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Axiomatization of identity-free equations valid in relation algebras
H. ANDREKA AND I. NEMETI

Dedicated to the memory of Alan Day

Abstraci. A finite axiom set for the identity-free equations valid in relation algebras is given. This is a
simplification of the one given by Jonsson, and confirms a conjecture of Tarski. An axiom set for the
identity-free equations valid in the representable relation algebras is given, too. We show that in the class
of representable relation algebras, both the operation of taking converse and the identity constant are
finitely axiomatizable (over the rest of the operations).

In [4], [5] Jonsson defined the class SPA of specification algebras as the 1'-free
subreducts of relation algebras (RA4’s). [4] and [5] give a finite axiomatization for
SPA. This axiomatization consists of the 1'-free axioms of RA together with a finite
set of equations called condition (iii) in [4]. It is asked in [4] whether condition (iii)
can be simplified.

Independently, Tarski raised the problem whether either the equation

x<xo(yYeyT)” or (TD)

x<xe[(yYey ) (z¥ez7)7] (T2)

is sufficient in place of condition (iil). Tarski’s original terminology of course was
different, we quote Problem 21 from [10]:

“21. (Tarski) Can all relation algebraic identities not involving 1’ be derived
from the axioms for relation algebras, with the identity x = x o 1’ =1" o x replaced
by x <xo{y oy ) orbyx<xo[(y¥oy ) -(z¥ez7)7]? Tarski believes that
he once proved this for one or the other of the two identities. Note that the identity
l"<(yYeoy~)~ is true in cvery relation algebra.”
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The present paper consists of two parts. The first part contains Theorem 1 and
Proposition 1. Theorem 1 states that condition (iil) in the theorem of [4] can be
replaced with the following simpler consequence of (T2)

x<xeo[(yYoy )T -(y Veyl]

and Proposition 1 states that (ii1) cannot be replaced with Tarski’s shorter equation
(T1). This way Tarski’s problem receives a complete answer.

We note that independently of us, at the same time as we did, Bjarni Jonsson,
Peter Jipsen and John Rafter also proved sufficiency of the simpler form of (T2) in
place of (iii), see [7].

In the second part of the paper we show that the methods we use for proving
Theorem 1 are suitable for proving results on representable relation algebras
(RRA’s), too. At the end of the paper we show that given the Boolean operations,
composition brings in an infinite number of valid equations, but both the operation
of taking converses and the identity constant bring in only finitely many valid
equations. So the sole cause for nonfinite axiomatizability of RRA is relation
composition. This situation is radically different from algebras of n-ary relations,
n > 2, where the operations share the blame for nonfinite axiomatizability: each of
them brings in essentially infinitely many new valid equations modulo the rest of the
operations, see [1].

We now briefly recall some of the definitions.

A relation algebra (an RA4) is an algebra A =(Ag, 0,7, 1), where
Ay=(4, +,-, —,0,1) is a Boolean algebra, o, ¥, 1’ are binary, unary and zero-ary
additive operations on A,, (4,0, %, 1) is an involuted monoid, and further the
equation

XVo(xoy) <y~ (R)

holds.

The 1'-free reduct of an R4 A = (A, o, ", 1) is the algebra (A,, o, V).

The canonical extension, or ultrafilter extension, or perfect extension, of an R4
1s defined e.g. in [8], Def. 2.14.

THEOREM |. Suppose A =(Ay, «, ) is an algebra that satisfies the axioms for
relation algebras with the exception of the axiom xo 1 =1ox=x. Then the
Jollowing conditions are equivalent:

(i) A is a subalgebra of the 1'-free reduct of an RA.

(i) The canonical extension of A is a 1'-free reduct of an RA.

(iil) A satisfies the identity x <xo[(y“oy ) - (¥~ “op)7]

(iv) A satisfies the identity x < xo[(y“ oy )" - (z%cz7)7)
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Proof. Assume that A = (A, o, ") is as in the hypothesis of the theorem, i.e. A,
is a Boolean algebra, o, ¥ are additive, (4, -, ¥) is an involuted semigroup and (R)
holds. First we show that the following also holds:

“ is a Boolean homomorphism, in particular x =% = x"".,

Indeed, since ¥ is additive, it is monotonic. Thus by 1¥ <1 we have 1°% < 1V, ie.
I1<1% hence l=1""Nowl=1Y=(x+x")"=x"+x"", hence x ¥ >x"". Then
(x¥)"Yz2x"" =x7,and thus x*" =(x"")"W=(x""V)">(x7)", 1.e. x Y =x"".

We now turn to proving Theorem 1. By substituting y, 1" in place of x, y in (R),
we get yYoy~ <17, ie. 1'"<(yY°py~)~, hence in every relation algebra the
identity in (iv) holds. This shows (i) = (iv). The implications (ii) = (i) and
(iv) = (iii) are easy to check. Therefore it is enough to show that (iil) = (ii).
Assume (iii). For any a € 4 let

e(@ =(@¥.a")” and ela) =e(a) ela™).
Then (iii) states that x < x o &(y) holds in A.

LEMMA 1. &(a) - &(a) < &(a) = e(a)” and g(a)o 1 =1, for any a € A.

Proof. Let a € A be arbitrary. First we show

e(a) o e(a)y < e(a). €]
By replacing x, y in the equation (R) with a", a~ we immediately obtain that

a-e(a) <a. (2)
An easy computation shows

e(@)” =e(a™). (3
Indeed, e(@)” = (@ ca™)™ = (@aca™)"” = (@ ¥ea”w)” = (@ Veoa) =
(aYoa ") =ela).

We will use the following consequence of (R):

xoy<x implies y<(x“ox7)". (R1)

Indeed, assume x oy < x, i.e. x~ < (x o y)~. By monotony of - and by (R) we then
have x¥ox~ <xVYo(xoy) " <y ,le. y<(x¥ox7) .
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Now by (2) and monotony of o we have ac e(a) - e(a) < a, hence by (R1) we
have e(a) o e(@) < (a” °a~)~ =e(a). Thus (1) is proved and this immediately implies
g(a) o &(a) < e(a). By (3) we obtain &(a) = &(@)¥. By (iii)) we have 1 <1 - ¢(a), thus
l=10g@). Then by applying conversc to both sides we obtain
gla)yo 1=1. QED(Lemma 1)

LEMMA 2. aca<a=a"and a> 1 =1 imply ¢(a) =a, for any a € A.

Proof. Assume that aca <a=a" and a~ 1 =1. By (3) it is enough to show
that e(a) =a. By aca <a and (R1) we have a <(a”-a~)” =e(a). On the other
hand, by ac 1 =1wehavea " <1=aoc1=aca+a-a ,hence bya” -(a-a) =0
we geta <agca =e(a)”. QED(Lemma 2)

LEMMA 3. &(e(a) - &(b)) = ¢(a) - &(b) for any a, b € A.

Proof. Tt is enough to show that m = &(a) - &(b) satisfies the conditions of
Lemma 2. Now m o m <m =m" holds since by Lemma 1, &(a) - &(a) < &(a) = &(a)”
and the same holds for g(b). Thus it is enough to show mo 1 =1.

By (R) and the first part of Lemma 1 we have &(a) - &(a) ~ < &(a) ~ (by replacing
x,y in (R) with &(a), &(@) respectively). By (iii) we have g(a) < &(a) - &(a) < &a) o
(e(a) - e(b)) + &(a) - (e(@) o &(a) 7) = &(@) o (&(a) - &(b)) = &(@) - m. Then by the second
partof Lemmal,1 <10 &(@) <10 é&@)om <1 om,and by applying converse on both
sides we get mo 1 =1. Thus by Lemma 2 we have m = g(m). QED(Lemma 3)

By Lemma 3, the set £={¢(a):acd}={aced:ara<a=a",a-1=1} is
closed under intersection, and clearly by (2) and (iii) we have a - &(a) =a.

Let e be the meet of E in the canonical extension A° of A, 1.e. let ¢ =11 E. This
exists because A’ is complete. We will show that x o ¢ = x for all x € A°. Since o is
completely additive in A°, it is enough to show this for atoms x of A°. Every atom
in A’ is the meet of an ultrafilter of A. Let x be an atom of A° and let
x=IIF,F=A Then xoce <ace <aforall a eF, thus xoe <II F=x. To show
the other direction, recall that b < b - a for all b € 4 and a € E by our equation (iii).
Since A’ is compact and F is closed under intersections, for any b € 4 we have that
e<biff (@ <bforsomeack). Sincex=I1F,e=I1E, F, E < A, by the definition
of a perfect extension we have

xce=[[{yeb:x<ye<bybeA}

<[|[{pcayeFacE}<[[{y:yeF}=]]F=x.  QED(Theorem 1)
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PROPOSITION 1. In Theorem 1, (iil) cannot be replaced by (iii)’ below:
(iii)" A satisfies the identity x <xo(y“oy7)".

Proof. Let A ={a,a",0,1} and let A, be the 4-element Boolean algebra with
universe 4 (and atoms a,a“). Let o and ¥ be additive, aca=a,a"-a"=a",
aoa”“=a"oag=1and let a°* =4,0v=0,1v=1.

We now check that A = (A,, ¢, V) satisfies the equations defining RA, except those
involving 1’.: For all x,y we have xcy =g iff x=y=a,xcy=a"iff x =y =a",
and x oy =0iff (x =0 or y =0). Using these we get (x o p) ez =aiff x =y =z =0
iff xe(yez)=a,(xcp)ez=a" iff x=y=z=g" iff xo(yoz)=a¥, and
(x0y)oz=0iff Oe{x, y,z} iff x o(yoz)=0. This shows that < is associative.

Checking (x o y)¥ =y~ o x“: it is enough to check this for atoms. If x =y then
(xex)¥=x"=x"ox",andif x #y, x, yare atoms, then (x o y)” =1"=1=y¥ o x".

Checking (R): If 0 e {x, y} or if (xoy) =1 then (R) holds trivially. So assume
0¢ {x,y}and (xoy)#1. Then xoy=aorxcy =a". If xoy =a, then x =y =aq,
and a¥c(@oa)  =a“=a . Ifxcy=a“, then x =y =a“, and a*“ - (a¥oqY) =
a=a"”".

We have seen that A satisfies the 1'-free equations defining R4. If ¢ denotes
the term e(x) =(x"ox~)~, then we have e(a) =(a“ca ) =a,e(a")=a"
and e(0) =1=e(1). Thus A satisfies x <xoe(y) but A does not satisfy
x<xo(e(y) e(y). QED(Proposition 1)

Next we will use the methods used so far to axiomatize the identity-free equations
valid in RRA and to describe the interconnections between the relation-theoretic
operations: intersection, complementation, relation composition, converse and the
identity constant.

It is not very difficult to finitely axiomatize converse over the rest of the
operations, if we can use the identity constant. Namely, in any relation algebra
A=(Age, Y, 1) wehave x¥ =X {y: yox~ <17}, see e.g. [6]. The next theorem says
that we can finitely axiomatize converse over relation composition without using the
identity constant, and with using equations.

Let RRA® denote the class of all algebras, up to isomorphisms, whose universe
consists of some subrelations of an equivalence relation and whose operations are
the Boolean ones and relation composition. Similarly, let RRA°" be the class of all
algebras of binary relations, up to isomorphisms, whose operations are the Boolean
ones, relation composition and taking converses.

Let X denote the set of the following equations:

(oA

xM=x, (V=X
(xoy)¥=yYex¥, xo(xYeoyT) £y,

xZ<xo[(yYoy )T (¥ Yoyl
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THEOREM 2. X is a finite axiomatization of RRA°"" over RRA®, i.e. for any
algebra (A, o, %) such that (A, ) € RRA®,

(A,2,") eRRA®"  ifff (A,=,9)F2.

Proof. Let A =(A,, ¢, ¥) be an algebra such that (Ay, ) e RRA® and 2 is valid
in A. Then A satisfies the conditions of Theorem 1, hence the canonical extension
A°=(A}], o, ¥) of A is a reduct of an RA, say (A% 1') € RA. In particular, (A,, 1')
satisfies

—u uU—

xYoxT <1, xV=x
In order to show (A’ 1') € RRA, we first show that the “BA, o”-reduct (Ag, <) of A°
is representable as an algebra of subrelations of some equivalence relation.

Let A’ = (A, ©). By our assumption, A’ € RRA°, hence A’ is a subreduct of an
RRA, say, A’=C'=RdC for some Ce RRA. Let A”, C° C° be the canonical
extensions of A’, C',C. Then A” = C“=RdC° It is known that RRA is closed
under canonical extensions. This was proved by J.D. Monk (announced in [9], for
proofs see [11], or [2]). Thus C°e RRA by Ce RRA, and then (Ag, o) = RdC",
showing that (Ag, o) is a subreduct of an RRA.

Thus we may assume that the elements of 4° are binary relations, with the
greatest one, 1, being an equivalence relation, and the operations of (Ag, o) are
intersection, complementation, and real relation composition.

Now we show that we may assume that 1° (for which (A% 1') € RA) is the
identity relation on the field U of 1. Recall that the equation xo 1'=10ox =Xx is
satisfied. By 1’0 1’ < 1’ then we have that 1’ is transitive. Next we show that 1’ is
reflexive, i.e. that Id, = {(u,u): u e U} = 1'. Let u € U be arbitrary. Then (4, u) € 1.
Then by 1 =1- 1, there is a w with (w,w) e 1". If (u, u) ¢ 1’ then (u,u) e 1'~ (by
(u, u) € 1), hence (w, u) € 1’ '~ = 1’7, contradicting (w, #) € 1'. Thus 1’ is reflexive.
Now, 1' is also symmetric, because if (w,w)el’ and (w,u)el’~, then
(u,u) €1’= 1'~ = 1’7, contradicting (¥, u) € 1’. Thus 1’ is an equivalence relation on
U. Let (u,u’), (v,v") €1’ and assume that (4, v) ex, x € A°. Then (u',v)el’ o xo
"= x, thus (4, v") € x. Therefore, we may “factorize out” with 1, i.e. we may
assume that 1’ = Id,,.

Finally, we show that x¥=x"' for all xeA4° By xYox~ <1~ we have
xYox~ cIdy, hence x¥ = x~'. Similarly, x ¥ < (x~) !, hence by x ¥ =x"" we
have x¥~ = (x~")~, hence x ' = xV, i.e. x¥=x"! and we are done.

QED(Theorem 2)

We call an equation identity-free, or shortly 1'-free, if the constant 1’ does not
occur in the equation.
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COROLLARY 1. (i) All the V'-free equations valid in RA can be derived from X
together with the Boolean equations, and associativity and additivity of o.

(i) All the V'~free equations valid in RRA can be derived from X together with
those equations valid in RRA which contain only the Boolean operations and o.

Proof. (i) Let I' denote the set of equations consisting of the Boolean equations
together with equations stating associativity and additivity of o. Le e be any 1'-free
equation valid in RA4, and let A = (A, ¢, “) be any algebra such that AF X UT.
Then by Theorem 1, A is a subalgebra of the 1'-free reduct of an R4, hence e holds
in A. We showed 2 UT Fe.

(ii) Let e be an 1'-free equation valid in RRA, and let Eg(RRA°) denote the set
of all equations valid in RRA which contain only the Boolean operations and o.
Then Eg(RRA°) is the set of all equations valid in RRA°. Let A = (A, o, ¥) be any
algebra in which Z U Eq(RRA®) holds. It is proved in [12] that RRA° is a variety.
Hence (A, ©) € RRA° by A F Eg(RRA®). Then by A kE X and by Theorem 2 we have
Ae RRA", and then A F e because 1’ does not occur in e and e is valid in RRA.

QED(Corollary 1)

REMARK 1. Theorem 2 and Corollary 1 are part of the following picture of
the RRA-operations U, —, ¢, ¥, 1". If we take the Boolean operations v, — for
granted, then the only cause of nonfinite axiomatizability of RRA is o; namely ~ and
1" are finitely axiomatizable over any other subsets of the operations, while o is only
infinitely axiomatizable over any set of others. This is shown in Figure 1, where also
the finite axiom sets are given. In Figure 1 it is also indicated which reduct classes
are only quasi-varieties and not varieties, and which of them are not finitely
axiomatizable. With the exception of Theorem 2 we do not prove the above
mentioned finite axiomatizability statements, because these proofs are easy, or are
contained in the proof of Theorem 2.

How to read the following figure: The nodes represent classes of all subreducts
of RRA’s where the operations of the reducts are those indicated along the path
leading to the node. In other words, a node represents the class of all algebras of
binary relations, up to isomorphisms, where the greatest relation is an equiva-
lence relation and the operations are those indicated along the path leading to the
node.

The label oo on an edge between two nodes means that the smaller one of the
two corresponding classes is not finitely axiomatizable over the other (in the same
spirit as in Theorem 2). The set A of axioms on an edge between two nodes means
that 4 is an axiomatization of the smaller one over the other. E.g. using the
notation RRA®"" analogously to RRA° etc, the figure states that
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RRA® = {A = (Aq, o, I'): (Ag, ©) € RRA®, AE xo I'=10ox =x}, and
RRA = RRA*™V = {A = (Ao, 5, % 1): (Ay, o, 1) € RRA*T,

AEx“ox <17, x°"=x"Y},

and these statements follow from the proof of Theorem 2. We note that 1’V =1’
follows from x e (x“»y~)~ <y by substituting 1’, 1'~ in place of x, y, and then
using monotony and idempotence of v.

On Figure 1, all classes represented by the nodes are varieties except the ones
inside a box (those are only quasi-varieties), and the classes inside a double circle
are not finitely axiomatizable, all others are. E.g. RRA° is not finitely axiomatizable,
because it is known that RRA is not finitely axiomatizable, but by the proof of
Theorem 2, as shown on the figure, RRA is finitely axiomatizable over RRA°.

xM=x

(x+5)u, xu+3v

(xew) = ylox?

xo(xoy) <y

x € xo [(@ay T (yoyy]

Figure 1
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We note that the above picture is radically different for algebras of ternary
relations (or m-ary with 2 <n < @), where almost all the basic operations are
nonfinitely axiomatizable over the rest, see [1] or [12].

We note that the axiomatization x o 1’ =1+ x = x works only in the presence of
complementation (see the proof of Thm. 2). For example, we know that n, o is
finitely axiomatizable (see [3]), but it is an open problem whether N, o, Id is finitely
axiomatizable or not. Related results about axiomatizability of some of the opera-
tions over the others without insisting on the presence of all the Booleans are in
[12].
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