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Axiomatization of identity-free equations valid in relation algebras 

H. ANDRI~KA AND I. NI~METI 

Dedicated to the memory of Alan Day 

Abstract. A finite axiom set for the identity-flee equations valid in relation algebras is given. This is a 
simplification of the one given by Jrnsson, and confirms a conjecture of Tarski. An axiom set for the 
identity-free equations valid in the representable relation algebras is given, too. We show that in the class 
of representable relation algebras, both the operation of taking converse and the identity constant are 
finitely axiomatizable (over the rest of the operations). 

In [4], [5] J6nsson defined the class SPA of specification algebras as the 1'-free 
subreducts of relation algebras (RA's). [4] and [5] give a finite axiomatization for 
SPA. This axiomatization consists of the l'-free axioms of RA together with a finite 
set of equations called condition (iii) in [4]. It is asked in [4] whether condition (iii) 
can be simplified. 

Independently, Tarski raised the problem whether either the equation 

x < x o ( y ~ o y - ) -  or (T1) 

x < x o  [ ( y ~ o y - ) - .  (z ~ o z - ) - ]  (T2) 

is sufficient in place of condition (iii). Tarski's original terminology of course was 
different, we quote Problem 21 from [10]: 

"21. (Tarski) Can all relation algebraic identities not involving 1' be derived 
from the axioms for relation algebras, with the identity x = x o 1' = 1' o x replaced 
by x < x o ( y ~ o y - )  or by x _ < x o [ ( y  ~ o y - ) - . ( z  ~ o z - ) - ] ?  Tarskibelieves that 
he once proved this for one or the other of the two identities. Note that the identity 
1' _< (y~ o y - )  - is true in every relation algebra." 
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The present paper consists of  two parts. The first part contains Theorem 1 and 
Proposition 1. Theorem 1 states that condition (iii) in the theorem of  [4] can be 
replaced with the following simpler consequence of (T2) 

x < x o [ C y U o y - ) - C y  ,Ooy)-] 

and Proposition 1 states that (iii) cannot be replaced with Tarski's shorter equation 
(T1). This way Tarski's problem receives a complete answer. 

We note that independently of us, at the same time as we did, Bjarni J6nsson, 
Peter Jipsen and John Rafter also proved sufficiency of the simpler form of (T2) in 
place of (iii), see [7]. 

In the second part of the paper we show that the methods we use for proving 
Theorem 1 are suitable for proving results on representable relation algebras 
(RRA's ) ,  too. At the end of the paper we show that given the Boolean operations, 
composition brings in an infinite number of valid equations, but both the operation 
of taking converses and the identity constant bring in only finitely many valid 
equations. So the sole cause for nonfinite axiomatizability of R R A  is relation 
composition. This situation is radically different from algebras of n-ary relations, 
n > 2, where the operations share the blame for nonfinite axiomatizability: each of 
them brings in essentially infinitely many new valid equations modulo the rest of the 
operations, see [1]. 

We now briefly recall some of  the definitions. 
A relation algebra (an R A )  is an algebra A = ( A 0 ,  o,~,I ' ) ,  where 

A0 = (A, + ,  �9 - ,  0, 1) is a Boolean algebra, o, ~, 1' are binary, unary and zero-ary 
additive operations on A o, (A, o, ~, 1') is an involuted monoid, and further the 
equation 

x ~ o ( x o y )  < y -  

holds. 
The l'-free reduct of an RA A = (Ao, o 

(Ri 

, '~, 1') is the algebra (Ao, o, ~). 
The canonical extension, or ultrafilter extension, or perfect extension, of an R A  

is defined e.g. in [8], Def. 2.14. 

T H E O R E M  1. Suppose A = (A0, o, '~) is an algebra that satisfies the axioms for  

relation algebras with the exception o f  the axiom x o 1 '=  1'o x = x .  Then the 

following conditions are equivalent: 

(i) A is a subalgebra o f  the l'-free reduct o f  an RA.  

(ii) The canonical extension o f  A is a l'-free reduct o f  an RA.  

(iii) A satisfies the identity x < x o [(y'~ o y -) - - (y  -~ o y) -]. 
(iv) A satisfies the identity x <_ x o [(y~ o y -) - �9 (z '~ o z -) -]. 
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P r o o f .  Assume that A = (Ao, o, u) is as in the hypothesis o f  the theorem, i.e. A o 
is a Boolean algebra, o, ~ are additive, (A, o, u) is an involuted semigroup and (R) 

holds. First we show that  the following also holds: 

u is a Boolean homomorph i sm,  in particular x - U =  x U-. 

Indeed, since ~ is additive, it is monotonic .  Thus by 1 ~ < 1 we have 1 ~U < 1 U, i.e. 
1 < 1  ~,hence  1 = 1  ~ . N o w l = l  ~ = ( x + x - ) ~ = x  ~ + x - ~ , h e n c e x - ~ _ > x  U . T h e n  

(xQ  -~ >__ x ~ -  = x - ,  and thus x ~-  = (x U-) ~ = (x ~-~) ~ > (x - )u ,  i.e. x - ~  = x ~-.  

We now turn to proving Theorem 1. By substituting y, 1' in place o f  x, y in (R), 

we get y~ o y - <  1 ' - ,  i.e. 1'_< (y~  o y - ) - ,  hence in every relation algebra the 
identity in (iv) holds. This shows (i) ~ (iv). The implications ( i i ) ~  (i) and 

(iv) ~ (iii) are easy to check. Therefore it is enough to show that  (iii) ~ (ii). 

Assume (iii). Fo r  any a e A let 

e(a)  = ( a ~ o  a - ) -  and ~(a) = e ( a ) .  e ( a - ) .  

Then (iii) states that  x _< x o e(y) holds in A. 

L E M M A  1. e(a) o e(a) <_ e(a) = e(a) ~ a n d  e(a) o 1 = 1, f o r  a n y  a ~ A .  

P r o o f .  Let a 6 A be arbitrary. First we show 

e(a) o e(a)  < e(a).  (1) 

By replacing x, y in the equat ion (R) with a u, a -  we immediately obtain that  

a o e(a)  < a. (2) 

An  easy computa t ion  shows 

e(a)  ~ = e(a - ) .  (3)  

Indeed, e(a)  ~ = (a ~ o a - ) - ~  = (a U o a - ) ~ -  = ( a - ~ ' o a  ~ ) -  = ( a - ~ o a ) - =  

( a - ~  o a -  - ) -  = e ( a - ) .  

We will use the following consequence o f  (R): 

x o y < x  implies y < ( x  ~ o x  ) - .  (R1) 

Indeed, assume x o y < x, i.e. x < (x o y) --. By m o n o t o n y  of  o and by (R) we then 
have x ~ o x -  <_ x U o (x  o y ) -  < y - ,  i.e. y <_ ( x ~  o x - )  . 
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N o w  by (2) and  m o n o t o n y  o f  o we have a o e(a) o e(a)  <_ a, hence by (R 1) we 

have e(a)  o e(a) < (a '~ o a - )  = e(a). Thus  (1) is p roved  and this immedia te ly  implies 

e(a) o e(a) <_ e(a). By (3) we ob ta in  e(a) = e(a) ~. By (iii) we have 1 _< 1 o e(a), thus 

1 = 1 oe(a). Then by app ly ing  converse  to bo th  sides we ob ta in  

~(a) o 1 = 1. Q E D ( L e m m a  1) 

L E M M A 2 .  a o a < a = a ~ a n d  a o 1 = 1  i m p l y  e(a) = a, f o r  a n y  a ~ A .  

P r o o f  Assume  tha t  a o a < a  = a  ~ a n d  a o 1 = 1. By (3) it is enough to show 

tha t  e ( a ) = a .  B y a o a < a a n d  (R1) we have a < ( a  ~ o a - )  = e ( a ) .  On the o ther  

hand,  b y a o  l = l w e h a v e a - < l = a o  l = a o a + a o a - , h e n c e b y a - . ( a o a ) = 0  

we get a < a o a -  = e(a) - .  Q E D ( L e m m a  2) 

L E M M A  3. e ( e ( a ) . e ( b ) )  = e ( a ) .  ~ ( b ) f o r  a n y  a, b c A .  

P r o o f  It  is enough to show tha t  m = ~ ( a ) . e ( b )  satisfies the condi t ions  o f  

L e m m a  2. N o w  m o m < m = m ~ holds  since by  L e m m a  1, ~(a) o e(a) <_ e(a) = ~(a) ~ 

and the same holds  for  e(b). Thus  it is enough to show m o 1 = 1. 

By (R) and  the first pa r t  o f  L e m m a  1 we have e(a) o e(a) - <_ e(a) (by  replacing 

x, y in (R) with e(a), ~(a) respectively).  By (iii) we have e(a)<_ e (a)o  e ( a ) <  e (a)o  

(e(a) " e(b)) + e(a) . (e(a) o e ( a ) - )  = e(a) o (e(a) . e(b)) = e(a) o m.  Then by  the second 

pa r t  o f  L e m m a  1, 1 < 1 o e(a) < 1 o e(a) o m <_ 1 o m ,  and  by  app ly ing  converse  on bo th  

sides we get m o 1 = 1. Thus  by  L e m m a  2 we have m = e(m). Q E D ( L e m m a  3) 

By L e m m a  3, the set E = { e ( a ) : a ~ A } = { a ~ A : a o a _ < a = a U ,  a o  1 = 1 }  is 

closed under  intersect ion,  and  clearly by  (2) and  (iii) we have a o e(a) = a. 

Let  e be the meet  o f  E in the canonica l  extension A ~ o f  A, i.e. let e = 11 E. This 

exists because  A ~ is complete .  We  will show that  x o e = x for all x ~ A ~. Since o is 

comple te ly  addi t ive  in AL it is enough  to show this for a toms  x o f  A ~. Every  a t o m  

in A ~ is the meet  o f  an ul traf i l ter  o f  A. Let  x be an a t o m  o f  A ~ and  let 

x = 17F, F _ ~ A .  Then  x o e _<a o e _<a for  all a ~ F ,  thus x o e < 1 1 F = x .  To show 

the o ther  direct ion,  recall  tha t  b < b o a for  all b E A and  a ~ E by  our  equa t ion  (iii). 

Since A ~ is compac t  and  E is closed under  intersect ions,  for  any  b ~ A we have tha t  

e < b iff (a < b for  some a ~ E) .  Since x = 17 F, e = 11 E, F, E ___ A, by  the defini t ion 

o f  a perfect  extension we have 

x o e = H  { y o b : x  < y , e  < b , y , b ~ A  } 

< I ~ { y o a : y ~ F ,  a E E } < l ~ { y : y 6 F } = I ~ F = x .  Q E D ( T h e o r e m  1) 
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P R O P O S I T I O N  1. In  T h e o r e m  1, (iii) c a n n o t  be r e p l a c e d  b y  ( i i i) '  below: 

(i i i) '  A sa t i s f i e s  the  i d e n t i t y  x <_ x o ( y  ~ o y - )  . 

P r o o f  Let  A = {a, a ~, 0, 1 } and let A o be the 4-element  Boolean  a lgebra  with 

universe A ( and  a toms  a, a~). Let  o and ~ be addi t ive,  a o a = a, a ~ o  a ~  a ~, 

a o a  ~ = a  ~ o a = l  and  l e t a  ~ = a , 0  ~ = 0 , 1  ~ = 1 .  

We now check tha t  A = (Ao, o, ~) satisfies the equat ions  defining RA, except  those 

involving 1'.: F o r  all x , y  we have x o y  = a  i f f x  = y  = a ,  x o y  = a  ~ i f f x  = y  = a  ~, 

and  x oy  = 0  i f f ( x  = 0  or  y = 0 ) .  Us ing  these we get (x oy)  o z = a  i f f x  = y  = z = a  

iff x o ( y o z ) = a , ( x o y ) o z = a  ~ iff x - - y = z = a  '~ iff x o ( y o z ) = a  '~, and 

(x o y) o z = 0 iff 0 e {x, y, z } iff x o ( y  o z) = 0. This  shows tha t  o is associat ive.  

Checking  (x o y)  ~ = y~ o x~:  it  is enough  to check this for a toms.  I f  x = y then 

(x o x) ~ = x ~ = x ~ o x ~, and  if x r y, x, y are a toms,  then (x o y) ~ = 1 ~ = 1 = y ~ o x ~. 

Checking (R): I f  0 ~ {x, y } or  if  (x  o y) = 1 then (R) holds  trivially.  So assume 

0 ~ { x , y } a n d ( x o y ) r  T h e n x o y = a o r x o y = a ~ . I f x o y = a ,  t h e n x = y = a ,  

a n d a  ~ o ( a o a )  - - a  ~ = a - . I f x o y = a ~ , t h e n x = y = a ~ , a n d a  ~ ~ o ( a  '~oa~)  = 
a = a  '~ . 

We have seen tha t  A satisfies the F-free equat ions  defining RA. I f  e denotes  

the te rm e ( x )  = ( x  ~ o x - )  , then we have e(a)  = (a '~ o a ) -  = a, e ( a ~ )  = a ~ 

and e( 0) = l = e(1). Thus  A satisfies x < _ x o e ( y )  but  A does not  satisfy 

x < x o ( e ( y ) .  e ( y - ) ) .  Q E D ( P r o p o s i t i o n  1) 

Nex t  we will use the me thods  used so far  to ax iomat ize  the ident i ty-free equat ions  

valid in R R A  and  to describe the in terconnect ions  between the re la t ion- theore t ic  

opera t ions :  intersect ion,  complementa t ion ,  re la t ion compos i t ion ,  converse  and  the 

ident i ty  constant .  

I t  is not  very difficult to finitely axiomat ize  converse over  the rest o f  the 

opera t ions ,  if  we can use the ident i ty  constant .  Namely ,  in any re la t ion a lgebra  

A = (Ao o, ~, 1') we have x '~ = Z {y: y o x - _< 1'-},  see e.g. [6]. The next theorem says 

tha t  we can finitely axiomat ize  converse over  re la t ion compos i t i on  wi thou t  using the 

ident i ty  constant ,  and  with using equat ions.  

Let  R R A  ~ denote  the class o f  all a lgebras,  up to i somorphisms ,  whose universe 

consists o f  some subre la t ions  o f  an equivalence re la t ion and whose opera t ions  are 

the Boolean  ones and  re la t ion composi t ion .  Similarly,  let R R A  ~ '~ be the class of  all 

a lgebras  of  b ina ry  relat ions,  up to i somorphisms ,  whose opera t ions  are the Boolean  

ones, re la t ion compos i t i on  and  tak ing  converses.  

Let  X denote  the set of  the fol lowing equat ions:  

x ~ " ~ . = x ,  ( x + y ) ' ~ = x ' ~ §  ~, 

( x o y ) ~ = y ' ~ o x  U, x o ( x ' ~ o y  - )  < y ,  

x _< x o [ ( y ~ o  y - ) -  �9 ( y - ~ o  y) -].  
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T H E O R E M  2. S is a f inite axiomatization o f  R R A  ~ "~ over RRA ~ i.e. for  any 

algebra (A, o, ~) such that (A, o) e R R A  ~ 

(A, o, ~) e RRA ~ /ff (A, o, ~) ~ Z. 

P r o o f  Let A = (A0, o, ~) be an algebra such that  (A0, o) e R R A  ~ and Z is valid 

in A. Then A satisfies the conditions o f  Theorem 1, hence the canonical  extension 

A ~ = (Ag, o, ~) o f  A is a reduct o f  an RA, say (A ~, 1') e RA. In particular, (A~, 1') 

satisfies 

X U o N - _ <  l ~-,  X - U  = X  U . 

In  order  to show (A ~, 1') ~ R R A ,  we first show that  the "BA, o"-reduct (Ag, o) o f  A ~ 

is representable as an algebra o f  subrelations o f  some equivalence relation. 

Let A'  = (A0, o). By our  assumption,  A'  ~ R R A  ~ hence A'  is a subreduct o f  an 

R R A ,  say, A'_~ C ' =  RdC for  some C ~ R R A .  Let A '~, C '~, C ~ be the canonical  

extensions o f  A', C', C. Then A'~_~ C ' ~ =  RflC ~. It  is known that  RRA is closed 

under  canonical  extensions. This was proved by J.D. M o n k  (announced  in [9], for 

proofs  see [11], or  [2]). Thus C ~ R R A  by C ~ R R A ,  and then (A~, o ) ~ R d C  ~, 

showing that  (Ag, o) is a subreduct  o f  an RRA. 

Thus  we ma y  assume that  the elements o f  A ~ are binary relations, with the 

greatest one, 1, being an equivalence relation, and the operat ions o f  (Ag, o) are 

intersection, complementat ion,  and real relation composit ion.  

N o w  we show that we m a y  assume that  1' (for  which (A ~, 1 ' )~  RA) is the 

identity relation on the field U o f  1. Recall that  the equat ion x o 1' = 1' o x = x is 

satisfied. By 1' o 1' ~ 1' then we have that  1' is transitive. Next  we show that  1' is 

reflexive, i.e. that  Idv  = {(u, u): u ~ U} _~ 1'. Let u ~ U be arbitrary. Then (u, u) ~ 1. 

Then by 1 _~ 1 o 1', there is a w with (w, u) e 1'. I f  (u, u) r 1' then (u, u) ~ 1 '-  (by 

(u, u) e 1), hence (w, u) e l ' o  1 ' -  _~ 1 ' - ,  contradict ing (w, u) e 1'. Thus 1' is reflexive. 

Now,  1' is also symmetric, because if ( u , w ) ~  1' and (w,u)  E 1 ' - ,  then 

(u, u) e 1' o 1 ' -  _ 1 ' - ,  contradict ing (u, u) e 1'. Thus 1' is an equivalence relation on 

U. Let (u, u'), (v, v') e 1' and assume that  (u, v) ~ x, x e A ~. Then (u', v') ~ 1' o x o 

1'_~ x, thus (u', v ' ) ~  x. Therefore, we m a y  "factorize ou t"  with 1', i.e. we may  

assume that  1' = Idu. 

Finally, we show that  x U = x  -1 for all x e A ~. By x ~ o x - _ <  1'-  we have 

x ~ o x -  ~_ Ida ,  hence x ~ ~ x - l .  Similarly, x - ~  ~ ( x - )  -1, hence by x - ~  = x ~-  we 

have x ~-  ___ (x-~) - ,  hence x -1 ___x ~, i.e. x ~ = x  - l  and we are done. 

Q E D ( T h e o r e m  2) 

We call an equat ion identity-free, or shortly l'-free, if the constant  1' does not  
occur in the equation. 
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COROLLARY 1. (i) All the l'-free equations valid in RA can be derived from S 

together with the Boolean equations, and associativity and additivity of  o. 

(ii) All the F-free equations valid in RRA  can be derived from S together with 

those equations valid in RRA  which contain only the Boolean operations and o. 

Proof. (i) Let F denote the set of equations consisting of the Boolean equations 

together with equations stating associativity and additivity of o. L e e  be any l'-free 

equation valid in RA, and let A = (A0, o, ~) be any algebra such that A ~ S u F. 

Then by Theorem 1, A is a subalgebra of the 1'-free reduct of an RA, hence e holds 
in A. We showed Z u F  ~ e. 

(ii) Let e be an l'-free equation valid in RRA,  and let Eq(RRA ~ denote the set 

of all equations valid in RRA which contain only the Boolean operations and o. 
Then Eq(RRA ~ is the set of all equations valid in R R A  ~ Let A = (A0, o, ~) be any 

algebra in which 2; u E q ( R R A  ~ holds. It is proved in [12] that RRA ~ is a variety. 
Hence (A 0, o) E RRA ~ by A ~ Eq(RRA~ Then by A ~ S and by Theorem 2 we have 

A ~ RRA  ~ and then A ~ e because 1' does not occur in e and e is valid in RRA.  

QED(Corollary 1) 

R E M A R K  1. Theorem 2 and Corollary 1 are part of the following picture of 
the RRA-operations u , - ,  o, ~, 1'. If we take the Boolean operations u , -  for 

granted, then the only cause of nonfinite axiomatizability of R R A  is o; namely ~ and 
1' are finitely axiomatizable over any other subsets of the operations, while o is only 

infinitely axiomatizable over any set of others. This is shown in Figure 1, where also 

the finite axiom sets are given. In Figure 1 it is also indicated which reduct classes 
are only quasi-varieties and not varieties, and which of them are not finitely 

axiomatizable. With the exception of Theorem 2 we do not prove the above 
mentioned finite axiomatizability statements, because these proofs are easy, or are 

contained in the proof  of Theorem 2. 
How to read the following figure: The nodes represent classes of all subreducts 

of RRA's  where the operations of the reducts are those indicated along the path 
leading to the node. In other words, a node represents the class of all algebras of 

binary relations, up to isomorphisms, where the greatest relation is an equiva- 
lence relation and the operations are those indicated along the path leading to the 

node. 
The label oo on an edge between two nodes means that the smaller one of the 

two corresponding classes is not finitely axiomatizable over the other (in the same 
spirit as in Theorem 2). The set A of axioms on an edge between two nodes means 
that A is an axiomatization of the smaller one over the other. E.g. using the 
notation RRA ~ analogously to RRA ~ etc, the figure states that 
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R R A  ~ = {A = (A0, ~ 1'): (A0, o) E RRA ~ A k x o 1' = 1' o x -- x}, and 

R R A  = R R A ~  {A = (Ao, o, ~, 1'): (A0, o, 1') E RRA ~ 

A ~ x ~  o x -  < l ' - , x ~ - = x  ~}, 

and these s ta tements  follow f rom the p r o o f  o f  Theo rem 2. We note  that  1 '~ = 1' 
follows f rom x o (x ~ o y - )  < y  by substi tuting 1', 1 ' -  in place of  x , y ,  and then 

using m o n o t o n y  and idempotence  of  ~ 
On Figure 1, all classes represented by the nodes are varieties except the ones 

inside a box ( those are only quasi-varieties), and the classes inside a double circle 
are not  finitely axiomatizable ,  all others are. E.g. R R A  ~ is not  finitely axiomatizable,  
because it is known that  R R A  is no t  finitely axiomatizable,  but  by the p r o o f  of  

Theo rem 2, as shown on the figure, R R A  is finitely axiomat izable  over  R R A  ~ 

X-~Xo 

Xt/q~X 

x~163176 

~oX'=• G 

ri0 O 
- �9 

Figure 1 
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We note  that the above  picture is radically different for algebras o f  ternary 
relations (or  n-ary with 2 < n < ~o), where a lmost  all the basic operat ions  are 
nonfinitely axiomatizable  over the rest, see [1] or [12]. 

We  note  that the ax iomat izat ion  x o 1' --- 1' o x = x works  only  in the presence o f  
complementa t ion  (see the p r o o f  o f  Thm.  2). For  example,  we k n o w  that c~, o is 
finitely axiomat izable  (see [3]), but it is an open  problem whether  c~, o, Id is finitely 
axiomatizable  or not.  Related results about  axiomatizabi l i ty  o f  some o f  the opera-  
t ions over the others wi thout  insisting on the presence o f  all the Boo leans  are in 

[121. 
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