
Mathematical Methods of Operations Research (1997) 46:309-333 

Two Basic Problems in Reliability-Based Structural 
Optimization 

N o r b e r t  KUSCHEL and  Ri id iger  RACKWITZ 

Technlsche Universit/it Miinchen, Arcisstr. 21, 80290 Miinchen, Germany 
e-mail: rackwit z@massivbau.bauwesen.tu-muenchen.de 

Abstract: Optimization of structures with respect to performance, weight or cost is a well-known 
application of mathematical optimization theory. However optimization of structures with respect 
to weight or cost under probabilistic reliability constraints or optimization with respect to reliability 
under cost/weight constraints has been subject of only very few studies. The difficulty in using 
probabilistic constraints or reliability targets lies in the fact that modern reliability methods them- 
selves are formulated as a problem of optimization. In this paper two special formulations based on 
the so-called first-order reliability method (FORM) are presented. It is demonstrated that both 
problems can be solved by a one-level optimization problem, at least for problems in which struc- 
tural failure is characterized by a single failure criterion. Three examples demonstrate the algorithm 
indicating that the proposed formulations are comparable in numerical effort with an approach 
based on semi-infinite programming but are definitely superior to a two-level formulation. 
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optimization, one-level optimization. 

1 Introduction 

Opt imiza t ion  o f  structures wi th  respect  to weight  or  cost  has  been one o f  the 
p rominen t  app l ica t ions  and  challenges o f  ma thema t i ca l  op t imiza t ion .  Observa-  
t ion o f  re l iabi l i ty  constra ints  in terms o f  "safe ty  fac tors"  has  a lways  been a 
na tu ra l  pa r t  o f  m a n y  studies. M o r e  recently, op t imiza t ion  under  rel iabi l i ty  
const ra ints  in terms o f  restr ict ions on stochast ic  quanti t ies  such as the var iance  
o f  some s t ructural  pe r fo rmance  quan t i ty  or  the failure p robab i l i t y  i tself  has  
been under  study. Unfor tuna te ly ,  in mos t  cases the re l iabi l i ty  pa r t  was deal t  
wi th  on a somewha t  e lementary  level. However ,  it  is no t  more  than  a b o u t  20 
years  ago  tha t  the theory  o f  s t ructural  re l iabi l i ty  exper ienced a b r e a k th rough  in 
tha t  i t  could  reduce the task  o f  solving high d imens iona l  vo lume integrals  - still 
a numer ica l ly  ra ther  imprac t ica l  p r o b l e m  by s t anda rd  me thods  - into an  opt i -  
miza t ion  p rob l em plus  some simple algebra.  Tha t  theory  is o f  a sympto t i c  
na ture  and  based  on  so-cal led Lap lace  integrals  (Haso fe r /L ind  (1974), R a c k -  
wi tz /Fiess ler  (1978), Brei tung (1984), Hohenb ich le r  et al. (1987)). I t  is k n o w n  
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by Second-Order-Reliability-Method (SORM) and has a natural, significantly 
more practical first order version, the First-Order-Reliability-Method (FORM). 
Numerous developments in part making use of importance sampling methods 
and response surface methods have turned the initial ideas into a powerful tool 
for practical reliability analysis. Its use in structural optimization, however, 
resulted in serious numerical problems. Therefore, whereas the reliability anal- 
ysis of structures now is well known and computationally efficient the inverse 
problem of optimal probabilistic design of structures is still under development. 
Various attempts have been made by formulating a 2-step-algorithm, one for 
the design parameters and a second for the reliability part and which is called 
by the first (see, for example, Enevoldsen, Sorensen (1993, 1994)). If, for 
example, sequential quadratic programming methods are used on both opti- 
mization levels second order derivatives, mostly evaluated numerically, are 
required at the second level for FORM and even third order derivatives for 
SORM. Moreover, a mathematical proof is still missing trader which such 
a two level approach is converging. The difficulty of proof lies in the fact 
that the failure domains themselves depend on the design parameters. The 
numerical difficulties lead some authors to develop interactive SQP-algorithms 
(Pederson/Thoft-Christensen (1994, 1996)), apparently with some success. 
Another promising approach in the framework of FORM making use of 
semi-infinite programming was recently proposed by Kirjner, Polak and Der 
Kiureghian (1995). 

In the following yet another approach will be developed based on an idea 
proposed by Madsen/Friis Hansen (1992) which is also based on FORM. Two 
formulations will be developed. The first optimizes structural weight or cost 
under reliability and performance constraints. As a generalization cost will be 
understood as expected cost, i.e. including the failure cost multiplied by the failure 
probability. Hence, the objective itself contains reliability. The second formula- 
tion will optimize structures for reliability under cost and performance con- 
straints. Both types of formulations will be demonstrated at simple examples. 

2 Structural Reliability Methods-Optimality Conditions for t-Points 

Let X = (X1,... ,  Xn) T be a n-dimensional vector of random variables with 
continuously differentiable distribution function Fx(x). Let further G(X, p) _< 0 
be the failure domain and G(X, p) = 0 the so-called limit state which is assumed 
to be at least twice differentiable, p is a d-dimensional vector of design param- 
eters. It can involve deterministic parameters but also parameters of the distri- 
bution function Fx(x). Then the time-invariant probability of failure is given by 

PAp) = f fx(x)a  (1) 
C(x,p) ~ o 
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where fx(x) is the probability density of X. Analytical results for this integral 
are almost absent. However, let a probability distribution transformation 
T : Nn ~ IR n exist which maps an arbitrary n-dimensional random vector X = 
(X1,. . . ,  Xn)r into an independent standard normal vector U = (U1, . . . ,  Un)r 
(Hohenbichler/Rackwitz, 1981, Der Kiureghian/Liu, 1986, Winterstein/ 
Bjerager, 1987). With G(x, p) = G(T(u), p) = g(u, p) and the failure domain 
~p : {U : g(U, p) < 0} ,  it is: 

Pf(p) = J" Pu(du) 

: I ::.(u)au 
o(u,p) _< o 

(2) 

where Pv( .  ) is the standard normal distribution law and ~o~(u) is the standard 
normal density. Now, if 9 ( u , p ) = a r u + f l  an exact result is P / ( p ) =  
~b(-fl). 4(.  ) is the standard normal integral. If g(u, p) ~ aru + fl with 
fl = - a r u  * and where u* is the solution of the following optimization problem 

m inimize  I1"11 

subject to 0(u, p) < 0,  

there is Pf(p) ~ ~( - f lp )  (Rackwitz/Fiessler, 1978). The solution point u* of 
the optimization problem (tiP), the so called design point or r-point, defines 
the reliability index 

= Ilu*l[ (3)  

a is the vector of direction cosines of the solution point. Reference to the 
parameter vector p is omitted here and in the following whenever this is possi- 
ble without loosing clarity. Breitung (1984) established the following asymptotic 
result. For tip ~ ~ there is: 

n-1 
PT(P) = f ~~ ~ ~(-flP) H i = l  (1 -/g0,ci)-l/2 

o(u,p) _< o 
(4) 

where tr i are the main curvatures of the limit state function in the solution 
point. This result indicates that Pf(p) ~ ~(-flp)  in fact is a first order approx- 
imation which is sufficiently accurate for most practical cases. Note that, the 
first-order approximation only requires simple differentiability of g(u, p) = 0. 
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All subsequent considerations will be based on the first order theory. Hence, 
reliability analysis involves a probability distribution transformation, the search 
for the "fl-point" and the evaluation of the standard normal integral. Hereby, 
the search for the "fl-point" is the numerically most challenging task. Most 
more recent applications use a SQP-algorithm specialized for the task in opti- 
mization problem (tiP) (see, for example Abdo/Rackwitz (1991)). 

For FORM the first-order reliability index tip, i.e. the minimum distance 
from the origin to the limit state surface in standard normal space, can alter- 
natively be used as a measure of reliability. If u* is an optimal point for (tiP), 
the/~-point is a Kuhn-Tucker-point. 

Theorem 1: I f  u*, with u* # 0, is the solution point of optimization problem (tiP), 
then the following two statements hold for each p: 

a) g(u*,p) = O, 
b) u* Vug(u*,p) + Hu*[lllV~g(u*,p)ll : o. [ ]  

Proof" Because of the assumption, that u* is the solution point of the opti- 
mization problem (tiP), the Kuhn-Tucker-condition is fulfilled. 
There exists 2 > 0 with: 

i) Vu(llu*ll) + 2Vug(u*,p) = O, 
ii) ~O(u*,p) -- O. 

Since u* • 0 it follows from i) and ii) with u* = -2llu*[Ivug(u*,p) and 2 r 0 
that there is 

g(u*, p) = o .  

Further from i) we have 

Ilu*ll = ~llu*llllVug(u*,p)ll 

and 

-IlV,~g(u*, p)ll (5) 
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With (5) it is easily verified that 

IIV.0(u*,p)ll u* -- 0 .  
Vu (U*, p) Ilu*ll 

Using simple vector multiplication with u* the final result follows: 

u* Vug(u*,p) + IIn*llilVug(U*,p)ll = 0.  
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3 Reliability-Oriented Structural Optimization 

Many practical applications of structural optimization pursue at least three 
conflicting aims: 

�9 low cost or weight of  the structure 
�9 high reliability 
�9 good structural performance 

The third option will not be dealt with explicitely, however. The cost can or 
cannot include the expected failure cost. Therefore two principally different 
types of  optimization can be defined, i.e. where cost (or weight) or reliability is 
optimized: 

(CRP) a constrained minimization problem where the total cost, possibly 
including initial cost and expected cost of failure, are minimized subject to 
a given minimum reliability and other structural performance requirements, 

and 
01CP) a constrained maximization problem where the reliability of a 

structure is maximized subject to a given maximum cost and other struc- 
tural performance requirements. 

3.1 Cost Optimization with Reliability Constraints ( CRP) 

The structural optimization problem (CRP) is a problem where cost, including 
initial cost of design and expected cost of failure are minimized with constraints 
on structural performance, design parameters, and on reliability. The reliability 
is obtained using first-order reliability (FORM) techniques. In principle, the 
solution is a problem with two levels of optimization. The first problem (top- 
level) is cost optimization. The second problem (sub-level) determines the reli- 
ability index which is needed in the objective function (failure cost) and in at 
least one constraint. Instead of  using a two-level approach the two optimiza- 
tions can be combined into one optimization problem. 
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The necessary first-order optimality condition for design points from Theo- 
rem 1 are inserted into the cost optimization problem. More precisely, the 
optimization problem (CRP) must fullfil the necessary optimality conditions for 
the reliability index problem (tiP): 

CRP minimize C(p,flp) 

subject to g(u,p) = 0 

uTVng(u, p) -t-IlullllV.g(u,p)ll = o 

constraints on design and cost parameter 
constraint for reliability 
simple bounds for design and cost parameter, 

The constraint related to reliability in (CRP) is specified by ~ ( - p p )  < p,yx, 
where p,~ax is the maximum allowable failure probability. 

The objective function C(p, tip) can be given as 

Ct(p,u) = C(p, flp) 

= Ci(p)(1 - Pf(p)) + Cf(p)Pf(p) 

Ci(p) + Cf(p)Pf(p), (6) 

where Ct(., .) is the objective function of total expected cost, C/(.) is the initial 
cost of design and construction, CZ(.) is the cost of failure and PZ(.) is the 
failure of probability. The simplification is admissible because structural failure 
probabilities should be small numbers. 

Thus, the complete optimization problem for (CRP) is: 

(CRP) minimize 

subject to 

Ct(p,u) = C~(p)+ Cf(p)~(-llull) 

g(u, p) = 0 

uTv.g(u,P) + IIulIIIV-g(u,p)II = 0 

h;(T(,),p) = O, i = l , . . . , m '  

/~j(T(u) ,p)~O,  j = m ' + l , . . . , m  

( ~  pt) _< (T(u), p) _< (x~, pU), 
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where hi(., .) denote m' equality constraints and hi(-, .) denote m - m' inequality 
constraints for the design vector and the parameters. (x t, pt), (x u, p,) are simple 
lower and upper bounds for the random vector x = T(u) and the parameter p. 
The vector relation " < "  is defined by the ordinary order relation for the com- 
ponents of a vector. 

3.2 Reliability Optimization with Cost Constraints (RCP) 

The inverse optimization problem (RCP) is a problem where the reliability is 
maximized, i.e. the failure probability is minimized under constraints on struc- 
tural performance and design parameters. The total cost, including cost of 
design and expected cost of failure, are bounded by maximum total cost. 

The necessary optimality condition of the reliability index problem (tiP) is 
fulfilled by each solution point of the following problem (RCP): 

(RCP) minimize 

subject to 

eAp) 

a(u, p) = 0 

u V o(u,p) + IlullllV.o(u,p)ll = 0 

constraints on design and cost parameter 

constraint for total costs 

simple bounds for design and cost parameter, 

where Pf(p) is defined by the FORM-approximation of the failure probability 
given in section 2. Clearly, the following optimization problems 

min im i ze  Pf(p) and  maximize/   = Ilu*ll 

are equivalent. It is then easy to verify that the following optimization problem 
(RCP) will maximize the reliability of a structure subject to a given maximum 
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(RCP) maximize 

subject to 

[lull 

g(u,p) = o 

urVug(u,P) + [lulll[V.~(u,p)ll  = o 

hi(T(u),p)=0,  i = l , . . . , m '  

/~(T(u) ,p)<0,  j = m ' + l , . . . , m  

C;(p) + Cf(P)~(-Ilult) --- C? as 

(xt, p l) < (X(u), p) < (x u, p~), 

where Q(.) + c f ( . ) ~ ( - I I  �9 II) are the total expected cost defined by (6) and C~ ax 
is a maximum total cost. 

4 Sensitivity Analysis for CRP and RCP 

It is well known that sensitivity analysis of a structural optimization problem 
can help to formulate it appropriately and collect information about suitable 
starting values. It further can provide insight into the causes of possible non- 
convergence. 

4.1 Sensitivity Analysis for Parameters in the fl-Points 

In a first step the Lagrange function for the optimization problem (tiP) is dif- 
ferentiated with respect to a parameter element pj. From the Kuhn-Tucker 
optimality condition of the problem (tiP), especially equation (5), follows for 
the optimal t-point  u*: 

~ p _  ~[I.*[I 

(ag(u*,p) ) +\ ~pj -IIv~g(u*,p)ll-g(u*,p).~llVug(u*'P)ll- .llv~g(u,,p)[[-~. 
~pj 
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Because the fl-point u* is the solution for the reliability index problem, it can be 
shown by theorem la), that the first derivative of tip with respect to a parameter 
element pj has the following form: 

drip = 1 c~g(u*, p) (7) 
Opj IIV.g(u*, P)II apj 

The non-dimensional elasticities S/~ j = 1,. , d, of the reliability index with pj~ ' '  

respect to an element of the parameter are obtained by use of equation (7): 

,, Opj & 

1 pj ~g(u*, p) 
x. (8) 

IIV.g(u*,p)ll Ilu*ll ~pj 

Of course this definition makes sense only i fp j  • 0 and tip # 0. Equation (8) 
can be calculated easily. It can be used to investigate the importance of the 
parameter elements in p. Knowing the elasticities enables to determine a good 
starting vector (u ~ p0), which may be essential for convergence. 

In particular, starting values ui # 0, i = 1 , . . .  ,n, can be selected such that 

0 = g(0,p) + s. Og(O,p) with s > 0 depending on the value of  Og(O,p) 
Hi OU i OUi 

4.2 Sensitivity Analysis of the Cost Function and Importance of Sensitivities 

The first derivative of  the cost function Ct with respect to the d cost parameter 
elements pj and the n elements ui of the transformed vector u can be written as: 

OCt(p,u) _ aCi(p) + ~( - [ lu l l )"  c~Cf(P) (9) 
~Pj ePj ~Pj 

and 

a Ct(p, u) ui 
aui -- - C f ( p ) "  ~(llull) " I lu l l  ' (lo) 
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where ~b is the 1-dimensional density function of standard normal distribution. 
From equation (9) follow the elasticities S c`, j = 1, ., d, of the total cost p j  " "  

function Ct with respect to the parameter element pj: 

SG : (aCi(p) OCf (p)) pg" 
pJ apj  " (11) 

For values much less than zero the standard normal distribution converges 
very quickly to zero, e.g. 4 ( - 5 )  = 2.87- 10 -7 or 4 ( - 7 )  = 1.29 - 10 -12. There- 
fore, for large reliability indices fl = HuH, for example, [lull > 7.0, the two 
products involving the failure probability PU or, more precisely, its FORM- 
approximation ~ ( - I l u l l ) C f ( p )  and ~(-I lu[I)OCf(p)/Opj ,  respectively, are 

G small. In this case the elasticities S, of the total cost function Ct with respect to 
P J  . 

the parameter elements pj from equatxon (11) can be approximated by: 

s C , ~  OG(p) pj 
epj c;(p) 

The elasticities S c' i = 1, ., n, of the total cost function Ct with respect to the 
U i ' . . 

n elements of the transformed vector u follow from equation (10): 

ui = -  c A p ) . 0 ( l l u l l ) ,  ui . ui 
G ( p ,  u)  " 

(a2) 

Again, the standard normal density ~b decays rather rapidly to zero for values 
far from zero, e.g. ~b(-5) = 1.49.10 -6 or q~(-7) = 9.13- 10 -12. Therefore, for 
large values of reliability index fl = ]lull the standard normal density function ~b 
can be set equal to zero and, therefore, 

S ct ~, 0 
u i  

Since the elasticities S c` can be approximated by zero, a change of an element 
ui of the vector u leads to a "ZERO-change" of the total cost function including 
initial cost and expected cost of failure. 

4.3 Optimality Conditions for  Solution Points 

The Lagrange function for the optimization problem (CRP) can be written 
mm-m'+2n+za+l in the following with the Lagrange multipliers (v, 2) E ]R m'+2 x _,+ 
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form: 
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Zf(u,p, v,~) =Ct(p,u)§ vxg(u,p) § v2(uTV.g(u, p ) §  IlullllVug(u, P)II) 
m t m - - m  t 

+ F_, vi+2h, IX(u),p) + ~ Z:;,:(XIu),p) 
i=1 j:l 

+ '~m-m'+l(~(--Ilull) -- e?ax) 

+ 2l~((xl, p t) - (T(u), p)) + 2ur((T(u), p) - (xU, pU)), (13) 

where the Lagrange-subvectors 2 t, 2 u ~ IR~_ +a for simple bounds of design vector 
and cost parameter are defined by 2 l = (2m-re'+2,.-., 2m-m'+n+a+l) T and 2 u = 
(2m--m'+n+a+2,..., 2m-m'+2n+2a+a) T, respectively. The gradient of  the Lagrange 
function uses the gradient of the second equality term in (CRP) and (RCP). But 
with Theorem lb) it is easy to verify that this gradient is equal to zero in an 
optimal point, i.e. a Kuhn-Tucker-point. Then: 

V(urVuO(U, P) + Ilull IIV.g(u, p) ll)l(u,,p,) = O .  (14) 

where the operator V( ) defines the gradient vector of a function with respect to 
the (n + d)-dimensional vector (u, p). 

From the equations (13) and (14) the first order Kuhn-Tucker-conditions for 
the reliability-based optimization problem (CRP) follow directly: 

Theorem 2." ( KUHN- TUCKER-condition for ( CRP )-formulation) 
I f  the (n + d)-dimensional vector (u*,p*) is a solution point of optimization 
problem (CRP), then a Kuhn-Tucker-vector (v*, 2*) ~ IR m'+2 • JR+ -m'+2n+zd+l 
exists with: 

ic) VLC(u *, p*, v*, 2*) 

( ) = -Cf(p  )~(llu II)~ 
%C~(p*) + ~(-[lu*ll)VpCf(p*) 

,(Vu@(U, p,))  m' , (VThi(T(u*),p*)'VuT(u*)) 
§ +~-" vi+2 Vphi(T(u*),p*) i=1 
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m' 2~ (VT/~.(T(u,),p,) "VuT(u*)) 
+j--~l J \ 17p/~j(T(u*), p*) 

+ (;,_ ;,y.(v.~(.*)) 

= 0  
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+ 2~'-m'+1 0 

iic) Complementary Condition for ( CRP) : 

, ~  , * . m t 2)hj(T(u ),p ) =  0 ,  j = 1,.. , m -  

2~_m,§ i] ) _ e~ax) --= 0 

,~.,~ ((x~, pl) _ (T(.*), p*)) = 0 

,~*u~'((T(.*), p*) - (x", pU)) = 0 [] 

The Lagrange function for the reliability optimization problem (RCP) is for- 
mulated as: 

LR(U, p, v, 2) = --Ilull + vlg(u, p) + vZ(uT"17ug(u, p) + Ilull IIV.o(u, P) II) 

m' m - m  t 

+ Z vi+2hi(T(u),p) + ~ 2j/~-(T(u),p) 
i=1 j= l  

~- am_mp§ ( f t ( p ,  u)  - C ?  ax) 

+ 2t~((xt,p 1) - (T(u),p)) + 2uT~((T(u),p) - (x",pU)) . (15) 

ll~ m-m~ +2n+2d+ l where (v,2)~ Rm'+2 x-~+ are the Lagrange multipliers of the 
problem. 

From the above formulation of the Lagrange-function for the reliability- 
based optimization problem (CRP) the first order Kuhn-Tucker-conditions 
give: 

Theorem 3." ( KUHN- TUCKER-condition for ( R CP )-formulation) 
I f  the (n + d)-dimensional vector (u*, p*) is a solution point of optimization 

ll~ m-m p+2n+2d+ 1 problem (RCP), then a Kuhn-Tueker-veetor (v*, 2*) ~ IR m'+2 x _~+ 
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exists with." 
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iR) VLC(u *, p*, v*, 2") 

(v) = + v l  Vpg(U*, p*) 

, fVThi(T(u*),p*)" VuT(u*)'~ 
+ ~ Vi+2 t Vphi(T(u*), p*) ) 

~-~ 2, (VT/~ (T(u*), P*) " VuT(u*)) 

+ j=~ J~ Vi~/~(T(u*),p* ) ,] 

* * U* ( Cf(p )~(llu II) IIWII ) + 
)]'m-m'+l t -VpCi(p*)+ ' / ' ( -  [lu* I[)Vp C:(p*) 

+ (,~,u _ ~,t)~ (VnT("*)) 

= 0  

iiR) Complementary Condition for (RCP) : 

2)hj(T(u ),p ) = 0,  j = l , . . . , m - m '  

2~_m,+l(G(p*,u* ) - C7 ~x) = 0 

2*:((xt,  p t) - (T(u*),p*)) = 0 

2*u~'((T(u*),p *) - (xU, pU)) = 0 [] 

5 Asymptotic Equivalence of ~(-flp) and Pf(p) 

The following theorem states that asymptotically a quadratic approximation of 
failure surface is sufficient for failure probability estimation. 
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Theorem 4." (Breitung, 1984) 
IfO < ~ ( ~ p ) ,  then for each p." 

N. Kuschel and R. Rackwitz 

lim ~ ( b ~  = 1 . 
b-~oo ~ (  b ~ ) 

[] 

Hohenbichler (1984) proved the following (weaker) asymptotic result by using 
the central scaling of the failure domain b ~p  = {bu : u E ~-p}. The important 
theorem shows for b ~ ~ ,  that the reliability index tip converges "relatively" 
to the exact reliability index ripe 

= ( P A p ) ) .  

Theorem 5." (Hohenbichler, 1984) 
IfO < fl(~p) < 0% then for each p: 

lim fl(b~p_______~) _ 1 .  
b~oo flE(b~p ) 

[] 

In other words: 
For "large" reliability indices flpE or for "small" failure probabilities Pf(p) 
the geometrical reliability index tip computed by optimization problem (tiP) 
is a good approximation of the (exact) reliability index flpe. 

The following consideration will be based on a cost function which depends 
on the cost parameters only, i.e. Ct = C(p). The (compact) subset Tc =def 
{ p  : C(p) < C max~u'n} of the p-space defines the admissible set of cost parame- 
ters. Then the following corollary of the Hohenbichler-Theorem can be proved. 

Corollary 6." I f  0 < t~(~,~p) < oo, then for each p: 

lim max(fl(b~p) : p e Tc) = 1 . [] 
b ~  max(fle(b~p) : p e Tc) 

From corollary 6 follows for the reliability optimization problem with a cost 
constraint: 

For "small" failure probabilities Pf(p) the optimal reliability index fl*, com- 
puted by maximization of reliability index subject to the cost constraint 
C(p) < C maximum, is a good approximation of  the (exact) maximum reliability 
index fie* = max(fl~ : p e Tc). 
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Proof." 

i) The reliability index tip = f l (~p)  fulfills 
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fl(b,=~p) : b f l ( ~ p )  , (16) 

because 

/~ (b~-p)  = min{ l ln l l  : u + b ~ p }  

= minCllbul l  : u E Ca:  gCu, p) ~ 0 } )  

= m i n { b l l u l l  : u ~ ~ p }  

= b m i n { l l u l l  : u ~ ~p} 

= bfl(~-p) . 

ii) If the reliability index tip exists for all p, i.e. 0 < fl(~-p) < 0% then the limit 
li~ xfl E (~ ffp) exists with: 

YP: limxfle(lx~o \ x  ~ P )  =f l (~-P) '  

The reliability index tip fulfills the assumption 0 < fl(~-p) < oo. It follows 
from theorem 5 

lim f l ( b ~ - p )  _ 1 
b---~ oo fiE ( b ~ p )  ' 

From equation (16) further follows 

lim f l ( b ~ p ) -  lira bfl(~-p) 
b-~oo flE(b~p) b---,oo flE(b~p ) 

b 
= / ~ ( ~ p )  �9 l i m  b---~oo flE (b~'p) 

m -  1 
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and 

lim flE(b~P~) -- lim xfl e (1 ~.~p) : f l (~p)  (17) 
b ~  b x~O 

Lemma 7." Let A c IR d be a compact subset of the d-dimensional real space. 
The function f : (0, oo) • A --~ (0, ~)  is continuous on [0, oo). It holds for 
each p ~ A: 

f(O, p) : lim f (x ,  p) .  
x,LO 

and therefore 

max{f(O, p)} = lim max{f  (x, p)}.  
x,LO pEA 

[] 

iii) Equation (18) follows with f (x ,  p) = xfl E (I f fp)  and f(0,  p) = fl(ffp) 

max{fl(~P)} = lim max~xflE(l~'~P) } pETc L \X (18) 

With the equations (18) and (16) it is easily verified that 

max{fl(~p) } max{fl(~p) } 
1 = p~T~ p~T~ 

limmax{xfle(lx$o pETe ~P)} l im  1.max{fle(b~p)} 

max{fl(~p)} 
= lim p~T~ 

b~oo I" max{fle(b~p)} 
pETe 

= b  lim  .max{fle 
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Finally we get 

lim max(fl(bffp) : p ~ Tc) 
b--,~ max(flE(bo~p) : p ~ TC) 

= 1 .  �9 

This means that the (RCP)-problem can be solved asymptotically exact, 
whereas the (CRP)-problem can be solved only approximately in our for- 
mulation. 

6 Numerical Examples 

In the following three examples for reliability-based optimization, which use the 
solution of the problems (CRP) and (RCP), are presented. 

The reliability-based structural optimization is carried out by a non- 
commercial PC/DOS program package based on tools of SYSREL 9.0 routines 
(see SYSREL 9.0, RCP GmbH, 1994), and the non-linear SQP-optimization 
algorithm NLPQL by Schittkowski (1985) both written in the programming 
language FORTRAN.  

The first example compares our own results with an example using semi- 
infinite programming which was outlined by Kirjner, Polak and Der Kiur- 
eghian (1995). The problem is to determine the depth h and width b of a short 
column with rectangular cross section with a minimal total mass bh. The 
uncertain vector X = (P, M, Y), the stochastic parameters and the correlations 
of the vector elements are given by: 

Variable Symbol 

Yield Stress P 
Bending M 

Moments 
Axial Force Y 

Distribution Mean[St. dev. 

Normal 500/100 
Normal 2000]400 

Lognorm~ 5/0.5 

Unit Corr. P Corr. M Corr. Y 

MPa 1 0.5 0 
MNm 0.5 1 0 

MPa 0 0 1 

The limit state function in terms of  the vector x = (P, M, Y) and the parameter 
vector p = (b, h) is given by: 

4M p2 
G ( x , p ) = l  bh2y (bhy)2 . 
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The cost (or mass) function is 

C , ( p )  = b . h . 

No constraints on parameters are given. The depth h and the width b of the 
section had to satisfy 15 < h < 25 and 5 < b < 15. The allowable failure prob- 
ability is 0.00621 or in other word a reliability index less than or equal to 2.5. 
Starting from the initial point (u~ ~ = ((1,1,-1),(5,15)) the NLPQL- 
algorithm converged for the problem (CRP) to (b*,h*)= (8.668,25.0). The 
optimization algorithm took 6 iterations with 83 evaluations of the limit state 
function and 56 evaluations of its gradient. Kirjner-Neto et al. report 14 itera- 
tions with 98 limit state function evaluations and 77 gradient evaluations for 
the semi-infinite method and 277 limit state evaluations for a nested optimiza- 
tion algorithm. This shows that our algorithm is comparable in numerical effi- 
ciency with semi-infinite programming having in mind the different formulation 
but also the differences in the algorithms used in both cases. 

The second example compares our the results of reliability optimization with 
several maximum cost. The example is a steel column with cost parameter 

= ( b , d , h ) :  

Variable Symbol 

Mean of Flange Breadth b 
Mean of Flange Thickness d 
Mean of Height of Steel Profile h 

Unit 

mlTl  

/ n l n  

The steel column has a constant length of 7500 mm. The function of total cost 
Ct(p, u) includes no failure cost, i.e. Cf = 0, and has the following form: 

Ct(p,u) = Ci(p) = (bd + 5[mm]. h). [CU/mm 2] (CU = currency unit). 

The independent uncertain vector X = (Fs, P1, P2, P3, B, D, H, Fo, E) and its 
stochastic characteristics are given by: 

Variable Symbol Distribution Mean/Standard derivation 

Yield Stress 
Dead Weight Load 
Variable Load 
Variable Load 
Flange Breadth 
Flange Thickness 
Height of Profile 
Initial Deflection 
Youngs Modulus 

P1 
P2 
P3 
B 
D 
H 
F0 
E 

LogN 
N 

Gumbel 
Gumbel 

LogN 
LogN 
LogN 

N 
Weibull 

Unit 

400[35 MPa 
500000[50000 N 
600000/90000 N 
600000/90000 N 

b/3 N 
d/2 mm 
h/5 mm 

30[10 mm 
21000/4200 MPa 
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The limit state function in terms of the random vector X, the parameter (b, d, h) 
and auxiliary functions ds ,  d//~, J//i, gb, ~ = P1 + P2 + P3 is defined by: 

( 1  F 0 ~b ) 
G ( x , p ) = F s - ~  ~-~ ~ s  gb----N " 

where 

d s  = 2 B D  , (area of section) 

�9 lies = B D H ,  (modulus of section) 

�9 i [ i  = 1 B D H 2 ,  (moment of iteria) 

g 2 E j / / i  
gb -- s2 , (Euler  buckl ing  load)  

No other constraints on cost and design parameters are given in the example. 
The elements of the transformed standard normal vector must be within the 
interval (-30.00, 30.00). The means of flange breadth b and flange thickness d 
have the lower bounds 200 m r n  resp. 10 m m  and the upper bounds 400ram resp. 
30 m m .  The interval ( l O 0 [ m m ] ,  500[ram]) defines the admissible mean height h 
of the T-shaped steel profile. 

The results of the reliability optimization of steel column with various 
maximal permitted (total) cost are given in the following table. 

Maximal cost 

cmax~um 

4000.00 
5000.00 
6000.00 
7000.00 
8000.00 
9000.00 

10000.00 
11000.00 
12000.00 
13000.00 

Optimal cost vector p* 

b* d* h* 

200.00 17.50 100.00 
200.00 22.50 100.00 
200.00 27.50 100.00 
216.67 30.00 100.00 
250.00 30.00 100.00 
283.33 30.00 100.00 
316.67 30.00 100.00 
350.00 30.00 100.00 
383.33 30.00 100.00 
400.00 30.00 200.00 

Reliability index 

3.132 
4.961 
6.369 
7.427 
8.249 
8.967 
9.605 

10.180 
10.709 
11.065 

The increase of the parameters b, h and h depends on the maximum cost 
C maximum and the importance of the individual parameters for the reliability of 
the structure. 
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Maximtml  total cost 

Fig.  6.2.  Dependence of reliability index on maximum admissible total cost of  the steel column 

It is seen, that at first the mean of flange thickness and only subsequently the 
mean of flange breadth increases to the upper bounds 30.00 and 400.00, 
respectively. The mean height of the steel column remains at the lower limit up 
to a maximum cost of 12 500 CU. This is illustrate in figure 6.1. 

It is further seen that higher maximum cost C maximum lead to an increase of 
the maximum reliability index. Figure 6.2 shows also that the reliability in- 
dices fl~ from the (RCP)-problem decrease exponentially for lower maximum 
cost. 

In the third example a rectangular reinforced concrete beam with parameters, 
p = (w, d, as), is considered (see Madsen/Friis Hansen, 1992, but with modified 
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parameters), different cost parameters and two constraints on the parameters w, 
d and a~: 

Variable Symbol 

Width of concrete beam w 
Effective depth of concrete beam d 
Reinforcement area of beam as 

Unit 

m 
m 

m 2 

The independent uncertain design vector X =-(Ts, Tc, Mb, K) and its sto- 
chastic characteristics are given in the following table: 

Variable Symbol Distribution 

Steel yield stress Ts Normal 
Concrete comp. strength Tc Lognormal 
Applied bending moment Mb Gumbel 
Model uncertainty K Rectangular 

Mean/Standard derivation Unit 
(Parameters) 

360.0/36.0 MPa 
40.0/6.0 MPa 

0.01/0.003 MNm 
(0.5, 0.667) 

The limit state function dependent on the random vector (Ts, To, Mb, K) and 
on the parameter (w, d, a~) is: 

asTs "X 
G(x, p) = 1 - K-~d-~c) a A T ~  - M b  . 

The reinforced concrete beam has a fixed span of 5 m. The initial cost is given 
by 

Ci(p) = 5 [m](800 [CU/m3] �9 wa + 2000 [CU/m3] �9 as).  

The failure cost is estimated as: 

Cf= 50000 CU.  
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Two constraints on parameters are given, a lower bound for the area of  the 
beam and a maximum admissible area of reinforcement in relation to the total 
area of  the concrete section. 

0.01 < wd 

as _< 5%- wd 

The maximal total cost of  the beam is 55.00 CU and the allowable failure 
probability is 10 -5 . 

The transformed standard normal vector elements are bounded by -30 .0  and 
30.0. The width w and the effective depth d of  the beam have the lower bound 
0.05 m and the upper bound 0.5 m. The area of  the steel reinforcement as must 
be within the interval (10 -4 , 10-2). 

The results of  the optimization of the cost minimization and the reliability 
maximization are: 

Total cost minimization (CRP) Reliability maximization (RCP) 

Starting values 
U U 0 U 0 U 0 "~ Ts: Tc~ Mb' K) 

(w~176 O) 

Optimization results 
Final total cost 
Final Failure Probab. 
Final Reliability Index 

* * U* (gTs,bITc, Mb,U*K) 
(w*,d*,a;) 

(-0.25, -0.25, 1.00, 0.25) 
(0.050, 0.172, 0.0001) 

54.39 CU 
10-s 
4.265 

(-0.89, -0.80, 4.06, 0.51) 
(0.050, 0.239, 0.00060) 

(-0.25, -0.25, 1.00, 0.25) 
(0.050, 0.172, 0.0001) 

55.00 CU 
6.60.10 -6 

4.357 
(-0.90, -0.85, 4.14, 0.53) 
(0.050, 0.243, 0.00061) 

Number of calls 
Function-calls 11 76 
Gradient-calls 11 44 

It  is seen that the (RCP) problem requires considerably more numerical effort 
which is expected. It  should also be mentioned that in both cases convergence 
could not be reached for all admissible starting values. In fact, sensitivity anal- 
ysis is necessary to select suitable values. Also, some suitable transformations of  
the constraints which made their gradients more homogeneous have made 
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convergence much faster. Other, in part more complicated examples confirmed 
the conclusions from this example. 

7 Summary and Conclusion 

Two one-level structural optimization algorithms, (CRP) and (RCP), respec- 
tively, based on reliability and expected total cost were derived. The advantages 
of our formulations and their numerical implementation are (see also Madsen 
and Friis Hansen, 1992): 

�9 a well-known standard non-linear optimization algorithm, e.g. a SQP- 
algorithm, can be used, 

�9 scaling problems for complicated problems are handled by standard 
optimization routines, 

�9 the methods appear locally stable and robust. 

The disadvantages of our formulation of the two structural optimization 
problems (CRP) and (RCP) are: 

�9 the usually numerical calculation of second derivatives of the limit state 
function is required, 

�9 the transformation from the standard normal u-variables to the physical 
variables x and vice versa must be included explicitly. Those probability dis- 
tribution transformations may require some additional numerical effort and 
can cause numerical problems in extreme cases (numerical inversion of dis- 
tribution functions). 

�9 for both problems good starting values usually are required 
�9 monotonic transformations of both objectives and constraints sometimes may 

be necessary in order to achieve convergence. 

The one-level formulations proposed here are limited to FORM as the reli- 
ability part is concerned. The asymptotic correctness of reliability optimization 
with cost constraints is proved by a corollary showing the asymptotic equiva- 
lence of first-order and exact reliability indices for small failure probabilities. 
Extension to SORM does not seem to be straightforward. Only one algorithm, 
preferably a SQP-algorithm is necessary. However, several tricks (trans- 
formations and/or good starting values) must be applied in order to achieve 
convergence, because both optimization problems can have objectives and]or 
constraints with widely varying gradients or objectives and[or constraints with 
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numerically zero gradients in extreme cases. With these tricks it can be stated 
that the algorithms work quite efficiently. Further substantial improvements of  
the numerics are still possible. 

The formulations are restricted to one state function only and thus to one 
failure mode so far. It appears possible to generalize the approach to multiple 
failure modes (unions of failure modes) but not necessarily to the case where 
intersections of failure modes form system failure. 
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