\sigma}_n \hat{\sigma}_k$, unless $n|k;$
- 3. $\hat{\pi}_k$, unless $(q+1) \, | \, k;$
- 4. $\hat{\sigma}_n \hat{\pi}_k$ for all k.

Proof. Unless $n \mid k$ or $(q+1) \mid k$, $\hat{\sigma}_k$ vanishes for all $x \in GF(q^2)$, so it follows that in these cases $(x - x^{q^2}) | \hat{\sigma}_k$. If $n \nmid k$ then $\hat{\sigma}_k$ still vanishes for $x_0 \in GF(q^2) \setminus \mathcal{B}^{[-1]},$ and since $B\vert \hat{\sigma}_n$ we get the divisibility relation $(x-x^{q^2})\vert \hat{\sigma}_n\hat{\sigma}_k$ in this case. For $x_0 \in GF(q^2) \setminus \mathcal{B}^{[-1]}$ it follows that $\hat{\pi}_k(x_0)=0$, because every value is assumed 0 or *n* times, and *p*|*n*. If $(q+1)$ _k and $x_0 \in \mathcal{B}^{[-1]}$ it follows that

$$
\hat{\pi}_k(x_0) = 0 + \left(\sum_{\xi:\xi^{q+1}=1} \xi^k\right)(n-1) = 0.
$$

Hence $(x-x^{q^2})|\hat{\pi}_k$ unless $(q+1)|k$ and $(x-x^{q^2})|\hat{\sigma}_n\hat{\pi}_k$ if $(q+1)|k$ since $B|\hat{\sigma}_n$.

3. The Newton Identities and some consequences

The power sums π and the symmetric functions σ are related by the Newton identities *N(k) :*

$$
k \sigma_k + \sum_{j=0}^{k-1} (-1)^{k-j} \sigma_j \pi_{k-j} = 0,
$$

for all $k > 0$. These identities can be obtained by computing the derivative of $B(x)$ to get

$$
B'(x) = \sum_{b \in \mathcal{B}} \frac{-b}{1 - bx} B(x) = \sum_{k=1}^{\infty} (-1)^k k \sigma_k x^{k-1}.
$$

and comparing the coefficient of x^k (resp. t^k) after substituting $(1 - bx)^{-1} =$ $\sum_{i=0}^{\infty} b^j x^j$.

The Newton identities $\hat{N}(k)$:

$$
k\hat{\sigma}_k+\sum_{j=0}^{k-1}(-1)^{k-j}\hat{\sigma}_j\hat{\pi}_{k-j}=0,
$$

can be derived in a similar way, by computing the partial derivative with respect to t of $F(t,x)$.

For all $k \leq q$ the degrees of $\hat{\sigma}_k$ and $\hat{\pi}_k$ are less than q^2 so in view of the divisibility relations $\hat{\pi}_k$ is identically zero for $k \leq q$, and so is $\hat{\sigma}_k$, unless $n|k$. By considering the Newton Identity $\hat{N}(q+1)$ we find that

(2)
$$
\hat{\sigma}_{q+1} = -\hat{\pi}_{q+1} = -\sum_{j=0}^{q^2-1} \pi_j x^j.
$$

by (1). Note that since $\pi_0=0$ and $\pi_{k+q^2-1}=\pi_k$ for all $k>0$, we get that

$$
\hat{\pi}_{q+1} = (x - x^{q^2}) \sum_{k=0}^{\infty} \pi_{k+1} x^k.
$$

Differentiating $F(t, x)$ with respect to x it follows that

(3)
$$
F_x(t,x) = \left(\sum_{b \in \mathcal{B}} \frac{-b(1-bx)^{q-2}t}{1-(1-bx)^{q-1}t}\right) F(t,x) = \sum_{k=0}^{|\mathcal{B}|} (-1)^k \hat{\sigma}'_k t^k.
$$

The expression in front of $F(t, x)$ may be expanded in a formal power series so that

$$
F_x(t,x)=\left(-\sum_{b\in\mathcal{B}}\sum_{i=1}^{\infty}b(1-bx)^{iq-i-1}t^i\right)F(t,x).
$$

Expanding the bracket using the Binomial theorem gives

(4)
$$
F_x(t,x) = -\sum_{i=1}^{\infty} \left[\sum_{k=0}^{iq-i-1} (-1)^k {iq-i-1 \choose k} \pi_{k+1} x^k \right] t^i F(t,x).
$$

We already observed that $F(t, x)$ as a function of t is an n-th power modulo t^q , and the same is of course true for $F_x(t,x)$. It follows that the same is again true for

$$
-\sum_{b\in\mathcal{B}}\sum_{i=1}^{\infty}b(1-bx)^{iq-i-1}t^i.
$$

This gives ${mq-m-1 \choose k-1} \pi_k = 0$ for $0 < m < q$, $n \nmid m$ and all k. Note that from $\hat{\pi}_m \equiv 0$ for $m < q$ it follows that

(5)
$$
{mq-m \choose k} \pi_k = 0 \text{ for } m < q \text{ and all } k.
$$

From $\binom{mq-m}{k} = \binom{mq-m-1}{k} + \binom{mq-m-1}{k-1}$ follows the important equality

(6)
$$
{mq-m-1 \choose k} \pi_k = 0 \text{ for } 0 < m < q, \quad n \nmid m \text{ and all } k.
$$

Equating the coefficient of t^n in (4) implies

$$
\hat{\sigma}'_n = \sum_{k=0}^{nq-n-1} (-1)^k {nq-n-1 \choose k} \pi_{k+1} x^k.
$$

From $\hat{\pi}_1 = \sum_{i=0}^{q-1} \pi_i x^j \equiv 0$ it follows that $\pi_j = 0$ for $j < q$. This then implies that $\hat{\sigma}_n$ is a p-th power mod x^q . By considering the Newton identities relating the σ_k 's and the π_k 's it follows that $\sigma_j = 0$ for $j < q$ unless $p|j$ and hence B is a p-th power mod x^q . Therefore their quotient Q which has degree at most $q-2n$ is a p-th power, i.e. $Q'=0$.

From the proof of the Newton identities it follows that

$$
B'(x - x^{q^2}) = -B\hat{\pi}_{q+1}.
$$

Multiplying each side by Q and writing $B'Q = (BQ)' = \hat{\sigma}'_n$ this is seen to imply the important identity

(7)
$$
\hat{\sigma}'_n(x - x^{q^2}) = -\hat{\sigma}_n \hat{\pi}_{q+1}.
$$

Our main conclusion, namely that $\hat{\sigma}_n^2$ is a p-th power will follow from considering the Newton identity $\hat{N}(nq-q+2n-1)$ modulo $(x-x^{q^2})^2$. As it will turn out the only relevant $\hat{\pi}$ -s involved in this identity will be the $\hat{\pi}_k$ with $k=-1 \mod n$ and most of these vanish identically. We start by showing that $\hat{\pi}_{an-1} \equiv 0$ for $a \leq q-q/n$, and then $\hat{\pi}_{i(q+1)}$ and $\hat{\pi}_{i(q+1)+n}$ will be calculated in terms of Hasse derivatives for $i < n$. In this way in particular $\hat{\pi}_{(n-1)(q+1)}$ and $\hat{\pi}_{(n-1)(q+1)+n}$ are obtained (the last two $\hat{\pi}_{an-1}$'s).

4. Proof that $\hat{\pi}_{an-1} \equiv 0$ for $a \leq q-q/n$

Recall that, by definition

$$
\hat{\pi}_{an-1} = \sum_{b \in \mathcal{B}} (1 - bx)^{(q-1)(an-1)} = \sum_{j=0}^{(an-1)(q-1)} {anq - q - an + 1 \choose j} (-1)^j \pi_j x^j
$$

From this expansion, and Lucas' theorem, note that the only exponents j that occur on the left hand side are those with $j=0,1 \mod n$. Therefore

$$
\hat{\pi}_{an-1} = xG_0^n + G_1^n,
$$

where G_0 and G_1 are polynomials of degree at most $aq-q/n-a$. We proceed to show that in fact $\hat{\pi}_{an-1} = (x-x^{q^2})G_0^n$. Recall that Lemma 2.1 implies $\hat{\pi}_{an-1}$ is divisible by $x-x^{q^2}$. Indeed, if it is not, then $(q+1)|an-1$, but this implies $a \geq q+1-q/n$. Hence

$$
x - x^{q^2} \, | \, xG_0^n + G_1^n.
$$

We now use a trick essentially due to Rédei $([4]$, Section 33), and raise the right hand side to the q^2/n -th power, then simplify, using the divisibility relation $x-x^{q^2}|G_i^{q^2}-G_i$ to obtain

$$
x - x^{q^2} | x^{q^2/n} G_0 + G_1.
$$

The polynomials G_0 and G_1 both have degree at most $aq-q/n-a \leq q^2-q^2/n-q/n$ $q+q/n$ so the right hand side has degree less than q^2 and therefore is identically zero. So $G_1=-x^{q^2/n}G_0$ and we have proved that

$$
\hat{\pi}_{an-1} = (x - x^{q^2})G_0^n
$$

One may check, directly from the definition, that

$$
G_1=\sum_{j=\alpha}^{aq-q/n-a}\binom{aqn-q-an+1}{jn} \pi^{1/n}_{nj} \cdot x^j
$$

Note that $\pi^{1/n}_{jn} = \pi_j$ and $\binom{aqn-q-an+1}{jn} = \binom{aq-q/n-b}{j}$ We now proceed to show that in fact $G_1 \equiv 0$. In other words, we want to show that for all *j*, $\binom{aq-q/n-a}{q} \neq 0$ implies that $\pi_j = 0$.

Define the (cyclic) shift operator s on k with $0 \le k \le q^2 - 1$ by $s(q^2 - 1) = q^2 - 1$ and $s(k) = pk \mod q^2 - 1$ otherwise. So what s does is cycle the p-ary digits of k. Then it follows immediately from Lucas' theorem that $\begin{pmatrix}u\\v\end{pmatrix} = \begin{pmatrix}s(u)\\s(v)\end{pmatrix}$, (for $0 \le u, v < q^2$). Moreover we have $\pi_{s(u)} = \pi_u^p$ and so $\pi_u = 0$ if and only if $\pi_{s(u)} = 0$. It follows that it is sufficient to prove that

$$
\binom{s^{e-h}(aq-q/n-a)}{k}\pi_k=0
$$

for all $k(=s^{e-h}j)$. Here e and h come from $q=p^h$ and $n=p^e$, and the effect of s^{e-h} is essentially dividing by q/n modulo q^2-1 . If we write $q-a = \alpha(q/n) + \beta$, with $0 \leq \beta \leq q/n$, then $0 \leq \alpha \leq n$, since $a \leq q-q/n$. Using this we get

$$
s^{e-h}(aq - q/n - a) = (a - 1)n + \alpha - 1 + \beta qn = mq - m - 1,
$$

where $m = \beta n + n - \alpha$. In particular $m < q$ and $m \neq 0$ mod n, so that the desired equality is exactly equation (6) from the previous section.

5. Calculation of
$$
\hat{\pi}_{i(q+1)}
$$
 and $\hat{\pi}_{i(q+1)+n}$ for $i < n$

Recall that H_k stands for the k-th Hasse derivative with respect to x. We will write $z=x-x^{q^2}$. Note that by the chain rule $H_k(f(1-x))=(-1)^kH_k(f)(1-x)$.

Lemma 5.1.

$$
H_{i-1}\left(\frac{z^i}{x}\right) = 1 - x^{i(q^2-1)} \quad \text{for } i \leq q^2.
$$

Proof.

$$
H_{i-1}\left(\frac{z^{i}}{x}\right) = H_{i-1}\left(\sum_{j=0}^{i}(-1)^{j}\binom{i}{j}x^{j(q^{2}-1)+i-1}\right)
$$

=
$$
\sum_{j=0}^{i}(-1)^{j}\binom{i}{j}\binom{j(q^{2}-1)+i-1}{i-1}x^{j(q^{2}-1)}.
$$

But if $0 < j < i \leq q^2$, then $\binom{j(q^2-1)+i-1}{i-1} = \binom{i-j-1}{i-1} = 0$.

Substituting $1-x$ for x changes z into $-z$ and gives us $H_{i-1}(z^i/(1-x))=$ $(1-x)^{i(q^2-1)}-1$. Writing $z/(1-x) = \sum_{j=1}^{q^2-1} x^j$ we see that $H_{i-1}(z^{i-1}x^j)$ is the part of $(1-x)^{i(q^2-1)}-1$ that has exponent $\equiv j \mod (q^2-1)$ (for $1 \leq j \leq q^2-1$). Since $b^j=b^{j+q^2-1}$ for $b\in GF(q^2)$ it follows that

$$
\sum_{b \in \mathcal{B}} \left((1 - bx)^{i(q^2 - 1)} - 1 \right) = \sum_{j=1}^{q^2 - 1} \pi_j H_{i-1} \left(z^{i-1} x^j \right).
$$

Lemma 5.2.

$$
\hat{\pi}_{i(q+1)} = H_{i-1}\left(z^{i-1}\hat{\pi}_{q+1}\right).
$$

Proof. Since $|\mathcal{B}| \equiv 0 \text{ mod } p$ we may write $\hat{\pi}_{i(q+1)} = \sum_{b \in \mathcal{B}} \left((1-bx)^{i(q^2-1)} - 1 \right)$ and the result now follows by using the identity above and the expansion (2) of $\hat{\pi}_{q+1}$. Lemma 5.3.

$$
H_{i-1}\left(z^{i-1}x^{q^2-1+nj}\right) = x^{i(q^2-1)+nj} \quad \text{for } 0 < i \le n.
$$

Proof.

$$
H_{i-1}\left(z^{i-1}x^a\right) = \sum_{m=0}^{i-1} (-1)^m \binom{i-1}{m} \binom{m(q^2-1)+i-1+a}{i-1} x^{m(q^2-1)+a}
$$

For $a = q^2 - 1 + nj$ the second binomial coefficient equals $\binom{i-1-m-1}{i-1}$ and only the term with $m = i - 1$ gives a non-zero contribution.

Substituting again $1-x$ for x, yields

$$
H_{i-1}\left(z^{i-1}(1-x)^{q^2-1+nj}\right)=(1-x)^{i(q^2-1)+nj}.
$$

In the same way as before this gives

Lemma **5.4.**

$$
\hat{\pi}_{i(q+1)+n} = H_{i-1}\left(z^{i-1}\hat{\pi}_{q+1+n}\right).
$$

For the special case $i = 1$ this does not give anything. This case is settled by **Lemma 5.5.**

$$
\hat{\pi}_{q+1+n} = z \hat{\sigma}'_n.
$$

Proof. Lemma 2.1 says that z divides $\hat{\pi}_{q+1+n}$ and modulo x^{q^2}

$$
\hat{\pi}_{q+1+n} - x\hat{\sigma}'_n = \sum_{k=1}^{q^2-1} \left[\binom{n(q-1)-1}{k} + \binom{n(q-1)-1}{k-1} \right] (-1)^k \pi_k x^k,
$$

but $\binom{n(q-1)}{k}$ $\pi_k = 0$ for all k (5).

6. Proof of the theorem

Let z and H_k be as before. Note for $k < q^2$ and $k \leq m$ that $H_k(z^m) = {m \choose k} z^{m-k}$. We will be interested in expressions modulo z^2 . In that case $H_k(z^k f) \equiv f+kz f'$ mod z^2 and if f is divisible by z, then $H_k(z^k f) \equiv (k+1)f \bmod z^2$.

Consider the Newton identity $\hat{N}(|\mathcal{B}| + n-1)$ (note that $\hat{\sigma}_{|\mathcal{B}|+n-1} \equiv 0$),

$$
\sum_{j=1}^{nq-q+2n-1} (-1)^{j-1} \hat{\pi}_j \hat{\sigma}_{(n-1)(q+1)+n-j} \equiv 0
$$

Multiplying this equation by $\hat{\sigma}_n$ and considering the terms modulo z^2 , the divisibility relations in Lemma 2.1, together with the fact that $\hat{\pi}_{an-1} \equiv 0$ for $a \leq q-q/n$ imply

$$
\hat{\sigma}_n \hat{\pi}_{(n-1)(q+1)+n} - \hat{\sigma}_n^2 \hat{\pi}_{(n-1)(q+1)} \equiv 0 \pmod{z^2}.
$$

Using the results of the previous section it follows that $\hat{\pi}_{(n-1)(q+1)} = \hat{\pi}_{q+1} +$ $(n-2)z\pi_{q+1}' \mod z^2$ and $\hat{\pi}_{(n-1)(q+1)+n} = (n-1)z\hat{\sigma}'_n \mod z^2$. Since $n \equiv 0 \mod p$,

$$
-z\hat{\sigma}'_n\hat{\sigma}_n - \hat{\pi}_{q+1}\hat{\sigma}_n^2 + 2z\hat{\pi}'_{q+1}\hat{\sigma}_n^2 \equiv 0 \pmod{z^2}.
$$

The first two terms cancel since $z\hat{\sigma}'_n = -\hat{\pi}_{q+1}\hat{\sigma}_n$ (7). The third term can be reduced using the same expression and its derivative

$$
\hat{\pi}'_{q+1}\sigma_n = -\hat{\pi}_{q+1}\hat{\sigma}'_n - \hat{\sigma}'_n \pmod{z}
$$

to give $2z\hat{\sigma}'_n\hat{\sigma}_n \mod z^2$. Therefore

$$
\left(\hat{\sigma}_n^2\right)' \equiv 0 \pmod{z}.
$$

Since the degree of $\hat{\sigma}_n$ is at most $n(q-1)$ it follows that $(\hat{\sigma}_n^2)' \equiv 0$.

Now $\hat{\sigma}_n = BQ$, and Q is a p-th power, so $(B^2)' \equiv 0$. Hence B^2 is a p-th power. For $p \neq 2$ this implies that B is a p-th power which is a contradiction, since B has *qn - q + n* distinct linear factors.

Acknowledgement. The authors wish to thank Andries Brouwer for carefully reading the manuscript and simplifying parts of the proof.

References

- [1] A. COSSU: Su alcune proprietà dei ${k; n}$ -archi di un piano proiettivo sopra un corpo finito, *Rend. Mat. e Appl.,* 20 (1961), 271-277.
- [2] R. H. F. DE)NNISTON: Some maximal arcs in finite projective planes, *J. Combin. Theory,* 6 (1969), 317-319.
- [3] T. PENTTILA AND G. F. ROYLE: Sets of Type (m, n) in the Affine and Projective Planes of Order Nine, *Designs, Codes and Cryptography,* 6 (1995), 229-245.
- [4] L. RÉDEI: Lückenhafte Polynome über endlichen Körpern, Birkhäuser Verlag, Basel (1970) (English translation: Lacunary polynomials over finite fields, North Holland, Amsterdam, 1973).
- [5] J. A. THAS: Construction of maximal arcs and partial geometries, *Geom. Dedicata,* **3 (1974), 61-64.**
- [6] J. A. THAS: Some results concerning $\{(q+1)(n-1);n\}$ -arcs and $\{(q+1)(n-1)+$ l;n}--arcs in finite projective planes of order *q,]. Oombin. Theory Set. A,* 19 (1975), 228-232.
- [7] J. A. THAS: Construction of maximal arcs and dual ovals in translation planes, *Europ. J. Combinatories,* 1 (1980), 189-192.

Simeon Ball hart Blokhuis

Teehn. University Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands sim eon@win.tue.nl

Techn. University Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands **aartb@win, rue. nl**

Francesco Mazzocca

Seconda Universit5 degli Studi di Napoli, Piazza Duomo, c/o Curia Veseovile, 81100 Caserta, Italy mazzocca@napoli.infn.it