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Summary. We consider random walk on the infinite cluster of bond percolation 
on 2g a. We show that, in the supercritical regime when d > 3, this random walk 
is a.s. transient. This conclusion is achieved by considering the infinite percola- 
tion cluster as a random electrical network in which each open edge has unit 
resistance. It is proved that the effective resistance of this network between 
a nominated point and the points at infinity is almost surely finite. 
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1 Introduction 

Let G be a connected subgraph of the d-dimensional hypercubic lattice 2g a, 
and suppose that the origin 0 belongs to G. A particle performs a random 
walk on G, beginning at the origin; at each step it moves to one of its neighbours 
(in G), each such neighbour being picked with equal probability. Under what 
conditions on G is this random walk transient? It is clear that the walk is 
recurrent if d=<2, since in this case the particle is constrained to a subset of 
2g d, and it is known that such a random walk is recurrent (see Doyle and Snell 
1984). In contrast to the case d<2 ,  the answer to the question is far from 
transparent when d > 3. We prove in this paper that the walk is (a.s.) transient 
when G is a certain random subgraph of 2g d, viz., the infinite cluster of a supercrit- 
ical percolation process. 

In principle, the analysis of this paper should be valid for any supercritical 
percolation process in three or more dimensions. For  simplicity of exposition, 
we shall restrict ourselves to the special case of bond percolation on 2g 3. Extend- 
ing the result to 2E d, where d > 3, poses no serious difficulty. 

* G.R.G. acknowledges support from Cornell University, and also partial support by the U.S. 
Army Research Office through the Mathematical Sciences Institute of CornelI University 
** H.K. was supported in part by the N.S.F. through a grant to Cornell University 
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Let 2g 3 be the set of vectors x=(x~, x2, x3) with integral components. For 
x, y e Z  3, we write 

3 

d(x, y)= y~ Ix~-yil, 
i = 1  

and we place an edge between x and y if d(x, y)= 1, in which case we write 
x ~ y. We denote by IL 3 = (2g 3, IE 3) the corresponding graph. 

Let 0 < p < 1, and declare each edge of L 3 open with probability p and closed 
otherwise, the state of each edge being independent of the states of all other 
edges. Denote by Pp the resulting measure on the configurations of open/closed 
edges. For x, y~TZ, 3, we write x~-.y if there exists a path of I .  3 with endvertices 
x and y, every edge of which is open. For xe2g 3, we denote by C(x) the set 
of all vertices y such that x,--.y, together with all open edges joining pairs 
of such vertices; C(x) is called the 'open cluster at x'. Let 

O(p)=g(IC(x)[=oo). 

Note that O(p) does not depend on the choice of x, since the lattice is translation- 
invariant. It is a basic result of percolation theory that there exists a critical 
value Pc of the parameter p such that 

= 0  if p<p~, 
O(p) >0  if P>Pc, 

and furthermore 0 < p c <  1. It is generally believed (but not currently proved, 
if d=3)  that 0(pc)=0. See Kesten (1982) and Grimmett (1989) for general 
accounts of percolation. 

It is known that there is (a.s.) a unique infinite open cluster if 0(p)>0, and 
we denote this cluster by I whenever it exists; later we shall make the (possibly 
more restrictive) assumption that p>pc. We propose to study random walk 
on I. 

Let co be a configuration of edge-states, and let x be a vertex of I =I(co). 
On I(co) we construct a random walk in the following manner. First, So=x. 
Given So, $1, ..., S,, it is the case that S,+ 1 is chosen uniformly from the set 
of neighbours in I(co) of Sn, this choice being independent of all earlier choices. 
We call co a transient configuration if the random walk S is transient. Since 
I(co) is connected, the transience/recurrence of S does not depend on the choice 
of starting point x. If co is a transient configuration, we say that random walk 
on I(co) is transient. 

Theorem 1 I f  P > Pc, then random walk on I(co) is almost surely transient. 

There is an important and useful relationship between the theory of random 
walk and the theory of electrical resistance. In order to exploit this relationship, 
we construct a random electrical network in the following manner. Each edge 
of Z a is replaced by an electrical resistor, such a resistor having unit resistance 
if the edge is open and having infinite resistance otherwise; that is to say, open 
edges conduct electricity at a fixed rate, while closed edges are insulators. Proper- 
ties of the ensuing electrical network have been much studied. Of principal 
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interest has been the effective resistance between opposite faces of the cube 
[0, n] 3. Writing R, for this resistance, it is known that 

0<l i ra  inf{nR~} =<lira sup {nR~} < oe a.s. 
n --* aO n ---~ oo 

whenever p > Pc (and d = 3; see Grimmett and Marstrand 1990 and the references 
therein). It is conjectured that R(p)= lim {hR,} exists a.s., and that R(p) behaves 

n --~ oo 

in the manner of (p-pc) -~ in the limit as pJ, pc, where o- is a critical exponent. 
Partial progress in this direction for the case of two dimensions was reported 
by Kesten (1982). Hammersley (1988) and Zhikov (1989) have made considerably 
greater progress with a related problem in which certain extra boundary condi- 
tions are imposed on the values of the potential function at points lying on 
the surface of the box [-0, n] 3. 

Of concern in the problem of random walk is the effective resistance of 
the infinite cluster I between a nominated source vertex and the points at infinity. 
For two vertices x and y lying in I, we write 6(x, y) for the number of edges 
of I in the shortest path joining x to y. For xeI, we denote by Sn(x) the set 
of all vertices y in I such that ~(x, y)<=n, and we write OS,(x) for the set 
S,(x)\Sn-l(X). We turn S,(x) into a graph by adding all induced edges of I, 
and we denote by Rn(x) the effective resistance of the corresponding electrical 
network between the vertex x and the set c~Sn(x) of vertices. That is to say, 
each edge of S,(x) is replaced by a unit resistor, and all vertices in OSn(x) are 
'shorted out ' ;  R,(x) is the effective resistance between x and the composite 
vertex OS,(x). 

There is a unique harmonic function r on the vertex set of S,(x) with the 
boundary conditions r  q~(y)=0 for yegSn(x). The function r may be 
seen as the potential function in the above electrical network, when the given 
boundary conditions are maintained by means of external electrical sources. 
Alternatively, r is the probability that a random walk, starting at z, hits 
x before it hits OS,(x). The consequent relationship between electrical networks 
and random walk has been discussed by many authors; see, for example, Nash- 
Williams (1959), Lyons (1983), and Doyle and Snell (1984). By an argument 
using monotonicity of effective resistance, the limit Ro~ (x)= lim R,(x) exists for 

n ~ o o  

all vertices x of I. It is a consequence of the above dual role of the potential 
function that random walk on I, beginning from x, is transient if and only 
if Ro~ (x) < oo. It is by this route that we shall establish Theorem 1. 

Theorem 2 If  p > Pc then 

Pp(R~ (0) < oo [0eI) = 1. 

In advance of moving to the proof proper, we sketch the required argument. 
As remarked by Doyle and Snell (1984), in order to prove the transience of 
random walk on 2E 3, it suffices to exhibit within ~3 a tree having finite resistance 
between its root and the points at infinity. We shall follow the same strategy 
here, and shall construct, within I, a (random) tree. We shall concentrate on 
a certain class of sub-trees of Z 3 having the origin as root. Vertices in the 
nth generation of such trees are distributed on or near the surface of the/~n-ball 
o f ~  3, where/3 is a constant satisfying 3 </~ < 4. Each vertex in the nth generation 



36 G.R. Grimmett et al. 

is joined (with high probability) to each of four vertices in the (n + 1)th generation, 
such connections being (nearly) disjoint and comprising open paths having 
length of order fl". See Fig. 1 (a) for a sketch of such a tree. 

Let % be the probability that a given member of the nth generation is 
connected in the desired way to its four descendants in the (n + 1)th generation. 
We shall show that 1-c~,< e -~(p)" for all large n and some ~(p)> O, and further- 
more that (for all large n) c~(p) may be made arbitrarily large. In this way we 
shall show that the probability that some step of the construction fails, from 
generation N onwards, may be made arbitrarily small by a choice of N sufficient- 
ly large. 

Having found such an N, we deduce that there exists within I a tree whose 
electrical properties are approximately those of the network in Fig. 1 (b). The 
resistance of this network between the root and the points at infinity is of 
order 

lN+k 

4k , k=O 

which is finite since/3 < 4. We shall add rigour to this argument in Sect. 3. 
The proof has geometrical and probabilistic content. It is by a geometrical 

argument that one may see that the approach is feasible in three or more dimen- 
sions. The size of the nth generation is no larger than 4", and the surface of 
the fl"-ball has order ft,(d-1) in d dimensions. Thus we require that 4"< ft,(d-1), 
which is to say that 4 < fie-1. Combining this with the assumption above that 
/3 < 4, we deduce the necessary condition 

4t/(a- 1)<f i<4,  

an inequality which is achievable only when d >_-3. In the proof of Sect. 3, we 
take d = 3 and fl > 3. 

In the next section, we state and prove an ancillary result concerning 
the approximation by a tree of a certain subgraph of the infinite cluster; in 
Sect. 3, we make use of this result in proving Theorem 2. 

Finally, we note that random walk on the infinite open cluster, in the limit 
as the lattice spacing tends to 0, has been considered by DeMasi et al. (1985, 
1989). 

2 An estimate using trees 

In this section we prove an auxiliary proposition about electrical networks which 
are 'almost '  trees, in the sense that the connection between a vertex and its 
parent may intersect a bounded number of other such connections. The vertices 
will have labels which derive from the vertices of a true tree. To be more specific, 
we start with a rooted, labelled tree T, with root denoted by (0).  The vertices 
of T which are at distance k from (0)  (in T) constitute the kth generation 
of T, and have labels xg(i,j), with (i,j) ranging over a set Ak (in our application, 
Ak will be the set of integer pairs contained in ( - 2  k- 1, 2 g- 1)2). The children 
of each Xk(i,j) will be a suitable subset Ik(i,j) of Ak+ 1. 
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/ Fig. 1. a A tree-like subgraph of the 
lattice, b The graph obtained by the 
removal of common points and the 
replacement of component paths by 
single edges. The resistance of an 
edge emanating from a point in the 
kth generation is proportional to flk 

This tree T will be used only as a labelling device for the network of interest, 
which is actually part of the infinite open cluster I. We assume that to each 
vertex Xk(i,j) of T there is assigned a vertex Zk(i,j) of I. By the definition of 
I, any two Zk(i,j) and ze(r, s) are then connected by an open path. Let there 
be selected a single open path 7~k+ 1 (r, S) for each vertex Zk+ 1 (r, S), this path 
connecting Zk + 1 (r, s) to its parent (i.e., the Zk(i, j) which corresponds to the parent 
of Xk+ 1 (r, s) in T). Finally, each edge of I is regarded as a resistor of unit 
resistance. 

Proposition 3 Assume that there exist positive integers c~ and y such that the 
following three conditions hold for a certain vertex XK(U, V) and all of  its descen- 
dants xK +6(r, s): 

each such vertex has at least 7 children, (2.1) 

the length of nK +t(r, s) is at most Cfl K +6, for each descendant 
xK +r s) of xK(u, v), (2.2) 

each edge of I belongs to at most c~ of the paths rCK +r s), with 
xK +e(r, s) a descendant of  XK(U, V). (2.3) 

Then the resistance between zK(u, v) and infinity in I is at most 

Cfl K+6 
~ 76 (2.4) 

~'=1 

Note that the last sum is finite if and only if fl < 7. 

Proof Assume the conditions of the proposition hold. All resistances between 
points of I are unchanged if every edge of I is replaced by c~ parallel edges 
with the same endpoints, each such edge having resistance e instead of 1. We 
replace every edge of I in this way. Next, we need to see what becomes of 
the paths nK+e(r, s). These are no longer uniquely defined, but since each original 
edge of a typical 7c was used in at most c~ such re's, we can now replace the 
edges of all the 7r's by new edges in such a way that the resulting paths, denoted 
a s  7~K+r , S), are edge-disjoint for all descendants of xr(u, v). 

Finally, we construct a new network ~,, whose nodes are the xK+e(r, s) for 
xi~+6(r, s) equal to, or a descendant of, x~(u, v). In T,, x~+6(r, s) is connected 
to its parent by a resistor of magnitude e]nK+6(r, s)l, where Jnl is the number 
of edges in a path n. These resistors are disjoint. Therefore, 7" is a tree, having 
root xK(u, v), and such that each vertex has at least 7 children (by (2.1)). 
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Corresponding to this construction, there is a network N having as edges 
and vertices exactly those which belong to some ~ + t ( r ,  s), as (K + ~, r, s) ranges 
over the set of triples corresponding to descendants of xK(u, v). In N, two distinct 
connections ~K+e(r, s) and ~K+m(r', s') have no edges in common, but may be 
connected at a number of single points, corresponding to vertices of ~3 which 
they have in common. We now view N as an electrical network, and we break 
these single-point connections whenever they occur at points other than 
zK+~(r, s) for some (K + f, r, s). Since the removal of connections cannot decrease 
the effective resistance, we find that 

R (N) ~ R (~) (2.5) 

where N is the resulting network, and R(G) is the resistance in G between 
the vertex zr(u, v) and the points at infinity. Now b? is a tree with the same 
resistance (from root to infinity) as T. It is easily seen that this resistance is 
bounded above by (2.4). The easiest way to see this is to increase the resistance 
still further by making ~ into a homogeneous tree, in which each vertex has 
exactly 7 children (thereby possibly ignoring some vertices), and by increasing 
each resistance between a remaining vertex xK +e(r, s) and a child x~:+~ + 1 (r', s') 
to the exact value c~Cfi K+e+~. [] 

3 Proof of Theorem 2 

In this proof we shall occasionally treat real-valued quantities as though they 
were integer-valued; this is for notational simplicity only, and has no essential 
significance for the proof. 

For any set A of vertices, we write 

OA={asA: there exists b~A with a~b}  

for the surface of A. Let B(n) denote the box I - n ,  n] 3 of ~3. The surface of 
B(n) may be expressed as the union of six faces, each being homeomorphic 
to the plane square I - n ,  n]2: we shall concentrate on the face F(n) containing 
all vertices x with xl = n, that is, 

F(n)={xeZ3: Ix21, Ix3l<n, xl=n}.  

We write Bk=B(3 k) and Fk =F(3  k) for k >  1. 
On Fk, we distinguish 4 k vertices, being the points 

Xk(i,j)=(idk,jdk), --2k-t  <i,j--<_2 k-~ , (3.1) 

where dk = [(4/3)kJ. Note that 

d(xk(i,j), Xk(r, S))~dk if (i,j):l:(r, s), 

and that the Xk(i,j) are, for fixed k, distributed within Fk in the manner of 
a 2 k x 2 k rectangular grid. 
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For each k >  1, and with each point xk(i,j) , we associate exactly four points 
on Fk+ 1, these points being those belonging to the set 

Ik(i,j)={Xk+l(r, S): r=2 i - -1 ,  2i, s=2 j - -1 ,  2j}. 

Note that 

Ik(i, j)nlk(r,  S ) = ~  if (i,j)+(r, s). (3.2) 

We write ~ (i, j) = dk + ~ (2 i-- 1, 2j-- 1) (~IR 3) for the '  centroid' of I k (i, j). 
Associated with the set of all Xk(i,j) is a tree T constructed as follows. The 

root is labelled (0) ,  and the kth generation contains 4 k points labelled Xk(i,j) 
for --2 k - l < i , j < 2 k - 1 .  The point xk(i,j) is adjacent to exactly the collection 
Ik(i,j) of points in the (k + 1)th generation. 

For any t.wo members u, v of ]113, we let L(u, v) be the set of vertices of 
2g 3 which lie within euclidean distance 1/~ of some point of the straight line 
segment joining u to v. Let a be a positive constant. For each point Xk(i,j), 

I , 

we define the region 

T k (i, j) = Ak (i, j) • Ck (i, j) 

in the following manner. First, 

Ak(i,j)= B(ak)+ L(xk(i,2, I-k(i,j)) 

is the set of vertices that lie within (graph-theoretic) distance ak of some point 
belonging to L(Xk(i, j), i k (i, j)). Secondly, 

Ck(i, j)=B(ak)+ ~ L(L(i , j ) ,x)  
x~Ik(i,j) 

is the set of vertices within distance ak of some point lying near the 'cross' 
with centre at lk(i,j) and endpoints at each member of Ik(i,j); points in this 
'cross' are within distance V~ of Fk+l. We note that there exists K(a) such 
that, for all k> K(a), 

Tk(i,j)c~Tk(r, S ) = ~  if (i,j)4(r, s), (3.3) 

and 

Ak(i,j)c~ Tk+l(r, S ) = ~  whenever Xk+l(r, s)elk(i,j). (3.4) 

In order to see this, note that each Ak(i,j ) is a tube having length of order 
3 k and width of order ak; each Ck(i,j) is the union of tubes having lengths 
of order (4/3) k and widths of order ak. For given k, the 'line segments' L(Xk(i,j), 
[k(i,j)), --2k-l<i,j<=2 k-l ,  are separated from one another by a distance of 
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order (4/3) k. Since the width of the tubes Tk(i,j) is a fixed multiple of k, (3.3) 
and (3.4) are easily seen to hold for large k. 

Within Tk(i,j) we construct a sequence of vertices as follows. There exists 
a constant v, and a sequence y~, Y2 . . . . .  Yt of vertices of At(i, j), such that 

each y, belongs to L(xk(i,j), [k(i,j)), (3.5) 

�89 y,+j)<Zak for l < u < t ,  (3.6) 

yl=xk(i,j) [y~--Ik(i,j)l<l, t<v3 k. (3.7) 

Here, [u-v[ denotes the euclidean distance between u, v (elR3). Note that t =  
t(k, i,j). 

Turning to Ck(i,j), for each Xelk(i,j) we may find a sequence Yl (x) . . . .  , y,(x) 
of vertices such that 

each y.(x) belongs to L([k(i,j), x), (3.8) 

�89 for l< u< v ,  

yl(x)=y t, yv(x)=x, v<_v3 k. 

(3.9) 

(3.10) 

Note that v = v (x). 
We denote the set of such points by 

. . . . .  y,} { U {yx(x) . . . .  , (3.11) 
x~Ik(i,  j) 

We are interested in the existence of open paths within Tk(i,j), joining points 
near Xk(i, j) to points near each Xelk(i, j). With a view to estimating the probabili- 
ty of the occurrence of such open paths, we define some events of interest. 

Let b be a constant satisfying 0 < 7 b < a .  Fix attention on a point xk(i,j), 
with associated set Yk(i,j) as in (3.11). For each l< u< t ,  we let E,=E,(k, i,j) 
be the event that both of the following hold: 

there exist zl~y,+B(bk) and z2ey,+l+B(bk) such that zi+-+y,+~B(ak) for 
i=  1, 2, (3.12) 

any two points in (y.+B(bk))w(y~+ l+B(bk)) which are joined by open paths 
to y,+c?B(ak) are also joined to each other by an open path lying entirely 
within y. + B(ak). (3.13) 

Similarly, for x elk (i, j) and 1 < u < v (=  v (x)), we define the event E~,, = Ex.,(k, i, j) 
by replacing y, and Y,+I, in (3.12) and (3.13) above, with y,(x) and y,+l(x). 
Finally, let 

Ek(i,j)={ 0 E,}c~{ 0 Ex,,}. (3.14) 
1 <u<t  1 =<u<v(x) 

xelk( i ,  j) 
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xk(i,j) 
�9 I . . . . . . . .  I p . . . . . . .  / O  

' ~  . . . . . .  I I 

, .... +, ....... j+. \ /  
+ y o l  " ' , ' ,~  

i J ] 
+ . . . . . . .  + ,'O " , o  

I'k C i,j ) 

' I i ,  Y 
I ~ q ~  I 
i i  ----a 

Fig. 2. a A diagram of the region Tk(i,j), with the points in Yk(i,j) marked, b The larger 
box is an expanded view of the interior of the smaller. For each consecutive pair y, y'e Yk(i,J), 
there are open paths joining y + B (b k) and y'+ B (b k) to y + g B (a k), and every such connection 
lies in the same open cluster of the box y+B(ak). The union of such connections, for each 
such pair y, y', contains open paths from Xk (i, j)+ B(b k) to x + B(b k) for all x ~ Ik (i, j) 

It may be seen (see Fig. 2) that, on the event Ek(i,j), there exists ZeXk(i,j)  
+ B (b k) and, for each x ~ Ik (i, j), there exists z (x) ~ x + B(b k), such that the follow- 
ing holds: 

z~--~z(x) in Tk(i,j), for each Xelk( i , j ) .  

Slightly more is valid: this relation holds for every Z~Xk(i,j )-I-B(bk) with the 
property that z ~-* Xk (i, j) + OB (a k), and similarly for every z (x) e x + B (b k) such 
that z(x) ~ x + OB(ak). 

For  any positive integer k, let ~ be the set of all triples (k+ E, r, s) for 
which Xk+e(r, s) is a descendant (in the tree T) of xk(O, 0); we assume the conven- 
tion that (k, 0, 0 ) e ~ .  

Proposition 4 Suppose p > Pc. For all sufficiently large a and b satisfying 0 < 7 b 
<a,  the fol lowing holds: there exists, with probability one, a ( random)  K such 
that 

Ek(r,s ) occurs for  all (k, r, s ) e g f  K. (3.15) 

Before proving this, we note how it may be used in conjunction with Proposition 
3 to obtain Theorem 2. We merely have to check conditions (2.1)-(2.3) for the 
sub-tree of T consisting of xK(0, 0) and its descendants, where K is the earliest 
index for which (3.15) holds. Certainly (2.1) is valid with ?=4 .  Furthermore, 
as observed above, for each (k, i , j )eJ{K we may find a vertex Zk(i,j) in Xk(i,j) 
+ B ( b k )  such that the following holds: if (f, r, s ) ~  then there is an open 
path of Te(r, s) joining ze(r, s) to ze+l(r', s'), for every xe+l(r',  s')~I~(r, s). That 
is to say, within U{Te(r, s): (E, r, s)s~PK} there exists an infinite open cluster J 
such that 

(a) ze(r, s ) e J  for all (E, r, s)~JY~K, and 
(b) if xe+ 1 (r', s ' )el t (r ,  s), then there exists an open path rc~+ 1 (r', s') of J, lying 

entirely within Te(r, s), and joining ze(r, s) to ze + 1 (r', s'). 
The length of rce+l(r', s') is at most equal to the number of edges in Te(r, s), 
which is at most C'k33  k for some constant C'=C'(a) .  Pick a constant C and 
a value of fl satisfying 3 </7 < 4 such that 

[rce+l(r', s')l<=Cfl e+l for every ( f +  1, r', s')egC~K, f=>K. (3.16) 

This verifies condition (2.2). 
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Condition (2.3) with c~=5 follows from (3.3) and (3.4), so long as K>K(a);  
if K < K(a), we replace K by K (a). 

Applying Proposition 3, we deduce from the fact that f l<?  (=4) that i 
contains a.s. a tree having finite resistance between its root and infinity. There- 
fore, it is a.s. the case that R~ (x)< oe for all vertices x of I. Hence 

Pv (Ro~ (0)< ~ IOel)= 1. 

This completes the proof that Theorem 2 follows from Proposition 4. 

Proof of Proposition 4 If A and B are subsets of Z 3, we write A ~ B if there 
exist a~A and b~B such that a*-~b. We write A,v ,B  if no such open path 
exists. The event that some vertex a in A has ]C(a)[ = o0 is denoted by {A ~ oo}. 

Let P>Pc. We denote by pc(k) the critical probability of bond percolation 
on the slab 

S~= {xeTZ3: O<xl<k}, 

and we shall make use of the fact that 

pc(k)--'pc as k ~ o o ,  (3.17) 

a fact proved in Grimmett and Marstrand 1990). Pick a positive integer L 
satisfying Pc < pc(L) < p, and let 

0{2, L)=Pv(0~--~ o~ xn SL), 

the probability that 0 is contained in an infinite open path of SL. 

Lemma 5 There exists a positive constant ?=?{2) such that 

Pp(B(m)~--~ m)> l - e  -rm for all m. 

Proof. Cut B(m) into 'slices' of thickness L. That is to say, B(m) intersects 
the slices 

S(i)= {xe•3: iLNXl  < ( i +  I)L}, 

Let y(i) be a vertex of B(m) c~ 3S(i). Then 

whence 

0 < i < Lm/LJ. 

km/LJ 
Pp(y(i)ev~oo for l<=i<[m/L])<= y] Pp(y(i)~-->oe in s(i)) 

i=l 

= { 1  - -  O(p, L)} Lm/Lj, 

Pv (B (m) ~ oe) ~ 1 - { 1 - 0 {2, L)} Lm/LJ 

as required. [] 

Let a > l  and let m be a positive integer. Let A(m, a) be the event that 
there exist two vertices inside B(m) with the property that each is joined by 
open paths to vertices outside OB(am), but that there is no open path of B(am) 
joining this pair of vertices. 
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Lemma  6 There exists a positive constant (~ = ~(p) such that 

Pp(A(m, tr))<e -~m(~-l) for all m. 

Proof. This is essentially Eq. (5.1) of Gr immet t  and Mars t rand (1990); this refer- 
ence is incorrect as stated, but is easily corrected. Another  proof  may be found 
within the proof  of Proposit ion 1 of Kesten and Zhang (1990); see the estimate 
at (3.57). [] 

We turn to the event Ek(i,j), defined in terms of the vertices belonging to 
Yk(i,j), as in (3.11). Since 

t N v 3  k, v=V(X)<V3 k for Xelk( i , j ) ,  (3.18) 

we have that 

Pv(y+ B(bk)*--, oe for all y~ Y~(i,j))>= 1 -- 5v3k e -~bk, (3.19) 

by Lemma 5. 
Next  we consider the requirement (3.13). Suppose there exist zl e y , + B ( b k )  

and z2ey,+ ~ + B(bk) such that  zi+--, y ,  + ~B(ak) for i =  1, 2, but that z~ ~+~ z2 in 
y, ,+B(ak).  Then there exist two points of y , ,+B(ck)  which are joined to y, 
+ ~B(a k) but which are not joined to each other inside y,, + B(a k); here, c = ~  a 
> 2 a + b ,  and we have used (3.6). The probabil i ty of this is, by Lemma 6, smaller 
than exp ( - ~ r a k ) .  Again, we find that the probabili ty that  (3.13) fails for some 
1 < u < t is smaller than v 3 k e -6ak/6. A similar argument  is valid for each sequence 
{Yl (x), .. . ,  yv(x)} for Xelk(i , j) .  Combining this with (3.19), we deduce that 

Pp (Ek (i, j)) < 5 v 3 k (e -~ bk + e - ~ ,k/6). (3.20) 

Therefore 

Pp(Ek(i,j))< ~ 4k-L5v3k(e-'bk +e-'~"k/6), 
(k ,  i, j )e ,X/ 'L k = L 

(3.21) 

since there are 4 g-L terms of the form (k, i,j) lying in ~g'L. We pick a and 
b such that 0 < 7 b < a  and max {12e -rb, 12e-Oa/6}<1. With these choices for 
a and b, the right-hand side of (3.21) tends to 0 as L ~  o% implying that 
max {L: •L does not occur} is a.s. finite. This proves the proposition. []  
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