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Abstract. We study the class of theories for which solving unification problems is 
equivalent to solving systems of linear equations over a semiring. It encompasses 
important examples like the theories of Abelian monoids, idempotent Abelian 
monoids, and Abelian groups. This class has been introduced by the authors 
independently of each other as "commutative theories" (Baader) and "monoidal 
theories" (Nutt). 

We show that commutative theories and monoidal theories indeed define the 
same class (modulo a translation of the signature), and we prove that it is undecid- 
able whether a given theory belongs to it. In the remainder of the paper we 
investigate combinations of commutative/monoidal theories with other theories. 
We show that finitary commutative/monoidal theories always satisfy the require- 
ments for applying general methods developed for the combination of unification 
algorithms for disjoint equational theories. 

Then we study the adjunction of monoids of homomorphisms to com- 
mutative/monoidal theories. This is a special case of a non-disjoint combination, 
which has an algebraic counterpart in the corresponding semiring. By studying 
equations over this semiring, we identify a large subclass of commutative/monoidal 
theories that are of unification type zero. We also show with methods from linear 
algebra that unitary and finitary commutative/monoidal theories do not change 
their unification type when they are augmented by a finite monoid of homomor- 
phisms, and how algorithms for the extended theory can be obtained from algo- 
rithms for the basic theory. 

Keywords: Equational theories, Equational unification, Semirings, Semiadditive 
categories. 
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I Introduction 

Equational unification is concerned with solving term equations modulo an 
equational theory. The theory is called unitary (finitary) if the solutions of 
an equation can always be represented by one (finitely many) "most general" 
solutions. Otherwise the theory is of type infinitary or zero. Equational theories 
that are of unification type unitary or finitary play an important rSle in automated 
theorem provers with built in theories [31, 24, 34, 35], in generalizations of the 
Knuth-Bendix algorithm [17, 30, 19, 7], and in logic programming with equality 
[18, 133. 

For this reason, determining unification types of equational theories is not only 
interesting for unification theory but has also consequences for automated reason- 
ing. Of course, for practical applications it is not enough to know that a given theory 
g is of type finitary. One also needs a finite g-unification algorithm that computes 
the finitely many most general solutions. Unfortunately, but not at all surprisingly, 
there cannot be a general method that determines the unification type of an 
equational theory 1-27]; and even if a theory is finitary it is still not clear whether 
a unification algorithm exists. Consequently, general methods [ 141 that try to derive 
such an algorithm from a given set of axioms for the theory are doomed to fail. 
Without restrictions on the equational theories one obtains procedures that only 
enumerate complete sets of unifiers, but do not terminate, even if the theory is 
unitary or finitary. 

Nevertheless, it is desirable to have methods - or at least methodologies - for 
designing unification algorithms for larger classes of theories. Otherwise, whenever 
a new equational theory comes up in an application one must start completely from 
scratch when developing a unification algorithm for this theory (we shall come back 
to this point in Sect. 2). One solution proposed for this problem is to restrict the 
attention to certain classes of theories that are defined by syntactic properties of the 
set of axioms (see e.g., [ 11, 20, 9]). An advantage of such syntactic approaches is that 
they apply directly to general g-unification problems, i.e., problems where the terms 
to be unified contain additional free function symbols of arbitrary arity. A disadvan- 
tage is that they need not yield a unification algorithm for the theory in question, 
even though such an algorithm exists. For example, associativity and commutativity 
of a binary symbol is a syntactic theory (in the sense of [20]), but the general method 
for unification in syntactic theories usually does not terminate for unification 
problems modulo this theory. 

The syntactic approaches mostly depend on transformations of terms; they 
usually do not take the properties of the algebras defined by the theory into account. 
On the other hand, special purpose algorithms designed for theories of practical 
importance-such as the theory of Abelian monoids (AM), idempotent Abelian 
monoids (AIM), and Abelian groups (AG) - often depend on algebraic properties of 
these theories. It turns out that the algebraic methods used for obtaining these 
unification algorithms can be generalized to larger classes of theories defined by 
properties of their free algebras. The theories AM, AIM, and AG belong to the class 
of commutative theories- roughly speaking, theories where the finitely generated 
free algebras are direct products of the free algebras in one generator [-1, 2, 3]. One 
result shown in the present paper (see Sect. 4 below) is that the class of commutative 
theories i s -  modulo a translation of the signature-the same as the class of 
monoidal theories, developed independently in [25, 28]. 
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Unification in these theories can always be reduced to solving linear equations in 
certain semirings [25]. On the one hand, this fact can be used to derive general 
results on unification in commutative/monoidal theories. For example, it can be 
shown that constant free unification problems are either unitary or of type zero, and 
the unification type of a theory can be characterized by algebraic properties of the 
corresponding semiring. These characterizations were used in [25, 2, 28] to deter- 
mine the unification types of several commutative/monoidal theories. On the other 
hand, unification algorithms for certain commutative/monoidal theories-for 
example, the theory of Abelian groups with n commuting homomorphisms - can be 
derived with the help of well-known algebraic methods for the corresponding 
semiring - for instance, Buchberger's algorithm for the ring Z[X1,.. . ,  X,] of integer 
polynomials in n indeterminates [3]. 

An apparent disadvantage of this semantic approach to unification is that it can 
treat only unification with and without constants, but not general unification. This 
problem can be solved, however, by using general methods developed for unification 
in the union of "disjoint equational theories" (i.e., theories over disjoint signatures) 
[33, 5]. Going from E-unification with constants to general g-unification is an 
instance of this combination problem since it can be seen as the disjoint combination 
of g with a free theory. In order to apply the method of [5] to the combination of 
a commutative/monoidal theory g with a free theory, one must be able to solve 
so-called "unification problems with constant restrictions" in g. In Sect. 6, we shall 
show that a commutative/monoidal theory is finitary for unification with constants 
if, and only if, it is finitary for unification with constant restrictions. Consequently, 
the results in [5] imply that a commutative/monoidal theory is finitary for unifica- 
tion with constants if, and only if, it is finitary for general unification. 

For disjoint theories, the combination problem can be considered as by and 
large solved by the work of [33, 5-]. The case of non-disjoint signatures is too difficult 
to be treated in its full generality. In the Sects. 7 and 8, we shall consider a special case 
of such a more general combination problem. Instead of just taking the (disjoint) 
union of a commutative/monoidal g with a certain other theory ~ ,  we add 
equations involving symbols of both signatures to make sure that the resulting 
theory is again a commutative/monoidal theory. On the corresponding semirings, 
this operation corresponds to a well-known mathematical construction. 

In order to make this more precise, let us consider two of the examples in [2, 3]. 
Using algebraic properties of the semiring of polynomials with nonnegative integer 
coefficients, NIX-], it was shown in [3] that the corresponding theory, i.e., the theory 
of Abelian monoids with a homomorphism, is of unification type zero. In contrast, 
the theory of Abelian monoids with an involution 1 is unitary (finitary w.r.t. 
unification with constants). In both cases, the corresponding semiring has a specific 
structure: it is a monoid semiring 5P(H), i.e., a semiring 5 ~ with an adjoint monoid 
H. In the first example, the monoid H is the free monoid in one generator, which is an 
infinite monoid, while in the second example, we have the cyclic group of order two, 
which is finite. In both examples, the semiring 5 Q is the semiring N of all nonnegative 
integers. This semiring corresponds to the theory AM of all commutative monoids, 
which is a finitary commutative/monoidal theory. The theory of Abelian monoids 
with an involution is obtained from AM as follows: Take the union of the identities 

1 An involution is a homomorphism h satisfying h2(x)  = X 
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defining Abelian monoids (i.e., {x  + y - y + x, (x + y) + z - x + (y + z ) , x  + 0 - x}) 
with the identities defining an involution (i.e., {h(h(x) - x}), and add the equations 
that make sure that the involution acts as a homomorphism (i.e., {h(x + y ) -  
h(x) + h(y), h(O) "- 0}). The combination is non-disjoint because of these additional 
equations. 

In the present paper we shall consider this type of combination more closely. The 
result for the theory of Abelian monoids with a homomorphism can now be 
generalized to a whole class of theories as follows. If 5 P is a strict semirin9 - i.e., 
a semiring that is not a ring - and H is a f ree  monoid then the commutative/monoidal 
theory corresponding to 5P{H) is of unification type zero. On the other hand, 
assume that 5 ~ is a semiring such that unification in the corresponding com- 
mutative/monoidal theory is unitary (finitary w.r.t unification with constants), and 
let H be afini te  monoid. In this case, the theory corresponding to the semiring 5P(H) 
is also of unification type unitary (finitary w.r.t, unification with constants). This 
generalizes the result for the theory of Abelian monoids with an involution. 
Moreover, a finite unification algorithm for the theory corresponding to 5 e can be 
used to derive a finite unification algorithm for the theory corresponding to 5P{H). 
These two general results demonstrate the usefulness of the algebraic approach to 
unification for investigating non-disjoint combination problems. With this approach 
one can determine the unification types of whole classes of combined theories. It is 
not at all clear how this could be achieved with a purely syntactical approach. 

The paper is organized as follows. First, we shall motivate the need for 
unification results for whole classes of theories by an extended example. After 
recalling some basic definitions concerning equational theories, unification theory, 
and semirings in Sect. 3, we shall introduce commutative theories and monoidal 
theories in Sect. 4. This section also contains a proof of the equivalence between 
commutative and monoidal theories. In addition, it will be shown that being 
commutative/monoidal is an undecidable property of (finitely presented) equational 
theories. In Sect. 5 we recall the algebraic characterizations of the unification types 
for commutative/monoidal theories, and give some examples for the results that can 
be obtained using these characterizations. As a new result we shall show that 
solvability of unification problems is in general undecidable for commutative/ 
monoidal theories. In Sect. 6, we consider unification with linear constant restric- 
tions in commutative/monoidal theories. The next two sections contain the exact 
formulations and the proofs of the two results on non-disjoint combination 
mentioned above. In the conclusion we shall state some interesting open problems 
in this area. 

This article is an improved and extended version of a conference paper [4]. 

2 A Motivating Example 

As mentioned in the introduction, unification modulo equational theories has 
applications in various areas of automated deduction, such as theorem proving with 
built-in theories, logic programming with equality, and term rewriting modulo 
equational theories. In this section, we shall illustrate the third type of application by 
an example. 

Consider the following equational theory gK, which consists of the axioms for 
Boolean rings, and two additional identities which state that the unary function 
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symbol b is a homomorphism for the addition and the unit of the Boolean ring: 

(1) ( x + y ) + z ' - x + ( y + z )  (2) x + y ' - y + x  

(3) x + O - x  (4) x + ( - x )  "-O 

(5) x + x - O  

(6) (x + y) ,  z - (x ,  z) + (y ,  z) 
(7) ( x*y )*z  - x * ( y *z )  (8) x * y  "- y * x  

(9) x * l  - x  ( 1 0 )  x * x - x  

(11) b(x)*b(y) - b(x*y) (12) b(1) "- 1. 

This theory is an axiomatization of equivalence for formulae in the propositional 
modal logic K [-22]. Here, " + "  stands for xoR, "*" for conjunction, "1" for truth, "0" 
for falsity, and "b" for the box operator of the modal logic. Thus, identity (11) 
expresses that for arbitrary (modal) formulae @ and 0, the formulae [3q~ A DO and 
[~(~b A 0) are equivalent in K, i~e., interpreted by the same truth value in any world of 
any Kripke model [-12]. 

In order to decide the word problem for g,v (i.e., the equivalence problem for K) 
one can try to construct a canonical rewrite system for this theory. However, 
commutativity cannot be oriented to a terminating rewrite rule. A possible solution 
would be to keep some of the axioms of g~: as unoriented identities, and proceed by 
using rewriting modulo these identities. But then critical pairs must also be 
computed by a unification algorithm modulo the unoriented identities. 

For example, if we leave the identities (1), (2), (7) and (8) unoriented, and orient 
the remaining identities from left to right, then the obtained rewrite system is 
a canonical rewrite system modulo associativity and commutativity of" + "  and "*". 
It should be noted, however, that the decision procedure for the word problem 
obtained this way is not very efficient. One could now try to leave even more 
identities unoriented, and thus leave more of the work to a (special purpose) 
matching procedure, and less to the actual reduction process. A necessary prerequi- 
site for doing this is that one has a unification algorithm for the set of unoriented 
identities. 2 

For the addition, one could consider (1), (2) and (3), which is the theory of Abelian 
monoids, or (1), (2), (3) and (4), which is the theory of Abelian groups. For the 
multiplication, one could consider (7), (8), (9) and (10), which is the theory of 
idempotent Abelian monoids, or (7), (8), (9), (11) and (12), which is the theory of 
Abelian monoids with a homomorphism. All these theories have a very similar 
structure: they describe properties of a binary function symbol that is associative 
and commutative and satisfies some additional properties. To facilitate the design of 
unification algorithms for these theories it would be convenient to have a general 
framework in which unification modulo such theories can be treated. It turns out 
that commutative/monoidal theories provide such a framework: all the theories 
mentioned above belong to this class. 

The example can also be used to illustrate why it is important to have a solution 
for the combination problem for (disjoint) monoidal/commutative theories. For 
example, assume that we want to use rewriting modulo (1), (2), (3) and (4) for the 

i We do not claim that finding this unification algorithm is the only problem that must be solved 
here. For example, one usually also needs a compatible reduction ordering, which is a requirement 
that cannot be staisfied for any set of identities containing identity (10) 
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addition, and (7), (8) and (9) for the multiplication. Even if we have unification 
algorithms for the theory of Abelian groups of AG+ and for the theory of Abelian 
monoids AM.,  these cannot directly be used to compute the necessary critical pairs. 
This is so because the terms to be unified may contain both " + "  and "*" as well as 
the additional free (for AG+ and AM.) function symbol b. In other words, one must 
unify modulo the union of AG +, AM.,  and the "free" theory {b(x) - b(x)}. The result 
in Sect. 6 will show that a unification algorithm modulo this combined theory can 
effectively be obtained from algorithms for the single theories. 

3 Basic Definitions 

In the following we assume that the reader is familiar with the basic notions of 
universal algebra [-8, 15]. For more information on unification theory see [6]. The 
notions from category theory used below are for instance defined in [1], or in any 
introductory textbook on categories. The composition of mappings is written from 
left to right, that is, 4)o 0 or simply ~b@ means first ~b and then @. Consequently, we 
use suffix notation for mappings (but not for function symbols in terms). 

3.1 Equational Theories 

We assume that two disjoint infinite sets of symbols are given, a set of function 
symbols and a set of variables. A signature 22 is a finite set of function symbols each 
of which is associated with its arity. Every signature 22 determines a class of 
22-algebras and 22-homomorphisms. We define Z-terms and 22-substitutions as usual. 
By [xl/tl  .... , x,/t,] we denote the substitution which replaces the variables x~ by the 
terms t i. 

An equational theory g-(Z, E) is a pair consisting of a signature 27 and a set of 
identifies E. The equality of Z-terms induced by g will be denoted by = e. Every 
equational theory g determines a variety ~(g) ,  the class of all 22-algebras satisfying 
each identity of E. For any set of generators X, the variety ~ (~)  contains a free 
algebra over ~ ( g )  with generators X, which will be denoted by We(X). Thus any 
mapping of X into a Z-algebra A can be uniquely extended to a Z-homomorphism 
of ~-~(X) into A. 

The following category cg(g) is associated with each equational theory 
E = (22, E): the objects of ~(g) are the free algebras We(X) for finite sets of variables 
X, the morphisms of ~(g) are the 22-homomorphisms between free algebras, and the 
composition of morphisms is the usual composition of mappings. The set of all 
objects of cg(g) will be denoted by ~(g) ,  and the set of all m0rphisms from an object 
~e(X) to an object W~(Y) by hom(~(X),~ The coproduct of ~-~(X) and 
~ ( Y )  in C(C) is given by the free algebra ~r �9 Y), where �9 denotes disjoint union. 
If IX] = I Y[, then J~(X) and ~ ( Y )  are isomorphic. Thus ~ ( X )  is the coproduct of 
the isomorphic objects ~ ( x )  for xsX ,  where x is used as abbreviation for the 
singleton {x}. 

3.2 Unification 

Let g = (22, E) be an equational theory. An g-unification problem is a finite sequence 
of equations F =  <s i - ti] 1 < i < n>, where s~ and t~ are Z-terms. A substitution 6 is 
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called an do-unifier of F if s i6 = e ti6 for each i. The set of all do-unifiers of F is denoted 
by Ue(F). In general one does not need the set of all do-unifiers. A complete set of 
do-unifiers, i.e., a set of do-unifiers from which all unifiers may be generated by 
do-instantiation, is usually sufficient. More precisely, for every set of variables V we 
extend " = j '  to a relation "=e ,v"  between substitutions, and introduce the do. 
instantiation quasi-orderin 9 " <  e,v" as follows: 

�9 6=e,vtl iff x6=ext l  for a l lx~V 
�9 6 --<e,vq if there exists a substitution 2 such that q =e,v6~ 

A set C _~ Ue(F) is a complete set of do-unifiers of F i f  for every unifier t /o f  F there 
exists 6~C such that 6 <e,vtl, where V is the set of variables occurring in F. For  
reasons of efficiency, this set should be as small as possible. Thus one is interested in 
minimal complete sets of do-unifiers. In minimal complete sets two different elements 
are not comparable w.r.t, do-instantiation. 

The unification type of a theory do is defined with reference to the existence and 
cardinality of minimal complete sets. The theory d o is unitary (finitary, infinitary, 
respectively) if minimal complete sets of do-unifiers always exist, and their cardinality 
is at most one (always finite, at least once infinite, respectively). The theory do is of 
unification type zero if there exists an do-unification problem without a minimal 
complete set of do-unifiers. 

If the terms in the unification problems may contain free constants, we talk about 
unification with constants, otherwise we talk about unification without constants. In 
many applications, the unification problems that occur contain not only free 
constants, but also additional free function symbols of arity larger than 0. Such 
problems will be called general unification problems. If nothing else is specified, 
"unification" will mean "unification without constants." 

An do-unification problem F =  ( S x -  t l , . . . , s , -  t , )  can be reformulated as 
a problem for morphisms in the category ~(do). Let Y be the finite set of variables 
occurring in some si or t~. Evidently, we can consider si and t~ as elements of ~-e(Y). 
Since we do not distinguish between = e-equivalent unifiers, any do-unifier can be 
regarded as a 2;-homomorphism from ~-~(Y) into ~-e(Z) for some finite set of 
variables Z. Let X = {x 1 . . . . .  x,} be a set of cardinality n. We define 2;-homomor- 
phisms a, ~ : ~ e ( X ) ~ e ( Y )  by xia:= s i and xiz:= t i. Now, 6:f~-e(Y) ~ e ( Z )  is an 
do-unifier ofFiffx~a6 = s~6 = t~5 = xir6 for all i, that is, iffa6 = z6. This observation 
justifies to conceive do-unification as a problem involving only morphisms of the 
category ~(do): given a, z: @e(X ) ~ ~-e(Y), find a 6 :@e(Y) --* ~e(Z)  such that o-6 = ~6. 

3.3 Semirings 

A semirin9 50 is a tuple (5 ~ + ,  0, ", 1) such that (50, +,  0) is an Abelian monoid, (5:, ', 
1) is a monoid, and all q, r, seS:  satisfy the equalities 

(1) ( q + r ) . s = q ' s + r . s  (2) q ' ( r + s ) = q ' r + q . s  

(3) 0-s = 0 (4) s'0 = 0. 

The elements 0 and 1 are called zero and unit. Semirings are different from rings in 
that they need not be groups w.r.t, addition. Obviously, any ring is a semiring. 
A prominent example for a semiring which is not a ring is the semiring N of 
nonnegative integers. 
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Similar to the construction of polynomial rings over a given ring, one can use 
a semiring 2Z and a monoid H to construct a new semiring, namely the monoid 
semiring 2Z(H) .  As for polynomials, the elements of the monoid semiring may be 
represented as sums of the form Zh~HSh" h where only finitely many of the coefficients 
She2Z are nonzero. The zero elements of 2Z(H) is the sum where all the coefficients 
are zero, and the unit element is the sum where only the unit of H has a coefficient 
different from zero and this coefficient is the unit element of 2Z. Addition and 
multiplication in 2Z(H) are defined as follows: 

s h" h + ~ t h" h = ~ (s h + th)'h 
hell  h~H hell  

2 sy'f:  2 tg'g = �9 h 
f e l l  aeH h g S f"  t o 

Polynomial semirings are special cases of monoid semirings. For  example, the ring 
Z[X1 , . . . ,  X,]  of integer polynomials in n indeterminates is the monoid semiring 
Z ( F A M , )  where FAM, denotes the free Abelian monoid in n generators. 

As mentioned in the introduction, unification in commutative/monoidal the- 
ories can be reduced to solving systems of linear equations in certain semirings. 
Similar to unification in Abelian monoids [23], problems without Constants will 
correspond to systems of homogeneous equations. For  problems with constants one 
has to solve in addition systems of inhomogeneous equations. 

Modules over semirings are a generalization of vector spaces over fields. Since 
(2Z,., 1) need not be commutative, we have to distinguish between left and right 
2z-modules. Solutions of homogeneous systems form right 2z-modules. The unifica- 
tion type of a theory will depend on whether these modules are finitely generated 
or not. A subset M of the n-fold Cartesian product 2Z" is a finitely generated 
right 2Z-module if there exist finitely many x 1 . . . . .  Xke2z" such that 
M =  {x ls  1 + ... + XkSkIs 1 . . . . .  Ske2z }. 

Solutions of inhomogeneous systems do not form right modules, but unions of 
cosets of right modules. For  the unification type it will be crucial how many cosets 
are needed to represent all solutions. If M ___ 2zn is a right 2z-module, and N is 
a subset of 2Z", then N is a coset of M if there exists some y~2z~ such that 
g = {y + x l x E M } .  Consequently, the set N is afinite union ofcosets of M iff there 
exist finitely many Y l . . . . .  Yk~2Z~ such that N = ~)~:~{yi + xJxEM}.  

4 Commutative and Monoidal Theories 

In this section we shall give the definitions of commutative and monoidal theories, 
and show in what sense these two notions are equivalent. 

4.I Definitions and Examples 

Motivated by the categorical reformulation of N-unification (see Subsect. 3.2), the 
class of commutative theories is defined by properties of the category (g(d ~ of finitely 
generated g-free algebras as follows: an equational theory g is commutative if the 
corresponding category ~(g) is semiadditive (see [16, 1] for the definition and for 



Combination Problems for Commutative/Monoidal Theories 3 17 

properties of semiadditive categories). In order to give a more algebraic definition 
we need some additional notation from universal algebra. 

Let g = (2J, E) be an equational theory. A constant symbol e of the signature 2J is 
called i d e m p o t e n t  in g if for all symbols fe27 we have f ( e  . . . .  , e) =~e. Note that for 
nullary f this means f = ge. 

Let Y be a class of 27-algebras. An n-ary  impl ic i t  opera t ion  in Y is a family 
0 = { O A I A e Y  } of mappings OA:An----~ A which is compatible with all homomor- 
phisms, i.e., for all homomorphisms co: A --* B with A, B e Y  and all a 1 . . . .  , a ,  e A ,  we 
have (Oa(a 1 . . . . .  an))o3 = o ~ ( a l c ~ , . . . ,  a,co). In the sequel we shall omit the index and 
just write o in the place of o A. 27-terms induce implicit operations on any class of 
22-algebras in the following way: let t be a 22-term and let xl . . . . .  x, be a sequence of 
variables such that all the variables occurring in t are contained in this sequence. The 
n-ary implicit operation (t; xl . . . . .  x,) is defined by 

(a 1 . . . . .  a,)F---~ t[-xa /a  I . . . . .  x J a , ] .  

For example, assume that the signature consists of a binary symbol "." and a unary 
symbol " -  1,,, and let Y be the class of all groups. Then the binary implicit oper- 
ation (x 'y-  1; x, y) expresses division in a group. If we apply this operation to a pair of 
group elements a, b, we obtain the quotient a" b- 1. For the classes ~ ( g )  and ~ ( g )  all 
implicit operations can be defined by Z-terms [21]. 

We are now ready to give an algebraic definition of commutative theories. An 
equational theory g = (22, E) is called c o m m u t a t i v e  if the following holds: 

1. the signature 27 contains a constant symbol e that is idempotent in g, 
2. there is a binary implicit operation " , "  in ~ ( g )  such that 

(a) the constant e is a neutral element for " , "  in any algebra Ye(X)e~(g) ,  
(b) for any n-ary function symbol re22, any algebra ~e(X)e~(g) ,  and 

any s 1 . . . . .  s , , t  1 . . . .  , t , e ~ ( g )  we have f ( s l , t  1 . . . . .  s , , t , ) = f ( s  I . . . . .  s , )*  

f ( t  1 . . . . .  t,). 

Though it is not explicitly required by the definition, the implicit operation " , "  turns 
out to be associative and commutative (see [1], Corollary 5.4). This justifies the 
name "commutative theory." An obvious consequence of the definition of an 
idempotent constant is that the initial algebra, i.e., ~ ( ~ ) ,  is of cardinality one for 
any commutative theory & 

Well-known examples of commutative theories are the theory AM of Abelian 
monoids (sometimes called AC1 in the literature), the theory AIM of idempotent 
Abelian monoids, and the theory AG of Abelian groups (see [-1]). In these theories, 
the implicit operation " , "  is given by the explicit binary operation in the signature. 
An example for a commutative theory where " , "  is really implicit can also be found 
in [1] (Example 5.1). We shall now consider examples of commutative theories 
where the signature contains some additional function symbols (see [29, 3] for more 
examples). 

Example 4.1 We consider the following signatures: 27:= { +,0 ,  h}, where " + "  is 
binary, 0 is nullary, and h is unary; A := { + ,  0, f},  where " + "  is binary, 0 is nullary, 
and f is binary; and ~ : =  { + ,  0, - ,  i}, where " + "  is binary, 0 is nullary, and - and 
i are unary. 



318 F. Baader, W. Nutt 

AMH = (27, EAMH) , the theory of Abelian monoids with a homomorphism. EAM H 

consists of the identities which state that " + "  is associative, commutative with 
neutral element 0, and the identities which state that h is a homomorphism, i.e., 
the identities h(x + y) - h(x) + h(y), h(O) "- O. 

AMIn = (2;, EAM~, ), the theory of Abelian monoids with an involution. EAM~n consists 
of the identities of EAM H, and the additional identity h(h(x)) "- x, which states that 
h is an involution. 

COM = (A,EcoM). Eco M consists of the identities which state that " + "  is asso- 
ciative, commutative with neutral element 0, and the identities 
f ( x  + x ' , y  + y ' ) - f ( x , y ) + f ( x ' , y ' )  and f ( 0 , 0 ) -  0 which ensure that COM is 
really commutative. 

GAUSS = (.(2, E~AuSS). EOAUS s consists of the identities which state that " + "  is the 
binary operation of an Abelian group with neutral element 0 and inverse - ,  and 
the additional identity x + i(i(x)) - O. 

With the exception of the third example, the additional function symbols - i.e., 
the function symbols apart from the binary symbol yielding the implicit operation, 
and the idempotent constant symbol - are all unary symbols. This motivatives the 
definition of monoidal theories. An equational theory E = (2J, E) is monoidal if 

1. 27 contains a constant symbol 0, a binary function symbol " + " ,  and all the other 
symbols in 27 are unary 

2. " + "  is associative and commutative 
3. 0 is the neutral element for " + " ,  that is, 0 + x =~x + 0 =~x 
4. every unary symbol h is a homomorphism for " + "  and 0, that is, 

h(x + y) =~h(x) + h(y) and h(0)=e0. 

It is easy to see that monoidal theories are always commutative theories. Obviously, 
the theories AM, AIM, AG, AMH, AMIn, and GAUSS are monoidal. The theory 
COM is not monoidal, since its signature contains an additional binary function 
symbol. However, we shall see in the next subsection that COM may also be 
regarded as monoidal theory if the signature is translated appropriately. 

4.2 Commutative and MonoidaI Theories are Equivalent 

Next we show that by means of a signature transformation every commutative 
theory can be turned into a monoidal theory that, from the viewpoint of unification, 
is equivalent. 

Let 27 and 27' be signatures. A signature transformation from Z '  to E is a mapping 
0 that associates to every E ' - term a E-term such that 

1. xO = x for every variable x 
2. f ( q , . . . ,  6)0 = ( f ( x  1 . . . . .  x , )O)[xl / t  10 . . . . .  x,/t,O-] if f is an n-ary symbol and 

x 1 . . . . .  x, are n distinct variables. 

It follows from the definition that 0 is completely defined by the images of the flat 
terms f ( x  ~ . . . .  , x,) where f ranges over E' .  Intuitively, 0 interprets every 2;'-symbol 
by a 2;-term, and then extends this interpretation consistently to arbitrary E'-terms. 

To every commutative theory g = (22, E) we associate a theory E ~ (2J, E) and 
a signature transformation 0 from E to E as follows. The signature E consists of 
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a constant 0, a binary symbol " + " ,  and unary symbols f l  . . . . .  f ,  for every n-ary 
symbol f eZ . ,  where n > 1. To define the set of identities/~ we need the transform- 
ation 0. Let e be the idempotent constant in g and let ( t , ; x , y )  be the pair 
corresponding to the implicit operation "*" in g. We define 0 by 00:= e, 
(x + y)0:= t , ,  and fi(x)O:= f ( e  . . . . .  x , . . . ,  e), where f ( e , . . . ,  x . . . . .  e) has the variable 
x in the i-th argument position and the constant e in the other positions. Now, with 
the help of this signature transformation we define/~ as E: {~ - f] 80 = el0}. That  is, 
E is the preimage o f "  = j '  under 0. 

Proposition 4.2 Let g = (22,E) be a commutative theory with associated theory 
= (27, E) and signature transformation O. Then: 

1. ~ is a monoidal theory 
2. g =gf  implies gO = r for all X-terms g, f. 

Proof. 1. Since the implicit operation "*" is associative and commutative, the same 
is true for "+" .  From part (2.b) of the definition of commutative theories we 
conclude that every fi  is a homomorphism for"  + ". Finally, since e is neutral for " ." ,  
we have that 0 is a zero for " + ' ,  and since e is indempotent, we conclude that 0 is 
a zero for the homomorphism fi. 

2. The claim follows from the definition of/~ and the fact that /~  is a stable 
congruence, i.e., a congruence that is invariant under substitution. []  

Let ~ = (22, E) and g'  = (22', E') be equational theories. We say that ~ and g'  are 
equivalent if there exist signature transformation 0' from 22 to Z '  and 0 from 22' to 
27 such that 

1. s -- r implies sO' = ~, tO' for all Z-terms s and t and s' = ~, t' implies s'O = ~t'O for all 
22'-terms s' and t' 

2. sO'O =r for all 22-terms s, and s'O0' =~,s' for all Z'- terms s'. 

The first condition means that 0 and O' can be seen as mappings on equivalence 
classes of terms. The second says that 0 and 0' are inverses of each other modulo the 
equational theories. 

One of the most prominent examples of equivalent theories are boolean rings 
and boolean algebras. If two theories are equivalent they describe essentially the 
same structures. More precisely, if g and g' are equivalent, then the categories cg(B) 
and ~(E') are isomorphic, and so are the varieties of B and g' [36]. Since unification 
properties of a theory ~ depend on the category cg(g), it follows that equivalent 
theories share the same unification properties. 

Theorem4.3 Let g = ( Z , E )  be a commutative theory with associated theory 
= (2,  E). Then C and g are equivalent. 

Pro@ Let 0 be the signature transformation from L t o  22. To show the equivalence 
o f g  and ~ we exhibit a signature transformation Ofrom 2;to L a n d  show that 0 and 
0 have the required properties. We define 0 by e 0 = 0 ,  and f ( x  1 . . . . .  x,)O= 
fi(Xl) + - . .  +fn(Xn) for every n-ary symbol f in 27. 

By Proposition 4.2 we already know that g = s t  implies gO = ~f0 for all L-terms 
g,f. 

Next we prove that sO0 =~s for every 22-term s. For  this purpose it suffices 
to show the claim for flat terms of the form f (x~ . . . . .  x,). For such terms we 
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have 

f ( x  1 . . . . .  x,)O0 = (fl(Xl) + . . .  + f , (x , ) )O 

= f ( x  1,e . . . .  ) . . . . *  f ( . . . , e , x , )  

= J ( X l  * e* ... * e , . . . ,  e*- . -*e*x , )  

= ~ f ( x  I . . . .  ,x,), 

where the first two equalities follow from the definition of 0 and 0, and the last two 
equalities follow from parts (2.b) and (2.a) of the definition of commutative theories. 

To show that ~00 = ~g for every 22-term i it suffices by the  definition of/~ to show 
that ~000 = e~0, which is a consequence of the fact that sO0 = ~s for every. X-te.rm s. 

Finally, we show that for all X-terms s, t we have that s -- ~ t implie_s sO = ~ tO. But 
this follows again from the definition of/~, since sO0 =~s  = ~ t  =etO0 then yields 
s~=~tO. [] 

From this result it follows that from the viewpoint of unification there is no 
difference between commutative and monoidal theories. 

4.3 Adding  Monoids  o f  Homomorph isms  

There is an interesting difference between the theory GAUSS on the one hand, and 
the theories A M H  and AMIn  on the other hand. The additional identity 
x + i ( i ( x ) ) -  0 in the theory GAUSS establishes a closer connection between the 
unary symbol i and the binary symbol " + "  than just the fact that i is a homomor-  
phism for " + " .  This is not the case for the additional identity h(h(x)) - x in AMIn 
which says something about  h alone. This observation will now be put into a more 
general setting. 

Let g = (X, E) be a monoidal  theory, and let H be a monoid generated by the 
finitely many elements h l , . . . , h  n. Since composition of unary functions is asso- 
ciative, one may consider the generators of H as unary function symbols, and 
represent the monoid H by an equational theory gH that has these unary symbols as 
signature, and the set 

E H := {hi,(... hik (x ) . . . ) -  hi1(.. .(x).. .)lhil. . ,  hik = hjl . . ,  h;, holds in H} 

as its set of identities. 
We define the augmented theory g<H> = (X' ,  E') as follows: the signature X '  

extends Xby the unary function symbols h 1 . . . .  , h,; the set of identities E' is the union 
ofE • En with the identities which state that h 1 . . . . .  h, are homomorphisms and that 
these homomorphisms commute with the unary functions in 22, i.e., 

E'  = E w g ~  ~ { hi(x + y) - hi(x) + hi(y), hi(O) - Oil = 1 . . . . .  n} 

~ { h i ( f ( x ) )  - f ( h i ( x ) ) l f  is a unary symbol in X, i = 1,..,  h}. 

In Sects. 7 and 8 we shall study unification in theories of the form g<H>. 
The theory A M H  is AM<h*> where h* stands for the free monoid in one 

generator, and AMIn is AM<Z2> where Z 2 stands for the cyclic group of order 2, i.e., 
Z 2 consists of two elements e and h, and the multiplication in Z 2 is defined as e 'e  -- e, 
h 'e  = e" h = h, and h. h = e. On the other hand, one can prove that GAUSS cannot be 
represented in the form AG<H> because of the interaction between i and " + "  stated 
by x + i(i(x)) - O. 
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4.4 Being Commutative/Monoidal is an Undecidable Property 

The goal of this subsection is to prove the undecidability result stated in the next 
theorem: 

Theorem 4.4 The following problem is in general undecidable: 

�9 Given afinite signature Z and afinite set o f  identities E. 
| Is (~,, E) monoidal (resp. commutative)? 

We shall reduce a known undecidable problem for monoids and groups to this 
problem. It  is well-known (see, e.g., [10], Corollary 3.8) that for finitely presented 
groups it is in general undecidable whether the group is trivial (i.e., consists of only 
one element) or not. Since finitely presented groups are a special case of finitely 
presented monoids, this undecidability result holds for monoids as well. 

Now assume that a finite presentation of a monoid is given. This presentation 
consists of a set of generators A = {h 1 . . . . .  h,} and a finite set of relations 
R = {u 1 = v 1 . . . .  , u m = vm}, where the u i and v i are words over A. Obviously, the 
monoid presented this way is trivial if, and only if, for all generators h i, the relation 
h i = e follows from R (where e denotes the empty word). 

As in the previous subsection, we consider the set of generators A as a set of unary 
function symbols. The set of relations R can then be turned into a set of identities 
over this signature: ER:= {ul(x ) = vl (x) , . . . ,  u,,(x) = vm(x)} 3. The monoid presented 
by A and R is trivial if, and only if, the equational theory gR = (A, ER) satisfies 
hi(x ) =~Rx for all i, i =  1 . . . . .  n. 

Let 22 = { + ,  0} for a binary symbol " + "  and a constant symbol 0, and let AM be 
the theory that says that " + "  is associative and commutative and that 0 is a neutral 
element for " + " .  As mentioned before, this theory is both commutative and 
monoidal. 

The theorem is now an immediate consequence of the next lemma: 

Lemma 4.5 The monoid presented by A and R is trivial if, and only if, the equational 
theory g = ( Z ~ A, EAM k3 ER) is monoidal (resp. commutative). 

Proof. If the monoid is trivial then we have hi(x ) =sRx for all i,i = 1 . . . . .  n. This 
implies that the h i behave like homomorphisms for " + "  and 0 in g, since the identity 
is obviously a homomorphism.  Consequently, g is monoidal, and thus also com- 
mutative. 

Conversely, assume that the monoid is not trivial. Thus, there exists a generator 
h i such that hi(x ) ~ ~Rx. We claim that this implies hi(O ) :~ ~0. In fact, since the theory 
g is obtained as disjoint union of f i r  and AM, one can use the Abstraction Lemma 
(Lemma 4.1) of [5] to show that hi(O ) = ~0 implies h i (x  ) = gR X'r 

Obviously, hi(O ) Va gO shows that g is not monoidal. In addition, this inequality 
also implies that the initial g-algebra is of cardinality greater than one, and thus 
d ~ cannot be commutat ive (since there is no idempotent constant). []  

3 For u = hi,.., hlk, we use u(x) as an abbreviation for h~(.., hlk(x)...). 
4 Note that one can without loss of generality assume that the substitution [x/0] satisfies the 
normalization requirement in Lemma 4.1 of [5], since one can choose an ordering in which 0 is 
minimal. 
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5 Unification in Commutative/Monoidal Theories 

We first show how to construct in a canonical way a semiring from a com- 
mutative/monoidal theory and how to use it for solving unification problems with 
and without constants. Then we exhibit a commutative/monoidal theory where 
unification with constants and the existence of nontrivial solutions for unification 
without constants are undecidable. 

5.1 Commutative/Monoidal Theories and Semirings 

In [17 the following properties for a commutative theory C are shown within the 
categorical framework, using well-known results for semiadditive categories. 

1. The implicit operation %" required in the definition of commutative theories 
induces a binary operat ion" + "  on any morphism set hom(~e(X ), ~r as follows: 
for a,r:o~e(X)~e(Y) we define a + ~ by t(a + Q:= (ta)*(tQ for all t ~ e ( X  ). This 
operation is associative and commutative, and it distributes with the composition of 
morphisms. The morphism 0: ~e(X) ~ ~e(Y) defined by x~-*e for all x~X, where e is 
the idempotent constant required in the definition of commutative theories, is 
a neutral element for " + "  on hom(Ye(X ), ~e(Y)). 

2. The Cartesian product ofo~e(X ) and ~e( I0  is also a product in the categorical 
sense. Furthermore, the product is isomorphic to thee coproduct, that is 
Ye(XO Y) ~ ~e(X) x ~e(Y). The canonical injection t x : ~ ( X ) ~ e ( X O  Y) is 
given by xtx:= x for any xeX. The canonical projection ZCx:~e(X�9 Y)---, ~e(X) is 
given by X~Zx:= x for x s X  and yTZe:= 0 for y6 Y. I f X  = {x} is a singleton, we write t x 
and zc x instead of z{x}, and rc{~}, respectively. 

3. Consider a:Ye(X ) ~ ~e(Y). Let tx for x ~ X be the injections of the coproduct 
~ ( X ) = @ ~ x ~ e ( x )  and roy for yeY be the projections of the product 
..~r Then o- is uniquely determined by the matrix M, :=  
(l x(TT~y)x~X,y~Y. For a, Z:~e(X )---, ~e(Y) and 6:@e(Y)--* ~e(Z), we have 
M,+~ = M,  + M., and Mo~ = M,M~. 

As an example, consider the morphism 0-= [xl/h(yO, x2/y 1 +h2(y2)] from 
~AMH(Xl, X2) to ~AMn(Yl, Y2)" Then a is determined by the matrix. 

Let 1 be an arbitrary set of cardinality one. Property 1 from above yields that the 
set hom(~e(1),~e(1)) with addition " + "  and composition as multiplication is 
a semiring, which will be denoted by 5e e. Any ge(X) is isomorphic to ~-e(1), and thus, 
for IX[ = n, ~ ( X )  is the n-th power and copower of O~e(1 ). Consequently, for 
a :~e(X)  ~ ~e(I7), the entries t~rrcr of the I XI x I YI-matrix M.  may all be considered 
as elements of 5e e. s That means that all morphisms in cg(g) can be written as matrices 
over the semiring 5~e . Addition and multiplication of matrices correspond to 
addition and composition of morphisms, as stated in Property 3 above. Conversely, 
any [XI x I Yl-matrix over 5e e gives rise to a morphism a:~,~e(X ) ---, ~-e(Y). 

5 If no order on X and Y is specified, we refer to ~Sny as the entry in the x-th row and the y- 
th column. 
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As an example, consider an arbitrary morphism 7:~-AMH(y)--,O~AMi~(y ). Then 
there exist a o . . . . .  akeN such that Y7 = AMHaoy + a~ h(y) + ... + akhk(y), where multi- 
plication of a term by an element of N stands for repeated addition of the term to 
itself. We associate with the morphism Y the polynomial a o + a i X  + ... + ak Xk, 
which is an element of semiring NIX]  of polynomials in one indeterminate X with 
nonnegative integer coefficients. 

The morphism o- = [xl/h(yO, x2/y 1 + h2(y2)] from above and the morphism 
= [yl/h(z), y2/2z] can be expressed by the matrices 

M,~ = X2 and M,~ = 

over N[X]. An easy calculation shows that the morphism ~rb=[xl/h2(z), 
x2/h(z ) + 2h2(z)] corresponds to the matrix M~M6. 

Example 5.1 The theories of Example 4.1 yield the following semirings (see [28, 3]). 

5PAMH, the semiring corresponding to the theory AMH of Abelian monoids with 
a homomorphism, is isomorphic to N[X], the semiring of polynomials in one 
indeterminate X with nonnegative integer coefficients. 

5eAMln, which corresponds to the theory of Abelian monoids with an involution, is 
the monoid semiring N(Z2) ,  where Z 2 denotes the cyclic group of order 2. 

5%OM, the semiring corresponding to the theory COM, is isomorphic to N{X, Y), 
the semiring of polynomials in two noncommuting indeterminates X, Y with 
nonnegative integer coefficients. Note that N{X, Y) is the monoid semiring 
N({X, Y}*), where {X, Y)* denotes the free monoid in two generators X, Y. 

5eGAUSS is isomorphic to the ring of Gaussian numbers Z @ iZ, consisting of the 
complex numbers m + in, where m, neZ. 

The first two examples suggest that there is a close connection between augment- 
ing a commutative/monoidal theory by a monoid (as defined at the end of Subsect. 
4.3) and adjoining a monoid to the corresponding semiring (as defined in Subsect. 
3.3). For AMIn = AM{Z2) , for instance, one verifies that the semirings ~,COAM(Z2) and 
5PAM(Z2) are isomorphic. It is easy to see that this kind of connection holds in 
general. 

Theorem 5.2 Let  • be a commutative/monoidal theory, and let H be a finitely 
generated monoid. Then 5Pe<H>, the semiring corresponding to E augmented by H, and 
the monoid semiring 5~e( H ) are isomorphic. 

Proof. Let g = (s E) be a commutative/monoidal theory and H be a monoid 
generated by the finitely many elements h x . . . . .  h,. Then g ( H )  has the signature 
X' = Xw {h 1 . . . . .  h,}. 

We shall construct a semiring isomorphism that maps every element 7 eVe<H> to 
an element ~s ~ e ( H ) .  Recall that the elements of ~<H> are the X'-homomorphisms 
from J~<n>(1) to ~-~<n>(1) where 1 = {x} is a singleton. Let 7 be such a X' -  
homomorphism. Then 7 is uniquely determined by the element xT. Since all h i are 
homomorphisms for " + "  and commute with every homomorphism in 22, we can 
assume without loss of generality that x7 = e<H> ~,i% t hi1 (... (hin,(t~))...) where the t}s 
are 22-terms. For every i = 1 . . . . .  m let 7i be the X-homomorphism from ~-e(1) to 
~-~(1) defined by x~/i:=t i. Then we have 7ie~e. We define ~ as 4:= 
r,i% ~ ~; ~" hia "" hi,,~e 6Pe( H ) .  
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One can verify that the definition of ~ does not depend on the particular 
presentation of 7 and that the mapping "'~" is bijective. Exploiting the fact that 
h i , . . . ,  h, are homomorphisms in g ( H )  one shows that "-~" is compatible with the 
semiring operations and hence is a semiring isomorphism. [] 

The isomorphisms of 5~<n> will be used in Sects. 7 and 8 to study the unification 
problem for g ( H )  in an algebraic setting. 

5.2 Unification without Constants 

In Subsect. 3.2 we have seen that g-unification can be reformulated as unification in 
the category cg(g). A unification problem in cg(g) is given by a pair of morphisms a, z, 
and a unifier is a morphism 6 such that a6 = ~6. If we translate the morphisms into 
matrices over See, this means that an g-unifier corresponds to a matrix M over 5Pc 
such that M ~ M  = M~M. This correspondence is used in [25, 28, 3] to characterize 
the unification types of commutative/monoidal theories by algebraic properties of 
the corresponding semirings. 

Theorem 5.3 A commutative/monoidal theory g is unitary w.r.t, unification without 
constants if, and only if, 5Pc satisfies the followin9 condition:for any pair M1, M 2 of  
m x n-matrices over 5P e the set 

q/(M1, M2):= {x~6e"elMlx = M2x  } 

is a finitely 9enerated ri fht  5Pc-module. 

If q/(M,, Me) is generated by x l , . . . ,  Xk~6~"e, then the matrix which has x l  . . . . .  Xk 
as columns corresponds to a most general g-unifier of ~r and ~. 

Since constant-free unification problems in commutative/monoidal theories are 
either unitary or of type zero [25, 1, 28], the theorem yields that the theory g is of 
type zero iff there exist matrices M I , M  2 over 5ae such that the right 5Pc-module 
q/(M~, M2) is not finitely generated. Using this characterization, it can be shown that 
the theories AMH and COM are of type zero (see [1, 3]). The theories AMIn and 
GAUSS are unitary w.r.t, unification without constants (see [1] for the first, and 
[28] for the second result). 

5.3 Unification with Constants 

Following [29], we also reformulate unification with constants as unification in 
cg(g). To this end we view constants as special variables that are always substituted 
by themselves. Then a unification problem with constants from a finite set C gives 
rise to morphisms cr, z :~e(X ~ C) ~ ~ e ( Y u  C) with the property that ca = cz = c for 
all ce C. 6 We say that such a morphism respects constants. 

If a respects constants, then the matrix M~ has a special form: 

I / '  

6 This idea first appeared in [1]. 
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where Mh~ is an IX[ x I YI-matrix, M~ is an IX[ x ] C l-matrix, 0 is the I Cl x I gl-matrix 
with all entries 0, and I is the I CI x I CI-unit  matrix. The 0-submatrix is due to the 
fact that ~r does not substitute terms with variables for constant. The unit matrix 
expresses that a maps any constant to itself. 7 If M~ is composed from Mh~ and M~ 
like above, we write M~ = ( M  h, M~). Obviously, any such matrix corresponds to 
a morphism that respects constants. 

Consider the unification problem with constants given by o-, z. A unifier of o- and 
z is a morphism 6 : ~ ( Y u  C) ~ ~ ( Z  w C) that respects constants such that ~rc5 = z6. 
Because of the correspondence between morphisms and matrices, unification of 
o and z is equivalent to finding a matrix M = ( M  h, M i) such that M~M = M~M. 
Taking into account the particular shape of the matrices we obtain 

M a M = ( o  h" Mi'~(MhI J \  0 M ~ ) = (  Mh MhM~+ M'/,I 

and an analogous representation of M~M. Thus, M~M = M~M holds if, and only if, 
h h h h M~M = M~M (1) 

h i i h i i M~M + M,,= M~M + M~ (2) 

hold. Equation (1) means that the columns of M h have to satisfy the homogeneous 
linear equation system Mh~x = M~x, which is a problem that we already encountered 
when solving unification problems without constants. To translate equation (2), let 
ac, bc be the c-th column of Mir M~, respectively. Then (2) holds ifffor every ceC the 
c-th column of M ~ satisfies the equation 

Mh~x + a~ = M~x + b c. (3) 

Now, we relate unifiers to solutions of linear equation systems. Let I~ denote the 
set of all solutions to (3). A set of vectors K~ __c I~ is a cover if I c can be represented as 
the union of cosets 

I~ = ~ y + q/(M~, M)). 
g ~ K c  

A cover K~ represents I~ in the sense that for every yeI~ there is a y'eK~ and 
a y"~ql(M~, M )) such that y = y' + y". Obviously, a cover always exists because I~ 
itself is a cover. 

Suppose that M h is a matrix whose columns generate ~r h, Mh), and that for 
every c ~ C we have a cover K~ of I~. Then we can construct a set Jr of matrices that 
correspond to a complete set of unifiers: ~ consists of all matrices ( M  h, N), where 
N is a I Y] x IC]-matrix whose c-th column is an element of K~. Note that this 
construction generalizes the unification method for AM described in [23]. Obvious- 
ly, if each K~ is a singleton (finite), then ~ is a singleton (finite). 

Conversely, one can also translate arbitrary inhomogeneous linear equation 
systems into unification problems for d o . Thus, we can characterize the type of 
unification with constants in algebraic terms. 

Theorem 5.4 Let g be a commutative/monoidal theory which is unitary w.r.t, unifica- 
tion without constants. Then g is unitary (finitary) w.r.t, unification with constants if, 

7 The superscripts .h and .i are chosen to indicate that in unification problems Mh and Mi will give 
rise to homogeneous and inhomogeneous linear equations, respectively. 
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and only if, 5~  satisfies the following condition:for any pair M1, M 2 of  m x n-matrices 
over 5f  e, and any pair a, b65~ the set 

{x~Se"~lMlx + a = M 2 x  -1- b} 

is a coset (finite union of  cosets) o f  the right See-module ~ll(M1, M2). 

This characterization has been used to show that AMIn is finitary w.r.t. 
unification with constants. The theory GAUSS is even unitary w.r.t, unification with 
constants. This is due to the fact that 5~6AVS s - - Z  G iZ is a ring, and not only 
a semiring. In fact, let 5Pc be a ring, and let x o be an arbitrary solution of the equation 
M i x  + a = M2x  + b. We show that {xo} is a cover. For  any solution y of the 
inhomogeneous equation system, the difference y -  x o is a solution of the homo- 
geneous equation system M i x  = M2x.  This shows that any solution y of the 
inhomogeneous equation is an element of the coset x o + ~//(M 1, M2). Conversely, 
any element of this coset is a solution of the inhomogeneous equation. 

5.4 The Unification Problem is Undecidable 

The goal of this subsection is to show that there exists a commutative/monoidal 
theory g such that it is in general undecidable whether an g-unification problem 
with constants, F, has a solution or not. For  unification problems without constants, 
there is always the trivial solution that substitutes all variables by the idempotent 
constant of the commutative theory. On the semiring level, this corresponds to the 
fact that the zero vector is always a solution of a homogeneous linear equation. It is 
still undecidable, however, whether there exists a nontrivial solution. In order to 
show these undecidability results, we shall use the undecidability of the word 
problem for groups in the following (slightly modified) formulation. 

Proposition 5.5 There exists a finitely presented group with an undecidable word 
problem such that the only element o f  finite order is the identity. 

Actually, such a group was exhibited by Boone and Collins (see [32] for 
a description of the construction and a proof that this group has an undecidable 
word problem; the fact that any element of this group different from the identity is of 
infinite order was proved in [-27]). Now, assume that G is such a (finitely presented) 
group, generated by A. For  words u, v over A, we write u = ov iffu and v belong to the 
same equivalence class in the presentation of G. We shall reduce the word problem 
for G (i.e., the question whether u =~v for given words u,v) to solvability of 
unification problems in the commutative/monoidal theory AM(G) .  

Lemma 5.6 Let  u and v be words over A. Then u = G v iff the AM(G)-un i f i ca t ion  
problem (u(x) - v(x) ) has a non-trivial solution. 

Proof. As shown above, unification modulo A M ( G )  corresponds to solving linear 
equations in the group semiring N ( G ) ,  where N is the semiring of nonnegative 
integers. The unification problem ( u ( x ) -  v(x))  is translated into the equation 
u.x  = v.x, which must be solved by an element s e N ( G ) .  

First, assume that u = Gv. Thus, u is equal to v in N ( G ) ,  which means that the 
unit of the semiring is a (obviously non-trivial) solution of u.x  = v.x. 

Now, assume that u . x = v . x  has a non-trivial solution s e N ( G ) .  Thus, 
s - - a x ' h l - k - . . . - [ - a k ' h  k for k=>l positive integers a 1 . . . . .  a k and h I . . . . .  hkEG , 
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and 

a l 'uh  1 + ... +ak'Uh k = u s =  v s = a  1.vh 1 + ... +ak'Vh k. 

This equality in N ( G )  implies that any monom that occurs on the left-hand side 
must occur on the right-hand side as well, and vice versa. Let i 1 be an arbitrary index 
between 1 and k. For  i 1 there exists in index i 2 such that uhi~ =Gvhi2. Since G is 
a group, this equality can be rewritten to hi2 =Gv-tvhi~. Assume that index ij is 
already defined. For  this index, there exists an index ii+ 1 with uhlj =avh;+ 1, i.e., 
hij+, = av-luhij .  Since there are only finitely many possible indices, there exists j < l 
such that ij = i z. 

Consequently, we obtain hij = hi, = (v-lu)l-Jhi~, which implies that (v-lu)l-J  is 
the unit of the group G. This shows that v - l u  is of finite order in G. By our 
assumption on G, only the unit of G has finite order, and thus u = G v. []  

Since the word problem for G is undecidable, the lemma implies that the 
existence of a non-trivial solution for unification problems without constants 
modulo the monoidal theory A M ( G )  is in general undecidable. For  unification with 
constants, undecidability follows from the next lemma. 

Lemma 5.7 Let  u and v be words over A,  and let c be a free constant. Then u = ~ v iff  the 
A M (  G)-unification problem (u(c) - v(c) ) has a solution. 

Proof. As described in the previous subsection, unification modulo A M ( G )  corre- 
sponds to solving linear equations in the group semiring N ( G ) .  The unification 
problem ( u ( c ) - v ( c ) )  is translated into the inhomogeneous equation (without 
variables) u = v. Obviously, this equation is solvable iffu = v holds in N ( G ) ,  and this 
is the case of iff u = v holds in G. [] 

Theorem 5.8 There exists a commutative/monoidal theory g such that it is in 9eneraI 
undecidabIe whether an g-unification problem with constants has a solution or not. In 
addition, it is in 9eneral undecidable whether an g-unification problem without 
constants has a non-trivial solution or not. 

6 Unification with Constant Restrictions 

Baader and Schulz [5] showed that one can devise a unification algorithm for 
arbitrary combinations of disjoint theories if one is given algorithms that solve 
unification problems with free constants and so-called constant restrictions in the 
individual theories. In this section we extend our techniques to tackle such problems 
in commutative/monoidal theories. We show that they correspond to particular 
systems of inhomogeneous linear equations. 

If C is a finite set of free constants, then a constant restriction over C is a family 
Y = (Yc)c~c of finite sets of variables Yc. A substitution 6 satisfies Y if for each c ~ C  the 
constant c does not occur in any term y6 with ye  Yc. For  a unification problem F an d  
a constant restriction Y we denote with U~(F, Y) the set of g-unifiers of Fsatisfying 
Y. Complete subsets of Ue(F, Y) are defned similarly as in the case of arbitrary 
unifiers. We say that g is finitary (unitary) for unification with constant restrictions if 
for any F a n d  Y there is a complete subset of Ur Y) which is finite (a singleton). 
The combination algorithm in [5] constructs complete sets of unifiers for a problem 
in a combined theory from complete sets of unifiers satisfying certain unification 
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problems with constant restrictions in the individual theories. The resulting set is 
finite if the input sets are finite. Thus it is important  to know whether a theory is 
finitary for unification with constant restrictions. 

General Assumption. In the following, we assume that g = ( Z , E )  is a com- 
mutative /monoidal theory, C is a finite set o f  f ive constants, and Y = ( Yc)c~c is a constant 
restriction. By " + "  we denote the associative-commutative binary operation o f  this 
theory, and by 0 the corresponding neutral element. 

In the categorical framework we consider terms as elements of free algebras and 
substitutions as morphisms. Hence, we do not distinguish between g-equal terms 
and substitutions. This means that t, considered as an element of ~ ( Z  w C), does not 
contain ce C if there is a term t' with t = ~ t' such that c does not occur in t', and that 6, 
considered as a morphism, satisfies Y iff there is a substitution 6' which satisfies Y in 
the sense defined above. 

In unification problems we view free constants as special variables that are not 
moved. Thus, if we characterize the absence of variables in terms we cover also the 
case of free constants. Recall that for a variable x the canonical projection n x is the 
morphism that keeps x fixed and maps every variable distinct from x to 0. 

Lemma 6.1 Let  t be a Z - t e rm and x D . . . , x  . be the variables occurring in t. Then 
t =-r + ... + tnx.  

Proof. The mapping n:ffr ~ o~r defined by tn:= t~l + . . .  + tn~o is the sum of 
the projections n~,. Each T~xi is a morphism. Because d ~ is commutative/monoidal ,  n is 
also a morphism (see Subsect. 5.1). The morphism n satisfies xgn =r  i for all i, 
i = 1, . . . ,  n. Hence, we have that n is g-equal to the identity morphism, which implies 
the claim. [] 

Lemma 6.2 Let  t be a Z - t e rm and x be a variable. Then tn x =r  and only if, there 
exists a term t' with t = ~t' such that x does not occur in t'. 

Proof. " ~ "  I f x  does not occur in t, then we are done. Otherwise, let {Xo,..., x,} be 
the set of variables occurring in t, where x = x o. Define t~:= t % ,  i.e., t i is obtained 
from t by replacing every variable other than x~ with 0 and keeping x i in its place. 
Define t ' := t~ + ... + t,. Obviously, t' does not contain x. Moreover, we have 

t' =~0 + t' = ~tn~o + tnxl + ... + tn~, = r 

where the last identity holds because of the preceding lemma. 
" ~ "  Suppose that t = ~ t' for some term t' that does not contain x. The term t'rcx is 

obtained from t' by replacing every variable x' 4: x by 0. Since x does not occur in t', it 
follows that tn~ is a ground term. Since g is commutative/monoidal ,  this yields 
t'n~ =~0, which implies trc~ =e0.  []  

The next lemma shows that a morphism satisfies Y iffcertain entries in the matrix 
M~ are zero. 

Lemma 6.3 Let  6:ff r  C) ~ ~ r  u C) be a morphism that respects constants and 
Mo = (g%),~r~c,~z~c be the corresponding matrix. Then 6 satisfies (Yc)~c if, and only 
if, 6y~ = 0for  all c~C  and y~Y~. 

Proof. Recall that 6,~ = t,6n~, i.e., the entry at position uv of 6 is given by the 
substitution [u/u6n~] (see Sect. 5). 
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Now, 6 satisfies (Yc)c~c, ifffor all ceC and every y~ Yc, y6 does not contain c, ifffor 
all c~C and YeYc we have yrn~=r by Lemma 6.2, ifffor all ceC and Y~Yc the 
morphism tyrn~ is E-equal to the 0-morphism. [] 

Obviously, unification with constants is a special case of unification with 
constant restrictions because it corresponds to the case where Yc = ~ for every c. 
Thus, the "only if"-part of the following theorem is obvious. 

Theorem 6.4 The theory g is finitary for unification with constant restrictions if, and 
only if, g is finitary for unification with constants. 

In the rest of the section we assume that g is finitary for unification with 
constants. We shall prove Theorem 6.4 by showing how to compute a complete set 
of unifiers by solving an appropriate set of linear equation systems. 

First, observe that g is also finitary w.r.t, unification without cons tan t s -  
because this is a special case of unification with constants - and thus, since the only 

possible types are unitary or zero (see [-25, 28, 3]), even unitary w.r.t, unification 
without constants. 

We consider a unification problem given by morphisms ~r, z : ~ ( X u C ) ~  
~ ( Y u C )  that respect constants. We want to describe those matrices M that 
correspond to unifiers of o- and z satisfying Y. By the results of Sect. 5.3, such a 
matrix has the form M = (Mh, M i) and the equations (1) M~Mh h = M~Mh h and 
(2) h i i h i i M~M + M~ = M~M + M e hold. Equation (1) means that each column of M h 
satisfies 

Mh~x = M~x. (4) 

Equation (2) is equivalent to the requirement that for every c s C  we have 
h h M~mc + ac = M~mc + b~, where m~, a~, bc is the c-th column of M i, Mi~, M~, respective- 

ly. 
To describe the impact of the constant restriction Y, we define for every ce C the 

matrix ~ - "- ' N c - (vyy,)y,y,~ r by vyy,.- 1 iffy = y and y ~ Y~, and vyy, := 0 otherwise. Then the 
entries at position (y, c) in M are 0 for any ye  Yc if, and only if, N~mr = 0. Combined 
with equation (2), this yields that each column m~ of M ~ must satisfy the equation 

Now, we construct a set of matrices that corresponds to a complete set of unifiers 
of o- and z that satisfy Y. Since g is unitary w.r.t, unification without constants, the set 
of solutions to the equation (4) is finitely generated. We construct M h by choosing 
a finite set of generators and placing them as columns into a matrix. 

Since g is finitary w.r.t, unification with constants, there is a family K = (K~)~ c, 
where Kc is a finite cover for the solutions of equation (5) (see Subsect. 5.3). We define 
d//K as the set of all matrices of the form 

< :) 
where N is a I YI • I C l-matrix whose c-th column is an element of Kc. a 

s Note the similarity to the construction in Sect. 5.3. 
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Lemma 6.5 The set of  matrices ~ corresponds to a complete set of unifiers of a, 
satisfying the constant restriction Y. 

Proof. Obviously, all elements of ~K correspond to unifiers of a, z satisfying Y. In 
order to show completeness, let q be an arbitrary unifier of o-, z satisfying Y. We show 
that there exist matrices M = (Mh, N)~J///K and L =  (Lh, L i) such that M~ = M L  
Then t /=  62, where 6, 2 are the morphisms corresponding to M and L. 

Since tl is a unifier, we have MhM~ = Mh~M~. This means that each column of 
Mh, is a solution of equation (4). By construction, the columns of M h generate all 
solutions to this equation. Therefore, each column of M h can be represented as 
a linear combination of the columns of M h. We construct a matrix L h by placing into 
the z-th column the coefficients of such a representation of the z-th column of Mh,. 
Then Mh, t = M h L  h. 

Now let c ~ C. The c-th column e c of Mi, is a solution of the equation (5). Since K C 
is a cover of the solutions to (5), there is a vector nc~K~ such that e~ = x c + n~ for some 
solution x~ of the corresponding homogeneous equation system. This system is an 
extension of (4), and thus xc is a solution to (4) as well. Again, since the columns o f M  h 
generate all solutiops to (4), there is a vector l~ such that Xc = Mhlc, which implies that 
e~ = Mhlc q- n c. Now, let N be the matrix whose c-th column is nc and L i be the matrix 
whose c-th column is l~. Then we have M i = MhL i + N Since also M h = MhL h, it 

( M h g  h, Mhm z q- N )  = ML,  and we have shown the follows that M~ = (M~, M~) = "' " 
claim. []  

For  any equational theory, an algorithm for general unification, i.e., unification 
where terms may contain additional free function symbols, is obtainable from an 
algorithm for unification with constant restrictions [-5]. It returns finite complete 
sets of general g-unifiers if the intermediate problems with constant restrictions 
produced by it have finite complete sets of unifiers. 

Corollary 6.6 There is an algorithm for general g-unification if, and only if there is an 
algorithm to solve inhomogeneous linear equations over 5#~. Moreover, g is finitaryfor 
general unification if, and only if  it is finitary for unification with constants. 

7 A Sufficient Condition for Unification Type Zero 

In this section we shall generalize the "type zero" result for the theory A M H  to a 
whole class of commutat ive/monoidal  theories. This class will be defined by proper- 
ties of the corresponding semiring. Before we can do that, we need one more notation. 

Let 50 be a semiring which is not a ring. That  means that the Abelian monoid 
(~ ,  + ,  0) is not a group, i.e., there exists an element p 6 ~  such that, for all q 6 ~ ,  we 
have p + q ~ 0. We shall call such an element p o f ~  non-invertible. An element s 6 ~  
which has an inverse w.r.t. " + "  is called invertible. For  the semiring N, all elements 
different from 0 are non-invertible. For  the direct product N • Z, an element (n, z) is 
invertible iff n = 0. Here are some trivial facts about invertible and non-invertible 
elements. 

1. The elements Sl , . . . ,  s k of 5 e are invertible if, and only if, their sum s 1 + ... + s k is 
invertible. 

2. The element Zh~Sh'h of the monoid semiring 5~ (H)  is non-invertible if, and 
only, if there exists h s H  such that s h is non-invertible in 5 e. Thus, if5 ~ is not a ring, 
then 5 ~  is not a ring for any monoid H. 



Combination Problems for Commutative/Monoidal Theories 331 

Recall that the theory AMH corresponds to the semiring N IX ]  of polynomials in 
one indeterminate X with nonnegative integer coefficients. That means that we have 
a monoid semiring 5~<H> where all the nonzero elements of 50 are non-invertible, 
and where the monoid H is the free monoid X* in one generator. The "type zero" 
result for AMH can now be generalized to the case where 5 ~ contains at least one 
non-invertible element. 

Theorem 7.1 Let g be a commutative/monoidal theory such that the correspondin9 
semiring 5p~ is isomorphic to a monoid semiring 5P(X*>. I f  SP is not a ring, i.e., if 
5 ~ contains at least one non-invertible element, then g is of unification type zero. 

As mentioned before the monoid semiring 5~(X *> is just the polynomial 
semiring 5~[X]. The theorem is proved if we can find matrices M~, M s over 5P[X] 
such that the right 5~[X]-module ~#(M~, Ms) is not finitely generated. 

In the following we shall show that the 1 x 3-matrices M~:=(X,X,O) and 
M~:= (0, 1, X 2) have the required property. Thus we consider the homogeneous 
linear equation 

X ' X  1 -I- X ' x  2 = x 2 ~- X 2 " x 3  (6) 

which has to be solved by a vector L~SP[X] 3. If L is such a vector, we denote its 
components by L (1), L (2), L (3). 

Let p be a non-invertible element in 5 p. Obviously, for any n > 1, the vector L, 
which consists of the components L,(1):=p, L~2):= p X + . . . +  pX,+ 1, L~3):= pX" is 
a solution of (6). 

Now assume that ~#(M~, M~) is finitely generated, i.e., there exist finitely many 
solutions G1,.. . ,  G m of (6) which generate all the solutions of (6). Let n > 1 be 
arbitrary but fixed. Since L, is a solution of(6) there exist 11 . . . .  , lmeSe[X ] such that 

L, = ~ GiIi. (7) 
i = 1  

" P(1)l F o r i = l ,  . re, let If we consider (7) in the first component, we get p = ~i= 1 ui i . . . .  
p ~ 5  p be the constant coefficient of the polynomial GI 1), and h~e5 ~ be the constant 
coefficient of li. The last equation implies that p = Z~ m 1 p~h~. Since p is non-invertible, 
there exists somej  with 1 < j  < m such that pjhj is non-invertible. 

Lemma 7.2 The polynomial G} 3) is of degree at least n. 

Proof. Assume that the degree of G} 3) is less than n. Since Gj is a solution of (6), we 
know that Gjhj is also a solution, that is, 

X" G}l)hj + X'G}2)hj = G}2)hj + X2"G}3)hj. (8) 

The components of the solution Gjhj satisfy the following properties: 

"(1)h. is e �9 The constant coefficient of the polynomial u s i 1 := pjhj. Thus we know by the 
choice o f j  that e 1 is non-invertible. 

�9 The polynomial G}2)hj has constant coefficient 0. This is an immediate conse- 
quence of the equation (8). 

�9 All the coefficients of G}3)hi are invertible. This can be seen by considering 
"P" c(a)l Since G}3)hj equation (7) in the third component, which yields pX" = ~ = 1 ~i ~i. 

contains only monomials of degree less than n, all these monomials vanish during 
the summation. Consequently, all the coefficients of these monomials have to be 
invertible. 
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From the fact that the coefficient of X in X" G}l)hj is e 1 and in X" G~?)hj is 0 we get by 

(8) that the coefficient of X in G}2)hj + X2.G}3)hj is also el. Hence, the coefficient of 
X in G}2)hi is e 1 . 

Starting with the fact the coefficient e~ of X in G~)hj is non-invertible, we shall 
now deduce that the coefficient of X 2 in G(..2)hj is also non-invertible. Since the 
coefficient of X in G}2)hj is e 1, the coefficient o f  X 2 in X G}Z)hj is also e I. Thus the 
coefficient o f X  2 on the left hand side of(8) is e':-- e~ + e for some e. The coefficient e' 
is non-invertible because otherwise e t could not be non-invertible. By (8), the 
coefficient of X 2 in G}2)hj + X2G}3)hj is also e'. Since all the coefficients of X2"G}3)hj 
are invertible, this finally shows that the coefficient e2 of X 2 in G}2)hj is non- 
invertible. 

This argument can be iterated to show that, for all k > 1, the coefficient e k o f X  k in 
G}Z)hj is non-invertible. This is a contradiction to the fact that the polynomial G}2)hj 
has only finitely many nonzero coefficients. [] 

We have just shown that, for any n > 1, there exists a j  such that G} 3) is of degree 
at last n. This is a contradiction to our assumption that there are finitely many  
generators Gj of all solutions of (6). This completes the proof  of the theorem. 

8 Adding Finite Monoids of Homomorphisms 

We now investigate commutat ive/monoidal  theories that are augmented with finite 
monoids of homomorphisms.  In contrast to the case of free monoids, which was 
treated in the previous section, we can derive the positive result that adding finite 
monoids does not change the unification type and that algorithms for the original 
theory can be used to solve problems in the augmented theory. 

An example for such a theory is AMIn, the theory of Abelian monoids with an 
involution. Recall that AMln  can be written as A M ( Z 2 ) ,  and that the correspond- 
ing semiring is N ( Z 2 ) .  

General Assumption. In this section g is a commutative/monoidal theory and H is 
a finite monoid. 

Since unification problems in g ( H )  are equivalent to systems of linear equations 
over 5Pe(H), our basic technique will be to reduce such systems to systems of linear 
equations over 5P~. As a first step we shall establish a one-to-one correspondence 
between vectors. 

Every vector x~A~(H)" has a unique representation as x = Zh~HXh'h where 
xhsSP~. As an example the vector 

x = ( l h2h )~N(Z2)  

can be written as 

We can formally justify this notation if we consider 5Pc and H as subsets of 5Pc<H), 
This can be done by identifying every element seSPe with s'e~SPe(H), where e is the 
unit in H, and every element hEH with 1 "heSCe(H ). 
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Suppose the elements of H are numbered as h 1 . . . . .  hln I. If  xeS:e(H)" has 
a representation as x = xhl.h I + ... + Xh~,~'hlnl, we define 

\ X h i H i /  

as the vector obtained from x by writing the vectors x h one below another. 
Continuing our example from above we have 

2~=- 

We thus obtain a bijection between 5:~(H)"  and 5:~ ~l. In particular, every vector in 
5:~ HI has a representation as 2 for some xeS:~(H)". Obviously, for all x, yeS:~ ~l and 
all seS:~ we have 

x + J ~ - ) = 2 + ~  and 2"s=2<"~. (9) 

In algebraic terms we can rephrase these equalities by saying that the mapping '''~'' is 
a right 5:~-module isomorphism. 

Next we will associate to every m x n-matrix M with entries in 5 :~(H)  an 
m IHI x n IHI-matrix M with entries in b~ such that M~ = )~r~ holds for every 
xeSE(H)". To derive an appropriate definiton of M, observe that, similar to a vector, 
the matrix M has a unique representation M = ~.hd~Mh'h, where the M h are 
matrices with entries in ~ .  Applying M to a vector x yields 

- , 

= ~ (  ~ M f x o t ' h = ~ ( ~ (  ~ Mi')xg~'h. 
heH \ h =  f . 0 / hsH \ g e H  \ h =  f .g / / 

This series of equalities says that the component  of the vector Mx corresponding to 
the element h is obtained by summing over all 9 the products (~h=:.oM:)xo. This 
shows that we have to define M as the m lHI x n]HI-matrix consisting of the 
submatrices 

h~=h 

where a sum over an empty set of indices is to be understood as the zero matrix. With 
this definition we obtain 

Ma = Mfi. (10) 

Returning to our example theory AMIn, consider a matrix M over N(Z2).  If 
M = M~-e + M h. h, then the associated matrix is 

M h 

Thus, our general approach gives us the same representation of unification problems 
in AMIn as the one derived in [1]. 
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Next we apply our transformation technique to unification problems without 
constants. 

Proposition 8.1. Let  M i, m 2 be m x n-matrices over 5re (H) ,  and x ~ 5 ~ ( H )  ". Then: 

I. x E ~  i f  and only/ fxEO~(J~I,]~2) ^ 

2. ag(M l, M2) is generated by x i . . . . .  Xk i f  ~ l (Mi ,  M2) is generated by 2 i . . . . .  2 k. 

Proof. 1. Let x = 5r  n. Then we have x ~ ( M  1, M2) if and only if Mix  = M z X  if 
~ A A 

and only if M i x  = M z x  if and only if M,2  = 2~2 if and only if 2~~ M2). 
2. It suffices to show that every^x~(M1,M2)  is a linear combination of 

x 1 . . . .  , x k. If x ~ ( M 1 ,  Me), then 2 ~ ( M 1 ,  Me) by part (1). Hence, 2 = 21 s l  + "" + 
2k'S k. Using equalities (9), we conclude that x = x l . s  I + ... + Xk'S k, Thus, x is a linear 
combination of Xl . . . .  , Xk. [] 

If g is unitary w.r.t, unification without constants, then for all matrices M 1, M2 
with entries from 5r ) the right See-module ~ M2) is finitely generated, and 
by the preceding proposition, qI(M1,M2)  is finitely generated. Together with 
Theorem 5.3 this proves our next theorem. 

Theorem 8.2 I f  g is unitary w.r.t, unification without constants, then g ( H )  is unitary 
w.r.t, unification without constants. 

The approach to unification problems with constants again consists in reducing 
a problem for N(H)  to a problem for g. Speaking in terms of semirings, we shall 
reduce inhomogeneous linear equations over 5~o(H) to inhomogeneous linear 
equations over 5P e. 

For a set S ___ 5~<H)" let S:= {2[x~S} .  

Proposition 8.3 Let  M1,  M 2 be m x n-matrices with entries in 5Pc(H> and a, 
b6SP~(H)  ~. Let  N:= {xeSeg(H>"[Mi  x + a = M 2 x  q- b}. Then: 

I. N= {yeJ~llf4~y + a= ~ y  + ~ 
2. N is a coset (finite union o f  cosets) o f  ~  if  N is a coset (finite union of  
cosets) o f  q l (M i, A/I2). 

Proof. 1. By equalities (9) and (10) it follows that for all x ~ J e ( H ) "  we have 
M i x  + a = M2 x + b if and only ifM~2 + ~ = M,2 +/~. Since for every y E J ~  lul there 
is a unique xEA~ such that y = 2, this yields the claim. 

2. If N is a coset of ~((M l, M2), then there exists a vector x ~ J e ( H )  ~ such that 
= {2 + y l Y~(A~I,  m2) }. Using equality (9) and Proposition 8.1 we conclude that 

N = + 

For the case that N is a finite union of cosets, the argument has to be slightly 
generalized. [] 

By Theorem 5.4, the preceding result gives us a condition for g ( H >  to be unitary 
or finitary. 

Theorem 8.4 Suppose g is unitary w.r.t, unification without constants. I f  g is unitary 
( f ini tary)  w.r.t, unification with constants, then g ( H )  is unitary ( f ini tary)  w.r.t. 
unification with constants, i f  g is unitary ( f ini tary) w.r.t, unification with constants. 

Propositions 8.1 and 8.3 tell us how we can use an algorithm for g to solve 
problems in g(H>.  An g(H>-unification problem without constants is given by 
m x n-matrices M1, M 2 with entries in 5~ -~ 5~ We compute the transforms 
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A4~ and Ai~ and solve the equation M~y = Al~y over 5~, which we can do with the 
algorithm for #. If the set of solutions of the matrix equation over 5P~ is generated by 
vectors Yl,.-., Yke5~ HI, we compute x 1 . . . .  , x k e S ~ ( H ) "  such that 2i = y~. Then the 
set of solutions of the original equation is generated by x l , . . . ,  x k and the matrix M~ 
that has x 1,-.., xk as columns represents a most general unifier of the given problem. 

Since inhomogeneous linear equations over 5~ -~ 5 ~ ( H )  can be transformed 
into inhomogeneous equations over 5e8, an algorithm for # can be used in a similar 
way as in the constant free case to solve unification problems with constants in 
# ( H ) .  

9 Conclusion 

Two approaches to solving unification problems can be distinguished. The first, 
which might be called the "syntactic approach," relies heavily on the syntactic 
structure of the identities that define the equational theory (see for instance [14, 26, 
201). The second, which we may characterize as the "semantic approach," exploits 
the structure of the algebras that satisfy the theory. If little or nothing is known of the 
algebras involved, the first approach is useful, whereas the second is applicable to 
theories that describe algebraic structures which have been investigated in mathe- 
matics. 

With this paper we pursue the semantic approach to unification. We have 
combined techniques for commutative and monoidal theories that had been devel- 
oped independently. We have shown that both classes of theories are essentially the 
same in that every monoidal theory is commutative, and every commutative theory 
can be turned into a monoidal theory by a signature transformation. 

One of the major topics of research in unification in recent years was to construct 
algorithms for the combination of equational theories. This problem has been 
solved - at least in principle - for theories with disjoint signatures [33, 5]. The result 
in Sect. 6 show that the combination method developed in [5] can always be applied 
for finitary commutative/monoidal theories. Of course, the case where signatures 
are not disjoint is too difficult to be treated in full generality. We concentrated on 
a special case, namely the combination of a commutative/monoidal  theory with 
a monoid of homomorphisms. By exploiting the algebraic structure of the canonical 
semiring associated to such a theory, we have found combinations that are of 
unification type zero, and others that are of type unitary or finitary. For the latter 
case we have pointed out how a unification algorithm can be derived. 

There still remain open questions for this kind of combination. We have 
augmented a given theory either by free monoids or by finite monoids, but we do not 
know what happens with infinite monoids that are not free. 

The only commutative/monoidal theories of unification type zero that we know 
are those described in this paper. They all have canonical semirings that are not 
rings. It would be interesting to know whether there exist theories of unification type 
zero for which the canonical semiring is a ring. Since every semiring can be obtained 
from a commutative/monoidal theory this question can be posed in purely algebraic 
terms: is there a ring such that the set of solutions for some system of homogeneous 
linear equations is not finitely generated? 

It is not known whether (1) there exists a unitary or finitary equational theory 
that is infinitary or of type zero for unification w.r.t, constants, or whether (2) there 
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exists a theory that  is unitary or  finitary for unification w.r.t, constants,  but  infinitary 
or of type zero for general unification or unification with constant  restrictions. This 
question has been raised in the context of combining theories with disjoint signa- 
tures. We have shown that  the second case cannot  occur for commuta t ive /monoida l  
theories. The first question can be reformulated for commuta t ive /monoida l  theories 
as an algebraic problem: does there exist a semiring such that  for every system of 
homogeneous  equat ions the set of solutions is a finitely generated right module,  but  
there is a system of inhomogeneous  equat ions such that  the corresponding set of 
solutions is not  a finite union of cosets? Given the substantial  body  of results in 
linear algebra, it is conceivable to find a semiring satisfying this condition. Such 
a semiring would then give us an example of an equational  theory with the above 
property.  
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