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COMPONENTS IN THE SPACE OF COMPOSITION OPERATORS
Barbara D. MacCluer

We consider the topological space of all composition
operators, acting on certain Hilbert spaces of holomorphic
functions on the unit disc, in the uniform operator topology. A
sufficient condition is given for the component of a composition
operator to be a singleton. A necessary condition is given for
one composition operator to lie in the component of another. 1In
addition, we prove analogous results for the component of the
image of a composition operator in the Calkin algebra. Finally,
we obtain some related results on the essential norm of a linear
combination of composition operators.

1. INTRODUCTION

We consider here the set of composition operators
acting on certain Hilbert spaces H of holomorphic functions on
the unit disc @ in the complex plane, considered as a subset of
B(H), the bounded linear operators on H in the uniform operator
topology. The basic problem we are interested in is that of
determining the components in the topological space of all
composition operators on H. While we do not give a complete
solution to this problem, we give a sufficient condition on ¢ for

the component containing the composition operator C, to be the

9
singleton (CQ} (Corollary 2.3), and we give a necessary condition
for Cy to be in the component of C'p if this component is not a
singleton (Theorem 2.4). We also give the analogous results for

the component of the image of C; in the Calkin algebra.

¢
In this section, we describe the Hilbert spaces H under

consideration and give some necessary background information.

Many of our results invelve the notion of the angular derivative

of a mapping $: D » D; for completeness we summarize the relevant
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results on angular derivatives which comprise the Julia-
Caratheodory theory.

For o > 1, let Da denote the set of holomorphic
functions f in U for which

~

-1 - 2 2 -2 2
= 1) 1T (=121 %)Y an(z) = BELD < .
n a
i
When « = 1, we define Da to be the Hardy space
2 ) ! is 2 ds ¢ 2
H°(D) = {f: sup I {f(re ") | 7 2 HEN® < o}
0<r<i1 30

For any « 2 1, DT is a Hilbert space of holomorphic functions on
D, with reproducing kernel functions k (z) = (1-wz) %. Note that
a = 2 gives the familiar Bergman space AZ(D).

If : @ 5 D is holomorphic, define C(p on Dd by

C, = t°?. It is a consequence of Littlewood's subordination

9
principle [L] that C(p is a bounded linear operator on Da for all

a ?» 1. We use the notation f(DG) for the set of composition
operators on Da' in the uniform operator topology.
An easy and important observation about the adjoint of

C(p is the action of C$ on the reproducing kernel functions kz:

C$ kz = k@(z)'

Verification of this fact is left to the reader.
A holomorphic $: D 4 B is said to have an angular
derivative at a point ¢ € 30 if there exists w € 30 so that the

non-tangential limit

Z+¢ $
exists; we write 9’ (¢) for this limit. It is a consegquence of

the Julia-Caratheodory theory that this limit exists (in the

finite sense) if and only if

(1) lim inf ﬂé
Z¢

where z approaches ¢ unrestrictedly in B. Moreover, the value of
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this lim int is (@ (¢)| and ¢ (<) = |im746 P (z) (non-
tangentially). We will write [$/($)) = « §r the Ilim inft in (1) 1is
infinite. Tt is a conseguence ot the detinition that if

197 (21} < %, P has radial limit of moduvuins 1 at ¢. I[n the case
where lim . P(rg) = P*(s) = ¢ and |9 (¢)] =, ®/(¢) will be
positive. The details of these results can be found in

(Ln), [R]).

The notion ot the angular derivative of ¢ has played an
important role in other results on composition operators on the
spaces Da' The cannection with guestions on the compactness of
Crp is relevant to our discussion here. In particular, we have

the following resuits.

THEOREM 1.1 ([S-T].{M-S1). f @ hawx a finite angular
derivative at any point of alt, +hew qu is nat compact an D(x tor
any « 2 1.

THEOREM 1.2 ([M-S51]). i % has no fipite angular
derivative at any peint of 3B, ifhen CQ is compact on Da for all

a > 1.

The exact necessary and sufficient conditions for
compactness of CW on D] = H2 are more complicated and do not
concern us here; see [S1] for the complete solution to the
compactness question in the H2 case. Theorems 1.1 and 1.2
motivate the direction we take in the next section.

Previous work on the question of which composition
operators on H2 are isolated has been done by Berkson [B], who
showed that if ? has radial limits of modulus 1 on a set of
positive measure in 40, then C@ is isolated. Several guestions
suggested by Berkson's work were posed by Joel Shapiro in a
problem session on composition operators at the AMS Summer
Research Institute in Durham, New Hampshire (July 1988). In this
paper we consider some of these questions. Shapireo and Sundberg
{$-8] recently answered some related questions, and we discuss

some of their results at the end of Section 2.
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I wonld like to thank Thomas Kriete tor helipful

conversations on the subject ot this paper.

2. COMPONENTS 1IN 'ff(Da) FOR « > 1

We begin with an easy observation which is well Known.

PROPOSTTION 2.1. Jihe set of compaci composiiion

operators o D is arcwise Coltnec Fed .

SKETCH OF PROOKF. We leave the details ot the prootr to
the reader. One shows that the map F@: [0,1] ~ f(Da) given by
Fw(r} = Cr@ is continuous whenever C@ is compact. Note that
Fw{o) is simply the operator of evaluation at 0. The continuity
of F¢ follows from the following characterization of compact
composition operators on Da: C“p is compact if and only if
whenever {fn} is a bounded sequence in Da with fn -+ f uniformly

on compact subsets of §, then C fn + C,f in D_. E

¢

i)
g

We next want to consider CtP in a situation when C@ is

not compact. Theorem 1.2 motivates the hypothesis of the next

result. Part of this result (giving the estimate ftor HC¢—C+H2 in
) i i . . . .
the case that $* (e 9) + V* (e Q)) has been independently obtained

by Joel Shapiro {82].

THEOREM 2.2. Let $:B - D and suppose that @ has

. : : . : 1 N7
finite angulaer derivative alt a point e € ab, Let b B 4B pe

holomorphic and consider C¢ and‘C* acling on Dd. then, unless
both
w18 ; ia
¥ (e™) = ¢ (e )
and
ig i6
Y(eTT) = @ (e,
2 . . ig . , ~a L ) .
we have HC¢~C*HE > e (e 7y , where | ”e denotes the essential

norm of an operator.
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PROOF: Without loss of generality, we may assume
i6 s i :
e = 1, (1) = 1 and P (1) = s < ®. Let ¥: 0 4 0 be
hotomarphic and assume that either ¥*(1) ¢ 1 (we include here the

possibility that ¥ does nat have a radial! limit at 1) or that

¥* (1) = 1, but ¥ (1) + s (where here we include the possibility
that [|[¥ (1)) = ). 1t k? is a reproducing kernel function, we
have
2 . . 2
Ncx - I i - R
..(f‘!P (W)kz“ “kQ(z) k*(z)h
PR TN 112 ] 12__ 5
= ﬂkw(z)n +Hk+(z,ﬂ 2 Re k@(z)(+(z))
Thus
Mk, 2 ey, 2Re k (¥(z))
He —c. 2 $(z) +(z) ?(z)
Hep-cyl™ 2 7 2 P
e _i1° ik M e _1i
z z
ke, 82 2Re k., (Y(z))
s Plz)" P(=)
= 2 w2
e e i
for any point z in D.
Now llkcy, M 1% = (1-121%)%/(1-19(2)1%)* and by the

Julia-Caratheodory theory, [1-i%9{(z})i]/(1-iz]) has non-tangential
limit 9 (1) = & at 1. Thus

2

TV
e 12 s
A

as 7 - 1 non~tangentially.

Next we consider the term 2Re k(P(?)(*P(z))/sz"2 and
distinguish two cases.

(i) If ¥*(1) # 1, then there exists r 11 so that
4 L _ } N _ s . 2
J.lmn_m° l(rn) =p % 1. Setting z = r in 2 Re kw(z)(k(z))/ﬂkzﬂ
vields
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{ 2 1.
! (1_rn2) i«r
2 Re !m~;_ B i ,
P1- (1:~ﬂ)'+'(rn)__I
which has limit zero as n : «, since @(rﬁ)?(rn) s £+ 1. This,
in conjunction with the above estimate on Hk¢(7)ﬂz/ﬂk7ﬂz for
. . 2 ~a
7 = E YW ¥ . t TAcs SIS > .
Z r, shows that, in this case, H(Lp C*H s
(i1)  ar ¥ ¢1) = 1 = $%(1), pbut ¢ (1) £ ¥ (1) (we
emphasize that we include here the possibility that [¥/ (1)} = =),

e

then to estimate 2 Re kg, 7}(%(2)}/Hkyﬂz we first consider
P(=)

{ ,

1-P(z)¥(z) _ 1-P(z2)P(z)+P(z)P(=z)-P(z)¥(=)
1-1z12 1-12172

(*)

2 ) 1
- 1m;¢(z); + B(z) 1-2 . 1;{(2) _1-9(=z)
1-1z17 1-1z17 p 177 1=

. - P 7 _
Consider Iy =tz ¢ B: [1-zj/(1-{2]") = M}, the boundary of a
non-tangential approach region at 1. As z -+ 1 along FM, the

Julia-Caratheodory theory shows that

L, 2
(a) 1-19(=z) 1 - s,

1-»Iz|2

. 1-¢ (=
(b) TR e
1-¥(=z)
1oz
ll—*(z)x
it 1~z |

(c) ¥2 (1) if ¥ (1) < », or

» % as 7 » 1 nontangentially if ¥ (1)| = .

Given any N > 0 we may, by choosing M sufficiently large, tind a

sequence z_ - 1 along TM so that for n sufficiently large

[ 1—zn '1—*(zn) ) l—W(Zn)}l S N
n 1—!zn|2 L 7%, =2y )

In other wovrds, given & > 0 we may find a sequence z, - 1
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nontangentially so that for n sufficiently large

| km(zn)(+<zn?’
|2 Re - <
' ik )2
b4
n

m

This, together with our previous estimate on lk

that

o2y 7k, fi? shows

2 ~ex
o -, 1 > s T-a.
pr (*L ] 3

2 -
# .

$ince 6 is arbitrary, we have lC > s

~0,

LP \‘/
. . P we ~ -

To obtain the estimate HCWAC+“9 > s %, recall first

that the essential norm of an operator 3 < B{H) is defined by

”A”e = inf{#a+kll: K is compact on H}. Now consider
k i k Sk
O =11 [T < R Bt
(C,—-C,+K)}* C . ~C. )% - K> :
I (cqcqr) e 2 %% e ! _ kZ.J
where K, and hence K*, is a compact operator. Now k?/Nkzﬂ -+ 0
weakly as z » 3D. By compactness, HK*(kz/szH)H + 0, as z -+ 30,

This, together with the above estimate on H{C@— *)* {kz/HkZH)U,

gives the desired result. -

As a corollary to Theorem 2.2, we get a sufficient

condition for the component of C¢ to be a singleton.

COROLLARY 2.3. If 9 has a finite angqular derivative on

a set ot positive measure, r;ﬂhnn»c(P is Isotlated in the space of
L , Co 2 - S
composition operators on D_, with HC,-C 7 > s where
x ¢ e
S e s is o 18
s = ess inf ([¥/ (e " }|: |¥*(e 7 )] = 1}

and ¥ £ @,

PROOF. LET ¥:B 5 B, If ¥ % ¢, then

g e .
(elez ‘P*-(e1 ) = “*(ele)} has Lebesgue measure zero.
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Choose g € 30 so that +*(g) # $*(»y). and [P*(y)]| = 1. By
Theorem 2.2, Wc . -C H2 > !@’(n)!gd Thus
3 2 L2, P et [ .
o 7
2 fr 1 17 : {
| - > LA - s TP, = N3 + N\
.ic(P C*He 2 SuP{[l¢‘(n)YJ PP (g 1 and *(g5) i (q)j,
which is the desired result. R
REMARKS. (1) 1f we let n be the quotient map from

%(Dﬁ) - %(Da)/lea) where K{DG) denotes the compact operators on
Da’ then Corollary 2.3 actually shows that if ¢ has finite
angular derivative on a set of positive measure, then {H(CQ)} is
a component in z(%(na)).

(2) Joel Shapiro [S2] has also has obtained a version
ot Corollary 2.3

Next we use Theorem 2.2 to give a necessary condition

for C* to be in the same component as C Let us say that ¢ and

) ¢

Y have the same data at 916 e 30 if ¢ and ¥ have radial limits of
modulus 1 at ele,

) - ig i
(i) o (e'®) = Ix(e?),
and

L. , ie e ie .
(ii) 1er (e ")) = ¥ (e ).

We remark that in the presence of (i), (ii) actually implies
@’(eley = P’(ele) when {@’(elg){ < w.

THEOREM 2.4. IFf C¢ is in the component centalining C¢'

' : is
then ® and ¥ must have the same data af any poinil e where

!@’(ela)i < o, Moreover, if H(CQ) and n(CW) are In the same

component in n(f(Dd)), then ® and V¥ have the same data at any

- is
point where 9/ (e )| < «.

PROOF. Suppose !@'(ela)} < o, Withéutr loss of

Y i 5 A
generality we may take e ¢ = 1, (1) = 1, and P’ (1) = s < ». At
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each point ¢_ in the component containing C?, let U(Uy,s) denote
; :

G Qs 1 -a /2
the intersection of the ball (in %(Da)) ot radius 5 8 /

centered at GT with the component of C, in K(Da). From the

@
. . . n
collection {U(C_.s)}. we extract a simple chain {U(C_ ,S)}ﬁ_l
¥ 4 5 S

-

from (;LP to C+ [H-¥Y; p. 108}. To simplify the notation, write
u, = U(Cr,’s)' Thus Cw € U, C+ € U, and Ujﬂ U, # 9 if and only
v i
if {i-kji < 1. Consider a point C_ in Ulﬂuz. By Theorem 2.2, 1,
2
. ) " ) - ) 1
must have the same data as § at 1, since ha¢~07 H < >
k] =
Similarly, since G = U?, 7y and 7, must have the same data at 1
7 4 ‘
1
{where is the "center' of U_ ). If C is in 0 fU_, 4 _ and
{wh Cr s r 2) - 2 'Ug 12 72
2 2
s . 1 .
have the same data at 1, since liC -C, H2 < Z— and ré(l) = s.
it 5
2 2 B

Continuing along the chain to C+, we conclude ¥ has the same data

as ¢ at 1. ]

Recall that if # is not the identity map on B, then

there is a unigue point ¢ in € with the properties that

P¥(¢) = ¢, and |97(¢)] < 1. If ¢ is in D, we interpret this as
©(¢) = ¢ and {9 (¢)1 < 1 where ¢‘(¢{) has the ordinary meaning.

Moreover, in the case l¢] = 1, 0 < ®/(¢) < 1. This point ¢ is

called the Denjoy-Wolff point of ?; we denote it by DW(?). The

next result follows immediately from Theorem 2.4.

COROLLARY 2.5. Suppose DW(P) € 88, Then if Cy is in
the sawme coaponent as Cw, DW(¥) = DW(P), and the angular

derivatives at the Denjoy-WwWolff ﬁoint are the same.

In view of the theorems characterizing compact
composition operators on the spaces Da and Theorem 2.2, a natural
question to ask is whether every noncompact composition operator
must be isolated in f(Da). Recent work of Shapiro and Sundberg
has answered this in the negative, in the setting of H2. They

consider mappings ¢ for which $(U) contacts 30 only finitely
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often. and with "finite order of contact" at each such point.

The prototypical example of such a map is P(z) = j(z + 1). (Here
Q1) = 1, ® (1) = L and C(P is not compact on H2). They show

that tor such ¢, C@ is not isolated and moreover lies in an arc
in f(Hz) such that if Cy is in this arc, then C@ - Gy is compact.
It is interesting to note that in the example ®(z) = %(z + 1),
the composition operators in the component containing C@ do not
include those €, arising trom ¥(z) = sz + 1 - s, 8 # §. (This

tollows from Theorem 2.4.) However, the methads of [8~8] show

that the non-compact operators corresponding to the maps

t small, form an arc in f(Hz).

3. EXTENSIONS TO LINEAR COMBINATI(ONS OF COMPOSITION
OPERATORS

3 o . - is . \ T
fn this section we fix e ¢ B and consider a linear

combination

N
2 2y
j=1 i

. i . . .
where @?(e H) exiaste for each i = 1,...,N.

v

THEOREM 3.1. Let R be @ sct of holomerpkic sclf maps

of B and suppose that el? ¢ a0 has the property that @*(eiej
exists tor all ¥ in B. FLet £ C. &R he such that it $ € 4, ¢*(eie)
has modulus 1 and no other ¥ in A has the same data as 9 at eja.
Thaen, gqiven @],...,@N € R and coaplex numbers a ., ---08y, We have
N
IS ac, 2 laj1? ———
j=1 j <Pj6~§ I'P'j(e )i
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. . ; i
PROOKF. Without loss of generality, we may take e ¢ to
he 1. As in the proot ot Theorem 2.2, we will consider
n(y“ a.0* Yo H2 where v = k /llk }}, so that
il B B A z 7z !
TR \ i . N 1
”( a,0$ "uziiZ = —‘3“5 n Z a'kw (7)“2'
=1 7 7 e e My=1 3 V57

We may assume 4 is nonempty, else there is nothing to prove.

Relabeling if necessary, suppose Tl,wz,...,@m e %. Partition the
remaining members of ¢1""’¢N into disjoint sets Dl""’Dr’
where D, consists of those @j with !¢3(1)! < 1 and D ""'Dr are
equivalence classes arising from the equivalence relation ¢j ~ $k
if ¢1 and ¢k have the same data at 1. Write
N
! s 4k ll2
1 n2 .= aJ (z) Il
ukzn Jj=1 bj

as

. ﬁa k + - 4a k + 2 a.k +r00+ 2 a.k 2

A D {z m {7 j { o TP ’

i i P {z) Pal?) o Cp d ¢J 7) ¢ ep 9 @J(Z)L

4 31 ir
A calculation shows this is equal to
m T
. k] - .2, o2 1 — — 2
{*) — 3 ta.i%ik. i 4 — 7 2 o a.k, |
a2, 3 P.(2) 2 J ‘P.(z)!.
d =1 ‘ = €
e 1 5 3 szll k=1 cPJ D, 3

+ Ycross--terms",
where the cross-terms are one of the following

1
. . <a . _ BN i<t < m
O T E 2R ke )y, )2 P e e
2 J



736 MacCluer

(11 . 2Re {a._k , 2 a,k >, 1 ¢ 3<m, 1 ¢ k r;
e “z ¢'1_(z) $,e0 ¢ LPe(z)
1
{11} - arRe < ¥ a_k, . a_ .k, > k < k’.
; T 2 o - 3@ =z, J ¥ z)"
=35 U '
el 5 D 3 P D, 3

Given ¢ > 0, we may, as in the prcotr ot Theorem 2.2, tfind a

non-tangential sequence zn -+ 1 so that vaci cross-term, with

e E R Z .
A Zn and n sutficiently large, is less than &/N |, say. Now for
jo=1,...,m,
" a2
“Krp (z )N 1~ = 4 Ty
i'™n - { n B
. a2 | , 2 !
fik_ il L1-t¥_ ¢z )i ]
Z 1 n
n
which has 1limit |¢3(1)i—a as n » w. Thus, setting = = Zn

and jetting n - < in (*) gives

N .
(**) i3 ac, 17y 3 ja )’ —2

BRI P.et C 19i(1)°

Just as in the prootr of Theorem 2.2, we use the fact that uz -+ 0

i? oy the
3

weakly as z » g to show that we can replace HZT ajc¢

- N
essential norm 2 a.C

o2
. ]
1737 e

. . . . _in -
we give two corollaries to Theorem 3.1. If e € g

. R s ;A8 R ie .
and $: © 2 © is a map tor which |$* (e B)[ = 1 and |9’ (e u)! < oo,

let

f(@,elg) = (¥: B » I +*(e15) exists and ¥ and ¢

do not have the same data at ela}.

Let ® be the set ot all finite linear combinations of composition
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. . i . . )
operators induced by maps YV € £(?,e °). Then, using § = {?} and

A = f(@,elg) U {$} 'n Theorem 3.1, we have

COROLILARY 3.2. For M us described above,

. 2 1
inf HCW—A“e P e
Aehi 19 (e 7y ("
In the next corollary, we have £ = 7 = {@1,...@n}-

COROLLARY 3.3. Suppose (¢1,@?,---,¢n} are distinct

; . - 16 = . w18
haotomorphic scit-maps ot D and e € ab i« such that Wg(e )
exists and has modaius 1 tor j = 1,2,...,n. If no pair {@i,¢i)

S5 sy g , oy e ¥
(1 % J) has lhe same data ol e, then
n n
. - . 2 2 1
tZac, i’ 2 Z laﬁ| N T
j:_») v .‘j * ;'—“v'l J |(Dl(e "
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