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COMPONENTS IN THE SPACE OF COMPOSITION OPERATORS 

Barbara D. MacCluer 

We consider the topological space of all composition 
operators, acting on certain Hilbert spaces of holomorphic 
functions on the unit disc, in the uniform operator topology. A 
sufficient condition is given for the component of a composition 
operator to be a singleton. A necessary condition is given for 
one composition operator to lie in the component of another. In 
addition, we prove analogous results for the component of the 
image of a composition operator in the Calkin algebra. Finally, 
we obtain some related results on the essential norm of a linear 
combination of composition operators. 

]. INTRODUCTION 

We consider here the set of composition operators 

acting on certain Hilbert spaces H of holomorphic functions on 

the unit disc W in the complex plane, considered as a subset of 

~(H), the bounded linear operators on H in the uniform operator 

topology. The basic problem we are interested in is that of 

determining the components in the topological space of ail 

composition operators on H. while we do not give a complete 

solution to this problem, we give a sufficient condition on @ for 

the component containing the composition operator C~ to be the 

singleton {C~} (Corollary 2.3), and we give a necessary condition 

for C% to be in the component of C~ if this component is not a 

singleton (Theorem 2.4). We also give the analogous results for 

the component of the image of C~ in the Calkin algebra. 

In this section, we describe the Hilbert spaces H under 

consideration and give some necessary background information. 

Many of our results involve the notion of the angular derivative 

of a mapping ~: D ~ D; for completeness we summarize the relevant 

Research supported in part by the Nstiona] Science Foundation. 
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results on angular derivatives which comprise the Julia- 

Caratheodory theory. 

For ~ > ], let D denote the set of ho]omorphJc 

functions f in ~ for which 

~-I F f(z)12( 2 j] 1-1z!2)~-2dA(z) ~ l{fll 
D 

< oo. 

when a = I, we define D to be the Hardy space 

H2(D) = {f: sup F ifCrei~)12 d8 = iltli 2 < ~}. 
2~ 

O<r<~ 

For any ~ > i, D is a Hi/bert space of ho]omorphic functions on 

D, with reprod~icing kernel functions k (z) = (l-wz) -a. Note that 
2 

= 2 gives the familiar Bergman space A (~). 

If ~: D ~ D is hoiomorphic, define C~ on D a by 

C~ 9 = fo~. It Js a consequence of Littlewood's subordination 

principle fL] that C~ is a bounded linear operator on D for all 

> i. we use the notation ~.(13 ) for the set of composition 

operators on D Jn the uniform operator topology. 

An easy and important observation about the adjoint of 

C,p is the action of C~ on the reproducing kernel functions kz: 

C~ k = z k~(z) 

Vemification of this fact is left to the reader. 

A holomorphic ~: ~ ~ ~ is said to have an angular 

derivative at a point ~ e a~ Jf there exists w ~ ~D so that the 

non-tangential limit 

lie -~,(z!-w 

exists; we write ~' (~) for this limit. It is a consequence of 

the Julia-Caratheodory theory t h a t  this limit exists (in the 

finite sense) if and only if 

1 - [ ~ ( Z )  i < ~ ,  
( I )  l i m  i n f  - - 1 ~ ) - z i  . . . .  

where z approaches ~ unrestrictedly in ~ .  Moreover, the value of 
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l h J  ~- l J m  i n t  Js i ~ ' ( ( ; ) i  a n O  ~' (~) = I lin ~l ~ '  [ Z ) ( n o n -  

tangentia.l [y). We wJ ii write [{~" ({)I = ~- Jt the Jim inf Jn (]) is 

infinite. ]t Js a conseqnence ot the detJn]tJon t h a t  Jt 

I " P '  (::) I < ~o, '@ has l~acJ~al limit ot modnllls ] at r In the case 

* . ~' le .  ) wiil be where iim 'P(r~ ) = (~(~) = r and I~" (r I < -~-, ._ 

positive. '['he details of these results can be found in 

([~],[R]). 

The notion ot tile angular derivative of ~ has played an 

important role J n ottler results on composition operators on the 

spaces D . The connection with questions on the compactness of 
a 

C~@ J.~ relevant t O  our discnssion hel~e. In pal~ticlllar, we nave 

the f o l l o w i n g  r e s ~ ] i t ~ .  

THEOREM 1.I ([S-T],[M-S]). II" ~, h~ a finite angular 

, / , "~- i l ;~-~t  i v y '  a t  ;~n,,;., [ ~ l ~ i n !  ~,1' ~; f f l  the : t~  C{[, is-: n,'~l: c o m [ ~ n ( : t  on DCt t ' o r  

a n y ~ > ] . 

T H E O R E M  1 . 2  ([M-S]) 

d ~ l " i v a t i V e  ~ t  a u y  p o i n t  o f  ~IB 

,:~ > 1 , 

11 ~P ha:~ ~Jo f 2nite anguJar 

i:hen C.. ~.~ com, p.act On D f o r  a l l  
W 

T h e  e x a c t  n e c e s s a r y  a n d  s u f f i c i e n t  c o n d i t i o n s  f o r  

= H 2 c o m p a c t n e s s  of C ~  o n  D] a r e  m o r e  c o m p l i c a t e d  a r i d  d o  n o t  

concern us here; see [SI] for t h e  complete solution t o  the 

campactnesA question in The H 2 case. Theorems I.~ and ].2 

motivate the direction we take in the next section. 

Previous work on the question of which composition 

operators on H 2 are isolated has been done by Berkson [B], who 

showed that Jf ~ has radial limits of modulns ] on a set of 

positive measure in ~D, then C~ is isolated. Several questions 

suggested by Serkson~s work were posed by Joel Shapiro in a 

problem session on composition operators at the AMS Snmme~ 

Research Institute in Durham: New Hampshire (Ju]y 1988). In this 

paper we cnnsider some o f  these qnest~ons. Shapiro and Sundberg 

[S-S] recently answered some related questions, and we discuss 

some of their resll]ts at the end of Section 2. 



728 MacCluer 

[ would l i k e  to thank Thomas KrJete tot helpful 

c o n v e ~ ' s a t i o n s  o r )  t h e  s l l b j e c t  o ?  t r l i s  p a p e r .  

2. COMPONFNTS -IN '~ (D0t) I~'OR a > ] 

We beg%n wilh an easy ob.~ervat~on which J.~ welt l~nown. 

P R ( ] P O S T T I O N  2. 1 ,  } h e  s e t  o /  c o m . D a C i  c u m p o s ,  i ~ o D  

o p e l ' d t O F ~ b  r)D D J~s 6 ~ / c w i ~ - ~ e  t;ol-~liec[~ed. 
C( 

SKETCH OF PROOF, We leave the details ot the proof to 

the reader. (]~le show,~ that the map Uf: fO,ll ~ ~(D ~ clSven by 

Fqs(r ) --- (It% o i.~ contJntlons whenever' Cs is compact. Note that 

V(~(C)) Js sJmp3y the operator of ava.luation at (1. The continuity 

of V,~ fo]]ows from the following characterization of compact 

composition operators on De: C~ is compact Jf and on]v~ if 

whenevel~ {in} is a bounded sequence in D with f ~ f uniformly 
o n 

on compact subsets of D, then CQf n ~ Cff in Da " ! 

We next want to consider C~ in a situation when C@ is 

not compact. Theorem 1.2 motivates the hypothesis of the next 

wesu[t. Part of this result (giv]na the estimate for [ICe-C[[~2 in 
. "' e 

the ease that ~w(eJ~) % J'~(ei0)) has been independently obtained 

bV Joe] Shapiro [$2]. 

TH~X]REM 2 . 2 .  
~e 

f . i2)  J t e  &n<tu]o~'  d e . , l ~ i v o [ . i v e  r a p o . i f ~  e e ~ ] ,  

l?o]ol;;oFph~c find consider C~ alld Cj., acting on Dcl " 

both 

~(e ie ) = ~w(eie ) 

a n d 

Let ~:lD ~ D and suppose Chat (~ has 

Let "|': In -. In b e  

,I,, (e  iO = 9 '  ( e i ~ ) ,  

9 ~'c have l l c@-c ,  ll~ > I W ( e  
r i , D r ~  0 [ '  ~t/i o /_~eFa  t O F  . 

)I -~ where II If 
e 

denotes the essential 
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PROOF: Without loss of generality, we may assume 

e = ], (['~(!) = 1. and ?;(1) = s < ~. Let q': D ~ D be 

hoiomorphic: ahd assllme that e~ther " [ "w(1)  1= ] (we ~ncll]de here the 

possJbJ I Jty t h a t  "I" dOeS net h a v e  a radial J JmJt at ] ) or that 

",]'*( ] } = 1 b 'o t  hU' (~) ,+ s (where here we include the possibility 

t h a t  I%' (I)I = ,:o). I t k  . i e a  reproducing l~ernel tuner.ion we 
�9 ' Z t 

have 

!l(ce, ('.)~z I I .  = ll~(z)-k~(z)l! 2 

= l i k ~  z )  l 1 2 + i i k §  Re ie._q)(z ) +(z)). 

Thus 

ii k~ ( z ) Ii 2 ii l i t ,  11 2 

I! c@-c,t,l! 2 > 2 + ( z ) 
"k t l2 Jikz{] il z "  I l k  Ii 2 

Z 

2Re k~(Z) (~(Z ) 

2 l ! l ~ ( z ) l l  2Re k%0(z ) ( q ' ( z ) )  

II k z l i  2 itk" 11 2 
Z 

for any point z in B .  

Now ]}k~(z)!12/i!~zi! 2 = (l-lzi2)~/(1-!~(z)12) ~ and by the 

Juiia-Oaratheodory theory, [l-l@(z) i ]/(l-!zl ) has non-tangential 

l i m i t  ~' (3) = s at ]. Thum 

i!k~p ( z )  II 2 

11 k z l l  2 -+ ( ~ )  

as z ~ ~ non-tangentJaliy. 

N e x t  we consider the term 2 R e  k~(z) (~(z))/iikzll 2 and 

distinguish two cases. 

(i) If %x(1) % i, then there exists rnT1 so that 

limn~ ~ "i'(rn) = ~ $ i. Setting z = rn in 2 Re k~(z) ('~(z))/]IkzlI 2 

yields 
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I 2) ],-c 
! (1-r n 2 ~e ! . . . . . . . . . . . . . . . . . .  I 

[1-~(rn)4'(rn). 

Pn rn } ~ + I. This, which ha~ limit zero as n , ~, since ~( )%( , ~. , 

in conjunction with the above estimate on llk~(z}li2/iikzil 2 s 

= r n shows that. Jn this case, II(]~-.C.#II 2 ~ s -a z 

( i i )  I ~ - 4 ~ ( ] }  = i = ~ ( ] ) ,  blJt ~ '  ( ] )  ~ i "  ( 1 }  (we 

emphasize that we include here the possibility that li'(].)i = ==), 

then to estimate 2 Re k~(z) ('+'(z)) /llk II ~ - ,, we #J. rst consider 
�9 " " Z 

( * )  1-~(z)'P(z) _. 1-~(z}'P(z)+iP(z)@(z)-~p(z)'l'(z) 
2 2 

l - l z l  l - l z l  

l-l~(z)12 [ ] - 4 ~(z) 1-z 1-*(z) _ 1-~(z_____! 
l_iz!2 ]_Iz12 1-z 1-z " 

F M = (z e D'~ ' ' ' " i l-zi/(l-}z] 2) = M}, the boundary of a Consider 

non-tangential approach region at I. As z ~ 1 along FM, the 

Ju[ia-Caratheodory theory show.q that 

2 
(a) ~--l~(z)l 

2 -, St 
I-Izl 

(b} ]-~(z) 
]-Z 

1-*(z) +, +, , 
~ )  i f  ( I )  < ~ .  or (c> ~-,-z 

11 - ' l ' ( z ) l  ~ as z ~ ~ n o n t a n g e n t ~ a l i V  J# l e ' ( 1 )  ~- r  

Given any N > 0 we may, by choosSng M sufficSently large rind a 

sequence z n ~ i along |'M so that @or n sufficiently large 

i~(zn) n -'4'(zn) 1-~(Zn} I > ~. 
1-1Z I 2 [ I-Z n ]-Z n j I 

n 

In other words, given 6 > 0 we may find a sequence z ~ 1 
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nontangential]y so that for n suff]cJentiy large 

12 Re n 1 < 6 .  
' li k Ii ~' 

z 
lq 

This, together with our previous estimate on lik~(z)li2/ljkzlj 2 shows 

that 

2 
l ! c . - c : . , l !  > s - , ~ .  

R*' h" - 

Since 5 i s  arbitrary, we have tlcq~-Cq, II 2 ~ s -a 

To obtain the estimate HC~-Chbil 2 _> s -~, tee.all f i r s t  

that the essentJa] norm of a n  operato~ A e ~(H) is defined by 

_ ii I!AII e inf{llA+K.: K is compact on H}. Now consider 

,- �9 !! II 

where K, and hence K ~ , is a compact operator. Now kz/llkzli ~ 0 

weak]y as z ~ 3D. By compactness, JjKW(kz/jjkzIl)H ~ O, as z ~ ~8. 

This, together with the above estimate on ~(C~-C%) ~ (kz/l~kz}j)ll , 

gives the desired result. 

As a corollary to Theorem 2 . 2 ,  we get a sufficient 

condition for the component of C~ to be a singleton. 

COROLLARY 2.3. If ~. has a flni~e angular deuivative on 

a .~r ,-st" [ ) o ~ i f i v e  m e a . ~ u r n ,  / :her, C,p i ~  i ~ o / a t e c l  i n  t h e  ~pr~r~e of "  

composition opera~ors on D~, Witi, llc~-c#.ll e _> s where 

s = ess inf {I~ (ei~)l : l~(ei~}I = I} 

and * # .~. 

PROOF. LET '+:~ -~ D. If ~' % ~, then 

(e ie : ~ (e ie) = '-|'~(e ie) } has Lebesgue measure zero. 
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Choo.,~e q G 3~ s o  t h a t  ' ~ * ( q )  # ~ ( q )  : a n d  i ~ ( t i )  i = ] . 

c ~ p - c + , l l  2 \ I (P '  ( n ~  -a Thus Theorem 2 ,  2 ,  !1 e "- ' ' 

By 

F f 1 it*. ] 
!1%-%I I  ._. >..)- ) ,,, : i'P'(.7) i -- and , 

~L " J 

which is the desired result. [] 

REMARKS, (~ } i~ we let ~ be the quotient map from 

i:~(Da) ~ ~(Da)/i~(Da) where ' ~ . ( D  denotes the compact operators on 

D , then Corollary 2.3 actually shows that if ~ has finite 

angular derivative on a set o t  positive measure, Then {.~(C~) } is 

a component Jn ~(~(D a) ) . 

( 2 )  . f o e ]  shapiro [S2] has a l s o  has obtained a version 

of Corollary 2.3 

Next we use Theorem 2.2 to give a necessary condition 

for C,{, to be in The same component as C~. Let us say that ~ and 

q" h a w ~  t h e  s a m e  d a t a  a t  e j~ ( ~8 ~f ~ and % have radial limits of 

ie 
modulus ] at e , 

e* (e Re = "I'~ (e i0 ) ( t )  

a n d  

( i i )  I%0' (e  ~0 ) = I ' [ "  ( e i e  I - 

We remarl~ that ~n the presence of (~.), (:i.i) actua]..ly implies 

~p" (e iO } = '~" (e i e )  when [~ '  e :i@ [ < oo. 

THNOI~EM 2.4. If Cq, is in t h e  component conta~ning C~, 

t h e n  q~ n n d  41" m m ~ t  h a v e  t h e  sam~-~ d a t a  a t  a n y  p o i r )  t e i 8  whe.r~. 

[10" (eiO) ] < ~. Mol'eover, [ n(Cq)) end ~(C~) are in the some 

~omponent in ~(Y(D a) ), fben ~ end "|' have the same data at any 

point where I~' (e i8) I < ~. 

PROOF. Suppose !(p, (e i~ < ~. Without loss of 

generality we may take e ie = i, ~(I) -- 1, and ~'(]) = s < ~. At 
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each point C7 J,~ the component containing C~, let U(Cr ,s) denote 

I -=/2 
the intersect.ion ot the bail (in ~IO } ) of radJns ~- s 

' C(' ' 

centered at CI. with the component of C~ in t:(D~) . From the 

coi]ection {11(C . s ~  ~ we extract a simple chain {U(C ,s) } n 
�9 ' " : r 4=I 

I d ~ 
3 

from c~ t:o [:{. [H-Y; p. ]08]. To simplify the notation, write 

[2=3 =~ tl((~" Y , ,S). Thus C([, e U], C4. e tln, and [ljn U k * ~ Jf and only 

3 
if I j-kl j I. Consider a point C. in UInU 2. By Theorem 2.2, ~I 

] 

mnst have the same data as ~% a t  ] , since i l C ~ - C  7 I{ 2 < ] 
G 

1 s 
SJmJ]ar:ty, since C e U ~ an~ ~ m~st have the same data at 

�9 7 2 '  ' 1  2 
l 

(where Cr is the "center". of O2). Zf C~ is in u2n u 3 , ~i 2 and 7 2 
2 2 

have the same data at ] since IIC -C 112 < ] and ;-' (I) = s 
" 2 r 2 s 

Continu.lng along the chain to C+, we conclude h u has tile same data 

a s  ~) a t  ] . ~1 

Recall that it ~ is not the identity map on D, then 

there Js a unique point ~ in ~ with the properties that 

~P~(C) = ~, and I~" (~) I ~ I. If C is in ~, we interpret this as 

~{~ ) = ~ and !~' (~ } { ~ i where ~' (~) has the ordinary meaning. 

Moreover, in the case !C I = I, 0 < ~' (~) < I. This point ~ is 

called the Denjoy-Wolff point of ~; we denote it by DW(~). The 

next result follows immediately from Theorem 2.4. 

COROLLARY 2.5. Suppose DW(~) e ~m l'hen ]s C+. is in 

f. he same c-omponei~t a~ C%p, DW('~') = DW(%0) , and the angular 

dez'~'at~ve:~ at the Sen joy-Wolff "point are the same. 

In view of the theorems characterizing compact 

composition operators on the spaces D and Theorem 2.2, a natural 

question to ask is whether every noncompact composition operator 

must be isolated in ~(D ). Recent work of Shapiro and Sundberg 

has answered this in the negative, in the setting of H 2. They 

consider mappings ~ for which ~(~) contacts a~ only finitely 
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often, and with "finite order of contact" at each such point. 

The prototypJcai example ot such a map is ~(z) = ~(z + I) . (Here 

~(] ) = l : ~' (i) = ~ and C@ is not compact on H2) . They show 

that ~c,r ~uch ?, (]@ ~s not isolated and moreover lies Jn an arc 

~rl ~(H2I such that it C~. is in this arc, then C~ .- C+ is compact. 

]it is interesting to n(]te that in the example ~(z) = ~(z + I), 

the composition operators in the component containing C~ do not 

Jnc:lucie t l 3 o ~ e  C.~ arising from +(z) = sz + ] s, s # ~. (Th~s 

toi]ows from Theorem 2.4.) However, the methods o~ [S-S] show 

that the non-compact operators corresponding to the maps 

,# 
" t  

z) z .+ I ' i l  - z ]  3 
= - - ; ~ - - - +  t - - T - -  ' 

t small, torm an arc zn li(H 2) . 

3. EXTENSIONS TO [,]NEAR C'OMB]NATIONS OF COMPOSITION 

OPERATORS 

ie 
fn this section we fix e ~. ~D and consider a linear 

combJ nat i on 

N 

j~=lajC ~ ' .j 

where ~.~(e ie ) ex~st:~ 9or each j = I,...,N. 

THEOREM 3.1. Lc/: ,~ be a set of holomorphic self maps 

of B and suppose that e i~ ~ ~D h~.'.~ f. he propert V that ~*(e iO] 

e)cJ.Rt~q t 'or"  a l l  kO i n  7~. L6:1. ~ C [/4 t , e  . R u t h  l : h a ~  / t "  ~ e ~., q ) * ( e  iO ) 
~e 

has ~oduJus I and n o  other + in ~ has ~he same das as ~ at e 

Then, !liven %~ , . . .,~ N ~ ~ and co~2p]ex nu~bet~ a], . . . ,a N, ~e l-~ve 

N 
II ~ a,c .I! 2e - > ~ laj i2 I 
j=i 3 ~j ~ie~ l~'.~ei~ ) I a 
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PRO()F. Without loss of generality, we may take e i8 to 

he ] . AF.~ Jrl the ][)rOOt 01 T h e o r e m  2.2, We W:[ i l Consi(Jer 

N . ., )~) j j2 where w = ~:z/lJkz~l so that tl (Z .  I :,jc.;,.p , '  z 'z ' 
.3 

j N il, 

j = 1  3 v j  I lk  II z 

J'2 Jl j~laj!qPj (z) lJ 

We may assume ~ is nonempty, eJse there is nothing to prove. 

Relabeiing i~ necessary, suppose ~i,~2, . . . ,~m c ~. Partition the 

remaining_ members of ~,i,..., 'Ne into disjoint sets D I,... ,Dr, 

where D 1 consists of those ~. with le*(])l < ] and [)2 ,D r are 
3 '3 . . . . .  

equivalence classes arising from the equivalence relation ~j 'k 

it ~j and ~k nave the same data at ]. Write 

N 

,,-~: ,i2 , j: I jk~i ( z ) l l  
z 

as 

, , i! 2 li~ i l 2 i a ; k " P l ~ z ) + ' ~ ' + a m ~ : ~  ~'z) + Z a . . i k , . p , ~ z ) + ' ' ' §  Z a,kq, (z) " m ' ~ . e D  J j z ' ~jeD] ~ j 3 r 

A calculation shows this is equal to 

( * )  
m 
~ taj]21tk.n ii 2 

ttkzll 2 j=l ' r  + - -  
1 ~ J - -Dka jkcp j  I 2 

-F li cr QSS- - ?el-ms ~i , 

where the cross-terms are one of the following 

] 

( i )  lJkzlJ 2 2Re < a j k ~ j ( z )  , a ~ k ~ t  ( ~ ) >  , 1 ~ j < ~ ~ m; 
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I 

\ a j K g j  i lk  il 2 2Re / ( z  ~(z) 2' 
~pel) k 

t t ~ )  
l l~z l l  2 2Re <j~l)ka3k,~3(z} q~J ~lJk '  

\ < k'. 

Given 0 > 0, we may., as i i ' ] the proof o# Theorem 2.2, rind a 

non-tangent.ia], sequence z ~ 1 so treat e:~c]~ ct~oss-term, wit~ 
n 

N 2 z = z and n s~fit~cientiy large., is .less tha~ 6/ , say. Now ~or 
n 

,] = i, . . . ,m, 

, I 2 ]~ 
j(Zn) _ F l ' I Z n '  

i i ~  z il 2 [1-1~3(Zn)i2] ' 

arid i e l  t ~ng n ~ r in (*} glves 

( * * )  
N 2 2 1 

9j~-~ I~(]  ) I  = 

.lust as in the proo~ o~ Theorem 2.2, we use the tact that ~z ~ 0 

we~kty as z ~ ~D to show ttlat we can replace ]I~. N a ,C~ 11 2 by the 
3 j 

essential norm iiY N a.C m ii 2 m 

3 

We g~ve two corollaries to Theorem 3 . 1 .  If e i~ e ~D 

and ',~: ~ ~ ~ Js a map ~or which lq~* (eie) I = 1 and ]%9," (eie) ! < ~, 

let 

'f ( ,~,e Jg) = {4: g) ~ D: ~W(eig) exists and �9 and 

do not have the same data at e]e } . 

Let ~ be the set ot a~tJ f.in~te ]~near cr o:t composition 
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operators induced by maps T e ~('p,ei~). Then, using -~' = {~} and 

~ = . ~ ( { , e  j 0  ) U {%0} 1. n T h e o r e m  3.1, we, have 

C O R O L I , A R Y  3 . 2 .  I ' o ; "  j~t ~ ,., _ ..~ ,. b_ . . . . . .  l,bc~L," a b o v e  , 

] 
t n t  l l c t p - M J  2 > e :re 
A~ e - I r  ( ) 1  ':~ 

In the next coroJlary, we have .~ = Y! = {~1 ~ }" 

(7ORO[,LARY 3 . 3. Nupl3o.~e {•. ] ' '2's �9 �9 �9 :~n} ape rtist. ........ ir, p$ 

h o l o ~ w o r p h J c  ~.~(./t '-m~]p.~ o r  [t anct  e j-@ e ~B i.~ ~ l l { : h  t h a i  ~ * . ( e  j e  
3 ) 

e x i s t s  a n d  h a s  tt~odt, i u s  I t o r  3 = ] , 2  . . . . .  n .  I t"  n o  p a i r  {q) i , cP j}  

n n 
ii ~ a3c~, ffll2e >- ~. laji 2 I 

J ] fi=-] ~ l~)',(eJO)l C~ 

[H--Y] 

[L) 

[ M - s J  

[a]  
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