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On the minimum index of  a cyclic quartic field 

By 

TORU NAKAHARA 

1. Introduction. Let K be an algebraic number  field of finite degree over the rationals 
~ .  We note Z and (9 K the ring of rational integers and the ring of integers in K respective- 
ly. For  ~ in (Pr let Ind ~ be the group index (CK: Z[~]) if ~ is a primitive element of K and 
0 otherwise. Then the minimum index rh(K) of any field K is defined by the rain {Ind r/; 
1/E (9~ and I~(~/) = K} and the field index m(K) by the g.c.d. {lnd 4; ~ ~ (gK}. 

D. S. Dummi t  and H. Kisilevsky showed that there exist infinitely many  cubic cyclic 
fields K whose integer rings (9 K have a power basis, i.e. rfi(K) = 1, here we say that  C K has 
a power basis when the integer ring O K of a field K is equal to the Z-module  Z[c~] for a 
number  c~ in K[1]. 

To the contrary we shall prove that  rfi(K) is unbounded as K runs through cyclic 
quartic fields. We use the Gauss sum attached to the quartic character [8]. 

Recently the related phenomena in the case of cyclic extension K/(D of prime degree 
> 5, the case of pure quartic fields, the case of non-cyclic but abelian biquadratic fields 
and more general cases were found by M.-N. Gras, T. Funakura,  the author  and 
K. Gy6ry  respectively [3], [2], [111, [4], [51. 

2. Theorem, Lemma  and Remarks. In Section 3 we shall prove the next result: 

Theorem. For any given integer N > O, there exists a cyclic quartic field K such that 

~ ( K ) > N  and m ( K ) = l .  

R e m a r k 1. This theorem means that there does not exist the auBerwesentliche 
Diskriminantenteiler (unessential discriminant divisor) of the field K, but the minimum 
index rfi(K) is unbounded as K ranges over suitable cyclic quartic fields. 

R e m a r k 2. Our  proof  of the number  of the fields of the theorem deduces due to 
M. Hall [6] that  there exist infinitely many  cyclic quartic fields whose integer rings do not 
have a power basis without using analytic methods [9], [10]. 

As is well known, if a prime p divides the field index re(K), then p is smaller than the 
degree of K over Q. The next lemma is a slightly partial refinement of [13]. 

Lemma  ([12]). For any abelian quartic field K over Q the field index m(K) coincides with 
one of the 2 r 3 r for e <= 2, e' ~= 1. Especially if the prime 2 is ramified in K, then e = O. 
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R e m a r k 3. F rom the lemma for all the other cases of re(K) > 1, we can find fields 
parallel to ones in the theorem. 

3. Proof  of the theorem. Let Z be a quartic character with conductor  n determined by 
the biquadratic residue symbol. Let k be the n-th cyclotomic field ~ ( ( )  with 
( =  exp(2n~/~- l /n ) .  Let G be the Galois group of k/~.  The group (Z)  is a cyclic 
subgroup of order 4 of the character group of G. Let K denote the subfield of k corre- 
sponding to the kernel H of Z. As usual we define the Gauss '  ~o(n)/4 terms period 

= ~ (0, where q)(n) means the Euler's function. Then we have K = ~(q),  and we fix a 
Q e H  

representative element a of a generator aH of the Galois group of K over ~ such that 
Z(a) = ~ 1. We denote the image of a t of r /e K by qo3. Let n = Em be square-free for 
E = a 2 +  4b 2, where any prime factor of f is congruent to 1 modulo  4, and 
2 = a + 2b ~ - 1  ~ 1 m o d 2 ( l  - ~S_  1). Let ~(V/E) be the real quadratic subfield of K 
corresponding to the group (zz ) .  

At first we consider the case of odd conductor n. Then {1, r/, ~/', r/"} makes an integral 
basis of K. Then using the Gauss sum z(Z) = ~ Z(x) (x attached to Z and the Jacobi 

XEG 

sum z(X)2/z(X2), from [10] we obtain Indr  = ~/Id(~)/d(K)l = ~/l(1-I (~" ) -~~  
= ~ for ~ = xtl + yq' + zrf' in (.o r ,  where i , j  

= Cm + d , / 7 ) /2 ,  

c = ( (x- -  z) 2 -  y2) b - ( x -  z) ya, 

d = ((x - y + z) 2 - X ( -  1) ((x - z) 2 + y2) m)/2. 

Here d(r d(K) and N(a) mean the discriminant of 4, the field discriminant of K and the 
norm of ~ with respect to ~( ,v /~) /~  respectively. Let N be a positive integer, Y a square- 
free number  E = (12t + 1) 2 + 4 > N, let g be a quadratic nonresidue modulo  f and 

1 mod  4j~ 
q~ = \ g mod  E J (j = 1 . . . . .  N), qj > q j -  1 (J > 2). 

N 

Now we put m = I~ qj. 
j = l  

Then we have ( N ( c O ~ = ( 4 N ( c O ~ = ( - d 2 f ~ = ( f )  ( ~ ) ( ~ )  \ q~ / \ - ~ - - j  / \ qJ / ~ . . . .  1, where 

( ~ )  denotes the Legendre/i x,symbO1 for a prime q and the Jacobi symbol for the others. 

On the other hand ( + ~ ) = 1  ( j = l  . . . . .  N). H e n c e i t  holds N < l N ( c 0 l < I n d ~  for 
\ ~ J , /  

any primitive element r in (9 r .  Then we obtain rf i (K)> N. Finally it is enough 
for us to evaluate the index re(K) modulo  6 by the lemma. Calculating the 
value ;~(-  1) = Ze(-  1) ~ m ( -  1) = ( -  l)-+lEt( - 1) ( " - ' / z  = I from [7], we can con- 
firm I n d r / =  [N((m + ((1 - m)/2) w/E)/2)[ -= (1 - ((1202 + 24t  + 5))/4 = 1 m o d 2  and 
Ind ~/= __+ 1 rood 3. Thus we get re(K) = 1. 

21" 
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Secondly  we cons ider  the case of even conduc to r  n. F o r  the case of n = 16 Em and  
2 X ~ m  we mus t  not ice  tha t  the integer  r ing (9 K does  no t  have a n o r m a l  basis,  namely  
C~: = ;g [ l ,  t/, t/ ',/3],/3 = ~ [8]. Then  we have I n d 4  = IcN(a)[  for  4 = x t / +  yt/ '  + z/3, 
where  

c~ = c m + d , , ~ ,  

c = - 2 x y ( a -  2b) + (x 2 - y2) (a + 2b),  

d = 2z 2 - X ( -  1) (x 2 + 22) m. 

Let  g and  qj (j = 1 . . . .  , N) select the same number s  as in the prev ious  case. N o w  we pu t  

m = [ I  qj. Then  f rom 4= (j = 1, . . . ,  N), it  follows rfi(K) > N. M o r e o v e r  let 

3 X a  and  31b,  then  we have I n d t / -  ]a (a2m 2 -  2 ( m Z ) l -  lal ~ 0  m o d 3 ,  and  I n d q  
- - I c ( c 2 m 2 ) l  = I m o d 2 .  Thus  it ho lds  tha t  m ( K )  = 1. F o r  the case of n = ~m, 2 , f g  and  
m = 4 m  o we can see tha t  (9 K = ; g [ 1 , ~ / , t ( , f i ] ,  / 3 = ( 1  + x / ~ ) / 2  [81. Then  we get 
I n d ~  = [cN(~)] for 4 = xtl + y t ( +  z/3, where  

c~ = 2 c m  o + d x f ~ ,  

c = - x y a  + ( x  2 - y2) 2b,  

d = (x 2 + y2) m o _  Z ( -  1) z 2. 

N 
By the same choice of pr imes  qj (1 < j < N) as the above  case, we pu t  m o = 7 I~[ qj. 

j = l  
Hence  it ho lds  r e ( K )  > N .  M o r e o v e r  let 3 X a b. Then  for 4o = q + t/' and  41 = t / +  q' + / 3  
we get Ind  4o $ 0 rood 3 and  Ind  41 $ 0 rood 2. Thus  it follows r e ( K )  = 1. Therefore  we 
have furnished a p r o o f  of the theorem.  
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