
Engineering with Computers 8, 179-196 (1992)
Ewngineering

Computers
�9 Springer-Verlag New York Inc. 1992

An Automatic Coarse and Fine Surface Mesh Generation Scheme Based on
Medial Axis Transform: Part II Implementation

H. Nebi Giirsoy
Intergraph Corporation, Analysis Applications-Development, Huntsville, AL, USA

Nicholas M. Patrikalakis
Massachusetts Institute of Technology, Department of Ocean Engineering, Design Laboratory, Cambridge, MA, USA

Abstract. In this paper, we present implementation aspects of a
surface finite element (FE) meshing algorithm described in Part I
(this volume) [1]. This meshing scheme is based on the medial
axis transform (MAT) [2] to interrogate shape and to subdivide it
into topologically simple subdomains. The algorithm can be ef-
fectively used to create coarse discretization and fine triangular
surface meshes. We describe our techniques and methodology
used in the implementation of the meshing and MAT algorithms.
We also present some running times of our experimental system.
We finally report the results we have obtained from several de-
sign and analysis applications which include adaptive surface
approximations using triangular facets, and adaptive h- and
p-adaptive finite element analysis (FEA) of plane stress prob-
lems, These studies demonstrate the potential applicability of
our techniques in computer aided design and analysis.

1 Introduction

This work deals with implementations of a finite
element (FE) surface mesh generation scheme and
our algorithm for medial axis transform (MAT) [2,3]
computations on surfaces. More detailed descrip-
tions of these algorithms and discussions of their
theoretical aspects and related techniques can be
found in Part I (this volume) [1], and also in [4-7].

For the sake of convenience, we briefly review
some basic aspects of MAT, which are introduced
in [1]. MAT has been proposed as a shape descrip-
tion method by Blum [2,3]. MAT can represent two-
dimensional or three-dimensional shapes in terms of
its medial axis (MA) (or skeleton or symmetric axis)
and associated radius function (RF). The MA of a
two-dimensional shape is a set of points each of
which has at least two equidistant nearest points on
the boundary of the shape. The limit points of this
set are normally included in this definition of the

Offprint requests: Nicholas M. Patrikalakis, Massachusetts In-
stitute of Technology, Department of Ocean Engineering, Design
Laboratory, Cambridge, MA 02139, USA.

MA. Radii of the maximal inscribed circles centered
on the MA are defined by the associated radius
function (RF) of the MAT. The MA of a two-dimen-
sional shape is composed of continuous curved seg-
ments. Those segments are called MA branches. If
the boundary of a shape is defined by circular arcs
and straight line segments, it can be shown that MA
branches are conic sections [3,4]. Points where ad-
jacent MA branches intersect each other are called
branch points. In our two-dimensional MAT algo-
rithm [1], we determine an analytic representation
of all MA branches, their end points (branch points)
and associated RF of each MA branch. These con-
cepts can be analogously extended to three-dimen-
sional shapes [3,7,8]. In three dimensions, MA rep-
resentations are more complex and MA branches
are surface patches (i.e, MA surfaces), curve seg-
ments (i.e., MA edges) and discrete vertices.

The FE surface meshing scheme we developed
has two stages: shape interrogation and area mesh-
ing [1]. First, this scheme uses MAT as an auto-
matic shape interrogation method to extract topo-
logically simple subregions and their length scales
from a given complex domain. Our MAT algorithm
allows us to efficiently carry out this shape interro-
gation process. Such an initial shape decomposition
can be considered as a coarse FE mesh. Next, those
simple subregions are triangulated to generate a fine
FE mesh. Thus, a mesh capturing important geo-
metric characteristics of a given domain can be cre-
ated by our mesh generation scheme in an auto-
mated manner.

In this article, we outline our methodology and
report efficient techniques used in the development
and implementation stages of our prototype system.
The second section presents basic implementation
aspects and the data structures used in conjunction
with our two-step FE surface meshing and MAT
algorithms. The third section deals with applica-

180 H.N. Gfirsoy and N.M. Patrikalakis

tions of our technique to several design and analysis
processes. These applications include adaptive fac-
eted approximations of trimmed free-form surfaces
and adaptive plane stress analysis using h- and
p-convergence FEA methods. Finally, the fourth
section summarizes this work and points out related
topics for future research.

2 Implementation Aspects of Algorithms

We have implemented our MAT and FE meshing
algorithms in C under the UNIX operating system.
Our prototype system has been developed on a
DEC Vax Station II GPX and a Silicon Graphics
IRIS 3030 workstation has been used to interac-
tively run the system. In our implementation, the
surface definition and the geometric representation
of boundary contours (loops) are the main input of
the MAT and subsequent meshing computations.
We have established specific data types and the re-
lationships among them using a data abstraction
methodology. The next two sections discuss the
data structures used and computational aspects of
our implementation.

2.1 Implementation of the
Medial Axis Transform

2.1.1 Data structures for the
medial axis transform

In general, we have two types of boundary con-
tours, one external boundary contour and contours
of internal loops. A typical boundary contour is
composed of three different types of boundary ele-
ments: straight line segment, circular arc (either
concave or convex) and reentrant vertex (i.e., a de-
generate case of a concave arc). In our implementa-
tion, every internal loop is connected to the exter-
nal contour along a virtual cut using two artifical
segments. These artificial segments are not used in
the branch point computation and have no contribu-
tion to the medial axis of a shape. Their function is
to indicate the presence of internal loops during tra-
versal of elements on the boundary in computations
of branch points. Thus, typical boundary data of a
multiply connected nonconvex shape are composed
of straight line, circular arc and artificial segments.
An abstract data type segment is defined in terms of
structure constructs of the C language. These
boundary elements are ordered in a clockwise se-
quence so that the interior of the region lies to the
right. With respect to the clockwise sequence of the
boundary segments, we notice that the center of a

Varonoi region

boundary element J list of half-edges ordered in clockwise sequence

skeleton branch ~1~ edge data

right ha,f-edge [,~-~mate po,nter~--~l left half-edge

_~Voronoi region pointer~

previous half-edge pointer)

~'~next half-edge pointer~

Fig. 1. Graphical representation of the data structures.

convex circular arc lies to the right of the contour
boundary and the center of a concave circular arc to
the left. As a result, when a boundary contour is
offset inward, concave arcs expand and convex
arcs shrink.

Doubly linked lists are used as the main data struc-
tures for the representation of boundary contours.
The boundary elements of a contour are stored as
the items of a doubly linked list which also has
pointers to store data of MA branch points.

The MA branches and Voronoi edges decompose
a shape into a set of subregions, generally called
Voronoi regions [1]. The regions are bounded by
boundary elements of the initial contours and asso-
ciated MA branches and Voronoi edges. Here we
recall that a boundary element is associated with a
distinct subregion. In the computation of the MAT,
we determine not only descriptions of the regions
but also the adjacency relationships among them-
selves. For this purpose, we have developed a vari-
ant of the face-edge data structure proposed by
Weiler [9] for two-manifold geometric models. In
this representation, the boundary of every region is
composed of a boundary element and a chain of MA
branches. Every MA branch has two half edges as-
sociated with the two adjacent Voronoi regions.
MA branches are also represented using structure
constructs. Figure 1 illustrates the relationships
among these objects.

Automatic Surface Mesh Generation Scheme: Part II 181

be 4 /

%2

Sb 5

be t

VR~

he52

he1!

he3t

hesl

b 5

Sb �9 skeleton branch

V R �9 Voronoi region

he22

be i �9 boundary element of Voronoi region V R i

hell �9 fight half -edge of skeleton branch Sb i

hei2 �9 left hal f -edge of skeleton branch Sb i

VR

Fig, 2. Objects used in
boundary representation.

Several dynamically allocated data structures are
also employed to carry out the computation. A
queue is used to store the contours (loops) to be
processed. From this queue, a contour is removed
and processed to compute "effective MA branch
points" and the associated offset distance as dis-
cussed in [1]. The computed branch points of a con-
tour are stored using a list. Then this list is pro-
cessed to determine "effective offset distance" and
branch point(s). If final branch points are found, the
computation of the MAT of the contour stops. If
branch points are not final or the interior area of the
contour is not nil, the contour is offset. In that case,
if the contour gives rise to only intermediate branch
points, there will be one resulting offset contour.
But if it involves initial branch points as well, the
offset of the contour may be split at the initial
branch points. For example, the boundary contour
of a simply connected polygon with n initial branch
points, will be split into n + 1 offset contours. In the
case of a multiply connected polygon, initial branch
points may be generated by the interactions among

internal loops and/or internal loops and the external
contour. Then splitting or merging of contours oc-
curs depending on the geometry of the polygon.
This situation is resolved by traversing the bound-
ary, and discovering the tangent adjacencies cre-
ated at initial branch points. To represent such adja-
cency relationships, boundary elements have
pointers to another boundary element which is the
tangent element at an initial branch point.

Once a contour is offset, the newly generated off-
set contours are put into the queue to be processed.
The branch points have pointers to the boundary
segments that generate these points. The branch
points also denote the end points of the MA
branches. In Fig. 2, the disassembled MA of a sim-
ple polygon illustrates the data objects used and
adjacency relationships among them.

2.1.2 Computational aspects
There are several numerical computation stages in-
volved in our MAT processes. First, a two-dimen-
sional shape bounded by a set of B-spline curves

182 H.N. Gt~rsoy and N.M. Patrikalakis

I triangular element I

half-edges in clockwise order I

J
triangle pointer

half-edge r ~

pointer~ mate starting vertex half-edge pointe

node

I vertex
/ \

nodal coordinates,
i Fig. 3. Relationships between

(x, y) objects used in the mesh
generator.

needs to be approximated. A boundary curve is ap-
proximated in terms of vertices, straight lines, and
circular arc segments using the algorithm based on
[10] and summarized in [7]. Our implementation is
numerically stable and efficient and can handle a
wide variety of parametric curves including high or-
der nonuniform rational B-splines (NURBS).

In a MAT process, we can formulate the computa-
tion of MA branch points as an intersection problem
between two conic sections [7]. This problem can
be reduced to the solution of a polynomial of at
most degree four using elimination methods [11].
We use a standard root solver [12] to determine the
four potential roots of this polynomial.

In our implementation, the MAT computation is
carried out in double precision involving 16 decimal
digit arithmetic. Computations of MA branch
points, values of associated RF and effective offset
distances involve a tolerance for numerical compar-
isons. We use a relative tolerance of 0.5 x 10 -6 with
respect to the maximum dimension of the object as
a default value in our prototype system.

2.2 Implementation of the Meshing Algorithm
Based on the Medial Axis Transform

2.2.1 Data structures for surface triangulation
Our mesh generation scheme allows mesh smooth-
ing and adaptive local mesh refinement. Efficient

implementation of operations requires that adja-
cency information among triangular elements be
available explicitly in the data structures. In our
implementation, we have adopted a B-Rep scheme
to represent the resulting FE mesh. In this repre-
sentation, an individual triangle is treated as a topo-
logical element "face ." We use a variant of the
face-edge data structure [9]. Figure 3 illustrates the
structures used in our implementation. Adjacency
relationships between adjacent triangles are explic-
itly represented. This information allows us to im-
plement very efficient mesh smoothing and local re-
finement processes. We use a dynamically allocated
doubly linked list structure to store triangular
elements.

2.2.2 Mesh smoothing
After the mesh generation process, the resulting FE
mesh is smoothed (relaxed) to improve the shape
characteristics of individual triangular elements, if
this is required. A simple coordinate averaging pro-
cess has been found to lead to efficient smoothing.
Our mesh smoothing process is similar to the meth-
ods of Cavendish [13] and Chae [14]. In our imple-
mentation, coordinates of interior nodes are modi-
fied by averaging coordinates of the node and those
of all surrounding nodes. In this iterative process,
before a new iteration starts, coordinates of all inte-
rior nodes are updated using new coordinates corn-

Automatic Surface Mesh Generation Scheme: Part II 183

puted in the previous step. This iterative process
stops either after a certain number of iterations or if
the maximum value of displacements of all interior
nodal points at an iteration becomes less than a pre-
scribed percentage of the maximum value of dis-
placements of the previous iteration. For a particu-
lar point P, the coordinates at iteration i + 1 can be
determined from the following relation

1 m
p(i+l) = �89 + mj__~l.= Q(i)]: (1)

where i denotes the iteration step and Qj are coordi-
nate vectors of m points adjacent to the point P.
This adjacency information is denoted as the
vertex-vertex adjacency relationship P{Qj} in B-
Rep schema [9].

Although this smoothing process is efficient it has
one disadvantage. If a mesh contains an extreme
nonconvex boundary (such as reentrant corners),
this smoothing technique may destroy the topology
of the mesh by moving edges of elements in such
areas to the outside of the actual region. Therefore,
a robust implementation of this smoothing process
requires that elements adjacent to re-entrant cor-
ners be identified and not smoothed, or processed
separately. An example of mesh smoothing is illus-
trated in Fig. 6.

2.2.3 Local mesh refinement
One of the objectives of our implementation is to
create a compatible mesh when a local mesh refine-
ment process is carried out. In a compatible mesh,
degrees of freedom associated with finite element
nodes are common to all adjacent elements. For
local adaptive mesh refinement, we use a bisection
technique. In this approach, a triangle is split into
two halves across its longest edge. Our refinement
approach is similar to the mesh refinement method
proposed by Rivara [15]. However, our mesh repre-
sentation methodology and refinement process,
which are based on a B-Rep scheme, are different
from Rivara's method.

When a triangle is split into two halves across its
longest edge and if a second triangular element adja-
cent to the split edge exists, the second element
must also be processed since the middle node in-
serted on the split edge is not a common vertex.
Therefore, this refinement process has, to some ex-
tent, a propagative nature. Numerous examples,
chosen for their complexity and diversity, led us to
the conclusion that this mesh refinement approach,
in general, exhibits a local refinement character and
does not effect the whole domain being meshed.

Figure 4 illustrates two possible cases and operators
involved in this mesh refinement scheme.
Case A: This case is either the starting or terminal
point of the refinement process. When the refine-
ment process starts, it first splits a triangle along its
longest edge by introducing an incompatible node.
In the next step, the triangular element, which is
adjacent to the edge with the incompatible node, is
determined and refined. If this edge is the longest of
the next triangle to be processed, the refinement
terminates after the next triangle is split into two
triangles. If the edge containing the incompatible
node is on the boundary of the mesh, the refinement
also terminates. If the edge of the next triangle is a
shorter one, the triangle is split into three triangles
as described in the following case.
Case B: This case is, in general, an intermediate
refinement step. It can be a terminal step only if the
longest edge of the triangle is on the boundary of the
mesh. Given a triangle with an incompatible node
on one of its shorter edges, first the triangle is split
into two triangles by introducing a new incompati-
ble node on its longest edge. Then identifying the
new triangle which contains the first incompatible
node, this new triangle is split into two triangles by
connecting the two incompatible nodes. Thus three
new triangles are generated in total. In the next
step, the triangle adjacent to the edge containing the
new incompatible node is determined and pro-
cessed similarly.

Since our representation is based on a B-Rep
scheme, we can make an analogy between the re-
finement operators and standard Euler operators
modifying a manifold topology in a boundary
model. The process which splits a triangle is similar
to a "make-vertex-edge-face" type Euler operator
which involves creation of a new vertex, edge, and
face [16]. Thus an advantage of our mesh refine-
ment procedure is that it can easily be implemented
in a boundary based solid modeling system if appro-
priate "low level" Euler operators are provided.

During the mesh refinement process, the doubly
linked list structure is manipulated in such a way
that when a triangle is refined it is removed from the
list and the newly generated triangles are inserted at
the end of the list. Figure 5 illustrates our list man-
agement approach in the mesh refinement process.
This approach is computationally efficient and in-
volves linear computation time with respect to the
number of newly created elements.

Basic aspects of our list manipulation process are
discussed here. In our implementation, the list has
pointers to its head and tail elements and also a
pointer is used to indicate current position on the

184 H.N. Gfirsoy and N.M. Patrikalakis

z

Case A:

(t) (2)

rj

(3)

Case B:

(t) (2)

t
To

(3) b , . 1 (4)

Fig. 4. Triangle splitting operators.

list. The current element pointer (CEP) indicates
the element to be refined. We need one additional
pointer which points to the previous element on the
list and is called the previous element pointer
(PEP), (see Fig. 5). Suppose we want to refine the
element with offset m from the head of the list. Thus
CEP points to triangle Tm and PEP points to triangle
Tm-1. During the mesh refinement, two different op-
erators are used to handle the two cases (i.e., cases
A and B shown in Fig. 4).

�9 Double Triangle Splitting (Case A): Tm is re-
moved from the list and two newly created trian-
gles are added to the end of the list. Using the
adjacency information of the edge containing the
incompatible node, CEP is set. If it is a null
pointer, this indicates the terminal case, namely
that the edge with the incompatible node is on the
boundary. In this case, the refinement propaga-
tion terminates, and CEP is reset to point to a
triangle which is the element next to triangle
pointed by PEP (i.e., triangle Tm+1 as shown in
Fig. 5). Otherwise, CEP points to the triangle
which was topologically adjacent to the T,, along
its longest edge. This triangle can be at any posi-
tion in the list.

�9 Triple Triangle Splitting (Case B): Suppose that at
the beginning triangle Tm has an incompatible
node on one of its shorter edges. In this case, Tm is

split and three new triangles are added into the
end of the list. The adjacency relationship of the
longest edge of Tm is employed to identify the next
triangle. CEP is set to point to this element, ff
CEP is a null pointer, this indicates that the long-
est edge is on the boundary and, therefore, the
refinement process terminates for triangle Tm. In
that case, CEP now points to a triangle which is
the element next to the triangle pointed by PEP
(i.e., triangle Tm+] as shown in Fig. 5). Otherwise,
the new triangle indicated by CEP is identified.
This triangle can be at any position in the list. The
triangle indicated by CEP is split in a similar
manner.

In this list manipulation strategy, we always keep
track of an initial part of the list which is already
processed. This initial part of the list is indicated by
the head and PEP of the list. In this way, we do not
have to repeatedly traverse the list structure in or-
der to determine the next element to be processed
during the course of a mesh refinement.

2.3 A Test Case for Running Time Results and
Meshing Examples

For a numerical experiment, we have used a simply
connected region and generated four meshes with
increasing element densities. Figure 6 illustrates the

Automatic Surface Mesh Generation Scheme: Part II 185

Case A:

~o

Case B:

!
topologically adjacent element of T M

P ~~
Fig. 5. Doubly linked list
manipulation during the mesh
refinement process.

/ /
/ /

/ /
(a) mesh before smoothing

(b) mesh after smoothing

Fig. 6. Triangular mesh of a convex region with 120 elements.

186 H.N. Gfirsoy and N.M. Patrikalakis

6

5.5

5

4,5 "G

~ 4

"~ 3.5

3

2.5

50

I I

B

' ' 1 ' " ' 1 " ' ' 1 " " 1 ' " ' 1 ' " ' 1 ' ' " 1 " ' ' 1 " " 1 " " 1 ' " '

m

m

, ~ , 1 I I I I , , ~ , l , , , ~ l , l , , I I , ~ , , I
60 70 80 90 100 110 120 130 140 150 160

Number of Elements

Fig. 7. Computation time
results of four meshes of
simple region.

initial and smoothed meshes generated by our algo-
rithm for one particular mesh density. This particu-
lar mesh is made up of 120 elements and 79 nodes.
The four FE meshes generated in this numerical
experiment contain 72, 96, 120, and 144 elements
and are associated with total running time 2.6, 3.4,
4.4, and 5.4 seconds, respectively. We note that the
time for MAT computations is the same in these
four cases. These running times, shown in Fig. 7,
and the other results have been obtained using a
DEC Vax Station II GPX. The linear character of
the running time with respect to number of elements
supports our claim regarding the time complexity of
our FE mesh generator [1].

The six representat ive examples of Table 1 (see
Fig. 8) demonstrate the capabilities of our mesh
generation algorithm. Specifications and computa-
tional times of these examples are given in Table 1.

Table 1.

Mesh Subdomains Elements Nodes Time (sec)

Fig. 8(a) 14 88 59 3
Fig. 8(b) 34 192 123 9
Fig. 8(c) 36 208 136 11
Fig. 8(d) 36 320 195 21
Fig. 8(e) 40 324 200 22
Fig. 8(0 56 416 270 35

The computat ion times represent total time of the
mesh generation process including the MAT com-
putation. These small computat ion times indicate
the high potential of our method for real-time design
and analysis applications.

3 Design and Analysis Applications

In this section we present various applications
drawn from engineering design and analysis to illus-
trate the usefulness of our interrogation and mesh-
ing techniques based on the MAT.

3.1 Adaptive Faceted Approximation of
Trimmed Curved Surface Patches

In the first application, we use our triangulation
scheme to discretize and approximate trimmed
curved surface patches in terms of a set of planar
facets with a prescribed precision.

Such a triangulation of a tr immed surface patch
may be used for numerous purposes. It may be em-
ployed as a FE discretization of untrimmed and
trimmed plate and shell structures. Such a discreti-
zation can, in turn, be analyzed using triangular
plate and shell finite elements, which are commonly
available in existing F EA systems. It could also be
used to convert B-Rep models with curved surfaces
into faceted representat ions for polyhedral solid

Automatic Surface Mesh Generation Scheme: Part II 187

(b)

(c)

1

I

(t)

(e)

(d)

i

Fig. 8. Finite element mesh
examples.

modelers. Other potential applications of this
method include integral properties computation,
point-set classification and ray tracing of trimmed
curved surface patches.

3.1.1 Extension of the triangulation technique to
trimmed curved surface patches

We present a methodology to extend the MAT com-
putation from planar regions to trimmed curved sur-
face patches. Using the B-Rep method, we describe
a trimmed patch as a face using a set of bounding
loops on a surface patch. The face of interest on the
surface patch is bounded by one exterior loop and
also, possibly, by a set of disjoint interior loops, all
defined on the surface patch. An untrimmed para-
metric surface patch of NURBS form, Sk,t (u, v) of

maximum orders k and l in the parametric variables
u and v is represented in homogeneous coordinates
as

i=0 j=0

where Pi,j = [wOxi, wijyo, wuzo, w~j] are the control
points in a (n + 1) • (m + 1) grid and Ni,k(U), Nj.t(v)
are B-spline basis functions defined over nonuni-
form knot vectors in the u and v directions given by
{u0 , Uk+n} and {v0, �9 �9 . , Vt+m}, respectively.
The bounding loops are defined in terms of NURBS
curves defined on the parameter space of the sur-
face patch. Such a parametric curve, Cr(s) of order

188 H.N. G~rsoy and N.M. Patrikalakis

r U

Fig. 9. Mapping between parameter space and three-dimen-
sional space.

r is represented in homogeneous parametric space
as

q

Cr(s) = ~ Nk,r(s)Pk (3)
k=0

where Pk = [wkuk, WkVk, Wk] are the (q + I) control
points and, similarly, N~,r(S) are B-spline basis func-
tions defined over a nonuniform knot vector {So,
. . . . St+q}. The concept of MAT on a curved sur-
face patch can be generalized using the grass-fire
analogy and the resulting generalized offset curves
on surfaces. Such offset curves on surfaces are de-
fined via minimal paths (geodesics) emanating from
an initial curve in a direction orthogonal to the
curve. Formal definition of such offsets of curves
on NURBS surfaces and their approximation in
terms of spline curves using an adaptive technique
can be found in [17].

In this work, however, we do not deal with MAT
based on the concept of minimal paths (geodesics)
on a curved surface. Instead we perform the MAT
computation in the parameter space exactly and we
map the resulting MA branches and Voronoi dia-
gram to three-dimensional space using the patch
equation (2) (see Fig. 9). This approach is a straight-
forward extension of our MAT algorithm; however
it cannot, in general, represent actual isometry in-
formation of a curved surface. Therefore, it is an
approximate method.

3.1.2 Faceted surface approximation algorithm
Given a B-Rep model of a trimmed curved paramet-
ric patch, we can readily compute the MAT of the
shape on the parameter space [1]. The MAT compu-
tation results inthe MA, associated RF, and a set of
subregions decomposing the parameter space of the
trimmed patch. Using our triangulation technique

[1], we can next generate a mesh on the parameter
space of the trimmed surface patch. If required by
our application, smoothing can be invoked to im-
prove the shape characteristics of the triangles.
Once individual triangles are generated on the pa-
rameter space, then they are readily mapped into
the three-dimensional space using equation (2).

This triangulation is the initial discretization of the
trimmed patch. In this process, the trimmed surface
patch is approximated using a set of triangular pla-
nar facets. Since surface curvature information of
the patch is not used by MAT, we may need to
refine the faceted approximation so that it satisfies
certain accuracy requirements. For this purpose,
we define two error norms. An error norm is used to
account for the Euclidean distance between the
centroid of a triangular facet and a corresponding
point on the surface obtained from the surface equa-
tion using the parameter values of the centroid. An-
other error norm can be introduced to identify the
error involved in the direction of the unit normal of
the surface. In this case, the unit normal vector of a
triangular face is determined and it is again com-
pared with the unit normal vector of the surface at a
point which corresponds to the centroid of the trian-
gle. If a triangle has distance error and normal vec-
tor angular discrepancies greater than prescribed
error bounds, then the triangle is further subdivided
to obtain a better approximation for the curved sur-
face patch. The local mesh refinement technique
described in previous sections is used for this
purpose.

To evaluate the level of accuracy attained in this
approximation, we use a norm based on Euclidean
distance. Given a triangular mesh, we compute the
distance from the centroid of an individual triangle
to the corresponding point on the trimmed surface
patch. If this distance value is greater than a pre-
scribed tolerance, a refinement flag associated with
the triangle is set. In our implementation, the value
of the refinement flag is determined by the ratio of
the distance value to the prescribed tolerance. The
floor value of the refinement flag indicates the level
of subdivision to be carried out for the triangle. By
traversing the doubly linked list structure which
holds the triangles of the mesh, every triangle is
similarly processed to determine the value of the
refinement flag.

Once refinement flags of individual triangles are
set, the list structure is traversed again to carry out
the actual refinement process. If a triangle has a
refinement flag greater than or equal to unity, it is
split. The resulting descendant triangles assume re-
finement parameter values one less than the parent

Automatic Surface Mesh Generation Scheme: Part II 189

input:

output:
begin

end

Algorithm: Adaptive Surface Faceting

Boundary representation of trimmed curved surface patch and distance
tolerance (TOLERANCE).

List of triangular facets.

Compute Voronoi decomposition in parameter space using MAT
Algorithm [1];

Construct list of triangles as a coarse triangulation in parameter space
using MAT Meshing Algorithm [1];

for every triangle {
Compute distance error norm (DISTANCE_ERR);
tfDISTANCE_ERR > TOLERANCE
[comment: set refinement flag of triangle]

FLAG ~ [DISTANCE_ERR / TOLERANCE];
}
while there exists a triangle with FLAG -> 1 in triangle list

Refine triangle;

triangle's refinement flag value. The refinement pro-
cess continues until the refinement flag values of all
triangles are reduced to zero. The pseudocode
above summarizes the steps of our technique to tri-
angular trimmed curved surface patches with com-
plex curved boundaries.

3.1.3 Examples
Our scheme to triangulate trimmed curved surface
patches has been implemented and tested with a
number of complex and diverse examples. Figure
10 illustrates triangulation of two such trimmed
patches. In these two cases, the surfaces are de-
fined as integral bicubic B-spline patches.

3.2 Adaptive Finite Element Analys&

The second application deals with adaptive FEA of
linear elasticity problems. Our coarse and fine
meshing scheme based on the MAT provides an
initial mesh appropriate for an adaptive refinement
solution method. The automatic mesh generation
capabilities of our meshing system have been used
for both h- and p-adaptive analysis processes.

In recent years, an important research aim of the
FEA community has been to develop more auto-
matic analysis procedures by integrating FEA with
CAD systems [14,18-23]. Our automatic shape in-
terrogation and mesh generation method can be ef-
fectively used to achieve this objective. In this sec-
tion, we report results of two adaptive FEA
applications using our prototype system.

3.2.1 Adaptive finite element analysis
In an adaptive FEA scheme, the objective is to au-
tomatically produce results satisfying a prescribed
degree of accuracy [24]. The basic steps involved in
a typical adaptive process may be summarized as
follows.

1. Start with definition of the problem and an initial
FE mesh.

2. Perform the required FEA.
3. Using an error estimator, predict the discretiza-

tion errors to determine those portions of the
analysis model that are not yielding the required
degree of accuracy.

4. Improve the portions of the mesh that are not
satisfactory, return to the second step, and con-
tinue this process until the desired level of accu-
racy is achieved.

This is an iterative process in which distinct steps
of analysis, error estimation, and mesh improve-
ment are carried out in sequence. For mesh im-
provement, there are four methods [24].

1. The finite element size is reduced in each subse-
quent solution step of h-convergence FEA.

2. The degree of interpolation functions i s in-
creased in each subsequent step of p-conver-
gence FEA.

3. Nodal points in the domain are repositioned in r-
convergence FEA.

4. The previous mesh is discarded and a new analy-
sis cycle is started again with a new mesh layout
in a remeshing approach.:

190 H.N. Gtirsoy and N.M. Patrikalakis

Fig. 10. Triangulation of trimmed curved surface patches.

The single most important feature of an adaptive
FE code is the prediction of errors in the current
solution. Errors involved in the numerical solution
of a FE formulation can be separated into three
main groups [25]:

�9 Discretization errors: These are caused by repre-
senting a continuum using a finite number of de-
grees of freedom in the discretized system.

�9 Round-o f f and truncation errors: These are
caused by the limitation of digital computers in
representing and processing real numbers.

�9 Solution errors: There are various causes for
these errors. For example, solution errors in con-
stitutive modeling are due to linearization and in-
tegration of the constitutive relations. Solution er-
rors in the calculation of the dynamic response
arise in the numerical integration of the equations
of motion with respect to time. Also, solution er-
rors arise from iterative solutions because conver-
gence is measured on increments in the solution
variables that are small but not zero.

A priori FE error analysis can only indicate the
convergence rate of the numerical solution [26].
Therefore, quantitative error estimation is based on
a posteriori error analysis which makes use of ac-
tual FE results to estimate the discretization error.
Depending on the degree and location of discretiza-
tion errors, the FE mesh is refined locally to obtain
more accurate results in the next analysis cycle. In
constructing an error estimator in the displacement
based FE approach, several criteria have been de-
veloped during the last decade [24]: predicted strain
energy density variations; stress discontinuities

along element boundaries; and, magnitude of viola-
tion of internal element equilibrium.

To some extent, all these criteria have been shown
to work well in practice. In existing adaptive FEA
schemes, the h-version and p-version refinement
techniques are the most widely used. It has been
shown that the p-version adaptive analysis has bet-
ter convergence characteristics in comparison to
the h-version [24]. One major disadvantage of the h-
adaptive approach is that in the vicinity of singulari-
ties in the problem domain, (such as re-entrant ver-
tices, constrained corners, and concentrated loads),
the rate of convergence is slow. Therefore, prob-
lems with severe singularities require very fine FE
meshes and this, in turn, reduces the efficiency of
the numerical solution. On the other hand, the p-
adaptivity involves a smaller number of finite ele-
ments and high order interpolation functions. In an
experimental two-dimensional adaptive system,
these two techniques are used in tandem so that
their favorable properties are better exploited [23].

3.2.2 A n adaptive f inite e lement analysis scheme
for plane elasticity problems

In this section, we discuss the technique we imple-
mented to determine discretization errors in a FE
solution of linear elasticity problems. Given a Car-
tesian coordinate system. (x, y, z), we deal with the
solution of elasticity problems whose governing dif-
ferential equations describing equilibrium of a vol-
ume element are of the following form [27]

o-~/,j + f~ = 0 (4)

Automatic Surface Mesh Generation Scheme: Part [I 191

where o-•(cr 0 = rr~-;) are components of the symmet-
ric stress tensor, and f are components of applied
body force per unit volume, a subscript after a
comma denotes partial derivative with respect to j ,
and a repeated index denotes summation over x, y
and z.

Equat ion (4) is solved in a domain f~, subject to
prescribed conditions on its boundary F.

ui=fflonF~ o-i j .n=ti=~.onFt F=F, ,UFt F , f~F t= r

(5)

where ui are components of displacement, ti compo-
nents of boundary traction (i.e., force per unit
area), nj components of the unit normal vector of
the boundary, and F, and Ft portions of the bound-
ary with displacement and stress boundary condi-
tions.

In this formulation, components of strain are de-
fined as follows

eij = ~ (ui,j + uj, i) (6)

and stress is related to strain by the following con-
stitutive equation

o- = D s (7)

where D is the material matrix of the domain, o- =
[o-j;], s = [s0-] are the stress and strain tensors. We
ignore initial strains and initial stresses in this analy-
sis.

In the FE discretization, we approximate the solu-
tion function u (x , y , z) using a trial function, u*(x ,
y, Z)

u(x, y, Z) ~- u*(x, y, Z) = N(x , y, z) U (8)

where N (x , y , z) are shape functions and U is a
vector of unknown nodal displacements.

We can obtain the global system of equations of
the FE discretization using the above trial function
either by a weighted residual method or by a varia-
tional approach in the following form [28]

K U = F (9)

where K is the stiffness matrix and F is the force
vector which are defined as follows.

K = fa BrDB d~ (10)

F = fa N r f d a + f~ N~idr (ll)

where superscript T denotes matrix transpose, and
matrix B contains derivatives of shape functions
such that we can write strain displacement relation-
ship in the following form.

s* = B U (12)

Using the FE solution, we can readily determine the
stress.

~* = De* (13)

The approximate solutions u*, o-* and s* are dif-
ferent from the exact values u, o- and s, and the
differences are the discretization errors in the FE
solution. We note that the numerical solution also
includes round-off and truncation errors which are
assumed negligible in this analysis. Following [25],
we can define absolute solution errors for displace-
ments and stresses by

e = u - u* (14)

e~ = o- - o-* (15)

We note that in the above equations u and cr are
actual values, which are not available. Therefore, it
is necessary to p r e d i c t these error values by other
means.

These forms of the error are pointwise definitions.
The energy n o r m of the solution is:

= dO] 1/2 Ilull [f~ (Bu)rD(Bu) (16)

= (17)

Similarly we can define a more useful form of the
error in a global manner as a norm [23], [28].

= d~,~] 1/2 ilell [fo (18)

(19)

The error n o r m in the whole domain can be calcu-
lated by adding the contributions of error norms of
all elements used in the discretization as follows
[24].

Ifell : [lei[12] a/2 (20)

192 H.N. Gfirsoy and N.M. Patrikalakis

i '

Fig. 11. Stress jumps involved in finite element solution.

where i spans all elements in the FE discretization
and m is the number of elements in the mesh.

Using the energy and error norms, we also define
the relative error, which is a measure of the relative
error involved in the solution [23,25]

= Ilell/l[.ll (21)

In the displacement based FE formulation of elas-
ticity problems. C o (displacement) continuity is as-
sumed in the trial functions of the FE approxima-
tion. Therefore , numerical results, in general, give
rise to discontinuous approximations of (r, (see Fig.
11).

This character of the solution is well known since
the early days of FEA. Therefore , stress smoothing
techniques have been commonly used in practice to
provide improved quantitative results from the dis-
continuous stress functions [29,30]. The smoothed
stress values turn out to be much better approxima-
tions of the actual values of stress than the FEA
results before smoothing [29]. Based on this obser-
vation, we assume that such a smoothed stress dis-
tribution can be used to predict the solution error. If
we substitute the smoothed stress value, s, for the
exact stress value, o-, in Eq. (15), we obtain a pre-
diction for the error in stress as follows.

the error is orthogonal to the solution function in
the FE approximation [28].

= I l d l / (l l . * l l ~ + II~l lZ) ,,2 (23)

Once we have a FE solution, the smoothed stress
distribution can be readily obtained. Using the
above expressions, we can predict the error in the
solution. In an adaptive F EA based on h-conver-
gence, after determining the error norm, we carry
out mesh refinement to reduce the size of elements
associated with an unacceptable error value before
we start the next solution step. Suppose we try to
achieve a relative error tolerance, ~)toi, in the FE
solution. Then we require that the adaptive FEA
process ends when the following condition is satis-
fied by the resulting mesh:

"O -< ~/toi (24)

It is assumed that the solution error is uniformly
distributed throughout the mesh in a converged
adaptive FEA. Based on this assumption, the fol-
lowing condition specifies the acceptable average
value of error norm of individual finite elements [23]

Ileill ~ ~ - = ,tol[(llu*LI 2 + Ilell2)/m] ''2 (25)

where r ight hand side of the inequality represents
the allowable mean error norm associated with the
current mesh. We can check whether an element
needs to be refined using a ratio of its error norm to
this mean value:

p, = lle,H/g (26)

If the ratio is greater than unity for a given ele-
ment, the error associated with that element is
higher than the prescribed tolerance, ~to~. There-
fore, the element should be refined to a certain sub-
division level whose degree is determined by the
ratio, p. For h-version mesh refinement purposes,
we can use the local refinement technique discussed
in section 2.

e~ ~ s - o-* (22)

Rank and Zienkiewicz [31] have shown that such an
error prediction method is equivalent to the other a
posteriori error estimators used for error predic-
tions in adaptive F E A [24].

Now we can determine the energy and error
norms using Eqs. (17) and (19) and predict the rela-
tive error involved in the solution [23,24]. Note that

3.2.3 Examples
In plane stress formulation of elasticity problems
the only nonzero stress components are Oxx, O'yy,
and O-xy. In our implementation, the FE solver uses
six-node triangular isoparametric elements. Input
data of the F E A are preprocessed and nodes are
renumbered so that the bandwidth of the global
stiffness matrix becomes minimum. Our automatic
node renumbering scheme is based on the method

Automat ic Surface Mesh Genera t ion Scheme: Part II 193

p = 50 N/cm 2

J

11 cm 9 cm

model and p-version mesh

88 elements
59 nodes
RPE -- 16%

the first h-version m e s h

525 elements / ~
1122 nodes f / / / \

the last h-version mesh Von Mises stress contours
Fig. 12. Adapt ive analysis
of a bracket.

presented in [32]. Element stiffness matrices are nu-
merically evaluated using a three-point Gauss quad-
rature rule. The resulting system of linear equations
is solved using the Gauss elimination method. The
error indicator used in our prototype system is
based on the techniques presented in the previous
section. In our implementation, the smoothed stress
distribution is obtained using a simple process.
First, stress components computed at discrete
points in the element (i.e., at three Gauss quadra-
ture points) are extrapolated to the nodes of the
element. Then for a given node, smoothed stress
values are calculated by taking the average of
weighted stress contributions of all adjacent ele-
ments. Simple averaging of stress at nodal points
works correctly only if a mesh is composed of ele-
ments with the same size. We assume that the prob-
lem domain has uniform thickness and use the area
of an element as its weight factor to account for the
size of adjacent elements in this smoothing process.

This smoothing approach is similar to the "lumped
mass least-squares" approximation in one dimen-
sion presented in [30].

The following two representative model problems
have been adaptively solved by our prototype h-
adaptive FEA system. We have also solved these
two model problems using the p-adaptive solution
functionality provided by an integrated modeling
and analysis system [33]. Results of these model
problems obtained from the two analysis systems
are in good agreement. In the solution strategy
based on p-convergence, coarse subdivisions gener-
ated by our MAT technique have been employed as
initial FE meshes. We observe that this approach
gives rise to significant time reduction in computa-
tion cycles of p-adaptive analysis as compared to
the same computation cycles using meshes gener-
ated for h-adaptive analysis.

In each of these cases, the problem domain has a
Young's modulus E = 2 x l0 s MPa, Poisson's ratio

194 H.N. Giirsoy and N.M. Patrikalakis

ee~

e ~
/

f _

--:- 11 cm I - II r

model and p-version mesh

/

\ ! J /

" - 4 / /
. / ' / -,.

the first h-version mesh: 204 elements, 460 nodes, RPE = 12%

the last h-version mesh: 36t elements, 810 nodes, RPE = 7%

Von Mises stress contours

t',l

z

143

li

Fig. 13. Adaptive analysis of a
plate with a hole.

y --- 0.3 and a thickness t = 1 cm. The adaptive
scheme has provided a solution with relative error
less than 10% [relative percentage error (RPE)] in
each case. Domain descriptions, boundary condi-
tions, and applied loads of these two model prob-
lems are shown in Figs. 12 and 13.

In the first example (see Fig. 12), a bracket is ana-
lyzed. The error indicator has identified a stress
concentra t ion in the narrow part , and local refine-
ment is pe r formed in that region. In the second ex-

ample (see Fig. 13), a plate with a circular hole at its
center is analyzed. A c lamped boundary condition
is specified at one end and a uniformly distributed
shear force is applied at the other end. The clamped
end boundary condition gives rise to two singulari-
ties and a boundary layer which are identified by the
error indicator. The adapt ive solution also identifies
some critical e lements around the circular hole in
the problem domain. Plots of yon Mises stress con-
tours [27] of these two model problems clearly indi-

Automatic Surface Mesh Generation Scheme: Part II 195

cate those critical areas. All these test cases demon-
strate the efficiency and usefulness of our automatic
mesh generator and the prototype system.

4 Summary and Conclusions

We have reported the implementation of a proto-
type system based on our MAT and surface mesh-
ing algorithms [1], and also results of several design
and analysis applications obtained by using this sys-
tem. Our adaptive surface approximation technique
is efficient and can be used for solving numerous
design problems. Our experience with the proto-
type system indicates that our meshing and h-adap-
tive analysis techniques can provide an automated
solution scheme for a wide variety of analysis prob-
lems. Our coarse shape decomposition method can
be effectively used in an adaptive FEA system
based on the p-convergence method. We observe
that this approach can give rise to substantial reduc-
tion in computation time. As a result, our technique
can assist a p-adaptive FEA scheme to become an
interactive analysis method in integrated design and
analysis systems. For future work, we propose to
investigate potential capabilities and applications of
our interrogation and meshing techniques as auto-
mated idealization and model creation methods for
h- and p-adaptive FEA processes.

Acknowledgments

Funding for this research was obtained in part from MIT Sea
Grant College Program (grant number NA90AA-D-SG424) and
the Office of Naval Research in the United States (grant numbers
N00014-87-K-0462 and N000-91-J-1014). Mr. E. C. Sherbrooke
contributed to the computer implementation.

References

1. Gursoy, H.N.; Patrikalakis, N.M. (1992) A coarse and fine
finite element mesh generation scheme based on medial axis
transform: Part I algorithms, Engineering with Computers,
Springer-Verlag, New York

2. Blum, H. (1967) A transformation for extracting new de-
scriptors of shape. Models for the Perception of Speech and
Visual Form, Weinant Wathen-Dunn (Editor), MIT Press,
Cambridge, MA, 362-381

3. Blum, H. (1973) Biologcal shape and visual science (Part I),
Journal of Theoretical Biology, 38, 205-287

4. Patrikalakis, N.M.; Gursoy, H.N. (1988) Skeletons in shape
feature recognition for automated analysis, MIT Ocean En-
gineering Design Laboratory Memorandum 88-4

5. Patrikalakis, N.M. ; Gursoy, H.N. (1989) Shape feature rec-
ognition by medial axis transform, MIT Ocean Engineering
Design Laboratory Memorandum 89-1

6. Patrikalakis, N.M.; Gursoy, H.N. (1990) Shape interroga-
tion by medial axis transform, Advances in Design Automa-
tion 1990, Volume One, Computer Aided and Computational
Design, B. Ravani (Editor), ASME, NY, 77-88

7. Gursoy, H.N. (1989) Shape interrogation by medial axis
transform for automated analysis, PhD Dissertation, Massa-
chusetts Institute of Technology, Cambridge, MA

8. Hoffmann, C.M. (1990) How to construct the skeleton of
CSG objects, Technical Report, CSD-TR-1014, Purdue Uni-
versity

9. Weiler, K.J. (1985) Edge-based data structures for solid
modeling in curved-surface environments, IEEE Computer
Graphics and Applications, 5, 1, 21-40

10. Patrikalakis, N.M. (1989) Approximate conversion of ra-
tional splines, Computer Aided Geometric Design, 2, 6, 155-
165

11. Sederberg, T.W.; Anderson, D.C.; Goldman, R.N. (1984)
Implicit representation of parametric curves and surfaces,
Computer Vision Graphics and Image Processing, 28, 1, 72-
84

12. NAG (1988) Numerical Algorithms Group FORTRAN Li-
brary, NAG, Oxford, England

13. Cavendish, J.C. (1974) Automatic triangulation of arbitrary
planar domains for finite element method, International
Journal for Numerical Methods in Engineering, 8, 679-697

14. Chae, S.W. (1988) On the automatic generation of near-opti-
mal meshes for three-dimensional linear elastic finite ele-
ment analysis, PhD Dissertation, Massachusetts Institute of
Technology, Cambridge, MA

15. Rivara, M.C. (1984) Algorithm for refining triangular grids
suitable for adaptive and multigrid techniques, International
Journal for Numerical Methods in Engineering, 20, 745-756

16. Mantyla, M. (1988) An introduction to Solid Modeling, Com-
puter Science Press, Rockville, Maryland

17. Patrikalakis, N.M.; Bardis, L. (1989) Offsets of curves on
rational B-Spline surfaces. Engineering with Computers, 5,
39-49

18. Wordenweber, B. (1984) Finite element analysis for the na-
ive user, Solid Modeling by Computers, From Theory to
Applications, Plenum Press, NY., M.S. Pickett, J.W. Boyse
(Editors), 81-101

19. Yerry, M.A.; Shephard, M.S. (1984) Automatic three-di-
mensional mesh generation by the modified octree tech-
nique, International Journal for Numerical Methods in Engi-
neering, 20, 1965-1990

20. Kela A.; Perucchio R.; Voelcker H. (1986) Towards auto-
matic finite element analysis, ASME Computers in Mechani-
cal Engineering, 5, 1, 57-71

21. Fenves, S.J. (1986) A framework for cooperative develop-
ment of finite element modeling assistant, Proceedings of the
International Conference for Engineering Analysis, Univer-
sity College, Swansea, England, K.J., Bathe, D.R.J. Owen
(Editors), 475-485

22. Schroeder, W.J.; Shephard, M.S. (1988) Geometry-based
fully automatic mesh generation and the delaunay triangula-
tion, International Journal for Numerical Methods in Engi-
neering, 26, 2503-2515

23. Zienkiewicz, O.C.; Zhu, J.Z.; Gong, N.G. (1989) Effective
and practical h-p version adaptive analysis procedures for
the finite element method, International Journal for Numeri-
cal Methods in Engineering, 28, 879-891

24. Babuska, I. ; Zienkiewicz, O.C.; Gago, J.; Oliveira, E.R.A.
(1986) Accuracy Estimates and Adaptive Refinements in Fi-

196 H.N. Giirsoy and N.M. Patrikalakis

nite Element Computations, John Wiley, Chichester, En-
gland

25. Utku, S.; Melosh, R.J. (1983) Errors in finite element analy-
sis, State-Of-The-Art Surveys on Finite Element Technol-
ogy, A.K., Noor, W.D. Pilkey (Editors), ASME, New York,
297-324

26. Strang, G. ; Fix, G. (1973) An Analysis of the Finite Element
Method, Prentice-Hall, Englewood Cliffs, NJ

27. Timoshenko, S.P.; Goodier, J.N. (1970) Theory of Elastic-
ity, McGraw-Hill, New York

28. Zienkiewicz, O.C.; Morgan, K. (1983) Finite Elements and
Approximations, John Wiley & Sons, New York

29. Hinton, E.; Owen, D.R.J. (1979) An Introduction to Finite

Element Computations, Pineridge Press Ltd., Swansea, En-
gland

30. Langtangen, H.P. (1989) A method for smoothing deriva-
tives of multilinear finite element fields, Communications in
Applied Numerical Methods, 5, 4, 275-281

31. Rank, E.; Zienkiewicz, O.C. (1987) A simple error estimator
in the finite element method, Communications in Applied
Numerical Methods, 3, 3,243-249

32. Collins R.J. (1973) Bandwith reduction by automatic renum-
bering, International Journal for Numerical Methods in En-
gineering, 8, 27-43

33. IFEMp (1990) Intergraph finite element modeling/solver p-
adaptive module reference manual, Intergraph Corporation,
Huntsville, AL

