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A b s t r a c t  

We illustrate, in the framework of magnetohydrodynamics, an application of 
crossing shock formulas to a characteristic shock moving perpendicularly to 
the magnetic field. 

1 I n t r o d u c t i o n  

Consider the conservative hyperbolic system of N first order partial differential 
equations for the unknown field u(t, x i) 

Otu+Oifi(u) = f(u), (i = 1,2,3) (1) 

with M involutive constraints 

o~c~(u)  = c ( u )  (2) 

Let (1) supplemented by an additional conservation law (energy or entropy law) 

Oth(u) + Oihi(u) = g(u) (3) 

where h(u) is a convex function of u. The equation (3) can be obtained by multi- 
plying (1) and (2) by suitable N and M vectors u' and b respectively. 

When a wave velocity A of (1) is exceptional (see w 3) a characteristic shock 
may propagate with this velocity. Independently of the number of equations, the 
jump of the field u 

def 
[u] = u - Uo 

*Supported by C.N.R. (G.N.F.M.). 
?Supported by C.N.R. (G.N.F.M.) and MURST (Fondi Ricerche 40 % and 60 %) . 



218 Guy Boillat and Augusto Muracchini NoDEA 

i.e. the difference of its values on the back and on the front of the shock surface, can 
be expressed as a combination of at most m + M § 2 known vectors (m multiplicity 
of A, M number of constraints). 

The simplest case is that  of linear equations where the f i ' s  of (1) are linear 
functions of the field u 

fi = A~u 

so that  the Rankine-Hugoniot equations (see (14) in w 4) are just 

(A~ - ) , I ) (u  - uo) = 0 

which shows that  the jump 
[u ]  : o~Idi 

depends linearly on m parameters  ~[ corresponding to the multiplicity of the 
eigenvalue. 

When the conservative system (1) (with an additional law (3)) is non linear 
it is still possible to solve the Rankine-Hugoniot equations and to give a simple 
expression for the jump of the main field u ~ (w 2) 

/ 
[l~l/] dezf (1 '  - -  (1  o ~ -  oell i  o + Wgo  

where g and the left eigenvectors 1i are calculated for the value uo of the field before 
the shock. The scalar w, a non linear function of the parameters  c~ I, represents 
the non linear part  of the shock. In particular this formula appears  each t ime a 
characteristic velocity ),(u, g) (then exceptional) with constant (i.e. independent 
of the direction g) multiplicity exists. 

Instead when multiplicity is variable that  is when it occurs only for some 
values of g(u)  (crossing velocities), a new relative vector, g~, has to be added and 

Ill'] = o~Ili o + Wgo + ~7g~o 

Another adjunction may even be necessary when the involutive constraints 
(2) are associated with the field equations (1). In this case one has the most 
complicated expression 

[fi'] = aIl~o - (b - bo)(mo~ - )kof)- lVoCon + Wgo + ago", I = 1, 2, ..., m (4) 

where the second te rm is connected with the presence of constraints. 
The aim of this paper  is to illustrate this formula with an example taken from 

classical magnetohydrodynamics:  a shock moving with the normal fluid velocity 
in a direction perpendicular to the magnetic field vector /3 .  

When the vector g is orthogonal to the magnetic field no less than  five veloc- 
ities coincide (w 8). Further a constraint (d iv /3  = 0) is present so tha t  here eight 
vectors are necessary to describe the jump of the eight components of the main 
field. Surely it would have been bet ter  to find a physical example with less vec- 
tors than components. Nevertheless we show how to compute easily these various 
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vectors without writing down matrices. Also we study in w 3, for a mathemat-  
ical example, the behaviour of the radial velocities when the corresponding A's 
coincide. 

2 S o m e  r e m a r k s  o n  f i e l d  e q u a t i o n s  

As it is well known the introduction of the main field 

Oh 
. '  - (5) 

0u 

allows the field equations (1) to be written in a Friedrichs-Lax-Godunov symmetric 
form [1], [2] by means of the Le Gendre transformation [3]-[8] 

h'(u') = ~ ' . u  - h(u) (6) 

(fi is the transpose of u) and the introduction of the quantities 

h,i(u,) _- fi, .  fi + b .  c i - h i (7) 

In fact 
u = ~7'h', fi = ~,h, i  _ ~ i ~ , l ~  

Fhrther the involutive constraints must be such that  [9] 

VcnA~ = MnVcn (8) 

with constant matrices Vc i and M i and 

A i de__f Vf i ,  An de__f Vf~, f~ d~j f ini  

def ( ~ U )  V/ def ( ~ )  
~ = c o n s t .  ~ = c o n s t .  

3 C r o s s i n g  v e l o c i t i e s  

The wave velocities of propagation in the direction of the unit vector g are given 
by the eigenvalues A(u, g) of the matrix An. Suppose that  some eigenvalue A has 
a constant (i.e. independent on g) multiplicity m and therefore m left and right 
eigenvectors 

b ( u , g ) ( m n -  A I ) =  O, (d~ - AI)d i (u ,Z)  = O, I = 1 , 2 , . . . , m  

When m > 1 it is known that  .k is exceptional that  is 

VA. d1 ---- 0 (9) 

As a consequence a characteristic shock exists which propagates with velocity A. 
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On the other hand if the number of equations (1) is N = =t=2, =t=3, +4 (rood 
8) [10], [11] the eigenvalues of An cannot all be simple for every g. Although these 
eigenvalues may still have constant multiplicity as for instance in the banal case 
of 

A~ = an I  

it may happen (in the so-called case of variable multiplicity) that  two (or more) 
eigenvalues, say, AO)(u, if) and A(2)(u, g) coincide only for some g = ~o(U) 

A(~) (u, ~o) = ~(~)(u, ~o) 

For the corresponding radial velocities (propagating the weak disturbances) 

oA (~) { oA (~) ]~(/)(U'?~)def/~(i)?~§ 0-"'-~-- \ g" 0~ / n  (10) 

let us define 
D(u, go)= lingo {X(O(u,~) - X(')(u,~)} 

It follows that  several cases are possible: 
1) D does not exist 
2) ~ = 0  
3) ~ 0  
which are illustrated with the following mathematical example. 
Let 

0 1 A i = b i c i 0 

0 0 (a i §  ~ 

then 

and 

1 ~(w(~) = [ ( ~ + ~ •  ~ = ( a . - e ~ ) ~ + 4 s  

A(3)_a~+c~ +b~ 
2 

a n =a~rti = ~ .  

~/l~j~2~ = 12 (~§177 (a~ c~)(~ - ~ + 4b~ 0 ~  (11) 

X(3) - ~ + ~ + ~ (12) 
2 

Case 1) When ~ tends to ~o parallel to 

the three velocities A (1), A (2), A (3) tend to am but/~(1)/(2) have no limit and no 
exists. 
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Case 2) If  

(~-~.~=o,  b~>o 
two velocities coincide 

),(1) = )`(3) = a~ + b~ 

and since for such an ~, by (11), (12) 

2 

= /~(1) __ ~k(3) = 0 

In  these first two cases the  differences of velocities )`(i) _ )`(j) do not  change sign 
when g goes over go. 

Case 3) Suppose  g = ft. 

)`(1) = )`(3) = a~ + b~, )`(2) = an - bn 

so t h a t  when bn tends  to zero , )`(1),)`(2), )`(3) t end  to a~ and ~ is different f rom 
zero 

The  velocities c r o s s :  )`(1) _ _  )`(2) = 2bn changes sign wi th  bn. 

4 Expl ic i t  shock express ion  

A na tu ra l  quest ion to  ask is whe ther  the  except ional  p rope r ty  (9) still holds for 
var iable  mul t ip l ic i ty  i.e. when  g = go. I t  tu rns  out  [12] then  t ha t  the  impor t an t  
except ional i ty  is not  so much  t h a t  of ), bu t  ra ther  t ha t  of the  difference of the  
velocities 

V()`(1) _ )`(2)). d1 = 0, f = 1, 2, ..., rn (13) 

which implies the  former  one (9). 
As a l ready shown, a character is t ic  shock depending  on rn pa r ame te r s  prop-  

aga t ing  in a direct ion ~o is possible when  the  condit ions (13) are satisfied. This  
shock is ob ta ined  by solving the  Rank ine-Hugonio t  equat ions involving the  fields 
Uo (unperturbed field) and  u (perturbed field) ahead  and  behind  the  shock front 

fn(u) - )`oU = fn(Uo) - )`oUo, cn(u) = cn(uo) (14) 

toge ther  wi th  

~(-) = ~(-o) = ~o, )`(u, ~o) = )`(-o, ~o) = )`o (15) 
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Quite  generally, when f ~ / :  0, an  explicit solution of these equat ions is given 
in t e rms  of the  j u m p  of the ma in  field [13] 

[fi'] = c~Ilzo - (b - b o ) ( M o ~  - , k o I ) - l V o c o ~  + wgo  + e g o  ~, [ = 1, 2, ..., m (16) 

All quant i t ies  wi th  the subscr ipt  zero are calculated for u = Uo and therefore  
depend  only on the  s ta te  before the shock. 

In  (16) the first te rm,  where a I are m a rb i t r a ry  pa ramete r s ,  represents  a 
linear par t  of the  shock while the  second t e r m  is connected with  the  presence of 
constraints .  The  posit ive scalar 

w = [h'] - fio[U'] (17) 

vanishes only when  the shock does, g and g~ are defined by the  following formulas  

g ( A ~ - ) ~ I ) = - V ) , ,  g d x = 0 ,  g ~ ( A ~ - i ~ I ) = - V ( A  1 - A 2 ) ,  g ~ d , = 0 .  (18) 

Thus  to the  usual  expression of a character is t ic  shock with  cons tant  mult i-  
plicity, an  addi t ional  te rm,  the  last one of (16) is added  which is specific of crossing 
eigenvalues. 

The  scalar cr comes f rom the general  equal i ty 

0i de f l~I' [fi] _ [h i] + b[c i] _ wA~ ~_ [h'il - [fi/]f~ - [b]c / - wA~ = ~rft/o (19) 

and,  as well as w, is a funct ion of the m pa rame te r s  a I. 
In next  sections we consider (16) in the  case of m a g n e t o h y d r o d y n a m i c s  by 

comput ing  its termes.  

5 The  conservat ive  form of the  equat ions  
of m a g n e t o h y d r o d y n a m i c s  

The  equat ions describing the m a g n e t o h y d r o d y n a m i c  mot ions  are [14], [15] 

Otp + div(p~) = 0 (20) 

OrB - r o t ( g A / ~ )  = 0 (21) 

cgt(pg) + d i v I I  = 0 (22) 

0 rE  + div ~ = 0 (23) 

and  express the  conservat ion of the  mass  p (20), of the  m o m e n t u m  pg  (22), of the  
to ta l  energy E (23) and the  evolut ion of the  magnet ic  f ie ld /~  (21). To the  sys tem 
(20)-(23) mus t  be added the  involutive constra int  

d iv /3  = 0 (24) 
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The quantities 1], E,  ~, appearing in (22),(23) are defined: 

v 2 B 2 
z = p T + ~ e +  T 

where g, p are respectively the velocity and the pressure of the fluid; e is the 
density of internal energy satisfying 

de = T d S  + p d p / p  2 

with entropy S and tempera ture  T. 
The system (20)-(23) with (24) is of the form (1) and (2) without the second 

members  and 

pv i 

P v i ~  _ B i g  

u =  pg , = p §  ffi _ B i  ~ + pvi  g , 

E ( E + p + _ ~ ) v i _ ( g . ~ ) B  i 

By taking as supplementary equation (3) the conservation of entropy 

Ot(pS) + div(pS~) = 0 

one has 
h(u) = - , s ,  

and therefore [16] by (5)-(7) 

a ' = l (  ~ 2 ~  ) 
a -  y , s  

hi(u) = -pS~ i g(u) = 0 

= ~  P+ , = ~  p +  

where G = e + p / p  - T S  is the free enthalpy. The vector b, in (7), reduces here to 

a scalar factor of the single constraint d i v / ?  = 0 and has already been calculated 
[16]. It  is easy to see tha t  

/~.~ 
b -  

6 

The formal substi tution 

W a v e  v e l o c i t i e s  

permits us to write 

T 

Ot ~ - ~ 5 ,  Oi ~ ni5  

~fn - ~ u  = (An - ~/)~u -- 0 (25) 
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which shows immedia te ly  t h a t  5u is a linear combina t ion  of eigenvectors 

~u =/~Idl 

Calculat ing the  A ' s  one finds the Alfv6n velocities [14], [15] 

the contact  velocity 

Bn Bn /~(1) = v~ + - -  A(3) = v,~ - - -  ~ '  v~ 

the  slow velocities 

~(4)/(5) = v~ ~= ~, 

A (2) = Vn 

1 2 B2 }�89 ~= ~(~ + - - - ~ )  
P 

the  fast velocities for which a plus sign precedes the square  root  of 

A = ( c  2+B-~) 2 4B~c ~, 
- ~ = V ( a p / o p ) s  

P 

and the null velocity. 
By  (10) the  corresponding radial  velocities are 

c 2Bn . 

7 C a s e  ~ = 0 

For 

~o-1~ I 
the Alfv6n velocities become double since- 

A(4)/(5)(?~o) • A(1)/(3)(~o) = ~" ~ ~c 

while (27) become 

and bo th  ~ ' s  are zero 

/3 = ~(1)/(3) 

X ( 4 ) _ f i ( 1 ) = O ,  ~ ( 5 ) _ X ( 3 ) = 0  

(26) 

(27) 
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8 C a s e  o f  c r o s s i n g  v e l o c i t i e s :  ~ r 0 

Prom now on we consider this possibility. When ~ is not zero go is not unique 
and the velocities cross, that  is, their difference changes sign when ff goes over go. 
This clearly occurs in magnetohydrodynamics when 

2 .  ~o = 0 (2s) 

Then A0) to A (5) are all equal to 

)` = Vn (29) 

Observe that  some of these velocities, for instance A(2), A(4), still do not cross; 
A (4) - A (2) = ~ _> 0 does not change sign in agreement with the fact that  the 

corresponding ~ is zero: A("4) (go) - A ~2) (go) = 0. However A (1), A(2) do 

Bn 
)`(1) (?~) __ )`(2)(?~) __ V / ~ '  (~ = ~(1)(~o) - X (2) (~o 

The non vanishing ~'s  are proportional to this one as for instance X(4)/(5)(~o) - 

~(1)/(3/(~o). 
It is also easy to verify (13) in magnetohydrodynamics. Although one could 

check that  

v()` (1) - )`(2))(~o) = (6, ~0 ~,0) 
x /P "  

is orthogonal to the five right eigenvectors d i  associated to (29) it is easier, by 
(26), to note that  

5()`(1) _ ),(2)) = 8 B ~  _ 8 B ~  _ 0 

according to the second equation (25) and (28) 

e ( v ~  - B ~ )  - ) ` e~  = 0 

multiplied by g, for v~ ~ 0. 
Equations (14), (15) read simply [5], [14], [15] 

B 2 B2o 

; + y  = ; o  + - i f -  ~ - ~ = ~ o . ~ = 0 ,  ~ . ~ =  ~o.~=)`o (30) 

These are three conditions for eight field components leaving five arbitrary quan- 
tities. 

We are now going to check (16) by computing its various components. 
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9 T h e  l e f t  e i g e n v e c t o r s  f o r  B~  = 0, A = v~ 

To avoid the wri t ing of the ma t r ix  A~ we set 

1 - (x, X ,  Y, y) and form the  p roduc t  q) = l(f~ - Au) .  

By  taking the  variat ion,  keeping 1 and A constant ,  we get after  set t ing 
A = v~, B~ = 0 

for any 5u. Explici t ly  

�9 = 

(6~)x=.,~,B~ 0 = I(A~ - v ~ I ) S u  = 0 

( ~  - a){px + ~ .  )? + p~. ? + yE} - s~{~. 2 + 5 .  ? + yS.  ~} 

and so 

wi th  
B 2 

But  )2,/3, 7 9 must  be  zero and therefore yield the  solutions 

k s  p ' s 

14 = (p+B2  ~2 ) - - + e - - -  6, g, -1 
p 2 '  

15 = { - ( B A n ) . ~ ,  6, 5 A n ,  0} 

i = 1 ,2 ,3  

(31) 

1 0  D e t e r m i n a t i o n  o f  t h e  a b s o l u t e  

a n d  r e l a t i v e  g~s 

In the  same manner  by its very definit ion (18) the  componen t s  of 

g =_ ( x , X , Y , y )  

are de te rmined  by the  condit ions 

SoP + 5v~ = 0 (32) 
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for all ~u and 

for all 5u satisfying 

g .  5u = 0 (33) 

/ B2~ 
8vn = O, 8B~ = O, 5 ~p + --~-) ~ 0 

The conditions (32) are the same than (31) except for the first i.e. 

V = - l ,  B=0,  79=0 

By (33) 
(~ + ? .  z)@ + i f .  ~g  + ~?. 6z+ y~E = 0 

Since for a perfect polytropic fluid 

p = T~pT, p = ap'~ exp ( ~ff~-~ S )  , 

(35) becomes by (34), with fit  = g--  v . g  

so that 
V 2 

x + f  .g+y T =0 

7 - 1  

?T + v ~  =0 

which, together with (34)1 , give 

g •  1 - 7  / v  2 
~p + B~ 3 '  

Now g~ - (x, X, Y, y) satisfies (36) - (38) and 

1 
l ; = 0 ,  B -  

It appears immediately that  

B 2 v 2 2 - 

E = p +  V + p T  + U ~ b ;  

+ p(? + y~)- 6~T = 0 

~ / : i  /~- ' -g' 1 

7 9 = 0  

(34) 

(35) 

(36) 

(37) 

(38) 

It is to be observed that  g and g~ by their definition (18) have the dimension of 
1 /u  or equivalently of u~/h ~. 

Further cn = Bn and Vcn = (0, g, 0,0) so that  VC~fn - 0 Vc~An - 0 
implying, by (8), M~ = 0. 
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1 1  J u m p s  o f  t h e  m a i n  f i e l d  c o m p o n e n t s  

Expliciting eqs. (16) we get, putting ~- : w / ( T p  o + B2o), 

: B2o Po p--~ - ~ -  7 - 1  p~ + 

V 2 

-c~5 (/~o A ~). go + (1 - ~/)-~ (39) 
2 

L J 

[T] (d" g~ + as(Bo A ~) + IT] go ))o~ (41) 

taking account of the condition 

which comes, from (30)i.e. ~ - [ ~ ]  = 0. 

or 
: 0 (43) 

~ o  

1 2  D e t e r m i n a t i o n  o f  ~ a n d  w 

Since 

equation (43) can be rewritten 

[/~]. Iv-'] (44) or = -g-~o T 

i It is a matter of a simple calculation to check (19) with A~ = v o. 
Substituting eqs. (39) (42) in (44) one gets the following relation between % 

or, and the five parameters c~ 

~o ~+~4+(~-i)~-~-o~ (~.~]o)+(d.go)(~4+~)+~5(~]oA~).~:0 

Another one is needed to determine w and g. However if one inserts in the 

definition (17) of w the expressions (39)-(42) one merely obtains an identity. 
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In fact this new relation is obtained by writing 

B2 2 
P +  ~ -  = Po + B-2~ 

2 

 po y ropic u d 

and the relation determining ~- results by replacing the jumps by their expressions 
(39) (42)in 

- 1 [B2])+--J~ln(l+To [TI)+~-[S]=0 In(1 
Here this relation is rather complicated. It is useless to write it explicitly since the 
shock is not bounded [16]: the transversal part of ~, for instance, is not limited as 
it is easily seen by (30). A different situation may occur when the field equations 
derive from a variational principle. In that case w, ~ lie on a quadric surface [13]. 

In relativistic magnetohydrodynamics an additional question arises: the sub- 
luminal character of wave and shock velocities [5], [17], [18]. It is also interesting 
to note that, in the relativistic case, the constraint can be eliminated as proved in 
[19], [20]. 
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