

Fast Evaluation of Rédei Functions*

Willi More

Department of Mathematics, University of Klagenfurt, A-9020 Klagenfurt, Austria willi.more@uni-klu.ac.at

Received November 3, 1993; revised version March 15, 1994

Abstract. We introduce a fast evaluation algorithm for Rédei functions of complexity $O(\log_2 n)$. Rédei functions are of interest in cryptographic applications and primality testing.

Keywords: Rational functions, Finite Fields, Integers mod m, Primality testing, Public key cryptography, Key distribution systems

Introduction

Let R an arbitrary commutative unitary finite Ring and let $t(x) = x^2 - ax - b$ denote a polynomial over R with the two different roots $\alpha, \overline{\alpha}$. It can easily be shown that there always exist unique elements $r_k, s_k \in R$ such that

$$\alpha^k = r_k + \alpha s_k$$
 and $\bar{\alpha}^k = r_k + \bar{\alpha} s_k$ for all $k \in \mathbb{N}$.

So for $n \ge 1$ by the binomial theorem we have

$$(x + \alpha)^n = \sum_{k=0}^n \binom{n}{k} \alpha^k x^{n-k}$$
$$= \sum_{k=0}^n \binom{n}{k} r_k x^{n-k} + \alpha \sum_{k=0}^n \binom{n}{k} s_k x^{n-k}$$
$$= q_n(x) + \alpha h_n(x)$$

where $g_n(x), h_n(x) \in R[x]$ are coprime over R.

The rational function

$$R_n(x) = \frac{g_n(x)}{h_n(x)}$$

is called *Rédei* function of degree n with respect to t(x).

^{*} This paper was partially supported by the Österreichischen Fonds zur Förderung der wissenschaftlichen Forschung under FWF project P9272

Rédei functions $R_n(x)$ over finite fields with respect to $t(x) = x^2 - b$ and b not a square were introduced by Rédei [14], with slight modifications in the definition as moving to \mathbb{Z}_m and using arbitrary quadratic polynomials t(x) by R. Nöbauer [8], [9] and W. Nöbauer [10], [11] as well as moving to arbitrary commutative unitary finite rings by Pieper [13]. The results by Pieper still hold using arbitrary quadratic polynomials t(x) since the extension ring R[x]/(t(x)) is R-isomorphic to the quadratic R-algebra $R[\sqrt{\eta}], \eta \in R^{\times}$ (cf. [12]).

Rédei functions $R_n(x)$ over R are closed with respect to composition and satisfy the commuting property

$$R_{n_1}(x) \circ R_{n_2}(x) = R_{n_1n_2}(x) = R_{n_2n_1}(x) = R_{n_2}(x) \circ R_{n_1}(x).$$

The commuting property is one of the main reasons why Rédei functions are of interest in cryptographic applications for secret-key and public-key cryptosystems as proposed by Lidl and Müller [2] and investigated by R. Nöbauer [5], [6], for key distribution systems as proposed by R. Nöbauer [7] and for primality testing as proposed by Lidl and Müller [3]. A comprehensive up-to-date collection of results concerning Rédei functions and their relations to Dickson polynomials is given by Lidl, Mullen and Turnwald [1].

All these applications require a fast evaluation algorithm. The algorithms proposed by Lidl, Mullen and Turnwald [1, Lemma 2.29] and by More [4] are restricted to Rédei functions invented by Rèdei and the first one is also restricted to calculations in the extension ring R[x]/(t(x)). These restrictions can be dropped by the following algorithm maintaining same complexity $O(\log_2 n)$.

Recurring Sequences

The following Lemma can be obtained easily by induction on *n* from the defining equation $(x + \alpha)^n = g_n(x) + \alpha h_n(x)$ of Rédei functions.

Lemma. The polynomials $g_n(x)$ and $h_n(x)$ satisfy the recurrence relations

$$g_n(x) = xg_{n-1}(x) + bh_{n-1}(x)$$

$$h_n(x) = g_{n-1}(x) + (x+a)h_{n-1}(x)$$

for all n > 1 with initial values $g_1(x) = x$ and $h_1(x) = 1$.

As an immediate consequence follows

Corollary. $R_n(x)$ satisfy the recurrence relation

$$R_n(x) = \frac{xR_{n-1}(x) + b}{R_{n-1}(x) + (x+a)}$$

for all n > 1 with initial value $R_1(x) = x$.

Substituting 2n + 1 for *n* and combining with the commuting property for $n_1 = 2$, $n_2 = n$ leads to a fast evaluation algorithm of complexity $O(\log_2 n)$ with respect to addition, subtraction and multiplication in *R* using

$$R_{2n+1}(x) = \frac{xR_{2n}(x) + b}{R_{2n}(x) + (x+a)} \quad R_{2n}(x) = R_2(x) \circ R_n(x) = \frac{R_n^2(x) + b}{2R_n(x) + a}.$$

Fast Evaluation Algorithm

This algorithm evaluates the Rédei function $R_n(x)$ of degree $n \ge 1$ with respect to $t(x) = x^2 - ax - b$.

- A1. [Initialize.] Let $\sum_{k=0}^{l} b_k 2^k$ the binary representation of $n \ge 1$ with $b_k \in \{0, 1\}$. Set $i \leftarrow l-1$ and $R(x) \leftarrow x$.
- A2. [i < 0?] If i < 0, the algorithm terminates, with R(x) as the answer.
- A3. [Evaluate.] Set $R(x) \leftarrow \frac{R^2(x) + b}{2R(x) + a}$. If $b_i = 1$, set $R(x) \leftarrow \frac{xR(x) + b}{2R(x) + b}$.

If
$$b_i = 1$$
, set $R(x) \leftarrow \frac{1}{R(x) + (x+a)}$

Set $i \leftarrow i - 1$ and return to step A2.

References

- 1. Lidl, R., Mullen, G. L., Turnwald, G.: Dickson Polynomials. Pitman Monographs and Surveys in Pure and Applied Mathematics vol. **65**. Harlow: Longman 1993
- Lidl, R., Müller, W. B.: Permutation polynomials in RSA-cryptosystems. In: Advances in Cryptology. Proceedings of the Crypto '83, pp. 293–301. New York: Plenum Press 1984
- 3. Lidl, R., Müller, W. B.: Generalization of the Fibonacci pseudoprime test. Discrete Math. 92, 211-220 (1991)
- More, W.: Rasches Auswerten von Rédei-Funktionen. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 128, 69-72 (1991)
- Nöbauer, R.: Cryptoanalysis of the Rédei-scheme. In: Contributions to General Algebra vol. 3, pp. 255–264. Vienna: Hölder-Pichier-Tempsky 1985
- Nöbauer, R.: Rédei-Funktionen und ihre Anwendungen in der Kryptographie. Acta Sci. Math. (Szeged) 50, 287–298 (1986)
- Nöbauer, R.: Key distribution systems, based on polynomial functions and Rédei functions. Problems Control Inform. Theory 15, 91-100 (1986)
- 8. Nöbauer, R.: Rédei-Permutationen endlicher Körper. In: Contributions to General Algebra vol. 5, pp. 235–246. Vienna: Hölder-Pichler-Tempsky 1987
- 9. Nöbauer, R.: Rédei-Permutationen auf Restklassenringen Z/(m). Monatshefle. Math. 106, 41-56 (1988)
- Nöbauer, W.: Über die Zyklenlänge der Rédei-Permutationen. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 121, 121–123 (1984)
- 11. Nöbauer, W.: Rèdei-Funktionen für Zweierpotenzen. Period. Math. Hungar. 17, 37–44 (1986)
- 12. Pieper, R.: Kryptoanalytische Untersuchungen rationaler Permutationen von kommutativen unitären Ringen. Dissertation, Universität Dortmund 1990
- Pieper, R.: Cryptanalysis of Rédei- and Dickson Permutations on Arbitrary Finite Rings. AAECC 4, 59-76 (1993)
- Rédei, L.: Über eindeutig umkehrbare Polynome in endlichen Körpern. Acta Sci. Math. (Szeged) 11, 85–92 (1946)