
Algebra Universalis, 17 (1983) 1 9 1 - 1 9 9  0002-5240/83/020191-09501.50+0.20/0 
(~) 1983 Birkhauser Verlag, Basel 

The  structure of saturated free algebras 

J. T. BALDWIN* and S. SHELAH'~ 

Ded ica ted  to A l f r ed  Tarski  on  his 80th bir thday 

Abstract. Requiring an algebra M to be both free (for the variety it generates) and lgl-saturated 
imposes very strong conditions on M. In the simplest examples (see below) there exist a finite number 
of relatively free algebras A 0 . . . . .  A~_I whose theories are R~-categorical such that M is generated 
(as an algebra) by the [.J A i. In particular, this implies Th (M) has at most (c~ +No) models of 
cardinality R~. We will show a weaker structure theorem in the general case but deduce the same 
constraint on the spectrum of T. 

This pape r  was p r o m p t e d  by the observa t ion  in [1] that  in bo th  an arbi t rary  

free algebra of  countab le  similarity type  and an arbi t rary  mode l  of  an to-stable 

theory ,  every  uncoun tab le  set contains an uncountab le  subset  which is indiscerni-  

ble over  the  e m p t y  set. This superficial r e semblance  be tween  sa tura ted  and  free 

s tructures  p r o m p t e d  the s tudy of  s tructures which are  bo th  free and  saturated.  This 
investigation of  sa tura ted  free structures rapidly deve loped  f rom the (compara-  

tively) naive me t hods  of  [1] to  a use of  the sophist icated me thods  and definitions 

of  [3]. Thus,  this pape r  requires  acquain tance  with I I I  of  V of  [3] even to  state the 

fol lowing main  result. In  addi t ion to  obta in ing this result, we hope  this pape r  will 

clarify for  the  reader  some  of  the finer distinctions f rom [2], e.g., Example  3 
shows the difference be tween  " r e g u l a r "  and  "weigh t  one" .  

O u r  principal  results says tha t  if M is a f ree  algebra in the  variety V and  if M 

is sa tura ted  as a mode l  of  the  comple te  theory  of  M (Th (M))  then every  mode l  of 

Th  (M) is " g e n e r a t e d "  by  the  union  of  a finite set  o f  indiscernible sequences.  

Moreover ,  these indiscernible sequences  satisfy a s t rong technical  condit ion.  

The re  are two forms  of this result. In  the  first we take  " g e n e r a t e d "  in the  weak  

sense of  "p r ime  ove r "  and the s t rong technical condi t ion  is regularity.  

T H E O R E M  1. Let V be a variety with a countable similarity type. Suppose M 
is a free algebra in V and M is Nx-Saturated. Then there exists a finite set ql . . . . .  qk 
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of  regular types, such that i f  N ~  Th  ( M )  there are indiscernible sets Y~, . . . , Y ,  with 

each Y~ based on some q~ such that N is prime over YI  tO..  �9 U Y, .  

This result already gives us substantial information on the spectrum of Th (M). 
the conclusion of Theorem 1 just spells out the assertion: Th (M) is a finite 
dimensional ~o-stable theory. By [3: V.5.8], we have, 

C O R O L L A R Y .  I f  N,~ --- 2 s~ then T h  (M)  has at most ~ + No models  o f  power 

Ha. 

This result is established by the first five lemmas below. The remainder  of the 
paper is devoted to strengthening "genera te"  to generate in the usual algebraic 
sense. The penalty for this strengthening is to weaken the requirement  that the qi 
be regular to the assertion that each q~ has weight one. More precisely we have: 

T H E O R E M  2. Let  V be a variety with countable similarity type. Suppose M is 

a free algebra in V and M is N~-saturated. There exists a finite set q ~ , . . . ,  qk o f  

types, each with weight one, such that i f  N ~ T h  ( M )  there are Y1 , .  . . ,  Y~ which are 

indiscernible sets in N with Yi based on some qi such that M = ( Y 1 U .  �9 �9 U Y , ) .  

Here  and below (A> denotes the subalgebra generated by A. Definitions of 

such notions as "weight one"  appear in [3]. 
With the following exceptions our  notation follows that of [3]. References of 

the form III.x.y are to [3]. For  typographical convenience letters such as 
a, b, c, (x, y, z) range over finite sequences of elements (variables) and we place a 
bar over such a letter only when we want to emphasize the distinction between a 
single element and a sequence when that distinction is important. Similarly, we 

have blurred the distinction [Defn, III, 12] between t ( A ;  B )  and t , (A ;  B). 
We say p ~ S ( M )  is based on A _  M if p does not fork (d.n.f.) over  A and 

P I A is stationary. We frequently construct sequences by induction; e.g. {a~ : i < k}. 
In such case we denote by the capital letter subscript i, the first i elements of 

the sequence e.g. A~ = {ai : j < i}. 
Roughly the argument goes like this. We first recall from [1] that if A and B 

are subsets of a free algebra M with [A!>No and IBI =No then A contains an 
uncountable set of indiscernibles over B. If M is also Nl-saturated this easily 
yields that Th (M) is 00-stable. Now let M0 be free on countably many generators 
and let M~ be free on one additional generator y. Note M - -  Mo - M~. Now in any 
superstable theory we can decompose t(y, M0) into a finite number of regular 
types. In our  situation, we can show that M~ is in fact the F~o-Saturated model 
containing MoU y. (Since after all M~-~Mo.)  Since one sufficiently saturated 
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model of Th (Mo) is finite dimensional so is Th (Mo). At  this stage (after Lemma 
5) we have represented M~ as the model F~o-prime over zo . . . .  , z,_~ where the zi 
realize regular types. In the remainder  of the proof  we replace the zi's by Yi'S such 
that the yi's realize weight one  types and y is in the algebra generated by 

M 0 U { y 0 , .  - - ,  Yn--1}- 

For  simplicity, the results here  will be presented for a countable language. In 
the case of an uncountable language we would have to replace co-stability below 
by superstability but  that would be a minor change for the arguments here. 

We state all our results for free algebras. In fact, the arguments apply to any 
structure M which is generated (as an algebra) by a set of indiscernibles. A slight 
further improvement  could be obtained by replacing " f ree"  by M is the algebraic 
closure (in sense of [3]) of a set of indiscernibles. 

Here  are two examples of "nice"  situations. Example 4 below shows that 
example 2 is more complicated than it first appears to be. 

E X A M P L E  1. The language L has a single n ary function symbol f and M is 
free for the variety given by f~ ( x )  = x. Then the free algebra on Nl-generators is a 
disjoint union of n-element  cycles. M is Nl-saturated and Th (M) is N~-categorical 
and No-categorical. 

E X A M P L E  2. The language L has a binary function symbol + and constant 
symbol 0, V is the variety of Abelian groups of exponent  n. If n is a prime power 
Th (M) is categorical in all powers. If n is a composite M is a direct product  of a 
finite number  of groups each of which is free on Nl-generators for  an N1 and 
No-categorical variety of Abelian groups given by an equation pkx = O. 

These examples are overly simple in several respects. In particular, in these 
cases we decompose not only the algebra M into more managable algebras but in 
effect we also decompose the variety V. Our theorem, however, only refers to the 
elementary theory of M. Examples 3 and 5 show that such a restricted conclusion 
is necessary. 

To  prevent  the repetition of hypotheses and notational conventions we will list 
all such as H1, 1-I2 etc. Once formulated, such hypotheses hold until the end of the 
proof of the main theorem. 

Ho. V is a variety in a language with countable similarity type. 
H1. M is a free algebra on the generating set Y ={y~ : i <R1} for the variety V. 

M is Nl-saturated. 

L E M M A  1. T h ( M )  is co-stable. 

Proof. Let  B be a countable subset of M and let A = (a~:i < K) realize the 
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distinct 1-types over  B which are realized in M. If  r > R o ,  by [1] A contains an 
uncountable subset which is indiscernible over B. This, of course, is impossible so 
only countably many types over  an countable subset of M are realized in M. Since 
M is Nl-saturated this implies Th (M) is to-stable. 

No such conclusion can be drawn about the variety V. He re  is an example  of a 
variety V and a free algebra M which is saturated but  V is not even stable. 

E X A M P L E  3. Fix an uncountable cardinal o~. Let  the universe of M b e  a U ct t2]. 
There  will be  a single binary function g 

g(a,b)=l(Oa,/3> 
if a = a  and b = /3 and /3 < 

i f a = a  a n d b = / 3  a n d a < / 3  

otherwise. 

Now, M is free on { / 3 : 0 < / 3 < a }  and M is Nl-saturated if a > ~ 1 -  To see this 
note that Th (M) can be axiomatized as follows. (We indicate g by juxtaposition.) 

(M,-)  is a commutat ive  semigroup with operation g. 

Every  product  of 3 elements  is zero. 
Each e lement  x is ei ther an annihilator (u xy = 0) or a creator  (3y x �9 y r  0). 

The  product  of any two creators is an annihilator. 
There  is a 1-1 correspondence between annihilators z and pairs of creators by 
given by x �9 y = z. 

Clearly these axioms are categorical in all powers (since a model  is determined 

by the cardinality of its set of creators). 
But  V is not stable since M does not satisfy the te rm condition (cf. [2]). An 

algebra M satisfies the t e rm condition if for every t e rm t(u, v)Vx Vy (3z(t(x,  z) = 
t(y, z)) --~ Vw (t(x, w) = t(y, w))). I t  is shown in [2] that if V is stable all algebras in V 
satisfy the te rm condition. But  if a, b, c are creators and d is an annihilator 
a . d = b . d = O  but a . c r  

H2:Mo is the subalgebra of M free on Y0--{y~:i  <to}. 

L E M M A  2. Mo is F~o-saturated. 

Proof. It  is routine by  a Tarsk i -Vaught  argument  to show Mo is an No- 
saturated elementary submodel  of Mr. Since No-saturation is the same as F~o- 
saturation for to-stable theories we have the result. 
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L E M M A  3. If  p e S(Mo) there is a finite subset A c_ Mo and an infinite set 
W C_Mo such that W is indiscernible over A and A v ( W ,  Mo)= p. 

Proof. This holds in any F~o-Saturated model.  

H 3. y realizes A v ( Y ,  Mo). M ~ =(MU{y}) .  

M~=(MoU{y}) .  p = t ( y ; M o )  is based on A and !A!<N0.  

L E M M A  4. If  W~-Mo is indiscernible over A and based on A and q = 
A v ( W ,  Mo) is regular then q is realized in M~. 

Proof. Certainly, q is realized in M so for some n, q is realized in M(o "~= 

(M0 U y n )  where y n  = {yi . . . . . .  Y~,_~} - Y -  Yo- Note  that the isomorphism type of 

M~0 ~) over  Mo does not depend on the choice of the yh. Choose n minimal such 
that q is realized in M(o ~) and let w be such a realization. If, for some a e 
Y-" , t (w;MU{a} )  does not fork over  M, let N = ( M U { a } ) .  Then there is an 

isomorphism f f rom Mo onto N which fixes A. By the minimality of n, f(q) should 
not be  realized in N (~-1) = M~o. But, since q t A is stat ionary and t(w, N)  does not 
fork over  A, w realizes f(q). Thus for each a ~ Y'~, t (a;MoU{w}) forks over  M0. 
If  n > 1 this contradicts V.3.1, since q is regular; so we have proved the lemma. 

Note  that L e m m a  4 depends essentially on the hypothesis that q is regular. 

For, ff in Example  3 we let W be the set of annihilators in Mo and let 
q = Av(w ,  Mo), q is not realized in M~ but only in M(o 2~. 

We thank Anand Pillay for pointing out an error in the original proof  of 
L e m m a  4. 

H4. Z = {z~ : i < Ix} c_ M~. qi = t(z~, Mo) is based on A~ ~ M0 with IA~I < ~o. Each 
q~ is regular and i ~ ] implies q~ = % Moreover ,  Z is a maximal independent  subset 
of M~ satisfying these conditions. 

Note  that IZI may well be  greater  than /x. 

L E M M A  5. Z is finite. 

Proof. By L e m m a  4 each qi --<~ P (cf. Defn.  V.2.1). Thus IZI is less than the 
weight of p is less than No (Defn. V.3.2. Thin. V.3.9). 

Hs. IZI = n. Each zi ~ Z realizes A v ( ~ ,  Mo) where Zi is an infinite set of 
indiscernibles, qi = A v ( ~ ; M o )  is based on the finite subset A of M0. qx . . . .  qk 
(where k - - n )  are the distinct regular types realized in Z. 

We  have  established that Th  (M) is "finite dimensional".  That  is each model  
of Th (M) is pr ime (actually F~o-prime; but by L e m m a  4, we have prime) over  a 
finite sequence of indiscernible sets and the cardinalities of those indiscernible sets 
determine the model.  In the remainder  of the paper  we make  this information 
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more  precise. We replace " N  is pr ime over  Y1U" " - U Y n "  by " N =  

(Y~ U- �9 �9 U Yn)". The  price for this is to weaken "Av(Y~) is regular"  to "Av(Y~) 
has weight one" .  

The  distinction between these notions is clarified by the following example.  

E X A M P L E  4. Let  G be the direct sum of o) copies of Z4. As a vector  space 
over  the field with 4 elements  G has a basis of elements A = {a~ : i < o9}. Let  b~ 
denote  2a~. Let  B be {bi : i < oJ}. Now G = (A)  and G is pr ime over  B. Moreover  
Av(B, M) is regular (since 2x = 0 is a strongly minimal formula [cf. V.l .18]) .  But  

Av(A, M) has weight one and is not regular. (It must have weight one since 
T h ( G )  is Nl-categorical. To  see it is not regular, consider e lements  a, b, c; 

4a=4b=4c=O;  2 a = 2 b ;  2c=a  b and the characterization V.1.9(2) of 
regularity.) 

In order to establish the theorem,  we must  replace the collection ql . . . . .  qk of 
regular types which are realized in Z, by types of weight one so that if 

Yo,- �9 -,  Yn-~ realize these types then y ~ (M U {Yo . . . .  , Y~-I})- 
In the next l emma we show how the new types will be chosen. Then  we prove 

a general result about  forking which will be  needed in the construction. Then we 

construct Yo, - - �9 Y,,-~ so that y c (M U {Yo . . . .  , Y,-1}}- (More precisely, 
y e (J~,~ U {Y0, - - - ,  Yn-1}}  where f ' / i s  chosen so that t (y ; / f / )  is parallel to t(y; M).) 
Then we construct an M** so that y ~ (M** U {Y0 . . . . .  Y,~-I}), t(y; M**) is parallel 
to t ( y ; M )  and t (yi ;M**)  has weight one. This establishes the theorem.  

L E M M A  6. Suppose t(z, M) is regular. Fix a type p ~ S(M) and y realizing p. 
If  M' is chosen so that R(t(y; M')) is minimal among all ranks of t(y; N) such that 
N ~_ M and t(z; N) d.n.f, over M then wt(t(y; M')) = 1. 

Proof. Let  M* be F~0-prime over  M '  U{y} and suppose for contradiction there 
exist Wo, wl a M* which are independent  over  M '  and realize regular types over 

M*. Then  by V.3.1, since t(z;M') is II to t (z;M) (and hence regular), one of 
t(z; M'U{w0}), t(z; M'U{wl})  d.n.f, over  M' ,  say t(z; M'U{wo}). By transitivity, 
t(z;M'U{Wo}) d.n.f, over M. Then there exists an M"D_M'U{wo} such that 
t(M"; M'U{z})  d.n.f, over  M. Thus M" is one of the N minimized over  in the 

definition of M' .  But  worM* and M* is F~o-prime over  M ' U { y }  so 
t(Wo; M ' U  {y}) forks over  M ' .  By symmetry  and monotonici ty t(y; M") forks over  
M '  so R( t (y ;  M"))<R(t(y; M')) contrary to the choice of M' .  

W e  pause now to prove a general l emma about  forking which will be used 
twice in this paper .  Note  that  although we state the l emma for finite sequences it 
holds for arbitrary sets. (We use this fact in the second application.) 
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This lemma could also be proved by regarding non-forking as an isolation 

relation (F~(T)) and applying IV.3.3. It does not rely on any of the continuing 
hypotheses/-/~. 

L E M M A  7. Let (ch : i < n) and (b~ : i < n) satisfy: 
(i) {o~ : i < n} is independent  over  M 
(ii) t( bi ; M U A ,  U B, ) d.n.f, over M U {a~} then { chb, ; i < n} is independent over 

M. 

Proof. We first show 
(*) For  each i t (a~;M U A~ U B~) d.n.f, over M. For  this, we show by induction 

on m --- i that t(o~ ; M t3 A~ U B,~) d.n.f, over M. If m = 0, this is just the assertion 
that {o~ : i < n} is independent  over M. Suppose m = k + 1 and t(o~; M U A~ U Bk) 
d.n.f, over M. Now by (ii) t ( b k ; M U A ~ + I U B k )  d.n.f, over MU{ak}. So by 
symmetry t ( c h ; M U A ~ U B k + O  d.n.f, over MU{ak}. We can apply symmetry 
since, by induction, t (a~;MUA~ t.JBk) d.n.f, over M (and by monotonicity not 
over MU{ak}. But t (c~;MU{ak})  d.n.f, over M since the o~ are independent.  
Hence,  by transitivity, t (o~;MUA~ t3B~+I) d.n.f, over M. 

Now we show that for each m, t(a,~b,~; M U A m  t3B~) d.n.f, over M. We have 
t ( a ~ ; M U A ~ t d B m )  d.n.f, over M. By (ii) t (b , , , ;MUAm§ d.n.f, over 
MU{a~}.  Thus by II.4.15(1) t ( a ~ - b ~ ;  M U A m  UBm) d.n.f, over M. 

We return to the main line of the argument, and cons t ruc t /~ .  

Construction 8. Choose (yi : i  <IM[ § as follows. 
(i) For  i < n 

(a) t(y~; MU{z~}) = t(y :MU{zi}) 
(b) t (y , ;MU{z~ . . . . .  z ,_l}U Y~) d.n.f, over MU{z,}. 

(ii) For  n--~ i 

(a) t(yi ; M)  = t(y; M)  
(b) t (y~;MU Y~) d.n.f, over M. 

CLAIM 9. {y, : i < IM1 § is independent  over  M. 

Proof of Claim 9. By (ii) of the construction, it suffices to show that for m < n 
t(ym; M t3 Ym) d.n.f, over  M. But this follows from (Lemma 7 and monotonicity) 
taking z~ for o~ and yi for b,. 

L E M M A  10. There exists a model iC'I such that 
(i) y e ( / ~ U ( y o , . . . ,  Y,-1}> 

(ii) t (y ; /Q)  d.n.f, over M. 
(iii) t(yo . . . . .  Yn-1;/~) d.n.f, over M 
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Proof. Let  M § be (Mt_l{y~:i <IMI+). Then M + is IM[ § saturated (since it is 
free) so without loss of generality we can imbed M t_J {z0 . . . . .  z,_~} into M § by a 
map which fixes M. Then  for some y . . . . . .  y,~§ (possibly reordering) y ~  
( M U y 0 , . . . , y , + ~ ) .  By claim 9, {y~: i<lMI +} is independent over  M. Thus by 
V.3.15, for some set Y' _ Y with I Y'] --- n = wt(t(y; M)), Y -  Y'  is independent 
over Mt_J{y}. But each y~ for i < n  is in Y'. For, t(zi;Mt.Jy~) forks over  M and 

t(z~ ; M U y) forks over  M (since zi ~ (M U {y}), zi ~ (M U {yi}}) and t(z,; M) is 
regular so by V.3.2 t(y~; MU{y}) forks over M. 

Choose JQ prime over M O{y~ . . . .  , y,+~}. Then certainly y e ( /~U{yo . . . .  , 
Y~-I}), t(y;/~r) d.n.f, over M and for i < n  t(yi; M)  d.n.f, over M. (The non- 
forking follows from the previous paragraph and V.3.2.(1)i).) 

Now we construct M**. First we construct for each i an M" such that M'[ is to 
{y~} as the M'  constructed in Lemma 6 is to y and such that the M" are as 
independent  as possible. Then  we find an M** meeting the required conditions. 

C O N S T R U C T I O N  11. Choose (hi'[: i < n) so that 
(i) t(M"; MU{y~, z,}) = g~(t(M',; MU{y ,  z,}) (where g~ is a mapping fixing 

MU{z~} and taking y to y~. Such a map exists by the definition of y~). 

(ii) t(M'[;MU U {M~:J7 ~ i}U{yo . . . . .  y~-x}U{zo . . . . .  z~_a}U{y}) d.n.f, over 
MU{y~, z~}. 

CLAIM 12. {Zo . . . . .  z,~-l, M~ . . . . .  M"-I} is independent  over M. 

Proof of Claim. By Lemma 1 taking {y~, zi} for o~ and hi'[ for b~, 

(*) t({y~,z~}UM'[;MUjU M~U Y~UZ~) d.n.f, over M. 

So t({yi, zi}; M U Uj~i M'; U Y~ U Z~-) d.n.f, over M'[ U M = hi'[. But t(zi; h id  d.n.f. 
over  M (by (i) of construction 11), so by transitivity and montonicity t (z i ;MU 
Uj~M~'U Y~ UZi)  d.n.f, over M. By (*) t(M"; U Ui<~M}'U Y~ UZ~) d.n.f, over M. 
This establishes the claim. 

L E M M A  13. There exists an M** such that 
(i) t(y; M**) d.n.f, over M 

(ii) y ~<M** U{yo . . . . .  Y,-1}> 
(iii) t(yl; M**) has weight 1. 
(iv) {Yo . . . . .  Y~-I} are independent over M**. 

Proof. Let  M** be prime over U{M'[:i<n}.  Now W={zo , . . . , z~_ l ,  
M g , . . . ,  M"_I} are independent over  M so again by V.3.15 there exists a W ' _  W 
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with I W'[-< n = wt(t(y;  M) )  so that ( W -  W') U {y} is qndependent  over  M. But 
t ( z~ ;MU{y} )  forks over M for i < n so { M ~ , . . . ,  M"_~} is independent  over M. 
Thus by V.3.2 t(y; M**) d.n.f, over M. Similarly (iv) holds. (ii) is immediate from 
Lemma 10(i) since M** _ M .  Finally t(yi; M**) has weight 1 since t(y~; M'/) has 
weight 1 by Lemma 7 and t(y~; M**) d.n.f, over M" by V.3.2 (and monotonicity). 

This establishes the theorem. 
In order  to get a wholly algebraic conclusion to the main theorem, we would 

have to be able to investigate more fully the structure of the subalgebras <Y~) for 
i < n. The first hope is that My, is also saturated and so we could continue by 
applying our  earlier arguments to My. This hope is dashed by the following 
variant on Example 2. 

E X A M P L E  4. Let  L contain +, 0 and infinitely many constant symbols 
(ci : i < ~o). Let  V be the variety of Abelian groups of exponent  6 with no axioms 
on the cv Then a free algebra of power N1 for V is just the direct sum of Nl-copies 
of z6 with the ci naming independent  elements of order  6. Now as in Example 2 if 
X ( Y )  is a set of independent elements of order 2(3), M ~ - M x  • My. But My is not 
N1-saturated since it contains only countably many elements of order  6. 

Note also that while in Examples 1 and 2, the Y~ generate relatively free 
algebras, this fails in this example. 
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