Characteristic shocks of crossing velocities in Magnetohydrodynamics

Guy BOILLAT * , Augusto MURACCHINI [†] C.I.R.A.M., Università di Bologna Via Saragozza 8, 40123 Bologna (Italia) and Facoltà di Ingegneria dell'Università di Trento Mesiano di Trento, 38100 Trento (Italia)

Abstract

We illustrate, in the framework of magnetohydrodynamics, an application of crossing shock formulas to a characteristic shock moving perpendicularly to the magnetic field.

1 Introduction

Consider the conservative hyperbolic system of N first order partial differential equations for the unknown field $\mathbf{u}(t, x^i)$

$$\partial_t \mathbf{u} + \partial_i \mathbf{f}^i(\mathbf{u}) = \mathbf{f}(\mathbf{u}), \qquad (i = 1, 2, 3)$$
 (1)

with M involutive constraints

$$\partial_i \mathbf{c}^i(\mathbf{u}) = \mathbf{c}(\mathbf{u}) \tag{2}$$

Let (1) supplemented by an additional conservation law (energy or entropy law)

$$\partial_t h(\mathbf{u}) + \partial_i h^i(\mathbf{u}) = g(\mathbf{u}) \tag{3}$$

where $h(\mathbf{u})$ is a *convex* function of \mathbf{u} . The equation (3) can be obtained by multiplying (1) and (2) by suitable N and M vectors \mathbf{u}' and \mathbf{b} respectively.

When a wave velocity λ of (1) is exceptional (see § 3) a characteristic shock may propagate with this velocity. Independently of the number of equations, the jump of the field **u**

$$[\mathbf{u}] \stackrel{\mathrm{def}}{=} \mathbf{u} - \mathbf{u}_o$$

^{*}Supported by C.N.R. (G.N.F.M.).

[†]Supported by C.N.R. (G.N.F.M.) and MURST (Fondi Ricerche 40 % and 60 %).

i.e. the difference of its values on the back and on the front of the shock surface, can be expressed as a combination of at most m+M+2 known vectors (m multiplicity of λ , M number of constraints).

The simplest case is that of linear equations where the \mathbf{f}^{i} 's of (1) are linear functions of the field \mathbf{u}

$$\mathbf{f}^i = A^i \mathbf{u}$$

so that the Rankine-Hugoniot equations (see (14) in § 4) are just

$$(A_n - \lambda I)(\mathbf{u} - \mathbf{u}_o) = 0$$

which shows that the jump

$$[\mathbf{u}] = \alpha^I \mathbf{d}_I$$

depends linearly on m parameters α^{I} corresponding to the multiplicity of the eigenvalue.

When the conservative system (1) (with an additional law (3)) is non linear it is still possible to solve the Rankine-Hugoniot equations and to give a simple expression for the jump of the *main field* \mathbf{u}' (§ 2)

$$[\breve{\mathbf{u}}'] \stackrel{\text{def}}{=} \breve{\mathbf{u}}' - \breve{\mathbf{u}}'_o = \alpha^I \mathbf{l}_{I^o} + w \mathbf{g}_o$$

where **g** and the left eigenvectors \mathbf{l}_I are calculated for the value \mathbf{u}_o of the field before the shock. The scalar w, a non linear function of the parameters α^I , represents the non linear part of the shock. In particular this formula appears each time a characteristic velocity $\lambda(\mathbf{u}, \vec{n})$ (then exceptional) with constant (i.e. independent of the direction \vec{n}) multiplicity exists.

Instead when multiplicity is variable that is when it occurs only for some values of $\vec{n}(\mathbf{u})$ (crossing velocities), a new relative vector, \mathbf{g}^r , has to be added and

$$[\breve{\mathbf{u}}'] = \alpha^I \mathbf{l}_{I^o} + w \mathbf{g}_o + \sigma \mathbf{g}_o^r$$

Another adjunction may even be necessary when the involutive constraints (2) are associated with the field equations (1). In this case one has the most complicated expression

$$[\breve{\mathbf{u}}'] = \alpha^I \mathbf{l}_{I^o} - (\mathbf{b} - \mathbf{b}_o)(M_{on} - \lambda_o I)^{-1} \nabla_o \mathbf{c}_{on} + w \mathbf{g}_o + \sigma \mathbf{g}_o^{\ r}, \quad I = 1, 2, ..., m \quad (4)$$

where the second term is connected with the presence of constraints.

The aim of this paper is to illustrate this formula with an example taken from classical magnetohydrodynamics: a shock moving with the normal fluid velocity in a direction perpendicular to the magnetic field vector \vec{B} .

When the vector \vec{n} is orthogonal to the magnetic field no less than five velocities coincide (§ 8). Further a constraint (div $\vec{B} = 0$) is present so that here eight vectors are necessary to describe the jump of the eight components of the main field. Surely it would have been better to find a physical example with less vectors than components. Nevertheless we show how to compute easily these various vectors without writing down matrices. Also we study in § 3, for a mathematical example, the behaviour of the radial velocities when the corresponding λ 's coincide.

2 Some remarks on field equations

As it is well known the introduction of the main field

$$\mathbf{u}' = \frac{\partial h}{\partial \mathbf{u}} \tag{5}$$

allows the field equations (1) to be written in a Friedrichs-Lax-Godunov symmetric form [1], [2] by means of the Le Gendre transformation [3]-[8]

$$h'(\mathbf{u}') = \breve{\mathbf{u}}' \cdot \mathbf{u} - h(\mathbf{u}) \tag{6}$$

 $(\breve{\mathbf{u}} \text{ is the transpose of } \mathbf{u})$ and the introduction of the quantities

$$h'^{i}(\mathbf{u}') = \breve{\mathbf{u}}' \cdot \mathbf{f}^{i} + \mathbf{b} \cdot \mathbf{c}^{i} - h^{i}$$
(7)

In fact

$$\mathbf{u}=raket{
abla}'h', \quad \mathbf{f}^i=raket{
abla}'h'^i-raket{\mathbf{c}}^iraket{
abla}'raket{\mathbf{b}}$$

Further the involutive constraints must be such that [9]

$$\nabla \mathbf{c}_n A_n = M_n \nabla \mathbf{c}_n \tag{8}$$

with constant matrices $\nabla \mathbf{c}^i$ and M^i and

$$A^{i} \stackrel{\text{def}}{=} \nabla f^{i}, \quad A_{n} \stackrel{\text{def}}{=} \nabla \mathbf{f}_{n}, \quad \mathbf{f}_{n} \stackrel{\text{def}}{=} \mathbf{f}^{i} n_{i}$$
$$\nabla \stackrel{\text{def}}{=} \left(\frac{\partial}{\partial \mathbf{u}}\right)_{\vec{n}=const.}, \quad \nabla' \stackrel{\text{def}}{=} \left(\frac{\partial}{\partial \mathbf{u}'}\right)_{\vec{n}=const.}$$

3 Crossing velocities

The wave velocities of propagation in the direction of the unit vector \vec{n} are given by the eigenvalues $\lambda(\mathbf{u}, \vec{n})$ of the matrix A_n . Suppose that some eigenvalue λ has a constant (i.e. independent on \vec{n}) multiplicity m and therefore m left and right eigenvectors

$$l_I(\mathbf{u}, \vec{n})(A_n - \lambda I) = 0, \quad (A_n - \lambda I)\mathbf{d}_I(\mathbf{u}, \vec{n}) = 0, \qquad I = 1, 2, ..., m$$

When m > 1 it is known that λ is *exceptional* that is

$$\nabla \lambda \cdot \mathbf{d}_I \equiv 0 \tag{9}$$

As a consequence a *characteristic shock* exists which propagates with velocity λ .

On the other hand if the number of equations (1) is $N = \pm 2, \pm 3, \pm 4 \pmod{8}$ 8) [10], [11] the eigenvalues of A_n cannot all be simple for every \vec{n} . Although these eigenvalues may still have constant multiplicity as for instance in the banal case of

 $A_n = a_n I$

it may happen (in the so-called case of *variable multiplicity*) that two (or more) eigenvalues, say, $\lambda^{(1)}(\mathbf{u}, \vec{n})$ and $\lambda^{(2)}(\mathbf{u}, \vec{n})$ coincide only for some $\vec{n} = \vec{n}_o(\mathbf{u})$

$$\lambda^{(1)}(\mathbf{u}, \vec{n}_o) = \lambda^{(2)}(\mathbf{u}, \vec{n}_o)$$

For the corresponding radial velocities (propagating the weak disturbances)

$$\vec{\Lambda}^{(i)}(\mathbf{u},\vec{n}) \stackrel{\text{def}}{=} \lambda^{(i)}\vec{n} + \frac{\partial\lambda^{(i)}}{\partial\vec{n}} - \left(\vec{n} \cdot \frac{\partial\lambda^{(i)}}{\partial\vec{n}}\right)\vec{n}$$
(10)

let us define

$$\vec{\Omega}(\mathbf{u},\vec{n}_o) = \lim_{\vec{n} \to \vec{n}_o} \left\{ \vec{\Lambda}^{(1)}(\mathbf{u},\vec{n}) - \vec{\Lambda}^{(2)}(\mathbf{u},\vec{n}) \right\}$$

It follows that several cases are possible:

2

- 1) $\vec{\Omega}$ does not exist
- 2) $\vec{\Omega} = 0$
- 3) $\vec{\Omega} \neq 0$

which are illustrated with the following mathematical example. Let

$$A^{i} = \left[egin{array}{ccc} a^{i} & b^{i} & 0 \ b^{i} & c^{i} & 0 \ 0 & 0 & (a^{i} + c^{i})/2 + b^{i} \end{array}
ight]$$

then

$$\lambda^{(1)/(2)} = \frac{1}{2}(a_n + c_n \pm \sqrt{\Delta}), \quad \Delta = (a_n - c_n)^2 + 4b_n^2, \quad a_n = a^i n_i = \vec{a} \cdot \vec{n}$$
$$\lambda^{(3)} = \frac{a_n + c_n}{2} + b_n$$

and

$$\vec{\Lambda}^{(1)/(2)} = \frac{1}{2} \left(\vec{a} + \vec{c} \pm \frac{(a_n - c_n)(\vec{a} - \vec{c}) + 4b_n \vec{b}}{\sqrt{\Delta}} \right)$$
(11)

$$\vec{\Lambda}^{(3)} = \frac{\vec{a} + \vec{c}}{2} + \vec{b}$$
(12)

Case 1) When \vec{n} tends to \vec{n}_o parallel to

 $(\vec{a}-\vec{c})\wedge\vec{b}$

the three velocities $\lambda^{(1)}$, $\lambda^{(2)}$, $\lambda^{(3)}$ tend to a_n but $\vec{\Lambda}^{(1)/(2)}$ have no limit and no $\vec{\Omega}$ exists.

Case 2) If

$$(\vec{a} - \vec{c}) \cdot \vec{n} = 0, \quad b_n > 0$$

two velocities coincide

$$\lambda^{(1)} = \lambda^{(3)} = a_n + b_n$$

and since for such an \vec{n} , by (11), (12)

$$ec{\Lambda}^{(1)} = ec{\Lambda}^{(3)} = rac{ec{a} + ec{c}}{2} + ec{b}$$
 $ec{\Omega} = ec{\Lambda}^{(1)} - ec{\Lambda}^{(3)} = 0$

In these first two cases the differences of velocities $\lambda^{(i)} - \lambda^{(j)}$ do not change sign when \vec{n} goes over \vec{n}_o .

Case 3) Suppose $\vec{c} = \vec{a}$.

$$\lambda^{(1)} = \lambda^{(3)} = a_n + b_n, \qquad \lambda^{(2)} = a_n - b_n$$
$$\vec{\Lambda}^{(1)} = \vec{\Lambda}^{(3)} = \vec{a} + \vec{b}, \qquad \vec{\Lambda}^{(2)} = \vec{a} - \vec{b}$$

so that when b_n tends to zero , $\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}$ tend to a_n and $\vec{\Omega}$ is different from zero

$$\vec{\Lambda}^{(1)} - \vec{\Lambda}^{(2)} = 2\vec{b}$$

The velocities cross: $\lambda^{(1)} - \lambda^{(2)} = 2b_n$ changes sign with b_n .

4 Explicit shock expression

A natural question to ask is whether the exceptional property (9) still holds for variable multiplicity i.e. when $\vec{n} = \vec{n}_o$. It turns out [12] then that the important exceptionality is not so much that of λ but rather that of the difference of the velocities

$$\nabla(\lambda^{(1)} - \lambda^{(2)}) \cdot \mathbf{d}_I = 0, \quad I = 1, 2, ..., m$$
(13)

which implies the former one (9).

As already shown, a characteristic shock depending on m parameters propagating in a direction \vec{n}_o is possible when the conditions (13) are satisfied. This shock is obtained by solving the Rankine-Hugoniot equations involving the fields \mathbf{u}_o (unperturbed field) and \mathbf{u} (perturbed field) ahead and behind the shock front

$$\mathbf{f}_n(\mathbf{u}) - \lambda_o \mathbf{u} = \mathbf{f}_n(\mathbf{u}_o) - \lambda_o \mathbf{u}_o, \qquad \mathbf{c}_n(\mathbf{u}) = \mathbf{c}_n(\mathbf{u}_o)$$
(14)

together with

$$\vec{n}(\mathbf{u}) = \vec{n}(\mathbf{u}_o) = \vec{n}_o, \qquad \lambda(\mathbf{u}, \vec{n}_o) = \lambda(\mathbf{u}_o, \vec{n}_o) = \lambda_o$$
 (15)

Quite generally, when $\vec{\Omega} \neq 0$, an explicit solution of these equations is given in terms of the *jump* of the main field [13]

$$[\breve{\mathbf{u}}'] = \alpha^{I} \mathbf{l}_{I^{o}} - (\mathbf{b} - \mathbf{b}_{o})(M_{on} - \lambda_{o}I)^{-1} \nabla_{o} \mathbf{c}_{on} + w \mathbf{g}_{o} + \sigma \mathbf{g}_{o}^{r}, \quad I = 1, 2, ..., m$$
(16)

All quantities with the subscript zero are calculated for $\mathbf{u} = \mathbf{u}_o$ and therefore depend only on the state before the shock.

In (16) the first term, where α^{I} are *m* arbitrary parameters, represents a linear part of the shock while the second term is connected with the presence of constraints. The positive scalar

$$w = [h'] - \breve{\mathbf{u}}_o[\mathbf{u}'] \tag{17}$$

vanishes only when the shock does, \mathbf{g} and \mathbf{g}^r are defined by the following formulas

$$\mathbf{g}(A_n - \lambda I) = -\nabla \lambda, \quad \mathbf{gd}_I = 0, \quad \mathbf{g}^r(A_n - \lambda I) = -\nabla(\lambda^1 - \lambda^2), \quad \mathbf{g}^r \mathbf{d}_I = 0.$$
 (18)

Thus to the usual expression of a characteristic shock with constant multiplicity, an additional term, the last one of (16) is added which is specific of crossing eigenvalues.

The scalar σ comes from the general equality

$$\phi^{i} \stackrel{\text{def}}{=} \breve{\mathbf{u}}'[\mathbf{f}^{i}] - [h^{i}] + \mathbf{b}[\mathbf{c}^{i}] - w\Lambda_{o}^{i} \equiv [h'^{i}] - [\breve{\mathbf{u}}']\mathbf{f}_{o}^{i} - [\mathbf{b}]\mathbf{c}_{o}^{i} - w\Lambda_{o}^{i} = \sigma\Omega_{o}^{i}$$
(19)

and, as well as w, is a function of the m parameters α^{I} .

In next sections we consider (16) in the case of magnetohydrodynamics by computing its termes.

5 The conservative form of the equations of magnetohydrodynamics

The equations describing the magnetohydrodynamic motions are [14], [15]

$$\partial_t \rho + \operatorname{div}(\rho \vec{v}) = 0 \tag{20}$$

$$\partial_t \vec{B} - \operatorname{rot}(\vec{v} \wedge \vec{B}) = 0 \tag{21}$$

$$\partial_t(\rho \vec{v}) + \operatorname{div} \vec{\Pi} = 0$$
 (22)

$$\partial_t E + \operatorname{div} \vec{q} = 0 \tag{23}$$

and express the conservation of the mass ρ (20), of the momentum $\rho \vec{v}$ (22), of the total energy E (23) and the evolution of the magnetic field \vec{B} (21). To the system (20)-(23) must be added the involutive constraint

$$\operatorname{div} \vec{B} = 0 \tag{24}$$

Vol. 3, 1996

The quantities $\vec{\Pi}$, E, \vec{q} , appearing in (22),(23) are defined:

$$\begin{split} \vec{\Pi} &= (p + \frac{B^2}{2})I - \vec{B} \otimes \vec{B} + \rho \vec{v} \otimes \vec{v}, \quad \vec{q} = \rho \vec{v} \left(e + \frac{p}{\rho} + \frac{v^2}{2}\right) + \vec{B} \wedge (\vec{v} \wedge \vec{B}) \\ E &= \rho \frac{v^2}{2} + \rho e + \frac{B^2}{2} \end{split}$$

where \vec{v} , p are respectively the velocity and the pressure of the fluid; e is the density of internal energy satisfying

$$de = TdS + pd\rho/\rho^2$$

with entropy S and temperature T.

The system (20)-(23) with (24) is of the form (1) and (2) without the second members and

$$\mathbf{u} = \begin{bmatrix} \rho \\ \vec{B} \\ \rho \vec{v} \\ E \end{bmatrix}, \qquad \mathbf{f}^{i} = \begin{bmatrix} \rho v^{i} \\ v^{i} \vec{B} - B^{i} \vec{v} \\ \left(p + \frac{B^{2}}{2} \right) \vec{e}^{i} - B^{i} \vec{B} + \rho v^{i} \vec{v} \\ \left(E + p + \frac{B^{2}}{2} \right) v^{i} - (\vec{v} \cdot \vec{B}) B^{i} \end{bmatrix}, \qquad \mathbf{c}^{i} = B^{i}$$

By taking as supplementary equation (3) the conservation of entropy

$$\partial_t(\rho S) + \operatorname{div}(\rho S \vec{v}) = 0$$

one has

$$h(\mathbf{u}) = -\rho S, \qquad h^i(\mathbf{u}) = -\rho S v^i \qquad g(\mathbf{u}) = 0$$

and therefore [16] by (5)-(7)

$$\breve{\mathbf{u}}' = \frac{1}{T} \left(G - \frac{v^2}{2}, \vec{B}, \vec{v}, -1 \right), \quad h' = \frac{1}{T} \left(p + \frac{B^2}{2} \right), \quad h'^i = \frac{v^i}{T} \left(p + \frac{B^2}{2} \right)$$

where $G = e + p/\rho - TS$ is the free enthalpy. The vector **b**, in (7), reduces here to a scalar factor of the single constraint div $\vec{B} = 0$ and has already been calculated [16]. It is easy to see that

$$b = \frac{B \cdot \vec{v}}{T}$$

6 Wave velocities

The formal substitution

$$\partial_t \to -\lambda \delta, \qquad \partial_i \to n_i \delta$$

permits us to write

$$\delta \mathbf{f}_n - \lambda \delta \mathbf{u} = (A_n - \lambda I) \delta \mathbf{u} = 0 \tag{25}$$

which shows immediately that $\delta \mathbf{u}$ is a linear combination of eigenvectors

$$\delta \mathbf{u} = \beta^I \mathbf{d}_I \tag{26}$$

Calculating the λ 's one finds the Alfvén velocities [14], [15]

$$\lambda^{(1)} = v_n + \frac{B_n}{\sqrt{\rho}}, \qquad \lambda^{(3)} = v_n - \frac{B_n}{\sqrt{\rho}}$$

the contact velocity

$$\lambda^{(2)} = v_n$$

the slow velocities

$$\lambda^{(4)/(5)} = v_n \pm \zeta, \qquad \zeta = \left\{ \frac{1}{2} (c^2 + \frac{B^2}{\rho} - \sqrt{\Delta}) \right\}^{\frac{1}{2}}$$

the fast velocities for which a plus sign precedes the square root of

$$\Delta = (c^2 + \frac{B^2}{\rho})^2 - 4\frac{B_n^2}{\rho}c^2, \qquad c = \sqrt{(\partial p/\partial \rho)_S}$$

and the null velocity.

By (10) the corresponding radial velocities are

$$\vec{\Lambda}^{(1)/(3)} = \vec{v} \pm \frac{\vec{B}}{\sqrt{\rho}}, \quad \vec{\Lambda}^{(2)} = \vec{v}, \quad \vec{\Lambda}^{(4)/(5)}(\vec{n}) = \vec{v} \pm \zeta \vec{n} \pm \frac{c^2 B_n}{\rho \zeta \sqrt{\Delta}} (\vec{B} - B_n \vec{n}) \quad (27)$$

7 Case $\vec{\Omega} = 0$

For

$$\vec{n}_o = \frac{\vec{B}}{\mid \vec{B} \mid}$$

the Alfvén velocities become double since ·

$$\lambda^{(4)/(5)}(\vec{n}_o) = \lambda^{(1)/(3)}(\vec{n}_o) = \vec{v} \cdot \frac{\vec{B}}{|\vec{B}|} \pm \frac{|\vec{B}|}{\sqrt{\rho}}$$

while (27) become

$$\vec{\Lambda}^{(4)/(5)}(\vec{n}_o) = \vec{v} \pm \frac{\vec{B}}{\sqrt{\rho}} = \vec{\Lambda}^{(1)/(3)}$$

and both $\vec{\Omega}\mbox{'s}$ are zero

$$\vec{\Lambda}^{(4)} - \vec{\Lambda}^{(1)} = 0, \quad \vec{\Lambda}^{(5)} - \vec{\Lambda}^{(3)} = 0$$

8 Case of crossing velocities: $\vec{\Omega} \neq 0$

From now on we consider this possibility. When $\vec{\Omega}$ is not zero \vec{n}_o is not unique and the velocities cross, that is, their difference changes sign when \vec{n} goes over \vec{n}_o . This clearly occurs in magnetohydrodynamics when

$$\vec{B} \cdot \vec{n}_o = 0 \tag{28}$$

Then $\lambda^{(1)}$ to $\lambda^{(5)}$ are all equal to

$$\lambda = v_n \tag{29}$$

Observe that some of these velocities, for instance $\lambda^{(2)}$, $\lambda^{(4)}$, still do not cross; $\lambda^{(4)} - \lambda^{(2)} = \zeta \geq 0$ does not change sign in agreement with the fact that the corresponding $\vec{\Omega}$ is zero: $\vec{\Lambda^{(4)}}(\vec{n}_o) - \vec{\Lambda^{(2)}}(\vec{n}_o) = 0$. However $\lambda^{(1)}$, $\lambda^{(2)}$ do

$$\lambda^{(1)}(\vec{n}) - \lambda^{(2)}(\vec{n}) = \frac{B_n}{\sqrt{\rho}}, \qquad \vec{\Omega} = \vec{\Lambda}^{(1)}(\vec{n}_o) - \vec{\Lambda}^{(2)}(\vec{n}_o) = \frac{\vec{B}}{\sqrt{\rho}}$$

The non vanishing $\vec{\Omega}$'s are proportional to this one as for instance $\vec{\Lambda}^{(4)/(5)}(\vec{n}_o) - \vec{\Lambda}^{(1)/(3)}(\vec{n}_o)$.

It is also easy to verify (13) in magnetohydrodynamics. Although one could check that

$$abla(\lambda^{(1)} - \lambda^{(2)})(\vec{n}_o) = (\vec{0}, \frac{\vec{n}_o}{\sqrt{\rho}}, \vec{0}, 0)$$

is orthogonal to the five right eigenvectors \mathbf{d}_I associated to (29) it is easier, by (26), to note that

$$\delta(\lambda^{(1)} - \lambda^{(2)}) = \delta \frac{B_n}{\sqrt{\rho}} = \frac{\delta B_n}{\sqrt{\rho}} = 0$$

according to the second equation (25) and (28)

$$\delta(v_n\vec{B} - B_n\vec{v}) - \lambda\delta\vec{B} = 0$$

multiplied by \vec{n} , for $v_n \neq 0$.

Equations (14), (15) read simply [5], [14], [15]

$$p + \frac{B^2}{2} = p_o + \frac{B^2_o}{2}, \quad \vec{B} \cdot \vec{n} = \vec{B}_o \cdot \vec{n} = 0, \quad \vec{v} \cdot \vec{n} = \vec{v}_o \cdot \vec{n} = \lambda_o$$
(30)

These are three conditions for eight field components leaving five arbitrary quantities.

We are now going to check (16) by computing its various components.

9 The left eigenvectors for $B_n = 0, \lambda = v_n$

To avoid the writing of the matrix A_n we set

$$\mathbf{l} \equiv (x, \vec{X}, \vec{Y}, y)$$
 and form the product $\Phi = \mathbf{l}(\mathbf{f}_n - \lambda \mathbf{u})$.

By taking the variation, keeping l and λ constant, we get after setting $\lambda = v_n, B_n = 0$

$$(\delta\Phi)_{\lambda=v_n,B_n=0} = \mathbf{l}(A_n - v_n I)\delta\mathbf{u} = 0$$

for any $\delta \mathbf{u}$. Explicitly

$$\Phi = (v_n - \lambda) \{\rho x + \vec{B} \cdot \vec{X} + \rho \vec{v} \cdot \vec{Y} + yE\} - B_n \{\vec{v} \cdot \vec{X} + \vec{B} \cdot \vec{Y} + y\vec{B} \cdot \vec{v}\} + \left(p + \frac{B^2}{2}\right) (Y_n + yv_n)$$

and so

$$\delta \Phi = \mathcal{V} \delta v_n + \mathcal{B} \delta B + \mathcal{P} \delta \left(p + \frac{B^2}{2} \right) = 0 \tag{31}$$

with

$$\mathcal{V} = \rho x + \vec{B} \cdot \vec{X} + \rho \vec{v} \cdot \vec{Y} + y(E + p + \frac{B^2}{2})$$
$$\mathcal{B} = -\vec{v} \cdot \vec{X} - \vec{B} \cdot (\vec{Y} + y\vec{v}) \qquad \mathcal{P} = Y_n + yv_n$$

But $\mathcal{V}, \mathcal{B}, \mathcal{P}$ must be zero and therefore yield the solutions

$$\begin{aligned} \mathbf{l}_{i} &= \left(\frac{v_{i}}{B^{2}}\vec{B}\cdot\vec{v} - \frac{1}{\rho}B_{i}, \quad \vec{e}_{i}, \quad -\frac{v_{i}}{B^{2}}\vec{B}, \quad 0\right) \quad i = 1, 2, 3\\ \mathbf{l}_{4} &= \left(\frac{p + B^{2}}{\rho} + e - \frac{v^{2}}{2}, \quad \vec{0}, \quad \vec{v}, \quad -1\right)\\ \mathbf{l}_{5} &= \{-(\vec{B}\wedge\vec{n})\cdot\vec{v}, \quad \vec{0}, \quad \vec{B}\wedge\vec{n}, \quad 0\} \end{aligned}$$

10 Determination of the absolute and relative g's

In the same manner by its very definition (18) the components of

$$\mathbf{g} \equiv (x, \vec{X}, \vec{Y}, y)$$

are determined by the conditions

$$\delta \Phi + \delta v_n = 0 \tag{32}$$

Vol. 3, 1996 Characteristic shocks of crossing velocities in magnetohydrodynamics 227

for all $\delta \mathbf{u}$ and

$$\mathbf{g} \cdot \delta \mathbf{u} = 0 \tag{33}$$

for all $\delta \mathbf{u}$ satisfying

$$\delta v_n = 0, \quad \delta B_n = 0, \quad \delta \left(p + \frac{B^2}{2} \right) = 0$$
(34)

The conditions (32) are the same than (31) except for the first i.e.

$$\mathcal{V} = -1, \quad \mathcal{B} = 0, \quad \mathcal{P} = 0$$

By (33)

$$(x + \vec{Y} \cdot \vec{v})\delta\rho + \vec{X} \cdot \delta\vec{B} + \rho\vec{Y} \cdot \delta\vec{v} + y\delta E = 0$$
(35)

Since for a perfect polytropic fluid

$$p = \mathcal{R}\rho T, \quad p = a\rho^{\gamma} exp\left(\frac{\gamma - 1}{\mathcal{R}}S\right), \quad E = p + \frac{B^2}{2} + \rho\frac{v^2}{2} + \frac{2 - \gamma}{\gamma - 1}p$$

(35) becomes by (34), with $\vec{v}_T = \vec{v} - v_n \vec{n}$

$$\left(x+\vec{Y}\cdot\vec{v}+y\frac{v^2}{2}\right)\delta\rho + \left(\vec{X}-\frac{2-\gamma}{\gamma-1}y\vec{B}\right)\cdot\delta\vec{B}_T + \rho(\vec{Y}+y\vec{v})\cdot\delta\vec{v}_T = 0$$

so that

$$x + \vec{Y} \cdot \vec{v} + y \frac{v^2}{2} = 0 \tag{36}$$

$$\vec{X}_T - \frac{2-\gamma}{\gamma-1} y \vec{B}_T = 0 \tag{37}$$

$$\vec{Y}_T + y\vec{v}_T = 0 \tag{38}$$

which, together with $(34)_1$, give

$$\mathbf{g} \stackrel{\scriptscriptstyle \perp}{=} \frac{1-\gamma}{\gamma p + B^2} \left\{ \frac{v^2}{2}, \quad \frac{2-\gamma}{\gamma - 1} \left(\vec{B} - \frac{\vec{B} \cdot \vec{v}}{v_n} \vec{n} \right), \quad -\vec{v}, \quad 1 \right\}$$

Now $\mathbf{g}^r \equiv (x, \vec{X}, \vec{Y}, y)$ satisfies (36) – (38) and

$$\mathcal{V} = 0, \quad \mathcal{B} = -\frac{1}{\sqrt{\rho}}, \quad \mathcal{P} = 0$$

It appears immediately that

$$\mathbf{g}^r = \left(0, \quad \frac{ec{n}}{v_n\sqrt{
ho}}, \quad ec{0}, \quad 0
ight)$$

It is to be observed that \mathbf{g} and \mathbf{g}^r by their definition (18) have the dimension of $1/\mathbf{u}$ or equivalently of \mathbf{u}'/h' .

Further $c_n = B_n$ and $\nabla c_n = (0, \vec{n}, 0, 0)$ so that $\nabla c_n f_n \equiv 0 \ \nabla c_n A_n \equiv 0$ implying, by (8), $M_n = 0$.

Jumps of the main field components 11

Expliciting eqs. (16) we get, putting $\tau = w/(\gamma p_o + B_o^2)$,

$$\begin{bmatrix} \frac{G-\frac{v^2}{2}}{T} \end{bmatrix} = \frac{\vec{\alpha} \cdot \vec{v}_o}{B_o^2} (\vec{B}_o \cdot \vec{v}_o) - \frac{1}{\rho_o} \vec{B}_o \cdot \vec{\alpha} + \frac{\alpha_4}{\rho_o} \left(B_o^2 - \frac{\rho_o v_o^2}{2} + \frac{\gamma}{\gamma - 1} p_o \right) + -\alpha_5 (\vec{B}_o \wedge \vec{n}) \cdot \vec{v}_o + (1 - \gamma) \frac{v_o^2}{2} \tau$$

$$(39)$$

$$\begin{bmatrix} \frac{B}{T} \end{bmatrix} = \vec{\alpha} - (\vec{\alpha} \cdot \vec{n})\vec{n} - (2 - \gamma)\tau \vec{B}_o$$

$$\begin{bmatrix} \vec{v} \\ T \end{bmatrix} = -\frac{(\vec{\alpha} \cdot \vec{v}_o)}{B_o^2}\vec{B}_o + \alpha_5(\vec{B}_o \wedge \vec{n}) + \begin{bmatrix} 1 \\ T \end{bmatrix} \vec{v}_o$$
(40)
(41)

$$\begin{bmatrix} \vec{v} \\ T \end{bmatrix} = -\frac{(\vec{\alpha} \cdot \vec{v}_o)}{B_o^2} \vec{B}_o + \alpha_5 (\vec{B}_o \wedge \vec{n}) + \begin{bmatrix} 1 \\ T \end{bmatrix} \vec{v}_o$$
(41)

$$\frac{1}{T} = \alpha_4 + (\gamma - 1)\tau \tag{42}$$

taking account of the condition

$$v_{on}\vec{\alpha}\cdot\vec{n} + \left[\frac{\vec{B}\cdot\vec{v}}{T}\right] + (2-\gamma)\tau\vec{B}_o\cdot\vec{v}_o + \frac{\sigma}{\sqrt{\rho}_o} = 0$$
(43)

which comes, from (30) i.e. $\vec{n} \cdot \begin{bmatrix} \vec{B} \\ T \end{bmatrix} = 0.$

Determination of σ and w12

Since

$$\left[\frac{\vec{B}\cdot\vec{v}}{T}\right] = \frac{[\vec{B}]\cdot[\vec{v}]}{T} + \vec{B}_o\left[\frac{\vec{v}}{T}\right] + v_o\left[\frac{\vec{B}}{T}\right] - \vec{B}_o\cdot\vec{v}_o\left[\frac{1}{T}\right]$$

equation (43) can be rewritten

$$\sigma = -\sqrt{\rho_o} \frac{[\vec{B}] \cdot [\vec{v}]}{T} \tag{44}$$

It is a matter of a simple calculation to check (19) with $\Lambda_o^i = v_o^i$.

Substituting eqs. (39)–(42) in (44) one gets the following relation between τ , σ , and the five parameters α

$$\frac{\sigma}{\sqrt{\rho}_o} \left\{ \frac{1}{T_o} + \alpha_4 + (\gamma - 1)\tau \right\} - \frac{\vec{\alpha} \cdot \vec{v}_o}{B_o^2} (\vec{\alpha} \cdot \vec{B}_o) + (\vec{\alpha} \cdot \vec{v}_o)(\alpha_4 + \tau) + \alpha_5 (\vec{B}_o \wedge \vec{n}) \cdot \vec{\alpha} = 0$$

Another one is needed to determine w and σ . However if one inserts in the definition (17) of w the expressions (39)-(42) one merely obtains an identity.

In fact this new relation is obtained by writing

$$p + \frac{B^2}{2} = p_o + \frac{B_o^2}{2}$$

For a polytropic fluid $\left[\frac{G}{T}\right] = -\left[S\right]$

and the relation determining τ results by replacing the jumps by their expressions (39)–(42) in

$$ln\left(1-\frac{1}{2p_o}[B^2]\right) + \frac{\gamma}{\gamma-1}ln\left(1+T_o\left[\frac{1}{T}\right]\right) + \frac{1}{\mathcal{R}}[S] = 0$$

Here this relation is rather complicated. It is useless to write it explicitly since the shock is not bounded [16]: the transversal part of \vec{v} , for instance, is not limited as it is easily seen by (30). A different situation may occur when the field equations derive from a variational principle. In that case w, σ lie on a quadric surface [13].

In relativistic magnetohydrodynamics an additional question arises: the subluminal character of wave and shock velocities [5], [17], [18]. It is also interesting to note that, in the relativistic case, the constraint can be eliminated as proved in [19], [20].

References

- S. K. GODUNOV, An interesting class of quasi-linear systems. Sov. Math. 2, 947 (1961); Symmetric form of the magnetohydrodynamic equations (in Russian). Preprint, Akad. Nauk. SSSR Sib. Otd., Vychisl. Tsentr 3, No.1, 26 (1972)
- [2] K. O. FRIEDRICHS, P. D. LAX, Systems of conservation equations with a convex extension, *Proc. Nat. Acad. Sci. U.S.A.* 68, 1686 (1971)
- [3] T. RUGGERI, A. STRUMÌ A, Main field and convex covariant density for quasi linear hyperbolic systems, Ann. Inst. Henri Poincaré **34**, 65 (1981)
- [4] A. M. ANILE, S. PENNISI, On the mathematical structure of the relativistic magneto-fluid dynamics. Ann. Inst. Henri Poincaré 46, 27 (1987)
- [5] A. M. ANILE, *Relativistic fluids and magneto-fluids*. Cambridge Monographs on Mathematical Physics, Cambridge University Press (1989)
- [6] I. MÜLLER, T. RUGGERI, Extended Thermodynamics. Springer-Verlag, New York, Berlin (1993)
- [7] G. BOILLAT, S. PLUCHINO, Sopra l'iperbolicità dei sistemi con vincoli e considerazioni sul superfluido e la magnetoidrodinamica, ZAMP 36, 893 (1985)

Vol. 3, 1996

- [8] G. BOILLAT, Sur l'existence et la recherche d' équations de conservation supplémentaires pour les systèmes hyperboliques, C. R. Acad. Sci. Paris 278, série A, 909 (1974); Symétrisation des systèmes d' équations aux derivées partielles avec densité d'énergie convexe et contraintes. Ibid. 295, série I, 551 (1982)
- [9] G. BOILLAT, Involutions des systèmes conservatifs, C. R. Acad. Sci. Paris, 307, série I, 891 (1988)
- [10] P. D. LAX, The multiplicity of eigenvalues, Bull. Amer. Math. Soc. 6, 213 (1982)
- [11] S. FRIEDLAND, J. W. ROBBIN, J. H. SYLVESTER, On the crossing rule, Comm. Pure. Appl. Math. 37, 19 (1984)
- [12] G. BOILLAT, A. MURACCHINI, Chocs caractéristiques de croisement, C. R. Acad. Sci. Paris 310, série I, 229 (1990)
- [13] G. BOILLAT, Expression explicite des chocs caractéristiques de croisement, C.R. Acad. Sci. Paris 312, série I, 653 (1991)
- [14] A. JEFFREY, *Magnetohydrodynamics*. Oliver and Boyd, London (1966)
- [15] H. CABANNES, Theoretical Magnetofluiddynamics. Academic Press, New York (1970)
- [16] G. BOILLAT, A. MURACCHINI, The structure of the characteristic shocks in constrained symmetric systems with application to magnetohydrodynamics, *Wave Motion* 11, 297 (1989)
- [17] A. LICHNEROWICZ, Relativistic hydrodynamics and magnetohydrodynamics. Benjamin, New York (1967); Ondes de chocs, ondes infinitésimales et rayons en hydrodynamique et magnétohydrodynamique relativistes, in: Relativistic Fluid Dynamics, Ed. C. Cattaneo, Cremonese, Roma (1971)
- [18] G. BOILLAT, T. RUGGERI, Wave and shock velocities in relativistic magnetohydrodynamics compared with the speed of light, *Continuum Mech. Ther*modyn. 1, 47 (1989)
- [19] S. PENNISI, A covariant and extended model for relativistic magnetofluiddynamics, Ann. Inst. Henri Poincaré, 58, 343 (1993)
- [20] G. BOILLAT, Sur l'élimination des contraintes involutives, C.R. Acad. Sci. Paris 318, série I, 1053 (1994)

Received November 11, 1993 – Revised version received November 15, 1994