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Relation algebras as residuated Boolean algebras 

BJARNI J6NSSON AND CONSTANTINE TSINAKIS 

1. Introduction 

The arithmetic of relation algebras is more transparent, and appears less 
accidental, if it is placed within the general framework of  Boolean algebras with 
residuated operators. The purpose of  this paper is to substantiate this claim. 
Residuation, and the equivalent concept of conjugacy, have always played a central 
role in the axiomatic development of  relation algebras (see e.g. Chin and Tarski [2] 
and Birkhoff [1]) but our aim is to make this more explicit. In the process we will 
obtain several characterizations of  relation algebras and of non-associative relation 
algebras as special residuated Boolean algebras. For relation algebras, one such 
characterization already exists in Hoare and Jifeng [3, p. 234]. 

2. Residuated unary operators 

The notion of  residuation can be applied to unary operations on a partially 
ordered set, or to maps between partially ordered sets, but here it will only be 
needed for operations on Boolean algebras. In this setting it is convenient to 
consider also the equivalent notion of  conjugacy. 

A unary operation f on a Boolean algebra A = (A, + ,  0,.,  1, ) is said to be an 
operator provided it is additive (preserves binary joins). If, in addition, f ( 0 ) =  0, 
then f is said to be linear. By a residual and a conjugate of  f we mean unary 
operations f r  and f f  on A satisfying the following equivalences for all x, y �9 A. 

f ( x )  <- y iff x -< i f (y ) .  (1) 

f ( x ) y  = 0 iff fC(y)x  = O. (2) 
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The operations f "  and fc are unique whenever they exist. If one of  them exists, then 
so does the other, and they are related via the formulas 

f~(x) =fr(x ) - ,  fr(x) =fC(x-)- .  (3) 

I f f  r a n d f  ~ exist, t h e n f i s  said to be residuated. A residuated operation is linear; in 
fact, it preserves all existing joins. If f is residuated, then so is f~, with fcc = f ,  and 
therefore f~r(x) =-f(x-)- .  On the other hand, f r  is residuated in the algebraic dual 
of  A. In particular, f r  preserves all existing meets. 

Although residuals and conjugates can be used interchangeably, we tend to use 
conjugacy as the primary concept. This is partly due to the symmetry exhibited by 
conjugacy: If  the operation f has a conjugate f~, then f c  also has a conjugate and 
fc~ = f .  Also, for a relation algebra the conjugate of the operator x ~ a o x is 
y ~--~a ~ o y, while the residual is given by the more complicated formula 
y ~ ( a  ~ o y - ) - .  

The following fact will be quite useful: 

I f f  is a residuated unary operator on A, then 

f(x)y <-f(xfC(y)) for all x, y s A. (4) 

Indeed, let z=f(xfC(y)). It is evident that f(xfC(y))z-=O and hence 
xfC(y)fC(z -) = 0. Since f c  is isotone, this implies that xf~(yz -) = 0, f ( x ) y z -=  0 
and f(x)y <- z. 

We shall also make extensive use of the observation that the composition fg of 
two residuated unary operators f and g on A is residuated, with 

(fg)C = gCfC. (5) 

3. Residuated binary operators 

Let f be an operation of rank n > 1 on a Boolean algebra A. By a translate of 
f w e  mean a unary operation obtained by holding fixed all but one of the arguments 
o f f .  We say that f is an operator if all the translates o f f  are operators, that f is 
linear if all the translates o f f  are linear, and that f is residuated if all the translates 

of  f are residuated. 
The case of a binary operation o is particularly important. If o is residuated, then 

we denote by \ and / the operations such that, for all x, y, z ~ A, 

xoy<_z iff y < x \ z  i f f x<z /y ,  (1) 
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and  by < and  ~> the ope ra t ions  such tha t  

(x o y )z  = 0 iff (x  t> z)y = 0 iff (z <1 y ) x  = O. (2) 

In o ther  words,  the o p e r a t o r  x ~-~ a o x has y ~ a \ y  as its residual  and  y ~-~ a ~> y 

as its conjugate ,  while for  x ~-~ x o a the residual  is y ~ y / a  and the conjugate  is 

y ~ y <~ a. We  refer to \ and  / as the right and  the left  residuals o f  o, and  to t> and  

<~ as the right and  left  conjugates o f  o. F r o m  2(3) we ob ta in  

a t> y = ( a \ y  ) , a \ y = ( a  E> y - ) - ,  (3) 

y < ~ a = ( y - / a ) - ,  y / a = ( y -  < a )  . (4) 

W e  will m a k e  f requent  use o f  the fact tha t  the oper to rs  o, > and  <~ are  

res iduated.  Indeed,  by hold ing  fixed one or  the o ther  o f  the a rguments  in each o f  

the ope ra to r s  o, t> and  <~, we ob ta in  three pairs  o f  conjugate  opera to r :  

x ~ a o x  and  y ~ a  E>y are conjugates .  (5) 

x ~ x o a  and  y ~ - ~ y  < a  are conjugates .  (6) 

x ~ a  < x  and  y ~ y t > a  are conjugates .  (7) 

These s ta tements  fol low direct ly f rom (2). 

I t  will be useful to have names  for  the t ransla tes  o f  the opera t ions  o, E> and  <~. 

Let  

L(a) (x )  = a o x,  R(a)(x)  = x o a, Q(a)(x)  = a <~ x. 

Then  

L(a)  ~(y) = a E> y, R(a)" (y )  = y <~ a, Q(a) ~(y) = y t> a. 

A p p l y i n g  2(4) to these six opera t ions ,  we ob ta in  the fol lowing inclusions: 

(a o x ) y  <- a o x (a  t> y). 

(x  oa)y  <- x ( y  <~ a) oa.  

(a <~ x ) y  <- a ,~ x ( y  c> a). 

(a E> x ) y  <- a E> x(a  o y). 

(x <~ a)y <- x ( y  o a) <~ a. 

(x  [> a)y < x(a  < y) E> a. 

(8) 

(9) 

(lO) 

(11) 

(12) 

(13) 
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F o r m u l a  2(5) can be used to rewrite var ious  identit ies.  As  an i l lust ra t ion,  we 

consider  the associat ive law, x o ( y  o z) = (x o y) o z. H o ld ing  fixed two o f  the three 

variables,  we write 

a o (b o x) = (ao b) o x, a o (x o b) = (a o x) o b, x o (a o b) = ( x o  a) o b. 

F o r  fixed a and b, these identi t ies  are  equivalent  to the equat ions  

L(a)L(b) = L ( a o  b), 

and  by 2(5) these yield 

L(b)CL(a)C=L(ao  b) ~, 

L(a)R,(b) =R(b)L(a) ,  

R(b)CL(a)C=L(a)CR(b) ~, 

This shows that  the fol lowing four  identi t ies are equivalent  

x o ( y  o z) = (x oy)  o z. 

x ~- (y c> z) = ( y  ox) E> z. 

( x ~ > y ) < z = x > ( y < z ) .  

x < ( y o z ) = ( x  <z)  < y .  

R ( a o  b) =R(b)R(a) ,  

R ( a o  b)C=R(a)CR(b) c. 

(14) 

(15) 

(16) 

(17) 

4. Unital algebras 

By a residuated Boolean algebra, or an r-algebra, we mean  an  a lgebra  

A = (Ao, o, c>, < )  such tha t  Ao = (A, + ,  0 , - ,  1, ) is a Boolean  a lgebra  and o is a 

res idua ted  b inary  ope ra t ion  on A o with c> and < as its r ight  and  left conjugates .  

I f  o has a uni t  e ( tha t  is, x o e = e o x = x  for all x EA) ,  the a lgebra  

A '  = (A o, o, e, t>, < )  is called a unital residuated Boolean algebra, or  a ur-algebra. 
If, fu r thermore ,  o is associat ive,  so tha t  (A, o, e) is a mono id ,  then A '  is called a 

residuated Boolean monoid, or an rm-algebra. 
Var ious  genera l iza t ions  o f  Tarsk i ' s  no t ion  o f  a re la t ion a lgebra  have been 

invest igated by R. M a d d u x ,  see e.g. M a d d u x  [4]. In  our  te rminology,  an a lgebra  

A = (Ao, o, e, ~) is a non-associative relation algebra, or an NA,  if  the a lgebra  

A ' =  (Ao, ~ e, t>, < )  with 

a ~ x = a ~ o x ,  x < a = x o a  ~ 

is a ur -a lgebra ,  and  A is a relation algebra, or an RA,  if  A '  is an rm-a lgebra .  
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In order for a ur-algebra to be of  the form A' for some NA A, the operations 

c> and <3 must be expressible in the form 

a t > x = f ( a )  ox, x < 3 a = x o g ( a )  

with f and g operations on A, actually with f and g equal to the same operation, 
namely ~. The ur-algebras with this property will be characterized in the next 

section. Here we consider separately the two operations E> and <3. 

T H E O R E M  4.1. For any ur-algebra A = (A o, o, e, t>, <3), the following condi- 

tions are equivalent: 

For some unary operation f on A, 

a E> b = f ( a )  o b for  all a, b 6 A. ( la )  

a c> b = ( a E > e )  ob for  a l la ,  b ~ A .  ( l b )  

a o b = ( a  ~> e) ~> b for  all a, b e A .  ( lc)  

b < 3 a = e  <~(a <3b) for  a l la ,  b 6 A .  ( l d )  

Proof. I f  ( la )  holds, then f ( a ) = f ( a ) o  e = a  [> e, whence ( lb )  holds. Con- 
versely, if ( lb)  holds, then ( la )  holds with f ( a )  = a t> e. 

Keeping fixed one or the other of  the arguments a and b, we can write ( lb )  
either as L(a)C = L(a c> e) or as Q(b) ~= R(b)Q(e) c. Taking conjugates, we obtain 
the equivalent equations L(a) = L(a c> e) C and Q(b) = Q(e)R(b)% which are ( lc)  

and (ld).  [] 

Of  course there is a symmetric result with E> and <3 interchanged. For  
convenient reference, we state this result explicitly. 

T H E O R E M  4.2. For any ur-algebra A = (Ao, o, e, c>, <3), the following condi- 

tions are equivalent: 

For some unary operation g on A, 

a <3 b = a o g(b) fo r  all a, b e A. (2a) 

a < 3 b = a o ( e  <3b) for  a l la ,  b e A .  (2b) 

a o b = a  <3(e <3b) for  all a, b ~ A .  (2c) 

a t> b = (b ~> a) t> e for  all a, b ~ A. (2d) 
[] 
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The next results shows that the map  a ~ e <~ a is an involution whenever 

a ~-~ a ~> e is an involution, and conversely. 

T H E O R E M  4.3. For any ur-algebra A = (A0, ~ e, t>, ,o), the identities 

(a L> e) E> e : a for  all a e A, (3a) 

e <~ (e <~ a) = a for  all a ~ 2t (3b) 

are equivalent and imply the identity 

a t> e = e  • a  for  a l l a � 9  (3c) 

The three identities hold whenever A satisfies either Conditions ( l a ) - ( l d )  or Condi- 

tions (2a ) - (2d ) .  

Proo f  The identities (3a) and (3b) can be written as Q(e)CQ(e)C= ~ and 

Q(e)Q(e) = z, respectively, where z is the identity map.  The two identities are 

therefore equivalent, since the conjugate o f  the identity map is the identity map.  

We assume next that  Condit ion (3a) holds, The condit ion asserts that  the 

operat ion a ~ a t> e is an involution and hence a bijection. Since it is also isotone, 

it is a Boolean automorphism.  In particular, 

ab ~ e = (a t> e)(b E> e) for all a, b � 9  

Condi t ion (3c) now follows f rom the fact that  the condit ions (a E> e)x = O, 

[(a t> e)x] t> e -- 0, [ ( a t > e )  t>e](x  ~>e)=O,  a ( x t > e ) = O ,  ( x o a ) e = O  and 

( e m  a)x = 0 are equivalent. 

To prove the last statement in the theorem, apply ( ld)  and (2d) with a = e and 

use the identity e E> x = x < e = x to obtain (3b) and (3a), respectively. [] 

We note that  Condi t ion (3c) does not  imply (3a) and (3b). Indeed, let A be the 

complex algebra o f  a free monoid  A*, and let 2 be the neutral element o f  A*, that  

is, the empty word.  Then e = {)~}. Hence a t> e and e <~ a are both  equal to e if 

2 �9 a, but  equal to 0 otherwise. Thus (3c) holds, but  (3a) does not  hold because 

( a t > e )  E > e < e f o r  a l l a � 9  

5. Relation algebras 

We first characterize those ur-algebras that  come f rom NA's .  It has already been 
observed that  the four equivalent conditions 4 ( l a ) - 4 ( l d ) ,  together with the four 
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equivalent condit ions 4 ( 2 a ) - 4 ( 2 d )  are necessary. The next theorem includes the 

converse o f  that  trivial observation.  

T H E O R E M  5.1. F or  any  u r - a l g e b r a  A = (Ao, o, e, t>, <~), the f o l l o w i n g  cond i -  

t ions  are  equ iva len t :  

For  s o m e  unary  opera t ion  ~ on A ,  

A ' =  (Ao, o, e, ~) is an N A .  ( la )  

For  al l  a, b ~ A ,  

a t >  b = ( a  t> e) ob, a < l b = a o ( e  <~b). ( lb )  

( A o ,  o, e,  _ t> e) is an N A .  ( lc)  

(A 0, o, e, e <~ _)  is an N A .  ( ld )  

Proo f .  I f  ( la )  holds, then the operat ions 

x ~--~ a o x and y ~--+ a ~  o y 

are conjugates o f  each other, and so are the operat ions 

x ~--, x o a and y ~--, y o a ~. 

Consequently,  a ~ o y = a t > y  and y o a  ~ = y  m a .  Taking y = e ,  we obtain 

a ~ = a  t> e = e  <~ a, and ( lb )  follows. 

Suppose ( lb )  holds. Then Condi t ions  4 ( l a ) - 4 ( l d ) ,  4 ( 2 a ) - 4 ( 2 d )  and 4 ( 3 a ) -  

4(3c) hold. By 4(3c), _ t> e and e t> _ are the same operat ion ~ and by 4( lb )  and 

4(2b), a ~ ox  = a  t> x and x o a  ~ = x  <~ a, so that  ( lc)  and ( ld)  hold. 

I f  ( lc)  holds, then ( l a )  holds with x ~ =  x t> e. Similarly, ( ld )  implies ( la) .  
[] 

I f  A is an rm-algebra,  then " N A "  can be replaced by " R A "  in Theorem 5.1, and 

we thus have a characterization o f  those rm-algebras that  come f rom R A ' s .  

However,  in this case the two identities in ( lb )  turn out  to be equivalent. 

T H E O R E M  5.2. For  any  r m - a l g e b r a  A = (A0, o, e, E>, <~) the  f o l l o w i n g  cond i -  

t ions  are  equ iva len t :  
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For some unary operation ~ on A, 

A ' =  (A 0, o, e, u) is an RA.  

a t > b = ( a t > e )  ob f o r a l l a ,  b ~ A .  

a < 1 b = a o ( e  <1b) f o r a l l a ,  b E A .  

(A0, o, e, _ t> e) is an RA.  

(A0, o, e, e <1 _) is an RA.  

ALGEBRA UNIV. 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

P r o o f  It is to be shown that Conditions (2b) and (2c) are equivalent for 
rm-algebras. By symmetry, it suffices to show that (2c) implies (2b). Assume that 
(2c) holds. Then, in addition to 3(15), 4(2d) and 4(3a) hold. Hence for all a, b e A, 

a t >  b = ( b  t> a) r> e = { b  I> [(a r>e) t>e]} I> e 

={[(a I> e) ob] ~> e}t> e = ( a t >  e) ob, 

and (2b) holds. 

The next result characterizes relation algebras as special ur-algebras. (The 
associative law is not explicitly assumed.) The backwards implication in (3b) arose 
first in a geometric context in the work of W. Prenowitz. He refers to it as the 

Transposition Law; see e.g. [5], p. 7. 

THEOR EM 5.3. For any ur-algebra A = (Ao, o, e, t>, <1), the fol lowing condi- 

tions are equivalent: 

For some unary operation '~ on A, 

A ' =  (Ao, o, e, ~) is an RA.  

For all a, c, x, y 6 A,  

(a o x ) ( y  o c) ~ 0 

For all a, b, c ~ A, 

For all a, b, c c A, 

For all a, b, c e A, 

For all a, b, c e A, 

i f f  (a t> y ) ( x  <1 c) =fi O. 

a t >  (b o e) = (a t> b) o c. 

(a o b) <1c = a o (b <1e). 

a <l(b <1 c ) = ( a o c )  <lb. 

(a t> b) t> c = b  t> ( a o c ) .  

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 

(3t) 
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P r o o f  Condi t ion  (3b) can be writ ten 

L ( a ) ( x )  �9 R ( c ) ( y )  = 0 iff L ( a ) C ( y )  �9 R ( c ) ~ ( x )  = 0 

or equivalently,  

[ (L(a)CR(c) ) (y ) ]  ' x  = 0 iff [ (R(c )L(a )~) (y ) ]  �9 x = O. 

For  this to hold for  all x and y means  that  

L ( a )  OR(c) = R ( c ) L ( a ) c .  

This is (3c). Condi t ions  (3d), (3e) and (3t) are obta ined f rom (3c) by keeping 
fixed two o f  the variables and taking conjugates o f  bo th  sides. Condi t ions  ( 3 b ) -  
(3f) are therefore equivalent.  

The  identity (3c) holds in every RA (with a t> x = a ~ o  x). Hence (3a) implies 
the other  five conditions.  Finally, assuming (3c), we use Theo rem 5.2 to prove  

(3a). Condi t ion (2b), a t> b -- (a ~> e) o b, is obta ined  f rom (3c) by replacing b by 
e and c by b. Using this, we can write (3c) in the fo rm ( a t > e )  o 
(x o b) = ((a c> e) o x) o b. F r o m  this it follows that  the opera t ion  o is associative, 

for  by 4(3a), the m a p  a ~ a ~> e is a bijection. Reference to Theo rem 5.2 com- 
pletes the proof .  [] 

We conclude with an example  showing that  in Theo rem 5.2, unlike Theo rem 

5.3, it was essential to postula te  the associativity of  the opera t ion  o. Indeed,  
wi thout  that  assumpt ion ,  Condi t ions  (2b) and (2c) are not  equivalent.  Let  S be a 

set with at least three elements, let e e S, and define the po ly-opera t ion  o on S as 
follows: 

a o b = b whenever  a # b r  # a ,  

a o e = e o a = a  for  all a s S ,  

a o a = {a, e} whenever  a vL e. 

In the complex a lgebra  of  the unital  po ly-groupoid  (S, o), Condi t ion  (2c) fails, for  
if a r b # e  # a ,  then 

a < b = O ,  a o ( e  - ~ b ) = b .  
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O n  the o the r  h an d ,  (2b)  holds .  F o r  a :~ b :~ e :~ a we have  

a t> b = b  = ( a  I> e) ob,  

a t> a = { a , e }  = ( a  t> e ) o a ,  

a n d  the r e m a i n i n g  cases are equa l ly  trivial .  

ALGEBRA UNIV. 
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