On the supersolvability of finite groups

By

M. ASAAD and A. SHAALAN

1. Introduction. It is known that the product of two normal supersolvable subgroups of G is not necessarily supersolvable. In $[1]$, Baer proved that if G is the product of two normal supersolvable subgroups and G' is nilpotent, then G is supersolvable. In [2], Friesen proved that if G is the product of two normal supersolvable subgroups of coprime indices, then G is supersolvable. If G is the product of two nilpotent subgroups, then G is not necessarily supersolvable. In [3], Kegel proved that if $G = HK = HL = KL$, *H* and K are nilpotent subgroups, and L is supersolvable, then G is supersolvable. The object of this paper is to continue the investigations of the above mentioned authors. Throughout, the groups are finite.

2. **Basic definitions and lemmas.** We first need the following definitions:

Definition 2.1. Subgroups H and K of the group G permute if

$$
\langle H, K \rangle = HK = KH.
$$

D e finition 2.2. A subgroup H of G is said to be *quasinormal in* G if H permutes with every subgroup of G.

We indroduce the following definition which may be considered as a generalization of the concept of quasinormality.

D e f i n i t i o n 2.3. Let H and K be subgroups of G. H is said to be *quasinormal in* K if H permutes with every subgroup of K .

R e m a r k. It is very well-known that if $H \leq G$ and H is quasinormal in G, then H is subnormal in G. If H and K are subgroups of G, and H is quasinormal in K, then H is not necessarily subnormal in G , as confirmed by S_3 , the symmetric group of degree 3.

Lemma 2.4. Suppose that $G = HK$, H and K are supersolvable subgroups of $G, (H, |K|) = 1$, *H* is quasinormal in *K* and *K* is quasinormal in *H*. Then *G* is supersolv*able.*

P r o o f. Let p be a prime dividing $|G|$. Since $(|H|, |K|) = 1$, we can assume that p does not divide, say, $|K|$, in which case H contains a Sylow p-subgroup of G. Let P be a Sylow p-subgroup of H . Since H is supersolvable, it follows that H is solvable. Hence, by [4, Theorem 4.5, p. 233], $H = PL$, where L is a p'-Hall subgroup of H. By hypothesis, L K is a subgroup of G. Then $|G: LK| = |P|$ and hence *LK* is a p'-Hall subgroup of G. It follows now, by [4, Theorem 4.5, p. 233], that G is solvable.

Let M be an arbitrary maximal subgroup of G. Since G is solvable, it follows, by [4, Theorem 1.5, p. 219], that $|G: M| = p^n$ for some prime p. Since $(|H|, |K|) = 1$, we can assume that p does not divide, say, |K|. Let M_1 be a p'-Hall subgroup of M. By [4, Theorem 4.1, p. 231], we have $K \leq M^*$ for some x in G. Since M^* has the same properties as M, we can replace M by M^x and so we can assume without loss that $K \leq M$. Since $G = HK$, it follows that $M = K(H \wedge M)$. Clearly, $(|K|, |M \wedge H|) = 1$. By hypothesis, K is quasinormal in H and so K is quasinormal in $H \wedge M$. We argue that $H \wedge M$ is quasinormal in K. Let K_1 be a subgroup of K. By hypothesis, K_1 H is a subgroup of G. Then $K_1 H \wedge M = K_1 (H \wedge M)$ and hence $K_1 (H \wedge M)$ is a subgroup of G. Thus $H \wedge M$ is quasinormal in K. By induction on $|G|$, M is supersolvable. Hence all proper subgroups of G are supersolvable. Suppose that G is not supersolvable. Then it follows from Hilfssatz C of [5] that G has exactly one normal Sylow subgroup, say, P. So if $\phi(G) \neq 1$, then $G/\phi(G)$ is supersolvable by induction on $|G|$, which implies that G is supersolvable by a well-known theorem of Huppert, a contradiction. We may, therefore, assume that $\phi(G) = 1$. Then P is elementary abelian. By Satz 1 of [5], we have that P is a minimal normal subgroup of G. Set $|P| = p^n$, for some prime p dividing $|G|$. By Hilfssatz C of [5], G has a Sylow tower for the natural (descending) ordering of prime divisors of $|G|$, or G is nonnilpotent, each of whose proper subgroup is nilpotent. If G has a Sylow tower, then P is normal in G and p is the largest prime dividing $|G|$. We can assume that $P \leq H$ and $p\nmid K$. Since H is supersolvable, it follows, by [6, Corollary 10.5.2, p. 159], that H has a normal subgroup L of order p. By hypothesis, LK is a subgroup of G. If $G = LK$, then G is supersolvable, a contradiction. Hence *LK* is a proper supersolvable subgroup of G and L is normal in LK . Now it follows easily that L is normal in G . This is impossible as P is a minimal normal subgroup of G . If G is nonnilpotent, each of whose proper subgroup is nilpotent, then, by [7, Satz 5.2, p. 281], $G = PQ$, where P is normal in G, P is a Sylow p-subgroup of G, Q is nonnormal cyclic Sylow q-subgroup of G, and $p \neq q$. Clearly, $|P| = p^n$, where $n \ge 2$. We can assume that $P = H$ and $Q = K$. Let L be a proper subgroup of P. By hypothesis, LO is a subgroup of G. Clearly, LO is nilpotent. Then L is normal in LQ . Now it follows easily that L is normal in G. The is impossible as P is a minimal normal subgroup of G.

The argument which established our lemma can easily be adapted to yield the following result:

Theorem (Friesen [2]). *If H and K are normal supersolvable subgroups of G of coprime indices, then G* is *supersolvable.*

3. Main results. We prove the following theorems:

Theorem 3.1. *Suppose that H and K are supersolvable subgroups of G such that* $G = HK$. Suppose further that each subgroup of H is quasinormal in K. Then G is *supersolvable.*

P r 0 0 f. Suppose that the theorem is false and let G be a counter-example of smallest order. Let p be the largest prime dividing $|G|$. Then, by [8, Theorem 13.2.5, p. 378], there exist a Sylow p-subgroup P_1 of H and a Sylow p-subgroup P_2 of K such that $P_1 P_2$ is a Sylow p-subgroup of G. Set $P = P_1 P_2$. We argue that $P \lhd G$. Since K is supersolvable, it follows that K is solvable. Then there exists a p' -Hall subgroup L_2 of K such that $K = P_2 L_2$. If $G = P_1 K$, then $G = PL_2$. By hypothesis, $P_1 L_2$ is a subgroup of G, P_1 is quasinormal in L_2 and L_2 is quasinormal in P_1 . Lemma 2.4 implies that $P_1 L_2$ is supersolvable and so $P_1 \leq P_1 L_2$. Since K is supersolvable, it follows that $P_2 \leq K$. Hence $P \le G$. Now we can assume that $P_1 K$ and $P_2 H$ are proper subgroups of G. Our choice of G implies that $P_1 K$ and $P_2 H$ are supersolvable. Hence $P \lhd P_1 K$ and $P \lhd P_2 H$. Since $G = HK$, it follows that $P \lhd G$.

Assume that $\phi(G) \neq 1$. Then $G/\phi(G)$ is supersolvable by our choice of G, which implies G is supersolvable, a contradiction. Thus $\phi(G) = 1$. Then P is elementary abelian. We argue that P is a minimal normal subgroup of G . If not, by Maschke's Theorem, $P = R_1 \times R_2$, where $R_i \leq G(i = 1, 2)$. Our choice of G implies that G/R_i is supersolvable $(i = 1, 2)$. Since $G = G/R_1 \wedge R_2 \approx G/R_1 \times G/R_2$, it follows that G is supersolvable, a contradiction. Thus P is a minimal normal subgroup of G. Clearly, $P_1 L_2$ is a subgroup of G, where L_2 is a p'-Hall subgroup of K, P_1 is quasinormal in L_2 and L_2 is quasinormal in P_1 . If $G = P_1 L_2$, then, by Lemma 2.4, G is supersolvable, a contradiction. Thus $P_1 L_2 < G$. Our choice of G implies that $P_1 L_2$ is supersolvable and so $P_1 \lhd P_1 L_2$. Also $P_1 \leq H$. Hence $P_1 \leq G$. Since P is a minimal normal subgroup of G, it follows that $P_1 = 1$ or $P_1 = P$. If $P_1 = 1$, then $P = P_2 \leq K$ and H is a p'-subgroup of G. Since K is supersolvable, it follows that K has a normal subgroup P_3 of order p. By hypothesis, $P_3 H$ is a subgroup of G. If $G = P_3 H$, then, by Lemma 2.4, G is supersolvable, a contradiction. Thus $P_3 H$ is a proper subgroup of G. Our choice of G implies that $P_3 H$ is supersolvable and so $P_3 \lhd P_3 H$. Hence $P_3 \lhd G$ and so $P_3 = P$. Our choice of G implies that G/P is supersolvable and so G is supersolvable, a contradiction. Similarly, if $P_2 = 1$, we have a contradiction. If $P_1 = P$, then $1 < P_2 \leq P$. If $P_2 = P$, then $P \leq H$ and $P \leq K$. Hence $H = PL_1$, where L_1 is a p'-Hall subgroup of H. Let P_3 be a subgroup of P of order p. By hypothesis, P_3L_1 and P_3L_2 are subgroups of G. Clearly, $P_3L_1 \leq H < G$ and $P_3L_2 \leq K < G$. Then P_3L_1 and P_3L_2 are supersolvable and so $P_3 \lhd P_3L_1$ and $P_3 \lhd P_3 L_2$. Hence $P_3 \lhd G$ and so $P_3 = P$. Our choice of G implies that G/P is supersolvable and so G is supersolvable, a contradiction. If $1 < P_2 < P$, then, by hypothesis, $P_2 L_1$ is a subgroup of G. Our choice of G implies that $P_2 L_1$ is supersolvable and so $P_2 \lhd P_2 L_1$. Also, $P_2 \lightharpoonup K$. Hence $P_2 \lightharpoonup G$. This implies that $P_2 = P$. This is impossible as $P_2 < P$. This completes the proof of the theorem.

R e m a r k. The alternating group of degree 4 shows that if $G = HK$, *H* and *K* are supersolvable subgroups of G , and H is quasinormal in K , then the group need not be supersolvable in general.

Our theorem may be considered as a generalization of the following well-known result:

Theorem. If G/H and G/K are supersolvable, then $G/H \wedge K$ is supersolvable.

Theorem 3.2. *Suppose that H is a nilpotent subgroup of G, K is a supersolvable subgroup of G and that* $G = HK$ *. Suppose further that H is quasinormal in K and K is quasinormal in H. Then G is supersolvable.*

P r o o f. Suppose that the theorem is false and let G be a counter-example of smallest order. Let p be the largest prime dividing $|G|$. Then there exist Sylow p-subgroup P_1 of H and Sylow p-subgroup P_2 of K such that $P = P_1 P_2$ is a Sylow p-subgroup of G. By hypothesis, $P_1 K$ and $P_2 H$ are subgroups of G. Let M be a proper subgroup of G such that $H \leq M$. Since $G = HK$ and $H \leq M$, it follows easily that $M = H(K \wedge M)$. Clearly, H is quasinormal in $K \wedge M$. Let H_1 be a subgroup of H. By hypothesis, $H_1 K$ is a subgroup of G. Clearly, $H_1 K \wedge M = H_1 (K \wedge M)$. Hence $K \wedge M$ is quasinormal in H. But now our choice of G implies that M is supersolvable. Similarly, if $K \leq M$, then M is supersolvable. If $P_1 K$ is a proper subgroup of G, then, by our choice of G, $P_1 K$ is supersolvable and so $P \lhd P_1 K$. Since H is nilpotent, it follows that $P_1 \lhd H$. Hence if $y \in G$, $y = hk$ with $h \in H$ and $k \in K$, and consequently $P_1^y = P_1^{kk} = P_1^k \le P$. But then the normal closure $P_1^G = \langle P_1^y | y \in G \rangle \leq P$. Clearly, G/P_1^G satisfies the conditions of the theorem. Hence by our choice of *G, G/P₁* is supersolvable. Since $P_1^G \leq P$, it follows that $P \lhd G$. Similarly, if $P_2 H$ is a proper subgroup of G, then $P \lhd G$. Now we can assume that $G = P_1 K = P_2 H$. Then $G = PK = PH = KH$. Applying Kegel's Theorem [3], it follows that G is supersolvable, a contradiction. Therefore, $P \lhd G$, where P is a Sylow p-subgroup of G and p is the largest prime dividing $|G|$. If $\phi(G) \neq 1$, then $G/\phi(G)$ is supersolvable by our choice of G , which implies that G is supersolvable, a contradiction. We may, therefore, assume that $\phi(G) = 1$. Then P is elementary abelian. We argue that P is a minimal normal subgroup of G. If not, by Maschke's Theorem, $P = R_1 \times R_2$, where $R_i \leq G$ (i = 1, 2). Since

$$
G = G/R_1 \wedge R_2 \gtrsim G/R_1 \times G/R_2,
$$

it follows that G is supersolvable, a contradiction. Thus P is a minimal normal subgroup of G. We consider the following cases:

C a s e 1. $P_1 = 1$. Then $P_2 = P \leq K$. Since K is supersolvable, it follows that K has a normal subgroup P_3 of order p. Clearly, H is a p'-subgroup of G. By hypothesis, $P_3 H$ is a subgroup of G. If $G = P_3 H$, then it follows easily that G is supersolvable, a contradiction. Thus we may assume that $P_3 H$ is a proper subgroup of G. By our choice of G, $P_3 H$ is supersolvable and so $P_3 \lightharpoonup P_3$ H. Now it follows easily that $P_3 \lightharpoonup G$. Since P is a minimal normal subgroup of G, we have $P_3 = P$ and so G is supersolvable, a contradiction.

Case 2. $P_2 = 1$. Then we have a contradiction; see Case 1.

C a s e 3. P_1 + 1 and P_2 + 1. By our choice of *G*, it follows that *G*/*P* is supersolvable and so G is solvable. Consider Fit (G). Clearly, $P \leq$ Fit (G). Hence if $P <$ Fit (G), there exists a Sylow q-subgroup Q of Fit (G), where $q \neq p$. Since Q char Fit (G) $\lnot G$, it follows that $Q \ll G$. By our choice of G, G/P and G/Q are supersolvable. Since

$$
G = G/P \wedge Q \gtrsim G/P \times G/Q,
$$

it follows that G is supersolvable, a contradiction. We may, therefore, assume that $P =$ Fit(G). Since G is solvable, it follows from [8, Theorem 7.4.7, p. 167] that

 C_G (Fit (G)) = C_G (P) \leq Fit (G) = P. Let L be a p'-Hall subgroup of K. By hypothesis, HL is a subgroup of G. If $G = HL$, then $P_1 = P$. Since H is nilpotent, it follows that $H \leq C_G(P) \leq P$ and so $H = P$. If $P_2 = P$, then $H = P \leq K$ and so $G = K$, a contradiction. We may assume that $P_2 < P$. Since K is supersolvable, it follows that $P_2 \lhd K$. Also $P_2 \leq P = H$. Then $P_2 \leq G$ and this is impossible as P is a minimal normal subgroup of G. Now assume that *HL* is a proper subgroup of G. By our choice of *G, HL* is supersolvable. Hence $P_1 \lhd H L$, and so $H L \leq N_G(P_1)$. Now it follows easily that $P_1 \lhd G$. Since P is a minimal normal subgroup of G and $P_1 \neq 1$, it follows that $P_1 = P$. Then $P_2 \lhd P = H$. Since K is supersolvable, it follows that $P_2 \lhd K$. Hence $P_2 \lhd G$. Since P is a minimal normal subgroup of G, we have $P_2 = P$ and this is impossible as $P_2 < P$. This completes the proof of the theorem.

R e m a r k. If we require that $G = HK$, H and K are supersolvable subgroups of G, H is quasinormal in K and K is quasinormal in H , then G is not necessarily supersolvable. Let

$$
x = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \quad y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}
$$

be matrices over J_5 , where J_5 is the field of integers (mod 5). Then $S = \langle x, y \rangle$ is a quaternion group of order 8. Let $T = J_5 \times J_5$ and let $G = Hol(T, S)$ (where S is interpreted as a group of automorphisms of T). Let $H = \langle T, x \rangle$ and $K = \langle T, y \rangle$. Then

- (i) H and K are normal supersolvable subgroups of G ;
- (ii) $G = HK;$
- (iii) G is not supersolvable.

(Huppert [9]; see also [8, Exercise 9.2.19, p. 219]).

As a corollary, we have

Corollary 3.3. *If H is a quasinormal nilpotent subgroup in G and K is a quasinormal supersolvable subgroup in G, then H K is a quasinormal supersolvable subgroup in G.*

As an immediate consequence of Corollary 3.3, we have the following well-known result:

Theorem. *If H is a normal nilpotent subgroup in G and K is a normal supersolvabIe subgroup in G, then H K is a normal supersolvable subgroup in G.*

Theorem 3.4. *Suppose that H and K are supersolvable subgroups of G of coprime indices and that for each pair of primes* $\{p, q\}$ with $p > q$, where one of these primes divides $|G: H|$ and the other divides $|G: K|$, $p \neq 1$ (q). Suppose further that H is quasinormal in K and that *K is quasinormal in H. Then G is supersolvable.*

P r o o f. Suppose that the theorem is false and let G be a counter-example of smallest order. Let p be the largest prime dividing $|G|$. Let P be a Sylow p-subgroup of G. Hence if $p \nmid |G:H|$, we have $P \leq H^*$ for some x in G. Since H^* has the same properties as H, we can replace H by H^x and so we can assume without loss that $P \leq H$. Since H is supersolvable, it follows that $P \leq H$. Similarly, if $p \nmid |G: K|$, we have $P \leq K$. Hence if $p \nmid |G:H|$ and $p \nmid |G:K|$, we have $P \le G$. Our choice of G implies that G/P is supersolvable and so G is solvable. Now we can assume that $p \mid |G: K|$. Hence if $p \mid |K|, P_1 \lhd K$, where P_1 is a Sylow p-subgroup of K, we can assume without loss that $P_1 \le P \le H$. Since $P_1^{k_1} = P_1^k \leq H$, it follows that $P_1^{\mathcal{G}} \leq H$ and so $P_1^{\mathcal{G}}$ is normal supersolvable. Our choice of G implies that G/P_1^G is supersolvable and so G is solvable. If $p \nmid K$, then K is a p' -subgroup of G. Let Q be a Sylow q-subgroup of K, where q is the largest prime dividing $|K|$. Hence if $q \nmid |G:H|$, we can assume without loss that $Q \leq H$ and so $Q^G \leq H$. Our choice of G implies that G/Q^G is supersolvable. Since $Q^G \leq H$, it follows that Q^G is supersolvable. Hence G is solvable. Thus we can assume that $q||G:H|$. Let P_2 be a subgroup of P of order p. By hypothesis, $P_2 K$ is a subgroup of G. If $G = P_2 K$, then $N_G(Q) = K$ or $Q \lhd G$. If $Q \lhd G$, then it follows easily that G is solvable. If $N_G(Q) = K$, then by Sylow's Theorem $p \equiv 1 (q)$ and this is impossible as $p \not\equiv 1 (q)$. Thus $P_2 K$ is a proper subgroup of G. Let M be a proper subgroup of G such that $K \le M$. Since $G=HK$, it follows that $M=K(M\wedge H)$. Clearly, $(|M:K|, |M:M\wedge H|) = 1$, K and $M \wedge H$ are supersolvable subgroups of M, and K is quasinormal in $M \wedge H$. Let K_1 be a subgroup of K. By hypothesis, K_1H is a subgroup of G. Clearly, $M \wedge K_1 H = K_1 (M \wedge H)$. Then $M \wedge H$ is quasinormal in K. Our choice of G implies that M is supersolvable. Hence $P_2 K$ is supersolvable and so $P_2 \lhd P_2 K$. Now it follows that $P_2^G \leq H$ and so G is solvable. Therefore, we have that G is solvable.

Let M be a maximal subgroup of G. Since G is solvable, we have $|G: M|$ is a power of prime, say r^e . If $r \nmid |G:H|$ and $r \nmid |G:K|$, then $G = MH = MK$. Clearly, $|G:H| = |M:M \wedge H|, |G: K| = |M:M \wedge K|, M \wedge H$ and $M \wedge K$ are supersolvable subgroups of M, $M \wedge H$ is quasinormal in $M \wedge K$, and $M \wedge K$ is quasinormal in $M \wedge H$. Hence M is supersolvable by our choice of G. Now we can assume that $r \mid |G: K|$. Then $G = MH$ and so $|G:H| = |M:M \wedge H|$. Let R be a Sylow r-subgroup of K. Then $K = R K_1$, where K_1 is an r'-Hall subgroup of K. Since G is solvable, we can assume without loss that $K_1 \leq M$. Since

 $[G: K_1] = [G: M] | M: K \wedge M | K \wedge M: K_1| = [G: K] | K: K_1|,$

we have $\pi(M: K \wedge M) \leq \pi(G: K)$. Since H and K are of coprime indices in G, it follows that $M \wedge H$ and $M \wedge K$ are of coprime indices in M. Hence M is supersolvable by our choice of G. Thus all proper subgroups of G are supersolvable. By Hilfssatz C of [5], G has exactly one normal Sylow subgroup P. So if $\phi(G) \neq 1$, then $G/\phi(G)$ is supersolvable by our choice of G , which implies that G is supersolvable, a contradiction. We may, therefore, assume that $\phi(G) = 1$. Then P is elementary abelian. By Satz 1 of [5], P is a minimal normal subgroup of G. Let $|G| = p^a q^b$, where $p \neq q$. Since H and K are of coprime indices, we can assume that $P \leq H$ and $Q \leq K$. If $Q < K$, then $P_1 \lhd K$, where P_1 is a Sylow p-subgroup of K. Since $P_1 \lhd P$, we have $P_1 \lhd G$ and this is impossible as P is a minimal normal subgroup of G. Thus $Q = K$. By hypothesis, KP_2 is a subgroup of G, where P_2 is a subgroup of P of order p. Clearly, if $P_2 K = G$, then G is supersolvable, a contradiction. Hence $P_2 K$ is a proper subgroup of G. Clearly, $P_2 \lhd P_2 K$ and $P_2 \lhd P$. Hence $P_2 \lhd G$ and this is impossible as P is a minimal normal subgroup of G. If $|G|$ is divisible by at least four different primes, then, by Satz 4 of [5], G is supersolvable, a contradiction. Thus we can assume that $|G|$ is divisible by three different primes. Set $\pi(G) = \{p, q, r\}$, where $p > q > r$. We deal with the following cases:

C a s e 1. $|G: H| = p^{e_1}$. We argue that H is a p'-Hall subgroup of G. If not, $H = P₃H₁$, where P_3 is a Sylow p-subgroup of H and H_1 is a p'-Hall subgroup of H. Clearly, $G = PH$, $P_3 \lhd P$ and $P_3 \lhd H$. Hence $P_3 \lhd G$ and this is impossible as P is a minimal normal subgroup of G. Thus H is a p' -Hall subgroup of G. Since H is quasinormal in K , it follows that $P_1 H$ is a subgroup of G, where $1 < P_1 < P \leq K$. Since $P_1 H$ is supersolvable, we have $P_1 \lhd P_1$ and $P_1 \lhd G$ and this is impossible as P is a minimal normal subgroup of G.

Case 2. $|G:H| = r^{e_3}$. Then $|G: K| = p^{e_1}$ or q^{e_2} or $p^{e_1}q^{e_2}$. If $|G: K| = p^{e_1}$, then, as in Case 1, we have a contradiction. If $|G: K| = q^{e_2}$ or $p^{e_1} q^{e_2}$, then by hypothesis, $q \neq 1$ (r). By Satz 2 of [5], there exists a p' -Hall subgroup L of G such that L is non-abelian and all its proper subgroups are abelian. Clearly, L is supersolvable and $q > r$. By [7, p. 285, 14), b)], Q is a minimal normal subgroup of L. Since L is supersolvable, we have $|Q| = q$. Now by Sylow's Theorem $q \equiv 1(r)$, a contradiction.

Case 3. $|G:H| = q^{e_2}$. Then $|G:K| = p^{e_1}$ or r^{e_3} or $r^{e_3} p^{e_1}$. If $|G:K| = p^{e_1}$, then, as in Case 1, G is supersolvable, a contradiction. If $|G: K| = r^{e_3}$, then, as in Case 2, G is supersolvable, a contradiction. If $|G: K| = r^{e_3} p^{e_1}$, then, by hypothesis, $q \not\equiv 1(r)$. On the other hand $q \equiv 1$ (r) as G contains a non-abelian subgroup L and all proper subgroup of L are abelian and $Q \ll L$, where Q is a Sylow q-subgroup of L of order q. Hence $q \neq 1(r)$ and $q \equiv 1(r)$, a contradiction. Therefore, G is supersolvable and the theorem is proved.

As a corollary of the proof of Theorem 3.4, we have

Corollary 3.5. *Suppose that H and K are subgroups of G of coprime indices and that H and K have the Sylow tower property. Suppose further that H is quasinormal in K and K is quasinormal in H. Then G satisfies the Sylow tower property.*

We can now prove the following generalization of Corollary 3.5:

Corollary 3.6. *Suppose that H and K are subgroups of G such that G = H K and that H and K satisfy the Sylow tower property. Suppose further that H is quasinormal in K and K is quasinormal in H. Then G satisfies the Sylow tower property.*

P r o o f. Suppose that the theorem is false and let G be a counter-example of smallest order. Let p be the largest prime dividing $|G|$. Then there exist a Sylow p-subgroup P_1 of H and a Sylow p-subgroup P_2 of K such that $P = P_1 P_2$ is a Sylow p-subgroup of G. We consider the following cases:

Case 1. $P_1 = P$ and $P_2 = 1$. Then $P \lhd H$. By hypothesis, PK is a subgroup of G. If $PK = G$, then $|G: K| = |P|$. Clearly, $p \nmid |G: H|$. Hence $(|G: H|, |G: K|) = 1$. Applying Corollary 3.5, it follows that G has a Sylow tower, a contradiction. If *PK* is a proper subgroup of G, then, by our choice of G, PK has a Sylow tower and so $P \lhd P K$. Since $P \leq H$ and $P \leq P K$, we have $P \leq G$. By our choice of G, G/P has a Sylow tower. Hence G has a Sylow tower, a contradiction. Similarly, if $P_2 = P$ and $P_1 = 1$, we have a contradiction.

Case 2. $P_1 = P$ and $1 < P_2 < P$. Then $P_2 \lhd K$ and $P_1 \lhd H$. Since $P_2^{kh} = P_2^h \le P^h$ $= P \leq H$, it follows that $P_2^G \leq P$. By our choice of *G*, G/P_2^G has a Sylow tower and so $P \lhd G$. Hence G has a Sylow tower, a contradiction. Similarly, if $P_2 = P$ and $1 < P_1 < P$, we have a contradiction.

Ca se 3. $1 < P_1 < P_2$ and $1 < P_2 < P$. By hypothesis, $P_2 H$ is a subgroup of G. If $G = P₂ H$, then $G = HP$. Hence if $y \in G$, $y = hk$, with $h \in H$ and $k \in P$, and consequently $P_1^y = P_1^{hk} = P_1^k \le P$. But then the normal closure $P_1^G = \langle P_1^y | y \in G \rangle \le P$. By our choice of $G, G/P_1^G$ has a Sylow tower and so $P \le G$. Hence G has a Sylow tower, a contradiction. Similarly, if $G = P_1 K$, we have a contradiction. Thus we can assume that $P_2 H$ and $P_1 K$ are proper subgroups of G. By our choice of G, $P_2 H$ and $P_1 K$ satisfy the Sylow tower property. Hence $P \lhd P_2 H$ and $P \lhd P_1 K$ and so $P \lhd G$. Therefore, G has a Sylow tower, a final contradiction.

The proof of Theorem 3.4 can easily be adapted to yield the following corollary:

Corollary 3.7. *Suppose that H and K are supersolvable subgroups of G of coprime indices* and that G' is nilpotent. Suppose further that H is quasinormal in K and K is quasinormal *in H. Then G is supersolvable.*

The following result may be considered as an improvement of Baer's Theorem [1].

Theorem 3.8. *Suppose that H and K are supersolvable subgroups of G, G' is nilpotent and* $G = HK$. Suppose further that H is quasinormal in K and K is quasinormal in H. Then G *is supersolvable.*

P r 0 0 f. Suppose the theorem is false and let G be a counterexample of smallest order. If G contain two normal subgroups R_1 and R_2 such that $(|R_1|, |R_2|) = 1$, then G/R_1 and G/R_2 are supersolvable by our choice of G. Hence $G = G/R_1 \wedge R_2 \gtrsim G/R_1 \times G/R_2$ is supersolvable, a contradiction. This implies that G' is a q-group for some prime q. Corollary 3.6 implies that $P \lightharpoonup G$, where P is a Sylow p-subgroup of G and p is the largest prime dividing $|G|$. Hence $q = p$ and $G' \leq P$. So if $\phi(G) \neq 1$, then $G/\phi(G)$ is supersolvable by our choice of G , which implies that G is supersolvable, a contradiction. We may, therefore, assume that $\phi(G) = 1$. We argue that P is a minimal normal subgroup of G. If not, by Maschke's Theorem, $P = R_1 \times R_2$, where $R_i \le G(i = 1, 2)$. By our choice of G, G/R_i is supersolvable (*i* = 1, 2). Since $G = G/R_1 \wedge R_2 \approx G/R_1 \times G/R_2$, it follows that G is supersolvable, a contradiction. Thus P is a minimal normal subgroup of G . Since $G' \leq P$, we have $G' = P$. If $G' \leq H$ and $G' \leq K$, then it is clear that H and K are normal subgroups of G. From Baer's Theorem $[1]$, we conclude that G is supersolvable, a contradiction. Hence if $G' = P \nleq H$, we have PH is a subgroup of G. Assume that $G = PH$. Hence if $P \leq K$, we have $(|G: H|, |G: K|) = 1$ and so Corollary 3.7 can be applied to yield that G is supersolvable, a contradiction. Thus $P \nleq K$. Since $G = HK$, it follows that there exist a Sylow p-subgroup P_1 of H and a Sylow p-subgroup P_2 of K such that $P = P_1 P_2$. Since $P \not\leq H$ and $P \not\leq K$, it follows that $1 < P_i < P(i = 1, 2)$. Since $G = PH$ and $P_1 \lhd H$, it follows easily that $P_1 \lhd G$ and this is impossible as P is a minimal normal subgroup of G. Thus we can assume that *PH* and PK are proper

subgroups of G. Now it follows easily that PH and PK are normal subgroups of G. Our choice of G implies that *PH* and *PK* are supersolvable subgroups of G. Again Baer's Theorem implies that G is supersolvable, a final contradiction.

References

- [1] R. BAER, Classes of finite groups and their propcrties. Illinois J. Math. 1, 115-187 (1957).
- [2] D. R. FaIFSEN, Products of normal supersolvable subgroups. Proc. Amer. Math. Soc. 30, 46 48 (1971).
- [3] O. H. KrGEL, Zur Struktur mehrfach faktorisierbarer endlicher Gruppen. Math. Z. 87, 42-48 (1965).
- [4] D. GORENSTEIN, Finite groups. New York 1968.
- [5] K. DOERK, Minimal nicht fiberaufl6sbare, endliche Gruppen. Math. Z. 91, 198 205 (1966).
- [6] M. HALL, The theory of groups. New York 1959.
- [7] B. HUPPERT, Endliche Gruppen I. Berlin-Heidelberg-New York 1967.
- [8] W. R. SCOTT, Group theory. Englewood Cliffs, New Jersey 1964.
- [9] B. HUPPERT, Monomiale Darstellung endlicher Gruppen. Nagoya Math. J. $6, 93-94$ (1953).

Eingegangen am 7.3. 1988

Anschrift dcr Autoren:

M. Asaad and A. Shaalan Department of Mathematics Faculty of Science Cairo University Giza - Egypt