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Abstract

We illustrate, in the framework of magnetohydrodynamics, an application of
crossing shock formulas to a characteristic shock moving perpendicularly to
the magnetic field.

1 Introduction

Consider the conservative hyperbolic system of N first order partial differential
equations for the unknown field u(t, z*)

Opu + 3ift(u) = f(u), (i=1,2,3) (1)
with M involutive constraints
Bict(u) = c(u) 2)
Let (1) supplemented by an additional conservation law (energy or entropy léw)
0:h(u) + Bih*(u) = g(u) (3)

where h(u) is a convez function of u. The equation (3) can be obtained by multi-
plying (1) and (2) by suitable N and M vectors u’ and b respectively.

When a wave velocity A of (1) is exceptional (see § 3) a characteristic shock
may propagate with this velocity. Independently of the number of equations, the

jump of the field u
] = u

*Supported by C.N.R. (G.N.F.M.).
*Supported by C.N.R. (G.N.F.M.) and MURST (Fondi Ricerche 40 % and 60 %) .



218 Guy Boillat and Augusto Muracchini NoDEA

i.e. the difference of its values on the back and on the front of the shock surface, can
be expressed as a combination of at most m+ M +2 known vectors (m multiplicity
of A, M number of constraints).

The simplest case is that of linear equations where the f¥’s of (1) are linear
functions of the field u ' A

f'=A"a
so that the Rankine-Hugoniot equations (see (14) in § 4) are just
(Ap = A)(u—u,) =0

which shows that the jump
u] = ald;

I corresponding to the multiplicity of the

depends linearly on m parameters o
eigenvalue. ’

When the conservative system (1) (with an additional law (3)) is non linear
it is still possible to solve the Rankine-Hugoniot equations and to give a simple
expression for the jump of the main field u’ (§ 2)

] i — 1, = ol + wg,

where g and the left eigenvectors 11 are calculated for the value u, of the field before
the shock. The scalar w, a non linear function of the parameters a!, represents
the non linear part of the shock. In particular this formula appears each time a
characteristic velocity A(u, ) (then exceptional) with constant (i.e. independent
of the direction 7) multiplicity exists.

Instead when multiplicity is variable that is when it occurs only for some
values of 7i(u) (crossing velocities), a new relative vector, g", has to be added and

[i] = o'lo +wg, + og?

Another adjunction may even be necessary when the involutive constraints
(2) are associated with the field equations (1). In this case one has the most
complicated expression

] = olljo — (b —bo)(Mon — AD) " V,Con + wg, + 0go", [=1,2,...,m (4)

where the second term is connected with the presence of constraints.

The aim of this paper is to illustrate this formula with an example taken from
classical magnetohydrodynamics: a shock moving with the normal fluid velocity
in a direction perpendicular to the magnetic field vector B.

When the vector 7 is orthogonal to the magnetic field no less than five veloc-
ities coincide (§ 8). Further a constraint (div B = 0) is present so that here eight
vectors are necessary to describe the jump of the eight components of the main
field. Surely it would have been better to find a physical example with less vec-
tors than components. Nevertheless we show how to compute easily these various
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vectors without writing down matrices. Also we study in § 3, for a mathemat-
ical example, the behaviour of the radial velocities when the corresponding A’s
coincide.

2 Some remarks on field equations

As it is well known the introduction of the main field

Oh
r_ "
u = 5a (5)

allows the field equations (1) to be written in a Friedrichs-Lax-Godunov symmetric
form [1], [2] by means of the Le Gendre transformation [3]-[8]

R'(u)y=1"-u—h(u) (6)
(1 is the transpose of u) and the introduction of the quantities |
Ri(u) =1 -f' +b-c — R (7)
In fact
u=V'r, f=Vhr -&Vvb
Further the involutive constraints must be such that [9]

Ve, A, = M, Ve, (8)

with constant matrices V¢! and M? and

AEVE A, Ve, £,

def (O rdet (O
V= (au>ﬁ:const. ’ V= (au/>ﬁ:const.

3 Crossing velocities

f* n;

The wave velocities of propagation in the direction of the unit vector 7 are given
by the eigenvalues A(u, @) of the matrix A,. Suppose that some eigenvalue \ has
a constant (i.e. independent on 7) multiplicity m and therefore m left and right
eigenvectors

i(u, @) (A, —A) =0, (A, — A)d;(u,7) =0, I=1,2,...,m
When m > 1 it is known that A is ezceptional that is
VA-d;=0 (9)

As a consequence a characteristic shock exists which propagates with velocity .
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On the other hand if the number of equations (1) is N = %2, £3, +4 (mod
8) [10], [11] the eigenvalues of A, cannot all be simple for every 7. Although these
eigenvalues may still have constant multiplicity as for instance in the banal case
of
A, =a,l

it may happen (in the so-called case of variable multiplicity) that two (or more)
eigenvalues, say, \()(u, ) and A\(?)(u, ) coincide only for some 7 = 7i,(u)

AV (u, 7,) = AP (u, 7,)

For the corresponding radial velocities (propagating the weak disturbances)

o . o) (i)
AD(u,7) & AO5 4 82ﬁ —~ (ﬁ o )ﬁ (10)

on

let us define . . _
Qu,7,) = lim {A(l)(u,ﬁ) - A® (u,ﬁ)}
It follows that several cases are possible:
1) © does not exist

2 G =0
3) A #£0
which are illustrated with the following mathematical example.
Let o
at b 0
Al=| bt ¢ 0

0 0 (a+c)/2+0
then

AW/2) = %(an +en £ VA), A=(an—c)?+4b2, a,=a'n,=ad 7

A®) = a”—;rc"— + by

and o
— 1 n — bn a— 4bnb

A0/® = 2 (a+ gy ln=c )(\C;K O+ ) (11)

A® 9t 3 (12)

2
Case 1) When 7 tends to 7, parallel to

(G- Ab

the three velocities A, A2 XA®) tend to a, but A1/ have no limit and no
exists.
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Case 2) If
(@—¢)-n=0, b,>0

two velocities coincide
AD =G =g, + b,

and since for such an 7, by (11), (12)

A0 g _dte ¢

G =KV _K® =g

In these first two cases the differences of velocities A() — A(Y) do not change sign
when 71 goes over i,
Case 3) Suppose ¢ = d.

AV =2AC) =g, +b,, AP =q,—b,
AD=A® =g+b, AP =g-5p
so that when b,, tends to zero , A A A®) tend to a, and @ is different from
ZeTo
(OIS CI;

The velocities cross: A1) — A\(2) = 2b,, changes sign with b,.

4 Explicit shock expression

A natural question to ask is whether the exceptional property (9) still holds for
variable multiplicity i.e. when @ = 7,. It turns out [12] then that the important
exceptionality is not so much that of A but rather that of the difference of the
velocities

VOO - A®).dy=0, I=1,2..m (13)

which iroplies the former one (9).

As already shown, a characteristic shock depending on m parameters prop-
agating in a direction 7, is possible when the conditions (13) are satisfied. This
shock is obtained by solving the Rankine-Hugoniot equations involving the fields
u, (unperturbed field) and u (perturbed field) ahead and behind the shock front

fo(u) — dou=1~£,(u,) — A,u,, cn{u) = cp(uy,) (14)
together with

—

n(u) = ﬁ(“O) = ﬁo’ /\(u7 ﬁo) = )‘(uoa ﬁo) =X (15)
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Quite generally, when Q # 0, an explicit solution of these equations is given
in terms of the jump of the main field [13]

[t] = o'l — (b = bo) (Mo — Aol) " VoCon + wgo + 08", 1=1,2,....,m (16)

All quantities with the subscript zero are calculated for u = u, and therefore
depend only on the state before the shock.

In (16) the first term, where ol are m arbitrary parameters, represents a
linear part of the shock while the second term is connected with the presence of
constraints. The positive scalar

w = [h] — 1i,[u] (17)
vanishes only when the shock does, g and g" are defined by the following formulas
g4, — M) =V, gdr=0, g (4,—A)=-V(A\'=)?), g'd;=0. (18)

Thus to the usual expression of a characteristic shock with constant multi-
plicity, an additional term, the last one of (16) is added which is specific of crossing
eigenvalues.

The scalar ¢ comes from the general equality

¢ L[] — (W] + ble] ~wAy = (0]~ [W]F ~ [ble, —wAy =00, (19)

and, as well as w, is a function of the m parameters a.

In next sections we consider (16) in the case of magnetohydrodynamics by
computing its termes.

5 The conservative form of the equations
of magnetohydrodynamics

The equations describing the magnetohydrodynamic motions are [14], [15]

Byp + div(pd) =0 (20)
8B —1ot(TAB) =0 (21)
By (p¥) +divIi =0 (22)
HE +divg=0 (23)

and express the conservation of the mass p (20), of the momentum p@ (22), of the
total energy F (23) and the evolution of the magnetic field B (21). To the system
(20)-(23) must be added the involutive constraint

divB =0 (24)
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The quantities I, E, §, appearing in (22),(23) are defined:

-, B2 T, p 02 .

I = (pt ) -Beb+piad q=pifet +5 |+ BATAD)
’1)2 B2

E = p;—l—pe—i-?

where ¥, p are respectively the velocity and the pressure of the fluid; e is the
density of internal energy satisfying

de = TdS + pdp/p?

with entropy S and temperature 7.
The system (20)-(23) with (24) is of the form (1) and (2) without the second
members and

pv*
£ v viB — Biy o
sl | prE)e-BBrpw |0 ©5F
B

By taking as supplementary equation (3) the conservation of entropy
0:(pS) + div(pS?) =0
one has _ '
h(u)=—pS,  h*(u)=-pSv*  g(u) =0
and therefore [16] by (5)-(7)

o, 1 v? oo , 1 B? o U B?
= — G——B —]_ = — —_ = o
=7 g BU L), W=girto ), M=pirts

where G = e+ p/p—TS is the free enthalpy. The vector b, in (7), reduces here to

a scalar factor of the single constraint div B =0 and has already been calculated
[16]. It is easy to see that

B.7
b=
T

6 Wave velocities

The formal substitution
c’?t - —)\5, 81 — TLZ(S

permits us to write
6fy, — Au = (A, — A)bu=0 (25)
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which shows immediately that §u is a linear combination of eigenvectors
su = g4d, (26)
Calculating the A ’s one finds the Alfvén velocities [14], [15]

A Zy B e o, B

the contact velocity
A2 = Un,

the slow velocities

4)/(5) 1 ., B
A =wE( (=43l +7—\/K)

the fast velocities for which a plus sign precedes the square root of

B2

B2 '
A=(+ 7)2 - 4702, c=+/(0p/0p)s

and the null velocity.
By (10) the corresponding radial velocities are

2
A® =g, RW/O)(7)=v+(ci+ ﬂ”—(B — Bnft) (27)

AO/G) _ gy
pCVA

M

%lbdl

7 Case 3=0

For .
. B
Npg = —=—
| B |
the Alfvén velocities become double since -
AO/G) 7y = DOy — . B 4 LB
|B| VP
while (27) become
R@O/O)(7,) = 7+ B = KO/G)
NV

and both (s are zero

A@ W o, AG) — £ — g
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8 Case of crossing velocities: 0 #= 0

From now on we consider this possibility. When @ is not zero 7, is not unique
and the velocities cross, that is, their difference changes sign when 7 goes over 7,.
This clearly occurs in magnetohydrodynamics when

B-fi,=0 (28)
Then A to A®) are all equal to
A=y, (29)

Observe that some of these velocities, for instance A, A4 still do not cross;
A0 — X2 = ¢ > 0 does not change sign in agreement with the fact that the

corresponding $3 is zero: A@ (flo) — A® (7io) = 0. However A1), A®) do
B, _ B

A () — AD (7) = o 0= AW (7,) - AP (7,) = 7

The non vanishing s are proportional to this one as for instance A4/ (5)(ﬁ0) -
]\’(1)/(3)(7-50)‘

It is also easy to verify (13) in magnetohydrodynamics. Although one could
check that

St

V()‘(l) - )‘(2))(ﬁ0> = (67 - 1 67 O)

S

is orthogonal to the five right eigenvectors d; associated to (29) it is easier, by
(26), to note that
B, 6B,

VAV

according to the second equation (25) and (28)

SOW Ay =5

8(vaB — Ba¥) — A6B =0

multiplied by 7, for v, # 0.
Equations (14), (15) read simply [5], [14], [15]
B2 B%, 5 -

p+7:p0+_2_’ B'ﬁ:Bo'ﬁ:ZOa ﬁ-ﬁ:ﬁo-ﬁ:)\o <30)

These are three conditions for eight field components leaving five arbitrary quan-
tities.
We are now going to check (16) by computing its various components.
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9 The left eigenvectors for B, =0, A = v,
To avoid the writing of the matrix A,, we set
1= (z,X,Y,y) and form the product @ = I(f, — Au) .

By taking the variation, keeping 1 and A constant, we get after setting
A=v,, B, =0

(6®)r=v,.,B,—0 = I(A — vy I)6u=0

for any éu. Explicitly

® = (vo—N{pz+B-X+p0-Y+yE}—B{#-X+B-Y+yB. 7}
B2
+ <p+ 7) (Yn+yvn)
and so
BZ
6P = Vv, + B6B + Péb <p+ 7) =90 (31)
with

L . B2
V=pac+B-X+,o17-Y+y(E+p+7)
B=-0-X-B-(Y+yd) P=VY,+ym

But V, B, P must be zero and therefore yield the solutions

o= 1 - Vi 5 ,
I, = (-B;Q-Bm—;Bi, €, *§B7 0) i=1,2,3
BQ 2 o
l, = <p+ +e— U_y 0, 777 _1>
) 2
s = {—(BA@)-#, 0, BA#d, 0}

10 Determination of the absolute
and relative g’'s

In the same manner by its very definition (18) the components of

If

g=(z,X,Y,y)
are determined by the conditions

5 + bup =0 (32)
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for all éu and
g-du=0 (33)

for all du satisfying
B2
bv, =0, 6B,=0, 5(p+—é—-> =0 (34)

The conditions (32) are the same than (31) except for the first i.e.
V=-1, B=0, P=0

By (33)
(x+Y -9)op+ X -6B+pY -6+ ybE =0 (35)
Since for a perfect polytropic fluid
v—1 2 ¥ 2—7
p pL, p ape$P<R >7 P+2+P2+7_1P

(35) becomes by (34), with o7 = ¥ — v, 7t

— 2 — 2““ — — —
(x+Y-17—|—y%>6p+ (X_’)’——ZyB> -6Br + p(Y +y¥) - 60r =0

so that
- 'U2
x+Y-v+y?=0 (36)
- 2—~v 5
X7 ———yBr=0
T vbr (37)
Yr +ydr =0 (38)

which, together with (34),, give

. 1-~ [+»* 2-y(~ B.@
= 73 Y 5 — | B~ 2 ’ _—: 1

Now g” = (z, X, Y, ) satisfies (36) — (38) and

1
V=0, B=-—, P=0
N

It appears immediately that

g'r' = (Oa La 67 0)
UnA/P

It is to be observed that g and g” by their definition (18) have the dimension of
1/u or equivalently of u'/A’.

Further ¢, = B, and Ve, = (0,7,0,0) so that Ve, f, = 0 Ve, 4, = 0
implying, by (8), M,, = 0.
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11 Jumps of the main field components

Expliciting eqs. (16) we get, putting 7 = w/(vp, + B2),

G- g- AUy, = 1 Qg P> v
= °B, 7))~ —B,-a+ 4 (B2 _PY% ¥
T B} (Bo o) PR <B° 2 +7—1p°)+
~a5(Bo A7) - T, + (1 — 7)—2‘17 (39)
B] VL _
T = a- (@ -7 —- (2 —~)1hB, (40)
71 (@d) 4 L1
[T_ = T B, + a5(B, Aft) + [T} To (41)
1]
{T = o+ (y-1)71 (42)
taking account of the condition
B ¥ = o
Von G - T+ +(2—y)7B, T+ — =0 43
- ) v (43)
which comes, from (30) i.e. 7 - {%} =0.
12 Determination of ¢ and w
Since . . .
B4 [Bl-[9] 5 [¥ = 1
- Bo - o | Bo Vo |
T 7 T T T |T Y| T
equation (43) can be rewritten
5] - [7]

0=~V (4)

It is a matter of a simple calculation to check (19) with AL = v},
Substituting eqs. (39)—(42) in (44) one gets the following relation between 7,
o, and the five parameters «

j_'p—o{%—kawr(w—l)f}— B2 (@ B))+(&-0.)(as+7)+as(BoAR) -G =0

Another one is needed to determine w and ¢. However if one inserts in the
definition (17) of w the expressions (39)—(42) one merely obtains an identity.
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In fact this new relation is obtained by writing

BB
P+ 5 =Pt

T

and the relation determining 7 results by replacing the jumps by their expressions
(39)—(42) in

For a polytropic fluid [—Cj] =—[9]

1, vy 1 Lo
In (1 (B ]) + i <1+To [TD IS =0
Here this relation is rather complicated. It is useless to write it explicitly since the
shock is not bounded [16]: the transversal part of ¥, for instance, is not limited as
it is easily seen by (30). A different situation may occur when the field equations
derive from a variational principle. In that case w, ¢ lie on a quadric surface [13].
In relativistic magnetohydrodynamics an additional question arises: the sub-
luminal character of wave and shock velocities [5], [17], [18]. Tt is also interesting

to note that, in the relativistic case, the constraint can be eliminated as proved in
[19], [20].
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