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On the supersolvability of finite groups 

By 

M. ASAAD and A. SHAALAN 

1. Introduction. It is known that the product of two normal supersolvable subgroups 
of G is not necessarily supersolvable. In [1], Baer proved that if G is the product of two 
normal supersolvable subgroups and G' is nilpotent, then G is supersolvable. In [2], 
Friesen proved that if G is the product of two normal supersolvable subgroups of coprime 
indices, then G is supersolvable. If  G is the product of two nilpotent subgroups, then G 
is not necessarily supersolvable. In [3], Kegel proved that if G = H K  = H L  = K L ,  H 
and K are nilpotent subgroups, and L is supersolvable, then G is supersolvable. The 
object of this paper is to continue the investigations of the above mentioned authors. 
Throughout,  the groups are finite. 

2. Basic definitions and lemmas. We first need the following definitions: 

D e f i n i t i o n  2.1. Subgroups H and K of the group G permute if 

( H , K )  = H K  = K H .  

D e f i n  i t i o n 2.2. A subgroup H of G is said to be quasinormal in G if H permutes 
with every subgroup of G. 

We indroduce the following definition which may be considered as a generalization of 
the concept of quasinormality. 

D e f i n i t i o n 2.3. Let H and K be subgroups of G. H is said to be quasinormal in K 

if H permutes with every subgroup of K. 

R e m a r k. It is very well-known that if H =< G and H is quasinormal in G, then H 
is subnormal in G. If H and K are subgroups of G, and H is quasinormal in K, then H 
is not necessarily subnormal in G, as confirmed by $3, the symmetric group of degree 3. 

Lemma 2.4. Suppose that G = H K ,  H and K are supersolvable subgroups of  
G, (IHh ]KI) = 1, H is quasinormal in K and K is quasinormal in H. Then G is supersolv- 
able. 

P r o o f. Let p be a prime dividing [ G[. Since (I HI, I K D = 1, we can assume that p does 
not divide, say, ]KI, in which case H contains a Sylow p-subgroup of G. Let P be a Sylow 
p-subgroup of H. Since H is supersolvable, it follows that H is solvable. Hence, by 
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[4, Theorem 4.5, p. 233], H = P L, where L is a i f-Hall  subgroup of H. By hypothesis, L K 
is a subgroup of G. Then IG: LKI = IP[ and hence L K  is a if-Hall  subgroup of G. It 
follows now, by [4, Theorem 4.5, p. 233], that G is solvable. 

Let M be an arbi trary maximal  subgroup of G. Since G is solvable, it follows, by [4, 
Theorem 1.5, p. 219], that  IG: MI = p" for some prime p. Since (IHI, IKI) = 1, we can 
assume that  p does not divide, say, [KI. Let M 1 be a if-Hall  subgroup of M. By [4, 
Theorem 4.1, p. 231], we have K =< M~' for some x in G. Since M x has the same properties 
as M, we can replace M by M x and so we can assume without loss that K < M. Since 
G = HK,  it follows that  M = K(H/x  M). Clearly, (IKI, IM/x  HI) = 1. By hypothesis, K 
is quasinormal in H and so K is quasinormal  in H / x  M. We argue that /-//x M is 
quasinormal  in K. Let K1 be a subgroup of K. By hypothesis, K~ H is a subgroup of G. 
Then K 1 H r, M = K 1 (H/x  M) and hence K 1 (H/x  M) is a subgroup of G. Thus H / x  M 
is quasinormal  in K. By induction on I G I, M is supersolvable. Hence all proper  subgroups 
of G are supersolvable. Suppose that G is not supersolvable. Then it follows from 
Hilfssatz C of [5] that  G has exactly one normal  Sylow subgroup, say, P. So if 4) (G) ~ 1, 
then G/O (G) is supersolvable by induction on l G I, which implies that G is supersolvable 
by a well-known theorem of Huppert ,  a contradiction. We may, therefore, assume that 
q~(G) = 1. Then P is elementary abelian. By Satz 1 of [5], we have that P is a minimal 
normal  subgroup of G. Set ]PI = P", for some prime p dividing I G I. By Hilfssatz C of [5], 
G has a Sylow tower for the natural  (descending) ordering of prime divisors of I a l ,  or G 
is nonnilpotent,  each of whose proper  subgroup is nilpotent. If  G has a Sylow tower, then 
P is normal  in G and p is the largest prime dividing I G I. We can assume that P __< H and 
P,I ~ ]gl .  Since H is supersolvable, it follows, by [6, Corollary 10.5.2, p. 159], that  H has 
a normal  subgroup L of order p. By hypothesis, L K  is a subgroup of G. If  G = LK,  then 
G is supersolvable, a contradiction. Hence L K  is a proper  supersolvable subgroup of G 
and L is normal  in LK.  Now it follows easily that  L is normal  in G. This is impossible 
as P is a minimal normal  subgroup of G. If G is nonnilpotent, each of whose proper  
subgroup is nilpotent, then, by [7, Satz 5.2, p. 281], G = PQ, where P is normal  in G, P 
is a Sylow p-subgroup of G, Q is nonnormal  cyclic Sylow q-subgroup of G, and p :# q. 
Clearly, [PI = P", where n > 2. We can assume that  P = H and Q = K. Let L be a proper  
subgroup of P. By hypothesis, L Q is a subgroup of G. Clearly, L Q is nilpotent. Then L 
is normal  in LQ. Now it follows easily that L is normal  in G. Th ' .  is impossible as P is 
a minimal normal  subgroup of G. 

The argument  which established our lemma can easily be adapted to yield the following 
result: 

Theorem (Friesen [2]). I f  H and K are normal supersolvable subgroups of G of coprime 
indices, then G is supersolvable. 

3. Main results. We prove the following theorems: 

Theorem 3.1. Suppose that H and K are supersolvable subgroups of G such that 
G = H K. Suppose further that each subgroup of H is quasinormal in K. Then G is 
supersolvable. 
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P r 0 0 f. Suppose that the theorem is false and let G be a counter-example of smallest 
order. Let p be the largest prime dividing I G[. Then, by [8, Theorem 13.2.5, p. 378], there 
exist a Sylow p-subgroup Pt of H and a Sylow p-subgroup P2 of K such that P~ Pz is a 
Sylow p-subgroup of G. Set P -- P1 P2. We argue that P -~ G. Since K is supersolvable, 
it follows that K is solvable. Then there exists a p'-Hall subgroup L 2 of K such that 
K = P2 L2.  If G = Pt K, then G = P L  2. By hypothesis, P1 L2 is a subgroup of G, P1 is 
quasinormal in L 2 and L 2 is quasinormal in P~. Lemma 2.4 implies that P~ L2 is 
supersolvable and so P1 ~ P~ L2. Since K is supersolvable, it follows that P2 <~ K. Hence 
P -~ G. Now we can assume that P~ K and P2 H are proper subgroups of G. Our  choice 
of G implies that P1 K and P2 H are supersolvable. Hence P -~ P1 K and P -~ P2 H. Since 
G = H K, it follows that P <~ G. 

Assume that ~b (G) + 1. Then G/d? (G) is supersolvable by our choice of G, which implies 
G is supersolvable, a contradiction. Thus q5 (G) = 1. Then P is elementary abelian. We 
argue that P is a minimal normal subgroup of G. If not, by Maschke's Theorem, 
P = R1 x R2, where R~ ~ G(i = 1, 2). Our  choice of G implies that G/R i is supersolvable 
(i = 1, 2). Since G = G/R 1 Ix R 2 "~ G/R 1 x G/R2, it follows that G is supersolvable, a 
contradiction. Thus P is a minimal normal subgroup of G. Clearly, P~ L 2 is a subgroup 
of G, where L 2 is a p'-Hall subgroup of K, P~ is quasinormal in L z and L 2 is quasinormal 
in Pt.  If G = P1 L2, then, by Lemma 2.4, G is supersolvable, a contradiction. Thus 
P1 L2 < G. Our choice of G implies that P~ L 2 is supersolvable and so P1 "~ Pt L2. Also 
P1 ~ H. Hence P~ -~ G. Since P is a minimal normal subgroup of G, it follows that P~ = 1 
or Pa = P. I f P  1 = 1, then P = P2 < K and H is a p'-subgroup of G. Since K is supersolv- 
able, it follows that K has a normal subgroup P3 of order p. By hypothesis, P3 H is a 
subgroup of G. If G -- P3 H, then, by Lemma 2.4, G is supersolvable, a contradiction. Thus 
P3 H is a proper subgroup of G. Our  choice of G implies that P3 H is supersolvable and 
so Pa "~ P3 H. Hence Pa "~ G and so P3 = P. Our  choice of G implies that G/P is 
supersolvable and so G is supersolvable, a contradiction. Similarly, if P2 = 1, we have a 
contradiction. If PI = P, then 1 < P2 < P. If P2 = P, then P < H and P __< K. Hence 
H = PLy ,  where L1 is a if-Hall subgroup of H. Let Pa be a subgroup of P of order p. By 
hypothesis, P3La and P3L2 are subgroups of G. Clearly, P3L1 __< H < G and 
P3L~ < K < G. Then P3LI and P3L2 are supersolvable and so P3 "~ P3L1 and 
P3 "~ P3 L2. Hence P3 "~ G and so P3 -- P. Our  choice of G implies that G/P is supersolv- 
able and so G is supersolvable, a contradiction. If I < P2 < P, then, by hypothesis, P2 L~ 
is a subgroup of G. Our  choice of G implies that P2 L 1 is supersolvable and so P2 ~ P2 L 1. 
Also, P2 "~ K. Hence P2 ~ G. This implies that P2 = P- This is impossible as P2 < P- This 
completes the proof of the theorem. 

R e m a r k. The alternating group of degree 4 shows that if G = HK,  H and K are 
supersolvable subgroups of G, and H is quasinormal in K, then the group need not be 
supersolvable in general. 

Our  theorem may be considered as a generalization of the following well-known re- 
sult: 

Theorem. I f  G/H and G/K are supersolvable, then G/H /x K is supersolvable. 
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Theorem 3.2. Suppose that H is a nilpotent subgroup of G, K is a supersolvable subgroup 
of G and that G = H K. Suppose further that H is quasinormal in K and K is quasinormal 
in H. Then G is supersolvable. 

P r o o f. Suppose that the theorem is false and let G be a counter-example of smallest 
order. Let p be the largest prime dividing I GI. Then there exist Sylow p-subgroup P1 of 
H and Sylow p-subgroup P2 of K such that P = P1 Pz is a Sylow p-subgroup of G. By 
hypothesis, P1 K and P2 H are subgroups of G. Let M be a proper subgroup of G such 
that H __< M. Since G = H K  and H < M, it follows easily that M = H ( K / x  M). Clearly, 
H is quasinormal in K/x  M. Let H 1 be a subgroup of H. By hypothesis, H1 K is a 
subgroup of G. Clearly, H 1 K / x  M = H 1 (K /x M). Hence K/x  M is quasinormal in H. 
But now our choice of G implies that M is supersolvable. Similarly, if K __< M, then M 
is supersolvable. If P~ K is a proper subgroup of G, then, by our choice of G, P1 K is 
supersolvable and so P ~ P1 K. Since H is nilpotent, it follows that P1 -~ H. Hence if 
y ~ G, y = h k with h E H and k ~ K, and consequently P~ = p~k = p~ < p. But then the 
normal closure P~ = (P f  [ y e G) __< P. Clearly, G/P] satisfies the conditions of the theo- 
rem. Hence by our choice of G, G/Pf is supersolvable. Since Pa ~ __< P, it follows that 
P ~ G. Similarly, if P2 H is a proper subgroup of G, then P ~ G. Now we can assume 
that G = P~ K = P2 H. Then G = P K  = P H  = KH.  Applying Kegel's Theorem [3], it 
follows that G is supersolvable, a contradiction. Therefore, P ~ G, where P is a Sylow 
p-subgroup of G and p is the largest prime dividing [G[. If qS(G) =# 1, then G/O(G) is 
supersolvable by our choice of G, which implies that G is supersolvable, a contradiction. 
We may, therefore, assume that q5 (G) = 1. Then P is elementary abelian. We argue that 
P is a minimal normal subgroup of G. If not, by Maschke's Theorem, P = R1 x R2, where 
R i -~ G (i = 1, 2). Since 

G = G/R a /x R 2 ~. G/R 1 x G/R2, 

it follows that G is supersolvable, a contradiction. Thus P is a minimal normal subgroup 
of G. We consider the following cases: 

C a s e 1. Pt = 1. Then Pz = P < K. Since K is supersolvable, it follows that K has a 
normal subgroup P3 of order p. Clearly, H is a p'-subgroup of G. By hypothesis, P3 H is 
a subgroup of G. If G = P3 H, then it follows easily that G is supersolvable, a contradic- 
tion. Thus we may assume that Pa H is a proper subgroup of G. By our choice of G, Pa H 
is supersolvable and so P3 "~ P3 H. Now it follows easily that P3 "~ G. Since P is a mini- 
mal normal subgroup of G, we have P3 = P and so G is supersolvable, a contradiction. 

C a s e  2. P2 = 1. Then we have a contradiction; see Case 1. 

C a s e 3. Pa + I and P2 + 1. By our choice of G, it follows that G/P is supersolvable 
and so G is solvable. Consider Fit (G). Clearly, P =< Fit (G). Hence if P < Fit (G), there 
exists a Sylow q-subgroup Q of Fit (G), where q 4= p. Since Q char Fit (G) ~ G, it follows 
that Q <~ G. By our choice of G, G/P and G/Q are supersolvable. Since 

G = G/P A Q ~ G/P x G/Q, 

it follows that G is supersolvable, a contradiction. We may, therefore, assume that 
P - - F i t ( G ) .  Since G is solvable, it follows from [8, Theorem 7.4.7, p. 167] that 
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C a (Fit  (G)) = C 6 (P) < Fi t  (G) = P. Let L be a p ' -Hall  subgroup of K. By hypothesis, H L  
is a subgroup of G. If G = HL,  then P1 = P. Since H is nilpotent,  it follows that  
H < C G(P) < P and so H = P. I fP2  = P, then H = P < K and so G = K, a contradic-  
tion. We may assume that  Pz < P. Since K is supersolvable, it follows that  P2 <~ K. Also 
P2 <~ P = H. Then P2 <~ G and this is impossible as P is a minimal  normal  subgroup of 
G. N o w  assume that  H L  is a proper  subgroup of G. By our choice of G, H L  is supersolv- 
able. Hence P1 <~ HL,  and so H L  < Na(P1). Now it follows easily that  P1 <z G. Since P 
is a minimal  normal  subgroup of G and P~ + 1, it follows that  P~ = P. Then P2 <~ P = H. 
Since K is supersolvable, it follows that  Pz <~ K. Hence P2 <~ G. Since P is a minimal  
normal  subgroup of G, we have P2 = P and this is impossible as P2 < P. This completes 
the proof  of the theorem. 

R e m a r k. If we require that  G = H K, H and K are supersolvable subgroups of G, H 
is quasinormal  in K and K is quasinormal  in H, then G is not  necessarily supersolvable. 

Let 

be matrices over J5, where J5 is the field of integers (mod 5). Then S = (x,  y )  is a 
quaternion group of order  8. Let T = J5 x J5 and let G = Hol  (T, S) (where S is interpret-  
ed as a group of automorphisms of T). Let H = (T, x )  and K = (T, y) .  Then 

(i) H and K are normal  supersolvable subgroups of G; 
(ii) G = H K ;  

(iii) G is not  supersolvable. 

(Huppert  [9]; see also [8, Exercise 9.2.19, p. 219]). 

As a corollary,  we have 

Corollary 3.3. I f  H is a quasinormal nilpotent subgroup in G and K is a quasinormal 
supersolvable subgroup in G, then H K is a quasinormal supersolvable subgroup in G. 

As an immediate consequence of Corol lary  3.3, we have the following well-known 
result: 

Theorem. I f  H is a normal nilpotent subgroup in G and K is a normal supersolvabIe 
subgroup in G, then H K is a normal supersolvable subgroup in G. 

Theorem 3.4. Suppose that H and K are supersolvable subgroups of G of coprime indices 
and that for each pair of primes { p, q} with p > q, where one of these primes divides ] G: H[ 
and the other divides ]G: K I, p $ 1  (q). Suppose further that H is quasinormaI in K and that 
K is quasinormal in H. Then G is supersolvable. 

P r o o f. Suppose that  the theorem is false and let G be a counter-example of smallest 
order. Let p be the largest prime dividing [ G[. Let P be a Sylow p-subgroup of G. Hence 
if p Y l G :  HI,  we have P < H x for some x in G. Since H x has the same propert ies,as H, 
we can replace H by H x and so we can assume without  loss that  P < H. Since H is 
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supersolvable, it follows that P - ~  H. Similarly, if p X[G: K I, we have P - ~  K. Hence if 
P X ] G: HI and p,~ [ G: K[, we have P ~ G. Our  choice of G implies that  G/P is supersolv- 
able and so G is solvable. Now we can assume that p [[G: K[. Hence i fp  [[K[,  P1 ~ K, 
where P1 is a Sylow p-subgroup of K, we can assume without loss that P1 _< P _< H. Since 
p~h = p] <= H, it follows that P1 ~ _-< H and so P~ is normal  supersolvable. Our  choice of 
G implies that G/P] is supersolvable and so G is solvable. If p ~" [K[, then K is a 
p ' -subgroup of G. Let Q be a Sylow q-subgroup of K, where q is the largest prime dividing 
[K[. Hence if q,l']G: HI,  we can assume without loss that Q __< H and so QG < H. Our  
choice of G implies that  G/Q G is supersolvable. Since Q~ __< H, it follows that QG is 
supersolvable. Hence G is solvable. Thus we can assume that q [ ]G:  HI.  Let P2 be a 
subgroup of P of ordes p. By hypothesis, P2 K is a subgroup of G. If  G -- P2 K, then 
N~ (Q) = K or Q -~ G. If  Q -~ G, then it follows easily that G is solvable. If NG (Q) = K, 
then by Sylow's Theorem p - 1 (q) and this is impossible as p ~g 1 (q). Thus P2 K is a 
proper  subgroup of G. Let M be a proper  subgroup of G such that K __< M. Since 
G = H K ,  it follows that  M = K ( M / x H ) .  Clearly, ([M: K[, ]M: M /x H[) = I, K 
and M i, H are supersolvable subgroups of M, and K is quasinormal  in M / x  H. Let 
K1 be a subgroup of K. By hypothesis, K1H is a subgroup of G. Clearly, 
M / x  K1 H = K1 (M/x H). Then M / x  H is quasinormal in K. Our  choice of G implies 
that M is supersolvable. Hence P2 K is supersolvable and so P2 "~ P2 K. Now it follows 
that P2 G __< H and so G is solvable. Therefore, we have that  G is solvable. 

Let M be a maximal  subgroup of G. Since G is solvable, we have [G: M] is a power 
of prime, say r e . If  r,~[G:H[ and r,~]G:K[, then G = M H = M K .  Clearly, 
[G: H[ = ]M: M / x  H[, [G: K[ = [M: M / x  K[, M / x  H and M / x  K are supersolvable 
subgroups of M, M / x  H is quasinormal  in M / x  K, and M / x  K is quasinormal in 
M / x  H. Hence M is supersolvable by our choice of G. Now we can assume that  r [ [ G: K[. 
Then G = M H  and so [G: HI = [M: M / x  HI.  Let R be a Sylow r-subgroup of K. Then 
K = RKt ,  where K t  is an r ' -Hall  subgroup of K. Since G is solvable, we can assume 
without loss that  K~ __< M. Since 

[G: K I [  --= [G: M[ [M: K / x  M [ ] K / x  M: KI]  ---= [G: K[ [K: KI[  , 
we have ~(M: K / x  M) __< ~(G: K). Since H and K are of coprime indices in G, it follows 
that M / x  H and M / x  K are of coprime indices in M. Hence M is supersolvable by our 
choice of G. Thus all proper  subgroups of G are supersolvable. By Hilfssatz C of [5], G 
has exactly one normal  Sylow subgroup P. So if q5 (G) 4= 1, then G/dp (G) is supersolvable 
by our choice of G, which implies that G is supersolvable, a contradiction. We may, 
therefore, assume that q5 (G) = 1. Then P is elementary abelian. By Satz 1 of [5], P is a 
minimal normal  subgroup of G. Let [G[ = p~ qb, where p ~= q. Since H and K are of 
coprime indices, we can assume that P < H and Q _-< K. If Q < K, then P~ ~ K, where 
P1 is a Sylow p-subgroup of K. Since Pa -~ P, we have P1 "~ G and this is impossible as 
P is a minimal normal  subgroup of G. Thus Q = K. By hypothesis, K P2 is a subgroup 
of G, where P2 is a subgroup of P of order p. Clearly, if P2 K -- G, then G is supersolvable, 
a contradiction. Hence P2 K is a proper  subgroup of G. Clearly, P2 "~ P2 K and Pz "~ P. 
Hence P2 "~ G and this is impossible as P is a minimal normal  subgroup of G. If ] G[ is 
divisible by at least four different primes, then, by Satz 4 of [5], G is supersolvable, a 
contradiction. Thus we can assume that  [G[ is divisible by three different primes. Set 
~(G) = {p, q, r}, where p > q > r. We deal with the following cases: 

21" 
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C a s e 1. [G: HI = p~. We argue that H is a p'-Hall subgroup of G. If not, H = Pa Ha, 
where P3 is a Sylow p-subgroup of H and H~ is a p'-Hall subgroup of H. Clearly, G = PH, 
P3 ~ P and P3 <~ H. Hence P3 "~ G and this is impossible as P is a minimal normal 
subgroup of G. Thus H is a p'-Hall subgroup of G. Since H is quasinormal in K, it 
follows that P~ H is a subgroup of G, where 1 < Pa < P < K. Since P~ H is supersolvable, 
we have Pa <~ Pa H and Pa <~ G and this is impossible as P is a minimal normal subgroup 
of G. 

C a s e  2. [G: H[ = r ~3. Then IG: K] = p~l or qe2 or p~lqe2. If  ]G: K[ = pe~, then, as in 
Case 1, we have a contradiction. If [G: K[ = qe2 or pe~ qe2, then by hypothesis, q ~ 1 (r). 
By Satz 2 of [5], there exists a if-Hall subgroup L of G such that L is non-abelian and all 
its proper subgroups are abelian. Clearly, L is supersolvable and q > r. By [7, p. 285, 14), 
b)], Q is a minimal normal subgroup of L. Since L is supersolvable, we have [ Q] = q. Now 
by Sylow's Theorem q - 1 (r), a contradiction. 

C a s e  3. [G:H[ = qe2. Then ]G:K[ = pel or r e3 or r e3pel. If [G:K[ = pel, then, as in 
Case 1, G is supersolvable, a contradiction. If [G: KI = r e~, then, as in Case 2, G is 
supersolvable, a contradiction. If [G: K[ = r e3 p~, then, by hypothesis, q ~ 1 (r). On the 
other hand q - 1 (r) as G contains a non-abelian subgroup L and all proper subgroup of 
L are abelian and Q -~ L, where Q is a Sylow q-subgroup of L of order q. Hence q ~ 1 (r) 
and q - 1 (r), a contradiction. Therefore, G is supersolvable and the theorem is proved. 

As a corollary of the proof of Theorem 3.4, we have 

Corollary 3.5. Suppose that H and K are subgroups of G of coprime indices and that H 
and K have the Sylow tower property. Suppose further that H is quasinormal in K and K 
is quasinormal in H. Then G satisfies the Sylow tower property. 

We can now prove the following generalization of Corollary 3.5: 

Corollary 3.6. Suppose that H and K are subgroups of G such that G = H K and that H 
and K satisfy the Sylow tower property. Suppose further that H is quasinormal in K and 
K is quasinormal in H. Then G satisfies the Sylow tower property. 

P r o o f. Suppose that the theorem is false and let G be a counter-example of smallest 
order. Let p be the largest prime dividing I GI. Then there exist a Sylow p-subgroup P1 
of H and a Sylow p-subgroup P2 of K such that P = Pa P2 is a Sylow p-subgroup of G. 
We consider the following cases: 

C a s e  1. Pa = P and P2 = 1. Then P ~ H. By hypothesis, P K  is a subgroup of G. If  
P K  = G, then JG: K] = IPI. Clearly, pXIG: Hi. Hence (IG: HI, IG: KI) = 1. Applying 
Corollary 3.5, it follows that G has a Sylow tower, a contradiction. If P K  is a proper 
subgroup of G, then, by our choice of G, P K  has a Sylow tower and so P -~ PK.  Since 
P ~ H and P ~ PK,  we have P ~ G. By our choice of G, G/P has a Sylow tower. Hence 
G has a Sylow tower, a contradiction. Similarly, if P2 = P and P1 = 1, we have a contra- 
diction. 



Vol. 53, 1989 Supersolvability of finite groups 325 

C a s e 2. P1 = P and I < P2 < P. Then Pz < K and P~ -~ H. Since pkh = ph < ph 

= P < H, it follows that  P2 G < P. By our choice of G, G/P~ has a Sylow tower and so 
P < G. Hence G has a Sylow tower, a contradiction.  Similarly, if P2 = P and 1 < P,  < P, 
we have a contradict ion.  

C a s e 3. I < P~ < P and 1 < P2 < P- By hypothesis, P2 H is a subgroup of G. If 
G = P2 H, then G = HP. Hence i fy  ~ G, y = hk, with h e H and k ~ P, and consequently 
p,~ = phk = pk < p. But then the normal  closure P~ = (P f  ] y ~ G)  =< P. By our  choice of 

G, G/P~ has a Sylow tower and so P < G. Hence G has a Sylow tower, a contradiction.  
Similarly, if G = Pt K, we have a contradict ion.  Thus we can assume that  P2 H and P1 K 
are proper  subgroups of G. By our choice of G, P2 H and P1 K satisfy the Sylow tower 
property.  Hence P < P2 H and P < P~ K and so P < G. Therefore, G has a Sylow tower, 
a final contradict ion.  

The proof  of Theorem 3.4 can easily be adapted  to yield the following corollary:  

Corollary 3.7. Suppose that H and K are supersolvable subgroups of G of coprime indices 
and that G' is nilpotent. Suppose further that H is quasinormal in K and K is quasinormal 
in H. Then G is supersolvable. 

The following result may  be considered as an improvement  of Baer's Theorem [1]. 

Theorem 3.8. Suppose that H and K are supersolvable subgroups of G, G' is nilpotent and 
G = HK.  Suppose further that H is quasinormal in K and K is quasinormal in H. Then G 
is supersolvable. 

P r 0 0 f. Suppose the theorem is false and let G be a counterexample of smallest order. 
If G contain two normal  subgroups R1 and R 2 such that  (IN11, ]R2D = 1, then G/R 1 and 
G/R 2 are supersolvable by our choice of G. Hence G = G/R~ /x R 2 ~ G/R 1 x G/R z is 
supersolvable, a contradict ion.  This implies that  G'  is a q-group for some prime q. 
Corol la ry  3.6 implies that  P < G, where P is a Sylow p-subgroup of G and p is the largest 
prime dividing [G[. Hence q = p and G' < P. So if q5 (G) + 1, then G/(o (G) is supersolvable 
by our  choice of G, which implies that  G is supersolvable, a contradict ion.  We may, 
therefore, assume that  q~ (G) = 1. We argue that  P is a minimal  normal  subgroup of G. 
If not, by Maschke 's  Theorem, P -- R 1 x R2, where Ri < G (i = 1, 2). By our  choice of G, 
G/Ri is supersolvable (i = 1, 2). Since G = G/R~ /x R2 ~. G/Ra x G/R2, it follows that  G 
is supersolvable, a contradict ion.  Thus P is a minimal  normal  subgroup of G. Since 
G' <= P, we have G'  = P. If G'  __< H and G' < K, then it is clear that  H and K are normal  
subgroups of G. F r o m  Baer's Theorem [1], we conclude that  G is supersolvable, a 
contradict ion.  Hence if G'  = P ~ H, we have P H  is a subgroup of G. Assume that  
G = PH.  Hence if P < K, we have ([G: HI,  ]G: KD = 1 and so Corol lary  3.7 can be 
appl ied to yield that  G is supersolvable, a contradiction.  Thus P ~ K. Since G = HK,  it 
follows that  there exist a Sylow p-subgroup P1 of H and a Sylow p-subgroup P2 of K such 
that  P = P1P2. Since P ~ H and P $ K, it follows that  1 < Pi < P( i  = 1,2). Since 
G = P H  and Pa < H, it follows easily that  P1-~ G and this is impossible as P is a 
minimal  normal  subgroup of G. Thus we can assume that  P H  and P K  are proper  
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subgroups of G. Now it follows easily that P H and P K are normal  subgroups of G. Our  
choice of G implies that P H  and P K  are supersolvable subgroups of G. Again Baer's 
Theorem implies that G is supersolvable, a final contradiction.  
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