
Mathematical Methods of Operations Research (1996) 43:337-352 

On the Nucleolus of NTU-Games Defined by Multiple 
Objective Linear Programs 

FLEMMING CHRISTENSEN AND MIKAEL LIND1 

Department of Operations Research, Institute of Mathematics, University of Aarhus, Building 530, 
Ny Munkegade, 8000 Aarhus C, Denmark 

JARGON Tn~-D 

Institute of Mathematics, University of Copenhagen, H.C. Orsted Institute, Universitetsparken 5, 
2100 Copenhagen 0, Denmark 

Abstract: In this article we derive a class of cooperative games with non-transferable utility from 
multiple objective linear programs. This is done in order to introduce the nucleolus, a solution 
concept from cooperative game theory, as a solution to multiple objective linear problems. 

We show that the nucleolus of such a game is a singleton, which is characterized by inclusion in 
the least core and the reduced game property. Furthermore the nucleolus satisfies efficiency, ano- 
nymity and strategic equivalence. 

We also present a polynomially bounded algorithm for computation of the nucleolus. Let n be the 
number of objective functions. The nucleolus is obtained by solving at most 2n linear programs. 
Initially the ideal point is computed by solving n linear programs. Then a sequence of at most n 
linear programs is solved, and the nucleolus is obtained as the unique solution of the last program. 
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I Introduction 

Since the relat ionship between l inear p rog ramming  and  game theory was estab- 
lished in Gale, K u h n  and  Tucker  (1951) an ever increasing body of l i terature has 
been concerned with the descript ion of and  invest igat ion into the relat ionship 
between various fields of operat ions  research on the one side and  game theory, 

both  cooperative and  non-cooperat ive,  on  the other side. To men t ion  all bu t  an  
extract of this line of research is na tura l ly  beyond  the scope of this paper. 

However,  as an  example of au thors  investigating the relat ionship between a field 
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of operations research, namely the measurement of efficieney, and game theory 
one may find Banker (1980) and Banker, Charnes, Cooper and Clarke (1989). 

Now, the result in Gale et al. (1951) establishing the equivalence of solving 
a linear programming problem and finding a certain maxmin solution to a 
non-cooperative game is certainly a most celebrated technical description of 
the linkage between operations research and game theory. On the other hand it 
can be argued, that this result may not always lend itself to intuition, because 
at the outset there seems to be little reason, why the action of players in a 
game choosing strategies should be the same as solving a linear programming 
problem. 

There is, however, one field of operations research, namely that of multiple 
objective decision making, where the linkage to game theory is particularly 
intuitive. As such, multiple objective decision making is concerned with the 
description of how to maximize multiple, possibly conflicting objectives simulta- 
neously. Here, the linkage to game theory is clear, since game theory attempts 
to deseribe ways of making a joint action, when the players have opposed views. 
Hence, one can relate the two simply by interchanging the words objectives and 
players. 

The idea of relating multiple objective decision making to game theory is 
by no means new. Among the earlier contributions one finds Belenson and 
Kaput (1974), Bergstresser and Yu (1977), Blackwell (1956) and Zeleny (1975) to 
mention a few. But despite the fact, that the interface between multiple objective 
decision making and game theory in general has been investigated for quite 
some years, there seems to have been little emphasis on applying methods from 
the so-called cooperative part of game theory to multiple objective decision 
making. Among the exceptions one finds Forg6 (1984). Rather, it seems as if the 
emphasis has been in the reverse direction by applying multiple objective meth- 
ods to cooperative games (see e.g. Steuer (1986) for a short bibliography). 

Therefore, it shall be the main aim of this article to demonstrate that methods 
from cooperative game theory can be applied successfully to problems of multi- 
ple objective decision making. In order to do so we shall make the simplifying 
assumption, that each multiple objective decision problem is linear, that is each 
objective function is linear, and the set of feasible alternatives is a polytope. This 
class of problems is also known as multiple objective linear programs (MOLP, 
for short). 

To each MOLP we associate a cooperative game with non-transferable utility 
(NTU), and as it turns out, these associated games have a relatively simple 
structure, which allows us to apply the nucleolus, a solution concept from 
cooperative game theory, which was introduced by Schmeidler (1969). This 
approach enables us to show, that the nucleolus as a solution to any MOLP is 
efficient and unique in terms of objective function values, and it can be com- 
puted by an algorithm, which consists of at most 2n fairly simple linear pro- 
grams, where n is the number of objectives. Moreover, it is shown that the 
nucleolus on the class of NTU-games associated with MOLPs can be charac- 
terized by two axioms. This proves that the characterization in Masehler, Pot- 
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ters and Tijs (1992) can be generalized to some extent to cover a larger class of 
games. 

Thus, the outline of the article is as follows. In section 2 we introduce the 
necessary concepts from cooperative game theory and define the nucleolus, and 
in section 3 we derive a NTU-game  from each MOLP.  In sections 4 and 5 an 
algorithm for the computat ion of the nucleolus is presented along with an 
example. Finally, section 6 presents some of the properties of the nucleolus, and 
section 7 contains a characterization of the nucleolus. 

2 Concepts from Game Theory 

Let N -- {1, . . . ,  n} be a finite set of players. A coalition is a non-empty subset of 
N. For  every x e NN the restriction of x to Ns, S ___ N, is denoted by x s. The 
vector in NN with all coordinates equal to one is denoted by e. Also let e s denote 
the vector in Ns with all elements equal to 1. 

A cooperative game with non-transferable utility (NTU-game)  is a pair (N, V), 
where N is the set of players and V is a mapping which for each coalition, S, 
defines a characteristic set, Vs, satisfying: 

1. V s is a non-empty, closed, real subset of Ns. 
2. Vs is comprehensive, 

i.e. if x, y e R s, x s V s and x >_ y then y ~ V s. 
3. The set {Ys ~ VslYs > Xs} is compact, VXs ~ Ns. 

In particular, a NTU-game (N, V) is called a game with transferable utility 
(TU-game) if the characteristic set for every coalition, S, is a closed half space 
with normal es. 

Let F = (N, V) be a NTU-game.  We say that X is a payoff  set for F if X is a 
non-empty, closed subset of V N. A payoff x e X is said to be efficient, if there 
does not exist some 2 e X with ~ _> x and 97 ~ x. 

Next, by a game we will mean a pair (F, X) where X is a payoff set associated 
with a given NTU-game  F. Furthermore, let fq denote the set of all games and 
let f9' denote a subset of ~ A solution concept on f9' is a correspondence, that 
associates with each game (F, X) e fq' a non-empty subset of X. 

Now, one may interpret the payoff set as the set of attainable payoffs for the 
society, i.e. N, and the characteristic set of each coalition S _c N as the set of 
payoffs, that the coalition S could obtain had it been on its own. Given this 
interpretation it becomes natural to try to measure a coalition's content or 
discontent with any payoff x. There are several ways to measure this content or 
discontent, termed the excess, see e.g. Kalai  (1975) for a very general approach. 
However, we shall follow Christensen (1991) to define the excess for a coalition 
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S as 

hs(Vs, Xs) = max{t �9 + tes �9 Vs} �9 (1) 

Hence, the excess-function, hs, measures the largest possible gain (loss if nega- 
tive) to every member of S, if they form their own coalition instead of keeping 
X S �9 

Let M = 2N\{~} and let m = [M[. Next, let 0 be a mapping from ~ u  to ~"  
that rearranges the coordinates in a non-increasing order and let < L denote the 
lexicographic order on ~". We define the nucleolus of the game ((N, V), X) = 
(r, X) by: 

Nuh(F, X) = {x �9 XIVy �9 X: O((hs(Vs, Xs))s~u ) <--L O((hs(Vs, Ys))s~u)} �9 

The coalition with the strongest objection to a given payoff has the greatest 
excess-function value. Consequently, the nucleolus consists of the payoffs pro- 
viding the minimal excesses in the lexicographic order. 

We define the least core of the game (F, X) by: 

Lc~ X) = {x  s X lgy  e X: max hs(Vs' xs) <- max hs(Vs' Ys)} S~M 

The least core contains the payoffs which give the minimal excesses in the 
ordering according to the largest coordinate, and therefore the nucleolus is 
contained in the least core. 

The following theorem is not new, but it states some basic properties of the 
nucleolus of NTU-games. See Christensen (1991 ) and Kalai (1975). 

Theorem I: For every game (F, X) �9 fr the nucleolus, NUh(IY'  , X ) ,  is non-empty and 
consists of  a finite number of  efficient payoffs. 

It is an immediate consequence of Theorem 1, that the least core also is 
non-empty. 

3 NTU-Games Defined by Multiple Objective Linear Programs 

Consider the multiple objective linear program (MOLP): 

"max" cix for i = 1, . . . ,  n 

s.t. Ax <_ b 

x > O  

(2) 
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where A is an r x I matrix, b ~ R r, c i ~ R z for i = 1 . . . .  , n and x ~ ~z. Finally, the 
set ~r = {x ~ R~IAx < b, x > 0} is assumed to be a non-empty polytope. 

Let N = { 1, , . . ,  n} be the set of players. Each player is associated with an 
objective function. We want to associate a NTU-game with each MOLP.  There- 
fore, let S _ N, S # ~ .  Then the characteristic set, Vs, is defined by: 

Vs = z s -  

where 

and •s+ denotes the non-negative orthant of the Euclidean space R s. Cs is the 
ISI x l matrix where the rows contain the coefficients of the objective functions 
associated with the players in S. The players are listed in increasing index order. 
It is easy to verify, that for all coalitions the sets Vs in fact are characteristic sets 
in the sense of the previous section. 

The payoff set X for F = (N, V) is assumed to be a non-empty polytope 
satisfying X ___ VN. A natural example of a payoff set is the feasible region in 
criterion space, hence X = ZN. ZN is a payoff set since d is assumed to be a 
non-empty polytope. 

Let ~MOLV denote the set of games defined by multiple objective linear pro- 
grams. The following lemma demonstrates, that the games in ~uoLP all share 
the property, that coalition size and excess function value are inversely related. 
A property, which will prove itself central for the computation of the nucleolus 
of games in ~Morv. 

Lemma 2: Let ((N, V), X)  ~ ffuoLv and x ~ R N. Then hs(Vs, Xs) <_ hT(VT, XT), 
V T ~ _ S ~ _ N ,  T ~  ~J. 

Proof: For  S = T there is nothing to prove. Let T c S, T 4  ~ .  We claim that 
Vs ~ VT X R s\r = {X ~ ~Slx r ~ liT}. TO see this let Ys ~ Vs. This implies that 
there exists a Zs ~ Zs and Ws ~ Rs+ such that Ys = Zs - Ws. Hence Yr = Zr - WT. 
Notice Zs = (ZT, ZS\T) = (CRY, CS\T~) for some ~ ~ d .  Hence ZT ~ ZT- Since 
WT ~ ~T it follows that YT ~ VT. Then the proof follows since 

hs(Vs, Xs) = max t 

s.t. 

Xs + tes ~ Vs 

= max t 

s.t. 

xr  + teT ~ V T 

___ max t 

s.t. 

Xs + tes ~ Vr x R s\r 

= hr(Vr, XT). 

[]  
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4 Computation of the Nueleolus of Games in ~Mozv 

F. Christensen et al. 

For a game in fgMOLP the excess-functions hs(V s, "): X ~ N as defined by (1) are 
concave polyhedral functions. However the relationship between the character- 
istic sets (see Lemma 2) implies that we only need to know the explicit value of 
the characteristic sets for the singleton coalitions. Then it is possible to compute 
the nucleolus using a fairly simple algorithm. The algorithm presented here is 
related to the one suggested by Peleg for computation of the nucleolus of 
TU-games. Peleg's algorithm is described in Kopelowitz (1967) and it is used in 
Maschler, Peleg and Shapley (1979) to provide a geometric characterization of 
the nucleolus of TU-games. 

Let (F, X)  ~ f#MOLP. 

Initialization step: Compute the ideal point (z*, . . . ,  z*), i.e. solve 

z* = max c i X 

s.t.  

x 6 d  

f o r / =  1, . . . ,  n. 

Start: Solve 

Pa: min w~ 

s.t. w I --~ z i ~ z~ 

z E X  . 

for i =  1 , . . . , n  (3) 

If (3) gives a unique optimal solution it will be the nucleolus of /2  However (3) 
does not always gives a unique solution. See section 5 for an example. Put k = 1. 

Step k: Let w~' denote the optimal value of Wk in Pk and let 

A k = {z ~ X I z  is an optimal solution to Pk} 

Ek = { j  ~ N lz j  + w~ = z*Vz ~ Ak} . 
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I f N \ U k = ~ E j  = ~ then let q = k. Stop. Otherwise let k = k + 1. Solve 

Pk: min wk 

s.t. Wk + Z, > z*Vi e N \ U } - I E j  

w* + z i = z * v i e E j , j =  1 , . . . , k - 1  

z ~ X .  

343 

Repeat. 

In order to implement the algorithm it can be noted that for any g iven  
k ~ {1 . . . . .  q} a non-empty subset of Ek can be found by the optimal dual 
solution to Pk which is obtained in the solution process if t he simplex method 
is used. Let gk denote such a subset. Let �9 be the dual variable associated with 
Wk + Z~ > z* for some i ~ N \  Uk-~ Ej. Then it follows from linear programming 
duality theory that if the optimal value of ~ is strictly positive then i ~ 8k and 
otherwise i t  N \ U k = l g j .  In the algorithm we can replace Ek with gk and still 
produce the nucleolus. However, it may take a few steps more. 

Next, in order to prove that the algorithm computes the nucleolus of (F, X) 
we need the following two lemmas, where the first lemma is obtained by an easy 
modification of Lemma 6.3 in Maschler et al. (1979). Its formal proof is therefore 
omitted. 

Lemma 3: q is finite. 

1. w* is finite, i = 1 . . . . .  q. 
2. Ai is a non-empty polytope, i = 1, . . . ,  q. 
3. E ~ r  
4. w*+l < w*, i  = l , . . . , q - 1 .  

Lemma 4: Let  A o = X.  For any k, 1 < k < q, i f  x ~ A k and y ~ A k _ l \ A k ,  then 

O((hs(Vs, Xs))s ~ M) < L O((hs(Vs, Ys))s ~ M). 

k-1 Proof:  Define the coalition T = U j=l E i. By the definition of E 1, . . . ,  Ek_ 1 it 
follows that ZT is fixed for z E Ak-1. Since A k c Ak-~ we have 

hs(Vs, Xs) = hs(Vs, Ys), VS ~_ T. 

Next, for coalitions not in T we obtain by Lemma 2, that 
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max hs(Vs, Ys) = max hi(Vi, Yl) = max z* - y~ > w*, 
S~ 2N\{2 T, ~} i ~ N \ T  i ~ N \ T  

where the last inequality follows from y ~ A k _ I \ A  k. Applying the same argu- 
ment for x ~ Ak gives 

max hs(Vs, Xs)= max hi(V~, xi)= max z * -  x i = W~, 
Se2N\{2 r, ~} i ~ N \ T  i E N \ T  

and hence, O((hs(Vs, XS))S~M ) < r. O((hs(Vs, Ys))s~ M)" [] 

We can now state the main theorem of this section. 

Theorem 5: The algorithm computes the nucleolus of (F, X), which is a singleton. 

Proof: By Lemma 3 Aq is not empty. By the definition of Ea . . . . .  Eq, z i is fixed 
for all j ~ N and all z ~ Aq. Hence Aq contains a single vector. 

Since the nucleolus is contained in X, it follows from Lemma 4 that the 
nucleolus of F is contained in Aq. []  

By Theorem 5 the algorithm computes the nucleolus. To comment on the 
algorithm, it is noted, that the ideal point is initially computed by solving n 
linear programs. Thereby the explicit values of the characteristic sets for the 
singleton coalitions are obtained. Then the lexicographic minimization proce- 
dure is started. Theorem 5 implies that we can stop the algorithm whenever Ak, 
1 _< k _< q, consists of a single vector. Hence, the algorithm stops when n + 1 
linear independent constraints of program Pk define the optimal solution. This 
will certainly be the case if N\  Uk=l Ej = ~ .  This happens when at most n linear 
programs are solved. Hence the algorithm has polynomial complexity, since 
there exists polynomially bounded algorithms to solve linear programs. See e.g. 
Karmarkar  (19 84). 

The simplicity of the algorithm is highlightened in Lemma 2. The excess for 
any coalition at a given payoff is less than or equal to the excess for any 
individual player in that coalition. Consequently, one only has to be concerned 
with the excesses of the singleton coalitions. 

Finally, it should be noted that / '1  is an unweighted Tchebycheff program, 
where the ideal criterion vector is the ideal point. Particularly, if there is an 
unique solution to P1, then it will be the nueleolus, so we may apply some of the 
properties of the nucleolus (sections 6 and 7) to grasp a more detailed and 
qualified description of such Tchebycheff programs. 
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5 A n  E x a m p l e  
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T o  i l lus t ra te  the  detai ls  of  the a l g o r i t h m  cons ide r  the  fo l lowing  s imple  M O L P :  

" m a x "  xi for i = 1 , 2 , 3  

s.t. x 2 + x 3 _< 8 

x 1 + x 2 + x 3 _< 10 

X 1 ~___ 5 

x 1 > 0, x 2 > 0, x 3 _> 0. 

Let  the  payoff  set be  the  feasible r eg ion  in  c r i t e r ion  space. X = Z N = 

{z e R3lz~ = x .  i = 1, 2,  3,  x 2 + x 3 _ 8, X 1 "{- X 2 "l- X 3 __ 10,  5 > X~ > 0,  X2 > 0,  

x3 > 0}. 

In i t ia l i za t ion  step: Th e  ideal  p o i n t  z* = (5, 8, 8). 

Start:  Solve P t :  

m i n  

s.t.  

W 1 

w 1 + z~ > 5 

wt + z 2 > 8 

w x + z 3 > 8 

z 2 + z 3 < 8 

z 1 + z z + z 3 < 10 

z 1 _< 5 

z l _> O, z2 _> O, z3 _> O. 

Step  1: T h e  o p t i m a l  so lu t i ons  to P1 are: 

(w*, z x, z 2, z3) = (4, 2, 4, 4) + t(0, - 1, 0, 0), t ~ [0, 1]. 
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The optimal dual solution is (0, 1/2, 1/2, - 1 /2 ,  0, 0) hence E 1 D__ {{2}, {3}}. In 
fact E 1 = {{2}, {3}}. 

Solve P2: 

min w2 

s.t. w 2 + z~ ~ 5 

z2  = 4 

z3 = 4 

z z + z 3 < 8 

z 1 + g2-{ -  z 3 ~ 1 0  

zl < 5 

z 1 > 0 ,  z 2 > 0 , z  3 > 0 .  

which has the unique optimal solution (w*, z~, z2, Z3)= (3, 2, 4, 4). The algo- 
rithm stops according to the remark after Theorem 5. The nucleolus for this 
game is z = (2, 4, 4) and can be obtained by choosing the solution x = (2, 4, 4). 
The lesson to be learned from this simple example is that solving the program 
/'1 may not be sufficient for the computation of the nucleolus, even if only three 
objectives are involved. 

6 Properties of the Nueleolus of Games in ~MOLP 

In this section we show that the nucleotus of games in fqMoLe satisfies three 
reasonable properties. These properties have all proved themselves useful in 
axiomatic characterizations of the nucleolus of different classes of games, see e.g. 
Maschler et al. (1992) and Sobolev (1975). 

6.1 Anonymity 

For every permutation re: N ~ N and every set B ~_ E s v s  ~_ N, S ~ (2~ we define 

B ~ = {y ~ ~(s)t3y ~ B: Vi ~ S, Y~i) = Yi}- 
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A solution concept, a, on fq' is said to satisfy anonymity if the following holds: 

For every pair of games ((N, V), X), ((N, W), X) ~ fq', if there exists a permu- 
tation n: N -o N such that (Vs) ~ = W~(s~ for all coalitions S c N, then 

(~((N, V), X)) ~ = ~((N, W), X~). 

For solution concepts on f~MoLv this axiom says that the decision should be 
governed solely by the values of the objective functions. Thus, the decision 
should not be influenced by the names or the indexation of the objectives. 

The nucleolus on N satisfies anonymity, since for every game ((N, V), X) e f~ 
and every permutation re: N --* N 

hs(Vs, Xs) = h~(s~((Vs) ~, x,~(~i), Vx �9 X, S e M. 

This implies, that if we rearrange the objective functions the nucleolus will 
rearrange in a corresponding way due to anonymity. Hence, we do not have to 
worry about the order in which the objective functions are listed in (2). This also 
implies that all the objective functions are given equal weight a priori. This 
distinguishes the nucleolus from the solution obtained by lexicographic max- 
imization, where the objective functions are ordered by importance a priori. For 
a description of this method see e.g. Steuer (1986). 

6.2 Strategic Equivalence 

A solution concept, a, on N' is said to satisfy strategic equivalence if the follow- 
ing holds: 

For every pair of games ((N, V), X), ((N, W), X) e ~', if there exists a scalar 
a > 0 and b e R N such that Vs = ages + bs for all coalitions S c N, then 

a((N, V), aX + b) = a(a((N, W), X)) + b. 

For solution concepts o n  ~MOLP this axiom says that making the same change 
in the scaling of objectives should not influence the actual decision. Actually, the 
axiom says more than that. Namely, that the decision should not be influenced 
by whether some objectives attain only positive values or not. Hence, the deci- 
sion is zero independent in terms of objective function values. 
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The nucleolus on fr satisfies strategic equivalence, since for every game 
((N, V), X) �9 ff and every choice of a > 0 and b �9 R N 

hs(aVs + bs, axs + bs) = ahs(Ws, Xs), Vx �9 X, S �9 M. 

Notice, that in order to compare the excesses of different coalitions at a given 
payoff, we have to measure the objective functions in some common unit. This 
is of course a major drawback, but necessary since the nucleolus is based Upon 
comparisons of excesses. However, due to strategic equivalence it does not 
matter, what this common unit is. 

6.3 The Reduced Game Property 

Let (N, V) be a NTU-game with payoff set X. For  every coalition S c N and 
every x �9 X we define the reduced game with respect to S and x as the game 
((S, VIS), XIxN\s) where VIS is the restriction of the domain of V to coalitions 
within S and the payoff set is given by X]XN\s = {ffs �9 ~sl(2s, XN\s) �9 X}. 

This definition is closely related to the reduced game as defined in Maschler 
et al. (1992) for TU-games with permissible coalitions and permissible imputa- 
tions. For  TU-games where all coalitions are allowed to form the two defini- 
tions are equivalent. 

Moreover, it is easily checked, using the same argument as in the first 
part of the proof of Lemma 2, that if ((N, V), X) is a game in (9 M~ then 
((S, VIS), XIXN\s) is also a game in f~MOLP for all coalitions S ~ N and for all 
x �9 X. Hence, it may be concluded, that the definition of the reduced game is 
internal consistent in the sense, that we do not move outside the class (9 MOLe . 

A solution concept, a, on (~' is said to satisfy the reduced game property if the 
following holds: 

For every game ((N, V), X) e f#' and every coalition S c N, if x �9 a((N, V), X), 
then 

xs e a((S, VlS), XlxN\s). 

This axiom is a requirement for consistency of a solution concept. Approxi- 
mately, it says that at the solution point every coalition, who looks at its 
payment and at the same time examine its "own game" (the reduced game), will 
not want to move away. The coalition will find that the payment is equal to the 
solution of the reduced game. 
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For solution concepts on (#UOL~" this axiom says, that the decision maker 
should be able to decompose the original problem into smaller problems. That 
is, if for some reason only some of the objective function values are known at an 
optimal decision, then the method employed should allow the decision maker to 
consider only alternatives yielding the known optimal objective function values 
and to contemplate only the remaining objectives. Such an approach should 
allow the decision maker to still find the optimal decision. 

Theorem 6: The nucteolus on (#MoLe satisfies the reduced game property. 

Proof: Let (/', X) = ((N, V), X) ~ (#MOLP. Furthermore, let x = Nuh(F , X)  and 
S c N, S # ~ .  Suppose that there exists some Ys ~ XlXN\s such that Ys # Xs 
and Ys = Nuh(( S, VIS), XIxN\s). Define y ~ X by y = (Ys, XN\s). 

Let ~b: g~N~ ~, be a mapping, that rearranges the coordinates in a non- 
increasing sequence. It is an immediate consequence of Theorem 5, that x is the 
nucleolus of (F, X), if and only if 

q,((h,(V,, x,)),~N) <_ L q,((h,(V,, ~,)) ,~) ,  W ~ X.  

But, since YN\s = XN\s and y is the nucleolus of ((S, VIS), XlxN\s), by an analo- 
gous argument we must also have 

~b((hi(Vi, Yi))i~N) < L @((hi(Vi, Xi))i~N)" 

A contradiction, and hence x s = Ys. [] 

So far we have established, that the nucleolus on (#MOLe satisfies three prop- 
erties, and it has been argued that these properties may seem very reasonable 
not only from a game theoretic perspective, but also from the view of multiple 
criteria decision making. 

From the pure game theoretic perspective, it is interesting to note, that these 
properties are sufficient to obtain an axiomatization of the nucleolus on the 
class of TU-games, see Sobolev (1975), although admittedly a somewhat differ- 
ent version of the reduced game property is used there. Here, we shall not 
attempt to generalize this result. Rather, to some extent we shall generalize 
another axiomatization of the nucleolus of TU-games provided by Maschler et 
al. (1992). 
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7 A Characterization of the Nucleolus of Games in f#MOLe 

F. Christensen et al. 

We can now state the main theorem of this article. 

Theorem 7: A solution concept, ~, on ~MOLP satisfies inclusion in the least core, i.e. 
a ~_ Lcore h, and the reduced game property, if and only if ~r = Nu h. 

Proof: The "if" part follows from the definition of the least core and Theorem 
6. The "only if" part is proved by induction in the number of players. Therefore, 
let (F, X) = ((N, V), X) be any game in (r Next, let z* ~ a(F, X) and as- 
sume that a satisfies the two properties. 

If I NI = 1 the least core is the unique efficient point in X, and hence by 
inclusion in the least core, Leoreh(F, X) = {z*}. Since, Nuh is also included in the 
least core, it follows that a(F, X) = Nuh(F, X). 

Now, assume that there exists some p, p > 2, such that the theorem holds 
whenever the number of players is less than or equal to p - 1. 

For  INf = p it is first noted that Lcoreh(F, X) is nothing but the set A~ in the 
algorithm that computes the nucleolus. Hence, it follows from inclusion in 
the least core and Lemma 3 that there exists I e E1 such that y~ = z* for all 
y ~ Lcoreh(F, X). Particularly, if we let x* = Nuh(F, X) then x* = z~'. 

Now, define S = N\{l}.  From the reduced game property it is concluded 
that z~ ~ ~r((S, V[S), Xtz*). Since x* = z*, it follows from the induction hypoth- 
esis that z~ = Nuh((S, VIS), Xlx~'). Finally, since the nucleolus satisfies the re- 
duced game property (Theorem 6), one has x* = Nuh((S, VIS), Xlx*), and con- 
sequently z* = t s,tZ* z*~, J = (x*, x*) = x*, or equivalently, o-(F, X) = Nuh(F, X). 

[] 

Theorem 7 has some merits on its own. First of all, it demonstrates that the 
axiomatization in Maschler et al. (1992) can be generalized to some extent to 
cover a broader variety of games. 

Secondly, it brings axiom systems into multiple criteria decision making. T h a t  
is, if the decision maker believes that the axioms of inclusion in the least core 
and the reduced game property are meaningful and reasonable properties of any 
solution method, then the number of possible methods comes down to one, 
namely the nucleolus. Conversely, if the decision maker does not believe in these 
properties, then he should choose some other method. This may be seen as the 
normative aspect of Theorem 7. 

Finally, from a more technical point of view the axiom of inclusion in the least 
core is nothing but a requirement of engaging in a Tchebycheff program. More- 
over, in section 6 it was argued that the reduced game property really was a 
concept of consistency. Thus, by Theorem 7 the implication of combining the 
two axioms is that nucleolus is the only result of a consistent use of Tchebycheff 
programs. 
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8 Concluding Remarks 

In this article we have studied the nucleolus of NTU-games defined by multiple 
objective linear programs. The reason for doing so was at least twofold. 

First of all, it was demonstrated by the provision of a fairly simple algorithm 
yielding a unique efficient point, that concepts from cooperative game could 
successfully be applied to multiple criteria decision making. 

Secondly, the NTU-games derived from multiple objective linear programs 
was shown to possess a particularly simple structure. A structure, that made a 
generalization of results from TU-games possible. 

Finally, from a normative perspective the application of concepts from coop- 
erative game theory enabled the introduction of an axiom system, and to our 
belief an axiom system is the ultimate key for choosing among a variety of 
potential and at the outset equally suitable methods. 
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