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Relation algebras as residuated Boolean algebras

BIJARNI JONSSON AND CONSTANTINE TSINAKIS

1. Introduction

The arithmetic of relation algebras is more transparent, and appears less
accidental, if it is placed within the general framework of Boolean algebras with
residuated operators. The purpose of this paper is to substantiate this claim.
Residuation, and the equivalent concept of conjugacy, have always played a central
role in the axiomatic development of relation algebras (see e.g. Chin and Tarski [2]
and Birkhoff [1]) but our aim is to make this more explicit. In the process we will
obtain several characterizations of relation algebras and of non-associative relation
algebras as special residuated Boolean algebras. For relation algebras, one such
characterization already exists in Hoare and Jifeng [3, p. 234].

2. Residuated unary operators

The notion of residuation can be applied to unary operations on a partially
ordered set, or to maps between partially ordered sets, but here it will only be
needed for operations on Boolean algebras. In this setting it is convenient to
consider also the equivalent notion of conjugacy.

A unary operation f on a Boolean algebra A =(4, +,0,-, 1, 7) is said to be an
operator provided it is additive (preserves binary joins). If, in addition, f(0) =0,
then f is said to be linear. By a residual and a conjugate of f we mean unary
operations f” and f“ on A satisfying the following equivalences for all x, y € A.

f&) <y it x <f(y) ¢y
Sy =0 iff f(y)x=0. (2
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The operations f” and f¢ are unique whenever they exist. If one of them exists, then
so does the other, and they are related via the formulas

=", )=, (3)

If f7 and f* exist, then f is said to be residuated. A residuated operation is linear; in
fact, it preserves all existing joins. If fis residuated, then so is /¢, with £ =f, and
therefore f(x) = f(x ~) ~. On the other hand, f” is residuated in the algebraic dual
of A. In particular, f” preserves all existing meets.

Although residuals and conjugates can be used interchangeably, we tend to use
conjugacy as the primary concept. This is partly due to the symmetry exhibited by
conjugacy: If the operation f has a conjugate f*, then f° also has a conjugate and
f=f Also, for a relation algebra the conjugate of the operator x —aox is
yt>a“ oy, while the residual is given by the more complicated formula
y(adeoyT)T.

The following fact will be quite useful:

If fis a residuated unary operator on A, then

F(x)y <f(xf(») for all x, y e A. 4

Indeed, let z=f(xf(y)). It is evident that f(xf(y))z~ =0 and hence
xf(y)f%(z~) =0. Since f* is isotone, this implies that xf“(yz~) =0, f(x)yz~ =0
and f(x)y < z.

We shall also make extensive use of the observation that the composition fg of
two residuated unary operators f and g on A is residuated, with

(fo) =g". (5)

3. Residuated binary operators

Let f be an operation of rank #n > 1 on a Boolean algebra A. By a translate of
fwe mean a unary operation obtained by holding fixed all but one of the arguments
of f. We say that f is an operator if all the translates of f are operators, that f is
linear if all the translates of f are linear, and that f'is residuated if all the translates
of f are residuated.

The case of a binary operation o is particularly important. If - is residuated, then
we denote by \ and / the operations such that, for all x, y,z € 4,

Xoy<z iff y <x\z iff x <z/y, (H
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and by < and > the operations such that
(xopy)z=0 iff (x > z)y =0 iff (z < y)x =0. (2)

In other words, the operator x +>a o x has y > a\ y as its residual and y > a > y
as its conjugate, while for x — x o a the residual is y — y/a and the conjugate is
y—y < a Werefer to \ and / as the right and the left residuals of -, and to > and
< as the right and left conjugates of -. From 2(3) we obtain

a>y=(@\y), a\y=@>y)’, (3)
y<a=(y ja7, yla=(y” <a) . (4
We will make frequent use of the fact that the opertors o, > and <1 are

residuated. Indeed, by holding fixed one or the other of the arguments in each of
the operators o, > and <, we obtain three pairs of conjugate operator:

xt—>aox and yr>a >y are conjugates. (5)
x—xoa and yr>y <a are conjugates. (6)
x—a<dx and y+>y>a areconjugates. (7N

These statements follow directly from (2).

It will be useful to have names for the translates of the operations o, > and <.
Let

L(a)(x) = a o x, R(a)(x) = x o q, Qa)(x)=a < x.
Then

L@ (y)=ary, Ra@(G)=y<a Qay=y>a

Applying 2(4) to these six operations, we obtain the following inclusions:

(ae°x)y <aox(ary). (8)
(xeay <x(y <a)-a 9
(a 9x)y<a<x(yra). (10)
(@ x)y <ar>xae-y) (1)
(x<ay<x(yoa) <a. (12)

x>ay<xa <y > a (13)
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Formula 2(5) can be used to rewrite various identities. As an illustration, we
consider the associative law, x o (¥ o z) = (x o ») o z. Holding fixed two of the three
variables, we write
ao(box)=(ach)ox, ac(xob)=(ao-x)eb, xo(@aob)=(xvoa)obh.
For fixed a and b, these identities are equivalent to the equations
L@L(b) =L(a=b), L(a)R(b) =R()L(a),  R(a-b)=R(b)R(a),
and by 2(5) these yield

L(B)°L(a) = L(a < b)°,  R(B)L(@)° = L(a)°R(B)°,  R(a - b) = R(@)°R(b)".

This shows that the following four identities are equivalent

xo(yoz)=(xoy)oz (14)
x> (y>2z)=(yox) >z (15)
x>y <z=x>(y <2). (16)
X <d(yez)=(x<z) <y (17)

4. Unital algebras

By a residuated Boolean algebra, or an r-algebra, we mean an algebra
A = (A,, 0, >, <) such that Ay =(4, +,0,-, 1, 7) is a Boolean algebra and - is a
residuated binary operation on A, with > and < as its right and left conjugates.
If o has a unit e (that is, xoce=eox=x for all xe4), the algebra
A" = (A, o, e, >, <) is called a unital residuated Boolean algebra, or a ur-algebra.
If, furthermore, o is associative, so that (4, o, ) is a monoid, then A’ is called a
residuated Boolean monoid, or an rm-algebra.

Various generalizations of Tarski’s notion of a relation algebra have been
investigated by R. Maddux, see e.g. Maddux [4]. In our terminology, an algebra
A =(Agy, o, e, ) is a non-associative relation algebra, or an NA, if the algebra
A’ =(A,, 0, e, >, <) with

at>x=a"ox, x da=x-a"

is a ur-algebra, and A is a relation algebra, or an RA, if A’ is an rm-algebra.
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In order for a ur-algebra to be of the form A’ for some NA A, the operations
> and <1 must be expressible in the form

at x=f(a)ox, x da=x-gla)

with f and g operations on A, actually with f and g equal to the same operation,
namely “~. The wr-algebras with this property will be characterized in the next
section. Here we consider separately the two operations > and <.

THEOREM 4.1. For any ur-algebra A = (A, o, e, >>, <), the following condi-
tions are equivalent:

For some unary operation f on A,

a>b=f(a)ob  foralla,becA. (1a)
a>b=(@>e)ob foralabeA. (1b)
aocb=@r>e)>b forall abeA. (1¢)
b<da=e <(a <b) for ail a, b e A. (1d)

Proof. If (1a) holds, then f(a) =f(a) ce =a > e, whence (1b) holds. Con-
versely, if (1b) holds, then (1a) holds with f(a) =a > e.

Keeping fixed one or the other of the arguments ¢ and b, we can write (1b)
either as L(a)° = L(a &> ) or as Q(b)° = R(b)Q(e). Taking conjugates, we obtain
the equivalent equations L(a) = L(a t> e)° and Q(b) = Q(e)R(b)¢, which are (lc)
and (1d). O

Of course there is a symmetric result with > and < interchanged. For
convenient reference, we state this result explicitly.

THEOREM 4.2. For any ur-algebra A = (A, o, e, &>, <), the following condi-
tions are equivalent:

For some unary operation g on A,

a<1b=ao-gh) for all a, b e A. (2a)
a<ib=ao-(e <b) for all a,be A. (2b)
ach=a<(e <b) for all a,b e A. (2¢)
a>b=0brar>e foralabeA. (2d)



474 BJARNI JONSSON AND CONSTANTINE TSINAKIS ALGEBRA UNIV.

The next results shows that the map ar—e < a is an involution whenever
at+>a > e is an involution, and conversely.

THEOREM 4.3. For any ur-algebra A = (A, °, e, >, <), the identities

(a>e)>e=a forallaeA, (3a)

e<(e<ga)=a forallaci (3b)
are equivalent and imply the identity
ae=e<ta forallaecA. (3¢)

The three identities hold whenever A satisfies either Conditions (1a)—(1d) or Condi-
tions (2a)—(2d).

Proof. The identities (3a) and (3b) can be written as Q(e)°Q(e)*=1 and
Q(e)Q(e) =1, respectively, where 7 is the identity map. The two identities are
therefore equivalent, since the conjugate of the identity map is the identity map.

We assume next that Condition (3a) holds. The condition asserts that the
operation a > a t> e is an involution and hence a bijection. Since it is also isotone,
it is a Boolean automorphism. In particular,

abr>e=(ae)br e for all a, b € A.

Condition (3c) now follows from the fact that the conditions (a > e¢)x =0,
[(eexl>e=0, [@e)>ellx>e)=0, ax>e)=0, (xcae=0 and
(¢ < a)x =0 are equivalent.

To prove the last statement in the theorem, apply (1d) and (2d) with @ = e and
use the identity e > x = x < e = x to obtain (3b) and (3a), respectively. O

We note that Condition (3c) does not imply (3a) and (3b). Indeed, let A be the
complex algebra of a free monoid A*, and let A be the neutral element of A*, that
is, the empty word. Then e = {1}. Hence a > e and e <1 a are both equal to e if
A € a, but equal to 0 otherwise. Thus (3c) holds, but (3a) does not hold because
(a>e)>e<eforall aeA.

5. Relation algebras

We first characterize those ur-algebras that come from NA'’s. It has already been
observed that the four equivalent conditions 4(1a)-4(1d), together with the four
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equivalent conditions 4(2a)—-4(2d) are necessary. The next theorem includes the
converse of that trivial observation.

THEOREM 5.1. For any ur-algebra A =(A,, o, ¢, >, <), the following condi-
tions are equivalent:

For some unary operation ¥ on A,
A" = (Ag, 0,6, ") is an NA. (1a)

For all a,be A,

at>b=(ar>e)ob, a<db=a-(e<b). (1b)
(Ag,°, e, > e) is an NA. (1c)
(Ag, 0, e,e <0 _) is an NA. (1d)

Proof. If (1a) holds, then the operations
x—aox and yr>aZoy

are conjugates of each other, and so are the operations
X—xoa and yryoa‘.

Consequently, a¥oy=ar>y and yoa“=y < a Taking y=e, we obtain
a”=at>e=e <a, and (1b) follows.

Suppose (1b) holds. Then Conditions 4(1a)—4(1d), 4(2a)— 4(2d) and 4(3a)—
4(3c) hold. By 4(3c), — > e and e > _ are the same operation ¥ and by 4(1b) and
4(2b), a¥ox =a > x and x o a¥ =x < a, so that (1c) and (1d) hold.

If (1c) holds, then (1a) holds with x* = x > e. Similarly, (1d) implies (1a).

O

If A is an rm-algebra, then “NA” can be replaced by “RA4” in Theorem 5.1, and
we thus have a characterization of those rm-algebras that come from RA’s.
However, in this case the two identities in (1b) turn out to be equivalent.

THEOREM 35.2. For any rm-algebra A = (A,, o, e, I>, <) the following condi-
tions are equivalent:
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For some unary operation ¥ on A,

A" = (A, 0,e,") is an RA. (2a)
a>b=(ar>e)ob forall a,beA. (2b)
a<db=ac(e <b) foralabeA. (2¢)
(Ag, o, €, - > e) is an RA. (2d)
(Ay, o, e,e <1 ) is an RA. (2¢)

Proof. Tt is to be shown that Conditions (2b) and (2c) are equivalent for
rm-algebras. By symmetry, it suffices to show that (2c) implies (2b). Assume that
(2¢) holds. Then, in addition to 3(15), 4(2d) and 4(3a) hold. Hence for all a, b € A,

avh=ba>e=h>llare)>el>e

:{[(a o> e) ob] > e} o> e=(a > e)ob,
and (2b) holds.

The next result characterizes relation algebras as special wr-algebras. (The
associative law is not explicitly assumed.) The backwards implication in (3b) arose
first in a geometric context in the work of W. Prenowitz. He refers to it as the
Transposition Law; see e.g. [5], p. 7.

THEOREM 5.3. For any ur-algebra A = (A, o, e, >, <), the following condi-
tions are equivalent:

For some unary operation - on A,
A" = (Aqy,0,e,%) is an RA. (3a)

Forall a,c,x,ye A,

(@ox)(yeoc)#0 iff (a> y)Nx <¢) #0. (3b)
For all a,b,ce A, at>((bocy=(ar>b)oc. (3¢)
For all a,b,ce A, (aeh)y sc=ac-(b <) (3d)
For all a,b,ce A, a<a(b<gcy=(a-c) <b. (3e)

For all a,b,ce A, (ax>b)y>c=br (a-c). (3)
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Proof. Condition (3b) can be written

L(@)(x) - Re)(y) =0 iff L@)(y) R()(x) =0
or equivalently,

[(L@ RN - x=0  iff [(R()L(@)Np)] x=0.
For this to hold for all x and y means that

L(a)°R(c) = R(c)L(a)".

This is (3¢). Conditions (3d), (3e) and (3f) are obtained from (3c) by keeping
fixed two of the variables and taking conjugates of both sides. Conditions (3b)—
(3f) are therefore equivalent.

The identity (3¢) holds in every R4 (with a > x = a" o x). Hence (3a) implies
the other five conditions. Finally, assuming (3c), we use Theorem 5.2 to prove
(3a). Condition (2b), a t> b = (a > e) o b, is obtained from (3c) by replacing b by
e and ¢ by b. Using this, we can write (3¢) in the form (at> e)-o
(x ob) =((a > €) o x) o b. From this it follows that the operation o is associative,
for by 4(3a), the map a— a > e is a bijection. Reference to Theorem 5.2 com-
pletes the proof. a

We conclude with an example showing that in Theorem 5.2, unlike Theorem
5.3, it was essential to postulate the associativity of the operation o, Indeed,
without that assumption, Conditions (2b) and (2c) are not equivalent. Let S be a
set with at least three elements, let e € S, and define the poly-operation - on S as
follows:

aobh=»~b whenever a # b # e #aq,
aoce=eca=a for all ae S,

aca={a, e}  whenever a #e.

In the complex algebra of the unital poly-groupoid (S, <), Condition (2¢) fails, for
if a#b #e +#a, then

a<1b=0, ac(e ab)=>.
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On the other hand, (2b) holds. For a # b # e # a we have

a>b=b=(@r>e€)ob,

a>a={a,e}=(@re)oa,

and the remaining cases are equally trivial.
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