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On the minimum index of a cyclic quartic field

By

TorU NAKAHARA

1. Introduction. Let K be an algebraic number field of finite degree over the rationals
@. We note Z and ¢ the ring of rational integers and the ring of integers in K respective-
ly. For & in Ok let Ind € be the group index (O: Z[£]) if & is a primitive element of K and
0 otherwise. Then the minimum index #(K) of any field K is defined by the min {Ind #;
n € Og and Q(n) = K} and the field index m(K) by the g.c.d. {Ind¢&; & € O}

. D. S. Dummit and H. Kisilevsky showed that there exist infinitely many cubic cyclic
fields K whose integer rings O have a power basis, i.e. #i{K) = 1, here we say that @y has
a power basis when the integer ring Oy of a field K is equal to the Z-module Z[o] for a
number o in K[1].

To the contrary we shall prove that #(K) is unbounded as K runs through cyclic
quartic fields. We use the Gauss sum attached to the quartic character [8].

Recently the related phenomena in the case of cyclic extension K/@Q of prime degree
= 5, the case of pure quartic fields, the case of non-cyclic but abelian biquadratic fields
and more general cases were found by M.-N. Gras, T. Funakura, the author and
K. Gyory respectively [3], [2], [11], [4], [5]

2. Theorem, Lemma and Remarks. In Section 3 we shall prove the next result:

Theorem. For any given integer N > 0, there exists a cyclic quartic field K such that
Mm(K)>N and m(K)=1.

Remark 1. This theorem means that there does not exist the auBerwesentliche
Diskriminantenteiler (unessential discriminant divisor) of the field K, but the minimum
index M(K) is unbounded as K ranges over suitable cyclic quartic fields.

Remark 2. Our proof of the number of the fields of the theorem deduces due to
M. Hall [6] that there exist infinitely many cyclic quartic fields whose integer rings do not
have a power basis without using analytic methods [9], [10].

As is well known, if a prime p divides the field index m(K), then p is smaller than the
degree of K over Q. The next lemma is a slightly partial refinement of [13].

Lemma ([12]). For any abelian quartic field K over Q the field index m(K) coincides with
one of the 2°3% for e <2, ¢ < 1. Especially if the prime 2 is ramified in K, then e = 0.
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Remark 3. From the lemma for all the other cases of m(K) > 1, we can find fields
parallel to ones in the theorem.

3. Proof of the theorem. Let y be a quartic character with conductor n determined by
the biquadratic residue symbol. Let k be the n-th cyclotomic field Q({) with
{=exp(2n./—1/n). Let G be the Galois group of k/@Q. The group <{y)> is a cyclic
subgroup of order 4 of the character group of G. Let K denote the subfield of k corre-
sponding to the kernel H of y. As usual we define the Gauss’ @(n)/4 terms period

n = 3 (¢ where ¢(n) means the Euler’s function. Then we have K = Q(#), and we fix a
ecH

representative element ¢ of a generator g H of the Galois group of K over Q) such that
x(6) = «/ — 1. We denote the image of ¢/ of 4 € K by 42, Let n = £/m be square-free for
¢ = a® 4 4b%, where any prime factor of ¢ is congruent to 1 modulo 4, and

A=a+2b/—1=1mod2(1 —./—1) Let Q(\/E) be the real quadratic subfield of K
corresponding to the group {¥2>.

At first we consider the case of odd conductor n. Thern {1, #, #’, 4"} makes an integral
basis of K. Then using the Gauss sum 7(y) = Z x(x) ¢ attached to y and the Jacobi

sum f(x)z/f( ), from [10] we obtain Ind¢ = \/!d(f)/d(K)l = \/I(H (0 — E0)jm> )]
= /leN(a)| for & = xu + yn' + zn" in O, where
a=(cm+d J0)2,
c=((x—2"=y)b—(x—2ya,
d=(x-y+2" == (x—2* +y)m)2.

Here d(&), d(K) and N(«) mean the discriminant of £, the field discriminant of K and the
norm of a with respect to Q(\/Z)/Q respectively. Let N be a positive integer, £ a square-
free number £ = (12t + 1)> + 4 > N, let g be a quadratic nonresidue modulo # and

B <1 mod 4
=

gmod/) G=1-..N), ¢;>q.G=2.

N
Now we put m =[] g;.
j=1

N 4N —d*¢ £ ;
Then we have < (a)) = ( (a)> = ( > = (—) = <@> = <€> = — 1, where
® 4; q; q; q; £ 4
(a) denotes the Legendre symbol for a prime ¢ and the Jacobi symbol for the others.

iy
:—]> =1 (j=1,...,N). Hence it holds N < |N(z)| < Ind ¢ for

any primitive element de in @. Then we obtain m(K)> N. Finally it is enough
for us to evaluate the index m(K) modulo 6 by the lemma. Calculating the
value y(—1) =y, (= 1) ¥ (= 1) =(=1)**?*(—=1)"" 2 =1 from [7], we can con-
firm Indy = |N(m + (1 — m)/2) \/_)/2)] =(1—-((128)*+ 24t + 5)/4=1mod2 and
Indy = + 1 mod 3. Thus we get m(K) = 1.

On the other hand <

21*
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Secondly we consider the case of even conductor n. For the case of n = 16/m and
2 ¥ £m we must notice that the integer ring 0y does not have a normal basis, namely
Og=2Z1,4,%, Bl, B=+/2¢ [8]. Then we have Ind £ = |[¢N(o)| for & = x5 + yn’ + zp,

where

o=cm+d \/ﬁ,

c=—2xyla—2b) + (x* — y*) (a + 2b),

d=2z*—y(—1) 2 + y) m.
Letgand g;(j = 1,..., N) select the same numbers as in the previous case. Now we put
m =j]f[1 g;. Then from (N_q@ﬂ_)> + <ic;—j) (j=1,...,N),it follows m(K) > N. Moreover let

3¥a and 3|b, then we Jhave Indy = |a(a®m?® — 2¢m?)| = |a| £ 0 mod 3, and Indy
= [e(¢>m?)| = 1 mod 2. Thus it holds that m(K) = 1. For the case of n = ¢#m, 2 ¥ ¢ and
m=4m, we can see that Op=Z[1,4,%,b], =01+ \/E)/Z [8]. Then we get
Ind & = |¢N(a)| for & = x + yn' + zB, where

oc=2cm0+d\/2,
c=—xya+ (x* —y?) 2b,

d=(2+y) mg— y(—1) 22
N
By the same choice of primes g; (1 <j < N) as the above case, we put my =7 [7 g;.
j=1
Hence it holds m(K) > N.Moreoverlet 3 Y ab. Thenforé, =n +y#'and &, =n+4 + B
we get Ind £ = 0 mod 3 and Ind &, % 0 mod 2. Thus it follows m(K) = 1. Therefore we

have furnished a proof of the theorem.
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