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Abstract. In this paper, we present implementation aspects of a 
surface finite element (FE) meshing algorithm described in Part I 
(this volume) [1]. This meshing scheme is based on the medial 
axis transform (MAT) [2] to interrogate shape and to subdivide it 
into topologically simple subdomains. The algorithm can be ef- 
fectively used to create coarse discretization and fine triangular 
surface meshes. We describe our techniques and methodology 
used in the implementation of the meshing and MAT algorithms. 
We also present some running times of our experimental system. 
We finally report the results we have obtained from several de- 
sign and analysis applications which include adaptive surface 
approximations using triangular facets, and adaptive h- and 
p-adaptive finite element analysis (FEA) of plane stress prob- 
lems, These studies demonstrate the potential applicability of 
our techniques in computer aided design and analysis. 

1 Introduction 

This work deals with implementations of a finite 
element (FE) surface mesh generation scheme and 
our algorithm for medial axis transform (MAT) [2,3] 
computations on surfaces. More detailed descrip- 
tions of these algorithms and discussions of their 
theoretical aspects and related techniques can be 
found in Part I (this volume) [1], and also in [4-7]. 

For the sake of convenience, we briefly review 
some basic aspects of MAT, which are introduced 
in [1]. MAT has been proposed as a shape descrip- 
tion method by Blum [2,3]. MAT can represent two- 
dimensional or three-dimensional shapes in terms of 
its medial axis (MA) (or skeleton or symmetric axis) 
and associated radius function (RF). The MA of a 
two-dimensional shape is a set of points each of 
which has at least two equidistant nearest points on 
the boundary of the shape. The limit points of this 
set are normally included in this definition of the 
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MA. Radii of the maximal inscribed circles centered 
on the MA are defined by the associated radius 
function (RF) of the MAT. The MA of a two-dimen- 
sional shape is composed of continuous curved seg- 
ments. Those segments are called MA branches. If 
the boundary of a shape is defined by circular arcs 
and straight line segments, it can be shown that MA 
branches are conic sections [3,4]. Points where ad- 
jacent MA branches intersect each other are called 
branch points. In our two-dimensional MAT algo- 
rithm [1], we determine an analytic representation 
of all MA branches, their end points (branch points) 
and associated RF of each MA branch. These con- 
cepts can be analogously extended to three-dimen- 
sional shapes [3,7,8]. In three dimensions, MA rep- 
resentations are more complex and MA branches 
are surface patches (i.e, MA surfaces), curve seg- 
ments (i.e., MA edges) and discrete vertices. 

The FE surface meshing scheme we developed 
has two stages: shape interrogation and area mesh- 
ing [1]. First, this scheme uses MAT as an auto- 
matic shape interrogation method to extract topo- 
logically simple subregions and their length scales 
from a given complex domain. Our MAT algorithm 
allows us to efficiently carry out this shape interro- 
gation process. Such an initial shape decomposition 
can be considered as a coarse FE mesh. Next, those 
simple subregions are triangulated to generate a fine 
FE mesh. Thus, a mesh capturing important geo- 
metric characteristics of a given domain can be cre- 
ated by our mesh generation scheme in an auto- 
mated manner. 

In this article, we outline our methodology and 
report efficient techniques used in the development 
and implementation stages of our prototype system. 
The second section presents basic implementation 
aspects and the data structures used in conjunction 
with our two-step FE surface meshing and MAT 
algorithms. The third section deals with applica- 
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tions of our technique to several design and analysis 
processes. These applications include adaptive fac- 
eted approximations of trimmed free-form surfaces 
and adaptive plane stress analysis using h- and 
p-convergence FEA methods. Finally, the fourth 
section summarizes this work and points out related 
topics for future research. 

2 Implementation Aspects of Algorithms 

We have implemented our MAT and FE meshing 
algorithms in C under the UNIX operating system. 
Our prototype system has been developed on a 
DEC Vax Station II GPX and a Silicon Graphics 
IRIS 3030 workstation has been used to interac- 
tively run the system. In our implementation, the 
surface definition and the geometric representation 
of boundary contours (loops) are the main input of 
the MAT and subsequent meshing computations. 
We have established specific data types and the re- 
lationships among them using a data abstraction 
methodology. The next two sections discuss the 
data structures used and computational aspects of 
our implementation. 

2.1 Implementation of the 
Medial Axis Transform 

2.1.1 Data structures for the 
medial axis transform 

In general, we have two types of boundary con- 
tours, one external boundary contour and contours 
of internal loops. A typical boundary contour is 
composed of three different types of boundary ele- 
ments: straight line segment, circular arc (either 
concave or convex) and reentrant vertex (i.e., a de- 
generate case of a concave arc). In our implementa- 
tion, every internal loop is connected to the exter- 
nal contour along a virtual cut using two artifical 
segments. These artificial segments are not used in 
the branch point computation and have no contribu- 
tion to the medial axis of a shape. Their function is 
to indicate the presence of internal loops during tra- 
versal of elements on the boundary in computations 
of branch points. Thus, typical boundary data of a 
multiply connected nonconvex shape are composed 
of straight line, circular arc and artificial segments. 
An abstract data type segment is defined in terms of 
structure constructs of the C language. These 
boundary elements are ordered in a clockwise se- 
quence so that the interior of the region lies to the 
right. With respect to the clockwise sequence of the 
boundary segments, we notice that the center of a 
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right ha,f-edge [,~-~mate po,nter~--~l left half-edge 

_~Voronoi region pointer~ 

previous half-edge pointer) 
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Fig. 1. Graphical representation of the data structures. 

convex circular arc lies to the right of the contour 
boundary and the center of a concave circular arc to 
the left. As a result, when a boundary contour is 
offset inward, concave arcs expand and convex 
arcs shrink. 

Doubly linked lists are used as the main data struc- 
tures for the representation of boundary contours. 
The boundary elements of a contour are stored as 
the items of a doubly linked list which also has 
pointers to store data of MA branch points. 

The MA branches and Voronoi edges decompose 
a shape into a set of subregions, generally called 
Voronoi regions [1]. The regions are bounded by 
boundary elements of the initial contours and asso- 
ciated MA branches and Voronoi edges. Here we 
recall that a boundary element is associated with a 
distinct subregion. In the computation of the MAT, 
we determine not only descriptions of the regions 
but also the adjacency relationships among them- 
selves. For this purpose, we have developed a vari- 
ant of the face-edge data structure proposed by 
Weiler [9] for two-manifold geometric models. In 
this representation, the boundary of every region is 
composed of a boundary element and a chain of MA 
branches. Every MA branch has two half edges as- 
sociated with the two adjacent Voronoi regions. 
MA branches are also represented using structure 
constructs. Figure 1 illustrates the relationships 
among these objects. 
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Several dynamically allocated data structures are 
also employed to carry out the computation. A 
queue is used to store the contours (loops) to be 
processed. From this queue, a contour is removed 
and processed to compute "effective MA branch 
points" and the associated offset distance as dis- 
cussed in [1]. The computed branch points of a con- 
tour are stored using a list. Then this list is pro- 
cessed to determine "effective offset distance" and 
branch point(s). If final branch points are found, the 
computation of the MAT of the contour stops. If 
branch points are not final or the interior area of the 
contour is not nil, the contour is offset. In that case, 
if the contour gives rise to only intermediate branch 
points, there will be one resulting offset contour. 
But if it involves initial branch points as well, the 
offset of the contour may be split at the initial 
branch points. For example, the boundary contour 
of a simply connected polygon with n initial branch 
points, will be split into n + 1 offset contours. In the 
case of a multiply connected polygon, initial branch 
points may be generated by the interactions among 

internal loops and/or internal loops and the external 
contour. Then splitting or merging of contours oc- 
curs depending on the geometry of the polygon. 
This situation is resolved by traversing the bound- 
ary, and discovering the tangent adjacencies cre- 
ated at initial branch points. To represent such adja- 
cency relationships, boundary elements have 
pointers to another boundary element which is the 
tangent element at an initial branch point. 

Once a contour is offset, the newly generated off- 
set contours are put into the queue to be processed. 
The branch points have pointers to the boundary 
segments that generate these points. The branch 
points also denote the end points of the MA 
branches. In Fig. 2, the disassembled MA of a sim- 
ple polygon illustrates the data objects used and 
adjacency relationships among them. 

2.1.2 Computational aspects 
There are several numerical computation stages in- 
volved in our MAT processes. First, a two-dimen- 
sional shape bounded by a set of B-spline curves 
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needs to be approximated. A boundary curve is ap- 
proximated in terms of vertices, straight lines, and 
circular arc segments using the algorithm based on 
[10] and summarized in [7]. Our implementation is 
numerically stable and efficient and can handle a 
wide variety of parametric curves including high or- 
der nonuniform rational B-splines (NURBS). 

In a MAT process, we can formulate the computa- 
tion of MA branch points as an intersection problem 
between two conic sections [7]. This problem can 
be reduced to the solution of a polynomial of at 
most degree four using elimination methods [11]. 
We use a standard root solver [12] to determine the 
four potential roots of this polynomial. 

In our implementation, the MAT computation is 
carried out in double precision involving 16 decimal 
digit arithmetic. Computations of MA branch 
points, values of associated RF and effective offset 
distances involve a tolerance for numerical compar- 
isons. We use a relative tolerance of 0.5 x 10 -6  with 
respect to the maximum dimension of the object as 
a default value in our prototype system. 

2.2 Implementation of the Meshing Algorithm 
Based on the Medial Axis Transform 

2.2.1 Data structures for surface triangulation 
Our mesh generation scheme allows mesh smooth- 
ing and adaptive local mesh refinement. Efficient 

implementation of operations requires that adja- 
cency information among triangular elements be 
available explicitly in the data structures. In our 
implementation, we have adopted a B-Rep scheme 
to represent the resulting FE mesh. In this repre- 
sentation, an individual triangle is treated as a topo- 
logical element "face ."  We use a variant of the 
face-edge data structure [9]. Figure 3 illustrates the 
structures used in our implementation. Adjacency 
relationships between adjacent triangles are explic- 
itly represented. This information allows us to im- 
plement very efficient mesh smoothing and local re- 
finement processes. We use a dynamically allocated 
doubly linked list structure to store triangular 
elements. 

2.2.2 Mesh smoothing 
After the mesh generation process, the resulting FE 
mesh is smoothed (relaxed) to improve the shape 
characteristics of individual triangular elements, if 
this is required. A simple coordinate averaging pro- 
cess has been found to lead to efficient smoothing. 
Our mesh smoothing process is similar to the meth- 
ods of Cavendish [13] and Chae [14]. In our imple- 
mentation, coordinates of interior nodes are modi- 
fied by averaging coordinates of the node and those 
of all surrounding nodes. In this iterative process, 
before a new iteration starts, coordinates of all inte- 
rior nodes are updated using new coordinates corn- 
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puted in the previous step. This iterative process 
stops either after a certain number of iterations or if 
the maximum value of displacements of all interior 
nodal points at an iteration becomes less than a pre- 
scribed percentage of the maximum value of dis- 
placements of the previous iteration. For a particu- 
lar point P, the coordinates at iteration i + 1 can be 
determined from the following relation 

1 m 
p(i+l) = �89 + mj__~l.= Q(i)]: (1) 

where i denotes the iteration step and Qj are coordi- 
nate vectors of m points adjacent to the point P. 
This adjacency information is denoted as the 
vertex-vertex adjacency relationship P{Qj} in B- 
Rep schema [9]. 

Although this smoothing process is efficient it has 
one disadvantage. If a mesh contains an extreme 
nonconvex boundary (such as reentrant corners), 
this smoothing technique may destroy the topology 
of the mesh by moving edges of elements in such 
areas to the outside of the actual region. Therefore, 
a robust implementation of this smoothing process 
requires that elements adjacent to re-entrant cor- 
ners be identified and not smoothed, or processed 
separately. An example of mesh smoothing is illus- 
trated in Fig. 6. 

2.2.3 Local mesh refinement 
One of the objectives of our implementation is to 
create a compatible mesh when a local mesh refine- 
ment process is carried out. In a compatible mesh, 
degrees of freedom associated with finite element 
nodes are common to all adjacent elements. For 
local adaptive mesh refinement, we use a bisection 
technique. In this approach, a triangle is split into 
two halves across its longest edge. Our refinement 
approach is similar to the mesh refinement method 
proposed by Rivara [15]. However, our mesh repre- 
sentation methodology and refinement process, 
which are based on a B-Rep scheme, are different 
from Rivara's method. 

When a triangle is split into two halves across its 
longest edge and if a second triangular element adja- 
cent to the split edge exists, the second element 
must also be processed since the middle node in- 
serted on the split edge is not a common vertex. 
Therefore, this refinement process has, to some ex- 
tent, a propagative nature. Numerous examples, 
chosen for their complexity and diversity, led us to 
the conclusion that this mesh refinement approach, 
in general, exhibits a local refinement character and 
does not effect the whole domain being meshed. 

Figure 4 illustrates two possible cases and operators 
involved in this mesh refinement scheme. 
Case A: This case is either the starting or terminal 
point of the refinement process. When the refine- 
ment process starts, it first splits a triangle along its 
longest edge by introducing an incompatible node. 
In the next step, the triangular element, which is 
adjacent to the edge with the incompatible node, is 
determined and refined. If this edge is the longest of 
the next triangle to be processed, the refinement 
terminates after the next triangle is split into two 
triangles. If the edge containing the incompatible 
node is on the boundary of the mesh, the refinement 
also terminates. If the edge of the next triangle is a 
shorter one, the triangle is split into three triangles 
as described in the following case. 
Case B: This case is, in general, an intermediate 
refinement step. It can be a terminal step only if the 
longest edge of the triangle is on the boundary of the 
mesh. Given a triangle with an incompatible node 
on one of its shorter edges, first the triangle is split 
into two triangles by introducing a new incompati- 
ble node on its longest edge. Then identifying the 
new triangle which contains the first incompatible 
node, this new triangle is split into two triangles by 
connecting the two incompatible nodes. Thus three 
new triangles are generated in total. In the next 
step, the triangle adjacent to the edge containing the 
new incompatible node is determined and pro- 
cessed similarly. 

Since our representation is based on a B-Rep 
scheme, we can make an analogy between the re- 
finement operators and standard Euler operators 
modifying a manifold topology in a boundary 
model. The process which splits a triangle is similar 
to a "make-vertex-edge-face" type Euler operator 
which involves creation of a new vertex, edge, and 
face [16]. Thus an advantage of our mesh refine- 
ment procedure is that it can easily be implemented 
in a boundary based solid modeling system if appro- 
priate "low level" Euler operators are provided. 

During the mesh refinement process, the doubly 
linked list structure is manipulated in such a way 
that when a triangle is refined it is removed from the 
list and the newly generated triangles are inserted at 
the end of the list. Figure 5 illustrates our list man- 
agement approach in the mesh refinement process. 
This approach is computationally efficient and in- 
volves linear computation time with respect to the 
number of newly created elements. 

Basic aspects of our list manipulation process are 
discussed here. In our implementation, the list has 
pointers to its head and tail elements and also a 
pointer is used to indicate current position on the 
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list. The current element pointer (CEP) indicates 
the element to be refined. We need one additional 
pointer which points to the previous element on the 
list and is called the previous element pointer 
(PEP), (see Fig. 5). Suppose we want to refine the 
element with offset m from the head of the list. Thus 
CEP points to triangle Tm and PEP points to triangle 
Tm-1. During the mesh refinement, two different op- 
erators are used to handle the two cases (i.e., cases 
A and B shown in Fig. 4). 

�9 Double Triangle Splitting (Case A): Tm is re- 
moved from the list and two newly created trian- 
gles are added to the end of the list. Using the 
adjacency information of the edge containing the 
incompatible node, CEP is set. If it is a null 
pointer, this indicates the terminal case, namely 
that the edge with the incompatible node is on the 
boundary. In this case, the refinement propaga- 
tion terminates, and CEP is reset to point to a 
triangle which is the element next to triangle 
pointed by PEP (i.e., triangle Tm+1 as shown in 
Fig. 5). Otherwise, CEP points to the triangle 
which was topologically adjacent to the T,, along 
its longest edge. This triangle can be at any posi- 
tion in the list. 

�9 Triple Triangle Splitting (Case B): Suppose that at 
the beginning triangle Tm has an incompatible 
node on one of its shorter edges. In this case, Tm is 

split and three new triangles are added into the 
end of the list. The adjacency relationship of the 
longest edge of Tm is employed to identify the next 
triangle. CEP is set to point to this element, ff 
CEP is a null pointer, this indicates that the long- 
est edge is on the boundary and, therefore, the 
refinement process terminates for triangle Tm. In 
that case, CEP now points to a triangle which is 
the element next to the triangle pointed by PEP 
(i.e., triangle Tm+] as shown in Fig. 5). Otherwise, 
the new triangle indicated by CEP is identified. 
This triangle can be at any position in the list. The 
triangle indicated by CEP is split in a similar 
manner. 

In this list manipulation strategy, we always keep 
track of an initial part of the list which is already 
processed. This initial part of the list is indicated by 
the head and PEP of the list. In this way, we do not 
have to repeatedly traverse the list structure in or- 
der to determine the next element to be processed 
during the course of a mesh refinement. 

2.3 A Test Case for Running Time Results and 
Meshing Examples 

For a numerical experiment, we have used a simply 
connected region and generated four meshes with 
increasing element densities. Figure 6 illustrates the 
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Fig. 6. Triangular mesh of a convex region with 120 elements. 
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initial and smoothed meshes generated by our algo- 
rithm for one particular mesh density. This particu- 
lar mesh is made up of 120 elements and 79 nodes. 
The four FE meshes generated in this numerical 
experiment contain 72, 96, 120, and 144 elements 
and are associated with total running time 2.6, 3.4, 
4.4, and 5.4 seconds,  respectively.  We note that the 
time for MAT computations is the same in these 
four cases. These running times, shown in Fig. 7, 
and the other  results have been obtained using a 
DEC Vax Station II GPX. The linear character  of 
the running time with respect  to number of elements 
supports our claim regarding the time complexity of 
our FE  mesh generator  [1]. 

The six representat ive examples of Table 1 (see 
Fig. 8) demonstrate  the capabilities of our mesh 
generation algorithm. Specifications and computa- 
tional times of  these examples are given in Table 1. 

Table 1. 

Mesh Subdomains Elements Nodes Time (sec) 

Fig. 8(a) 14 88 59 3 
Fig. 8(b) 34 192 123 9 
Fig. 8(c) 36 208 136 11 
Fig. 8(d) 36 320 195 21 
Fig. 8(e) 40 324 200 22 
Fig. 8(0 56 416 270 35 

The computat ion times represent  total time of the 
mesh generation process including the MAT com- 
putation. These small computat ion times indicate 
the high potential of  our method for real-time design 
and analysis applications. 

3 Design and Analysis Applications 

In this section we present  various applications 
drawn from engineering design and analysis to illus- 
trate the usefulness of  our interrogation and mesh- 
ing techniques based on the MAT. 

3.1 Adaptive Faceted Approximation of 
Trimmed Curved Surface Patches 

In the first application, we use our triangulation 
scheme to discretize and approximate trimmed 
curved surface patches in terms of a set of  planar 
facets with a prescribed precision. 

Such a triangulation of a tr immed surface patch 
may be used for numerous purposes.  It may be em- 
ployed as a FE discretization of untrimmed and 
trimmed plate and shell structures. Such a discreti- 
zation can, in turn, be analyzed using triangular 
plate and shell finite elements,  which are commonly 
available in existing F EA  systems. It could also be 
used to convert  B-Rep models with curved surfaces 
into faceted representat ions for polyhedral  solid 
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modelers. Other potential applications of this 
method include integral properties computation, 
point-set classification and ray tracing of  trimmed 
curved surface patches. 

3.1.1 Extension of the triangulation technique to 
trimmed curved surface patches 

We present a methodology to extend the MAT com- 
putation from planar regions to trimmed curved sur- 
face patches. Using the B-Rep method, we describe 
a trimmed patch as a face using a set of bounding 
loops on a surface patch. The face of interest on the 
surface patch is bounded by one exterior loop and 
also, possibly, by a set of disjoint interior loops, all 
defined on the surface patch. An untrimmed para- 
metric surface patch of NURBS form, Sk,t (u, v) of 

maximum orders k and l in the parametric variables 
u and v is represented in homogeneous coordinates 
as  

i=0 j=0 

where Pi,j = [wOxi, wijyo, wuzo, w~j] are the control 
points in a (n + 1) • (m + 1) grid and Ni,k(U), Nj.t(v) 
are B-spline basis functions defined over nonuni- 
form knot vectors in the u and v directions given by 
{u0 . . . .  , Uk+n} and {v0, �9 �9 . , Vt+m}, respectively. 
The bounding loops are defined in terms of NURBS 
curves defined on the parameter space of the sur- 
face patch. Such a parametric curve, Cr(s) of order 
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Fig. 9. Mapping between parameter space and three-dimen- 
sional space. 

r is represented in homogeneous parametric space 
as  

q 

Cr(s) = ~ Nk,r(s)Pk (3) 
k=0 

where Pk = [wkuk, WkVk, Wk] are the (q + I) control 
points and, similarly, N~,r(S) are B-spline basis func- 
tions defined over a nonuniform knot vector {So, 
. . . .  St+q}. The concept of MAT on a curved sur- 
face patch can be generalized using the grass-fire 
analogy and the resulting generalized offset curves 
on surfaces. Such offset curves on surfaces are de- 
fined via minimal paths (geodesics) emanating from 
an initial curve in a direction orthogonal to the 
curve. Formal definition of such offsets of curves 
on NURBS surfaces and their approximation in 
terms of spline curves using an adaptive technique 
can be found in [17]. 

In this work, however, we do not deal with MAT 
based on the concept of minimal paths (geodesics) 
on a curved surface. Instead we perform the MAT 
computation in the parameter space exactly and we 
map the resulting MA branches and Voronoi dia- 
gram to three-dimensional space using the patch 
equation (2) (see Fig. 9). This approach is a straight- 
forward extension of our MAT algorithm; however 
it cannot, in general, represent actual isometry in- 
formation of a curved surface. Therefore, it is an 
approximate method. 

3.1.2 Faceted surface approximation algorithm 
Given a B-Rep model of a trimmed curved paramet- 
ric patch, we can readily compute the MAT of the 
shape on the parameter space [1]. The MAT compu- 
tation results inthe MA, associated RF, and a set of 
subregions decomposing the parameter space of the 
trimmed patch. Using our triangulation technique 

[1], we can next generate a mesh on the parameter 
space of the trimmed surface patch. If required by 
our application, smoothing can be invoked to im- 
prove the shape characteristics of the triangles. 
Once individual triangles are generated on the pa- 
rameter space, then they are readily mapped into 
the three-dimensional space using equation (2). 

This triangulation is the initial discretization of the 
trimmed patch. In this process, the trimmed surface 
patch is approximated using a set of triangular pla- 
nar facets. Since surface curvature information of 
the patch is not used by MAT, we may need to 
refine the faceted approximation so that it satisfies 
certain accuracy requirements. For this purpose, 
we define two error norms. An error norm is used to 
account for the Euclidean distance between the 
centroid of a triangular facet and a corresponding 
point on the surface obtained from the surface equa- 
tion using the parameter values of the centroid. An- 
other error norm can be introduced to identify the 
error involved in the direction of the unit normal of 
the surface. In this case, the unit normal vector of a 
triangular face is determined and it is again com- 
pared with the unit normal vector of the surface at a 
point which corresponds to the centroid of the trian- 
gle. If a triangle has distance error and normal vec- 
tor angular discrepancies greater than prescribed 
error bounds, then the triangle is further subdivided 
to obtain a better approximation for the curved sur- 
face patch. The local mesh refinement technique 
described in previous sections is used for this 
purpose. 

To evaluate the level of accuracy attained in this 
approximation, we use a norm based on Euclidean 
distance. Given a triangular mesh, we compute the 
distance from the centroid of an individual triangle 
to the corresponding point on the trimmed surface 
patch. If this distance value is greater than a pre- 
scribed tolerance, a refinement flag associated with 
the triangle is set. In our implementation, the value 
of the refinement flag is determined by the ratio of 
the distance value to the prescribed tolerance. The 
floor value of the refinement flag indicates the level 
of subdivision to be carried out for the triangle. By 
traversing the doubly linked list structure which 
holds the triangles of the mesh, every triangle is 
similarly processed to determine the value of the 
refinement flag. 

Once refinement flags of individual triangles are 
set, the list structure is traversed again to carry out 
the actual refinement process. If a triangle has a 
refinement flag greater than or equal to unity, it is 
split. The resulting descendant triangles assume re- 
finement parameter values one less than the parent 
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input: 

output: 
begin 

end 

Algorithm: Adaptive Surface Faceting 

Boundary representation of trimmed curved surface patch and distance 
tolerance (TOLERANCE). 

List of triangular facets. 

Compute Voronoi decomposition in parameter space using MAT 
Algorithm [1]; 

Construct list of triangles as a coarse triangulation in parameter space 
using MAT Meshing Algorithm [1]; 

for every triangle { 
Compute distance error norm (DISTANCE_ERR); 
tfDISTANCE_ERR > TOLERANCE 
[comment: set refinement flag of triangle] 

FLAG ~ [DISTANCE_ERR / TOLERANCE]; 
} 
while there exists a triangle with FLAG -> 1 in triangle list 

Refine triangle; 

triangle's refinement flag value. The refinement pro- 
cess continues until the refinement flag values of all 
triangles are reduced to zero. The pseudocode 
above summarizes the steps of our technique to tri- 
angular trimmed curved surface patches with com- 
plex curved boundaries. 

3.1.3 Examples 
Our scheme to triangulate trimmed curved surface 
patches has been implemented and tested with a 
number of complex and diverse examples. Figure 
10 illustrates triangulation of two such trimmed 
patches. In these two cases, the surfaces are de- 
fined as integral bicubic B-spline patches. 

3.2 Adaptive Finite Element Analys& 

The second application deals with adaptive FEA of 
linear elasticity problems. Our coarse and fine 
meshing scheme based on the MAT provides an 
initial mesh appropriate for an adaptive refinement 
solution method. The automatic mesh generation 
capabilities of our meshing system have been used 
for both h- and p-adaptive analysis processes. 

In recent years, an important research aim of the 
FEA community has been to develop more auto- 
matic analysis procedures by integrating FEA with 
CAD systems [14,18-23]. Our automatic shape in- 
terrogation and mesh generation method can be ef- 
fectively used to achieve this objective. In this sec- 
tion, we report results of two adaptive FEA 
applications using our prototype system. 

3.2.1 Adaptive finite element analysis 
In an adaptive FEA scheme, the objective is to au- 
tomatically produce results satisfying a prescribed 
degree of accuracy [24]. The basic steps involved in 
a typical adaptive process may be summarized as 
follows. 

1. Start with definition of the problem and an initial 
FE mesh. 

2. Perform the required FEA. 
3. Using an error estimator, predict the discretiza- 

tion errors to determine those portions of the 
analysis model that are not yielding the required 
degree of accuracy. 

4. Improve the portions of the mesh that are not 
satisfactory, return to the second step, and con- 
tinue this process until the desired level of accu- 
racy is achieved. 

This is an iterative process in which distinct steps 
of analysis, error estimation, and  mesh improve- 
ment are carried out in sequence. For mesh im- 
provement, there are four methods [24]. 

1. The finite element size is reduced in each subse- 
quent solution step of h-convergence FEA. 

2. The degree of interpolation functions i s  in- 
creased in each subsequent step of p-conver- 
gence FEA. 

3. Nodal points in the domain are repositioned in r- 
convergence FEA. 

4. The previous mesh is discarded and a new analy- 
sis cycle is started again with a new mesh layout 
in a remeshing approach.: 
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Fig. 10. Triangulation of trimmed curved surface patches. 

The single most important feature of an adaptive 
FE code is the prediction of errors in the current 
solution. Errors involved in the numerical solution 
of a FE formulation can be separated into three 
main groups [25]: 

�9 Discretization errors: These are caused by repre- 
senting a continuum using a finite number of de- 
grees of freedom in the discretized system. 

�9 Round-o f f  and truncation errors: These are 
caused by the limitation of digital computers in 
representing and processing real numbers. 

�9 Solution errors: There are various causes for 
these errors. For example, solution errors in con- 
stitutive modeling are due to linearization and in- 
tegration of the constitutive relations. Solution er- 
rors in the calculation of the dynamic response 
arise in the numerical integration of the equations 
of motion with respect to time. Also, solution er- 
rors arise from iterative solutions because conver- 
gence is measured on increments in the solution 
variables that are small but not zero. 

A priori FE error analysis can only indicate the 
convergence rate of the numerical solution [26]. 
Therefore, quantitative error estimation is based on 
a posteriori  error analysis which makes use of ac- 
tual FE results to estimate the discretization error. 
Depending on the degree and location of discretiza- 
tion errors, the FE mesh is refined locally to obtain 
more accurate results in the next analysis cycle. In 
constructing an error estimator in the displacement 
based FE approach, several criteria have been de- 
veloped during the last decade [24]: predicted strain 
energy density variations; stress discontinuities 

along element boundaries; and, magnitude of viola- 
tion of internal element equilibrium. 

To some extent, all these criteria have been shown 
to work well in practice. In existing adaptive FEA 
schemes, the h-version and p-version refinement 
techniques are the most widely used. It has been 
shown that the p-version adaptive analysis has bet- 
ter convergence characteristics in comparison to 
the h-version [24]. One major disadvantage of the h- 
adaptive approach is that in the vicinity of singulari- 
ties in the problem domain, (such as re-entrant ver- 
tices, constrained corners, and concentrated loads), 
the rate of convergence is slow. Therefore, prob- 
lems with severe singularities require very fine FE 
meshes and this, in turn, reduces the efficiency of 
the numerical solution. On the other hand, the p- 
adaptivity involves a smaller number of finite ele- 
ments and high order interpolation functions. In an 
experimental two-dimensional adaptive system, 
these two techniques are used in tandem so that 
their favorable properties are better exploited [23]. 

3.2.2 A n  adaptive f inite e lement  analysis scheme 
for  plane elasticity problems 

In this section, we discuss the technique we imple- 
mented to determine discretization errors in a FE 
solution of linear elasticity problems. Given a Car- 
tesian coordinate system. (x, y, z), we deal with the 
solution of elasticity problems whose governing dif- 
ferential equations describing equilibrium of a vol- 
ume element are of the following form [27] 

o-~/,j + f~ = 0 (4) 
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where o-•(cr 0 = rr~-;) are components  of  the symmet- 
ric stress tensor,  and f are components  of  applied 
body force per unit volume, a subscript after a 
comma denotes partial derivative with respect  to j ,  
and a repeated index denotes summation over  x, y 
and z. 

Equat ion (4) is solved in a domain f~, subject to 
prescribed conditions on its boundary F. 

ui=fflonF~ o-i j .n=ti=~.onFt  F=F, ,UFt  F , f~F t= r  

(5) 

where ui are components  of  displacement,  ti compo- 
nents of  boundary  traction (i.e., force per unit 
area), nj components  of  the unit normal vector  of 
the boundary,  and F, and Ft portions of  the bound- 
ary with displacement and stress boundary condi- 
tions. 

In this formulation, components  of  strain are de- 
fined as follows 

eij = ~ (ui,j + uj, i) (6) 

and stress is related to strain by the following con- 
stitutive equation 

o- = D s (7) 

where D is the material matrix of  the domain, o- = 
[o-j;], s = [s0-] are the stress and strain tensors. We 
ignore initial strains and initial stresses in this analy- 
sis. 

In the FE discretization, we approximate the solu- 
tion function u (x ,  y ,  z)  using a trial function, u*(x ,  
y, Z) 

u(x, y, Z) ~- u*(x, y, Z) = N(x ,  y, z) U (8) 

where N ( x ,  y ,  z)  are shape functions and U is a 
vector  of  unknown nodal displacements. 

We can obtain the global system of equations of 
the FE discretization using the above trial function 
either by  a weighted residual method or by a varia- 
tional approach in the following form [28] 

K U  = F (9) 

where K is the stiffness matrix and F is the force 
vector  which are defined as follows. 

K = fa BrDB d~ (10) 

F =  fa N r f d a  + f~ N~idr (ll) 

where superscript T denotes matrix transpose, and 
matrix B contains derivatives of  shape functions 
such that we can write strain displacement relation- 
ship in the following form. 

s* = B U  (12) 

Using the FE solution, we can readily determine the 
stress. 

~* = De* (13) 

The approximate solutions u*, o-* and s* are dif- 
ferent from the exact  values u, o- and s, and the 
differences are the discretization errors in the FE 
solution. We note that the numerical solution also 
includes round-off  and truncation errors which are 
assumed negligible in this analysis. Following [25], 
we can define absolute solution errors for displace- 
ments and stresses by 

e = u - u* (14) 

e~ = o- - o-* (15) 

We note that in the above equations u and cr are 
actual values, which are not available. Therefore,  it 
is necessary to p r e d i c t  these error values by other  
means. 

These forms of  the error  are pointwise definitions. 
The energy  n o r m  of  the solution is: 

= dO ] 1/2 Ilull [f~ (Bu)rD(Bu)  (16) 

= (17) 

Similarly we can define a more useful form of  the 
error  in a global manner  as a norm [23], [28]. 

= d~,~ ] 1/2 ilell [fo (18) 

(19) 

The error n o r m  in the whole domain can be calcu- 
lated by adding the contributions of  error  norms of  
all elements used in the discretization as follows 
[24]. 

Ifell : [lei[12] a/2 (20) 
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i ' 

Fig. 11. Stress jumps involved in finite element solution. 

where i spans all elements in the FE discretization 
and m is the number  of  elements in the mesh. 

Using the energy and error  norms, we also define 
the relative error, which is a measure of the relative 
error involved in the solution [23,25] 

= Ilell/l[.ll (21) 

In the displacement based FE formulation of elas- 
ticity problems. C o (displacement) continuity is as- 
sumed in the trial  functions of  the FE approxima- 
tion. Therefore ,  numerical results, in general, give 
rise to discontinuous approximations of (r, (see Fig. 
11). 

This character  of the solution is well known since 
the early days of  FEA.  Therefore ,  stress smoothing 
techniques have been commonly used in practice to 
provide improved quantitative results from the dis- 
continuous stress functions [29,30]. The smoothed 
stress values turn out to be much better  approxima- 
tions of the actual values of  stress than the FEA 
results before smoothing [29]. Based on this obser- 
vation, we assume that such a smoothed stress dis- 
tribution can be used to predict the solution error.  If 
we substitute the smoothed stress value, s, for the 
exact  stress value, o-, in Eq. (15), we obtain a pre- 
diction for the error  in stress as follows. 

the error  is orthogonal to the solution function in 
the FE approximation [28]. 

= I l d l / ( l l . * l l  ~ + II~l lZ) ,,2 (23) 

Once we have a FE  solution, the smoothed stress 
distribution can be readily obtained. Using the 
above expressions,  we can predict the error in the 
solution. In an adaptive F EA  based on h-conver- 
gence, after determining the error  norm, we carry 
out mesh refinement to reduce the size of elements 
associated with an unacceptable error value before 
we start the next  solution step. Suppose we try to 
achieve a relative error  tolerance, ~)toi, in the FE 
solution. Then we require that the adaptive FEA 
process ends when the following condition is satis- 
fied by the resulting mesh: 

"O -< ~/toi (24) 

It is assumed that the solution error  is uniformly 
distributed throughout  the mesh in a converged 
adaptive FEA.  Based on this assumption, the fol- 
lowing condition specifies the acceptable average 
value of error  norm of individual finite elements [23] 

Ileill ~ ~ - =  ,tol[(llu*LI 2 + Ilell2)/m] ''2 (25) 

where r ight  hand side of  the inequality represents 
the allowable mean error  norm associated with the 
current  mesh. We can check whether  an element 
needs to be refined using a ratio of  its error norm to 
this mean value: 

p, = lle,H/g (26) 

If the ratio is greater than unity for a given ele- 
ment, the error  associated with that element is 
higher than the prescribed tolerance, ~to~. There- 
fore, the element should be refined to a certain sub- 
division level whose degree is determined by the 
ratio, p. For  h-version mesh refinement purposes,  
we can use the local refinement technique discussed 
in section 2. 

e~ ~ s - o-* (22) 

Rank and Zienkiewicz [31] have shown that such an 
error  prediction method is equivalent to the other a 
posteriori error  estimators used for error predic- 
tions in adaptive F E A  [24]. 

Now we can determine the energy and error 
norms using Eqs. (17) and (19) and predict the rela- 
tive error  involved in the solution [23,24]. Note that 

3.2.3 Examples 
In plane stress formulation of elasticity problems 
the only nonzero stress components  are Oxx, O'yy, 
and O-xy. In our implementation, the FE solver uses 
six-node triangular isoparametric elements. Input 
data of the F E A  are preprocessed and nodes are 
renumbered so that the bandwidth of  the global 
stiffness matrix becomes minimum. Our automatic 
node renumbering scheme is based on the method 
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p = 50 N/cm 2 

J 

11 cm 9 cm 

model and p-version mesh 

88 elements 
59 nodes 
RPE -- 16% 

the first h-version m e s h  

525 elements / ~  
1122 nodes f / / / \  

the last h-version mesh Von Mises stress contours 
Fig. 12. Adapt ive analysis  
of  a bracket.  

presented in [32]. Element stiffness matrices are nu- 
merically evaluated using a three-point Gauss quad- 
rature rule. The resulting system of linear equations 
is solved using the Gauss elimination method. The 
error indicator used in our prototype system is 
based on the techniques presented in the previous 
section. In our implementation, the smoothed stress 
distribution is obtained using a simple process. 
First, stress components computed at discrete 
points in the element (i.e., at three Gauss quadra- 
ture points) are extrapolated to the nodes of the 
element. Then for a given node, smoothed stress 
values are calculated by taking the average of 
weighted stress contributions of all adjacent ele- 
ments. Simple averaging of stress at nodal points 
works correctly only if a mesh is composed of ele- 
ments with the same size. We assume that the prob- 
lem domain has uniform thickness and use the area 
of an element as its weight factor to account for the 
size of adjacent elements in this smoothing process. 

This smoothing approach is similar to the "lumped 
mass least-squares" approximation in one dimen- 
sion presented in [30]. 

The following two representative model problems 
have been adaptively solved by our prototype h- 
adaptive FEA system. We have also solved these 
two model problems using the p-adaptive solution 
functionality provided by an integrated modeling 
and analysis system [33]. Results of these model 
problems obtained from the two analysis systems 
are in good agreement. In the solution strategy 
based on p-convergence, coarse subdivisions gener- 
ated by our MAT technique have been employed as 
initial FE meshes. We observe that this approach 
gives rise to significant time reduction in computa- 
tion cycles of p-adaptive analysis as compared to 
the same computation cycles using meshes gener- 
ated for h-adaptive analysis. 

In each of these cases, the problem domain has a 
Young's modulus E = 2 x l0 s MPa, Poisson's ratio 
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Fig. 13. Adaptive analysis of a 
plate with a hole. 

y --- 0.3 and a thickness t = 1 cm. The adaptive 
scheme has provided a solution with relative error 
less than 10% [relative percentage error (RPE)] in 
each case.  Domain  descriptions,  boundary  condi- 
tions, and applied loads of  these two model prob- 
lems are shown in Figs. 12 and 13. 

In the first example  (see Fig. 12), a bracket  is ana- 
lyzed. The error indicator has identified a stress 
concentra t ion in the narrow part ,  and local refine- 
ment  is pe r formed in that region. In the second ex- 

ample (see Fig. 13), a plate with a circular hole at its 
center  is analyzed.  A c lamped boundary  condition 
is specified at one end and a uniformly distributed 
shear force is applied at the other  end. The clamped 
end boundary  condition gives rise to two singulari- 
ties and a boundary  layer which are identified by the 
error indicator. The adapt ive solution also identifies 
some critical e lements  around the circular hole in 
the problem domain.  Plots of  yon  Mises stress con- 
tours [27] of  these two model  problems clearly indi- 
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cate those critical areas. All these test cases demon- 
strate the efficiency and usefulness of our automatic 
mesh generator and the prototype system. 

4 Summary and Conclusions 

We have reported the implementation of a proto- 
type system based on our MAT and surface mesh- 
ing algorithms [1], and also results of several design 
and analysis applications obtained by using this sys- 
tem. Our adaptive surface approximation technique 
is efficient and can be used for solving numerous 
design problems. Our experience with the proto- 
type system indicates that our meshing and h-adap- 
tive analysis techniques can provide an automated 
solution scheme for a wide variety of analysis prob- 
lems. Our coarse shape decomposition method can 
be effectively used in an adaptive FEA system 
based on the p-convergence method. We observe 
that this approach can give rise to substantial reduc- 
tion in computation time. As a result, our technique 
can assist a p-adaptive FEA scheme to become an 
interactive analysis method in integrated design and 
analysis systems. For future work, we propose to 
investigate potential capabilities and applications of 
our interrogation and meshing techniques as auto- 
mated idealization and model creation methods for 
h- and p-adaptive FEA processes. 
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