
Mathematical Methods of Operations Research (1997) 45:145 160

Mixed Graph Colorings

PIERRE HANSEN

Ecole des Hautes Etudes Commerciales, GERAD, Montrral (Qurbec), Canada

JULIO KUPLINSKY

6, Washington Drive, Ramsey, NJ 07446, USA

DOMINIQUE DE WERRA

Ecole Polytechnique Frdrrale de Lausanne, Drpartment de Mathrmatiques,
Chaire de Recherche Operationelle, 1015 Lausanne, Switzerland

Abstract: A mixed graph Go contains both undirected edges and directed arcs. A k-coloring of Go is
an assignment to its vertices of integers not exceeding k (also called colors) so that the endvertices
of an edge have different colors and the tail of any arc has a smaller color than its head. The
chromatic number yr of a mixed graph is the smallest k such that G o admits a k-coloring.
To the best of our knowledge it is studied here for the first time. We present bounds of ?o(G),
discuss algorithms to find this quantity for trees and general graphs, and report computational
experience.

Key Words: Graph coloring, oriented graphs, chromatic scheduling.

1 Introduction

Coloring models have often been used as a basic tool for dealing with some
special types of scheduling problems which are consequently called chromatic
scheduling problems: items (corresponding to the nodes of a graph) have to be
scheduled while taking into account some incompatibility requirements (item i
cannot be scheduled at the same period as item j) represented by the edges of the
graph.

The basic coloring models are too limited for handling the various require-
ments which are present in real scheduling problems; it is therefore necessary to
extend the coloring models in various directions.

We shall in this paper consider a model which can be used for formulating
some scheduling problems where both incompatibility requirements and prece-
dence constraints can be present: an arc (i, j) from item i to i temj will mean that
i must be scheduled before j.

Some fields of application will be mentioned later. Let us first start with some
graph theoretical preliminaries.

1432-2994/97/45:1/145-160 $2.50 �9 1997 Physica-Verlag, Heidelberg

146 P. Hansen et al.

The idea of orienting some edges of a graph to be colored is rather natural
since colorings and circuit-free orientations of graphs are closely related: indeed
the nodes of a graph G can be colored with k colors if and only if there is a
circuit-free orientation of the edges of G such that no path has more than k
nodes. This is the theorem of Roy-Gallai [GAL, ROYb].

We consider finite graphs with no multiple edges or loops. Let G = (X, E) be
a graph and (9 an orientation of some of its edges (we regard (9 as a subset of
{(i,j) e X x X: {i,j} e E}). Then Go = (X, E, (9)is called a mixed graph. We will
refer to the elements {i,j} of E such that neither (i,j) nor (j, i) belong to (9 as the
unoriented edges of Go.

A k-coloring of Go is a function c: X ~ {1, . . . , k} such that c(i) ~ c(j) for
{i,j} e E and c(i) < c(j) for (i,j) e (9. Clearly such a coloring may not always
exist: if (9 contains a circuit, there is no k-coloring for any k.

This extension of the concept of vertex coloring provides a model for some
types of exam scheduling, e.g. when written exams have to be taken before oral
ones, in addition to the usual constraint that no student can take two or
more exams during the same period. More generally, some types of chromatic
scheduling problems can be handled with this model. Let T be a collection of
jobs (with unit processing times). These jobs have to be processed taking into
account the following constraints.

1. Precedence constraints. There is a set of ordered pairs of jobs (i, j) such that i
must be processed before j.

2. Disjunctive constraints. For some collection {I j ~ e A} of subsets of X, no
two jobs in I, can be processed simultaneously.

Consider now a mixed graph Go = (X, E, (9) obtained as follows:

1. To each job j in T we associate a vertex j in X. G has no other vertices, no
arcs and no edges.

2. For each ordered pair (i,j) of jobs we introduce an arc (i,j) in Go.
3. For each subset I~ we introduce a clique associated with the jobs in I~. (If an

edge is needed between vertices i and j, we introduce it only if there was no
previous arc or edge joining i and j).

Now there is a one-to-one correspondence between feasible schedules in k time
units and k-colorings of the mixed graph Ge.

Notice that scheduling problems with disjunctive constraints usually have
some additional structure, e.g. the directed subgraph may consist of disjoint
paths from a source to a sink. Branch and bound and 0-1 programming algo-
rithms for minimum makespan in such graphs (e.g. [ROYal, [BALI) could be
adapted to the mixed graph coloring problem but might be less efficient than
specially tailored ones.

Mixed Graph Colorings

2 Bounds on the Chromatic Number

147

We first study when a mixed graph has a coloring.

Definitions: If G is a graph, an orientation (9 of its edges is called complete iff for
every edge {i,j} of G either (i,j) �9 (9 or (j, i) �9 (9.

For a vertex i of a mixed graph, the length r(i) of a longest directed path
ending at i is called the inrank of i, while the length of a longest directed path
starting at i is the outrank of i.

Proposition 1:

(i) A mixed graph and Go has a k-coloring iff there is a complete circuit-free
orientation (9' _ (9 in E such that all directed paths have length at most
k - 1 .

(ii) Go has a coloring iff (9 contains no circuits.

Proof of Proposition 1:

(i) Suppose that Go has a k-coloring. For each unoriented edge choose the
orientation from the lower color to the upper color. Obviously this orienta-
tion has no circuits. The vertices of a directed path will have increasing
colors, so the length of a path will be at most k - 1. Conversely, suppose
such an orientation exists. If (i,j) is an arc, we clearly have r(i)< r(j),
so {r(i) + 1}Ix_-I 1 is a k-coloring of Go.

(ii) If (9 contains no circuit, we can find a circuit-free orientation (9' ~_ (9 which
is complete: define a numbering nl nix I of the vertices such that ni < nj
if (i, j) e (9. Orient every unoriented edge {i, j} from i to j if ni < n~ and from
j to i otherwise. This defines a circuit-free orientation (9' of the required type.
Then from (i) a node coloring exists for Go. The rest follows also from (i).

The idea of defining a coloring on the basis of the inranks is due to Vitaver
[VIT].

Definitions:

1. Given a graph G, the set of circuit-free orientations of G will be denoted t2(G)
or simply I2.

2. Given a graph G and (9 e f2, the smallest k such that there exists a k-coloring
of G will be called the chromatic number of Go and will be denoted by To(G).

148 P. Hansen et al.

Notice that 7z(G) is the usual chromatic number of the graph G; it is denoted by

7(e).
Using the concept of chromatic number, we can reformulate part of Proposi-

tion 1 as an extension of the classical Roy-Gallai theorem [ROYb, G A L l .

Proposition 2: Let G be a graph and (9 ~ 12. We denote by f2~ the set of complete
circuit-free orientations of G containing (9. Then

7~(G) = 1 + min {((9') ,
d)c~'
O'Er2

where {((9') is the largest inrank of Go,.

Proposition 3: For a connected graph G, 7e(G) = 7(G) for every (9 e f2 iff G is
complete.

Proof: Suppose that G is complete. For every (9 E g2 we clearly have 7o(G) >
y(G) = n, where n = IX(G)I. Now, (9 can be extended to a complete orientation
(9' s f2, so we obtain n = 7~,(G) _ y~(G) > y(G) = n.

Suppose now that v~(G) = 7(G) = k > 1 for all (9 and consider a k-coloring of
G. We can assume that this coloring has been obtained by a sequential coloring
procedure (i.e. vertices have been ordered and assigned successively the first
color not given to an adjacent vertex in such a way that k colors are used, see
for instance [MMI]) . So take a vertex xk having color k. It is adjacent to a
vertex xk-1 having color k - 1. This is in turn adjacent to a vertex xk-z having
color k - 2. Continuing in this way we obtain a path xl , . . . , xk.

If G only contained the vertices (x 1 xk), then k = n and G would be a
complete graph (for otherwise we would have 7(G)< n). So assume that G
contains a vertex x q~ {x 1 Xk} adjacent to some vertex x i.

Notice that Xk must be adjacent to a vertex with color 1. This vertex must be
xl , for otherwise we would have a path of length k in G, and we could find a
circuit-free orientation containing a directed path of length k, contradicting
Proposition 1. But then (x, x~ , . . . , Xk, X t, . . . , X,-I) is a path of length k, and we
reach again a contradiction.

Notation: Given a graph G and (9 e f2, we denote by Xe, the set of vertices of Ge
which are incident to some arc in (9, and by G~ the subgraph of G generated by
the vertices in X~ (the arcs in (9 are considered as edges in G~).

Mixed Graph Colorings

Proposition 4: Let G be a graph and (9 �9 f2. Then

To(G) < 7(6) + IXd - ~(Go).

149

Proof: Let k = 7(G) and take a k-coloring c of G. We will now modify c so as to
obta in a coloring of Go. Let I"1 = {i ~ Xe: c(i) = c(i') for some i' e Xz} , and let
Y2 be the set of vertices not in Xo or I"1. We let x denote the n u m b e r of vertices
in Xo.

The new coloring d is defined in the following way. We order the vertices in
Xo according to non decreasing inranks introducing a new color for each vertex.
N o w for every i �9 I"1 we choose some i' �9 Xo so tha t c(i) = c(i') and then define
d(i) = d(i'). Notice that, since c(Xo u I"1 u]12)= c(Xe)k.)c(Y2) and c(X~) and
c(Y2) have no c o m m o n elements, we have

Ic(Xo)l + Ic(Y2)l = k . (~)

Finally the colors in the set c(Y2) are changed to the colors {x + 1, . . . , x + h},
where h = Ic(Y2)l.

We claim that d is a coloring of Go. In fact, if (i, j) is an arc, then i, j e Xo, and
the inrank of i is less than the inrank of j, so d(i) < d(j) . Suppose now that { i , j }
is an edge. Since the colors of the vertices in Xo are all different, we may assume
that i, j e Y1 u Y2 or i e I"1 u Y2 and j �9 X o. N o w the vertices in X o and Yx are
colored with the elements in {1 , x}, while those in Y2 are colored with
{x + 1 x + h}, and moreove r d(Y2) is a recoloring of c(Y2), so we need only
consider the cases i, j �9 I"1 and i �9 I"1, J �9 Xo. In bo th cases c(i) = c(i') and
c(j) = c(j ') for some i',] ' � 9 Xo, and d(i) = d(i'), d (j) = d(j ') . Suppose d(i) =
d(j) , then i' = j ' , so c(i) = c(j) , a contradict ion.

We now count the number of colors used by d. By virtue of equat ion (1) we
have Id(Xo u Y • Y2)I -= x -t- h = x + k - [c(X~)l. But clxo is a coloring of G~,
so Ic(Xo)[> 7(Go), and the n u m b e r of colors used by d is at mos t IS~[+ 7(G) -

Remarks:

i. Using this result, we conclude again tha t if Go is a clique (complete graph),
then yo(G) = 7(G). A more general case in which To(G) = 7(G) occurs when G
is a comparab i l i ty graph (transitively orientable graph) and (9 is a part ial
or ienta t ion which can be extended to a transit ive orientation. A trivial case
in which To(G) = y(G) is that of a bipart i te g raph G = (X, Y, E) when (9
consists of an arbi t rary collection of arcs oriented f rom X to i4.

ii. The bound of Propos i t ion 4 is best possible in the following sense. Fo r any p
there exists a g raph G and an or ienta t ion (9 e f2 with [Xo] - Y(Go) = P sat-

150 P. Hansen et al.

isfying To(G) = 7(G) + p. Take for instance for G a chain of p + 1 edges and
choose (9 so that Go is a directed path consisting of p + 1 acrs. Then IX o[=
To(G) = p + 2 and 7(G) = ?(G~) = 2.

Proposi t ion 5: For any graph G and any (9 e D, (9 # ~ ,

~o(G) _< 7o(G*)(~,(G) - 1) + 1 .

Here G* denotes the directed partial subgraph (Xo, (9) of Go.

Proof: Let k = 7(G) and consider a coloring c of G using k colors. We will
modify c so as to obtain a coloring d of Go. For i e G* let r(i) be the inrank of
i in G*, so that 7o(G*) = max{r(/): i e G*} + 1. We color the vertices of G*
according to non decreasing inranks. The vertices of inrank 0 keep the color
they have by c. Let us assume now that all vertices with inrank less than s have
been assigned a new color and let r(i) = s. If c(i) = 1, then d(i) = sk + 1, if
c(i) = 2, then d(i) = sk + 2. We proceed in this way, with one exception. Sup-
pose that the highest value of d for a vertex of inrank s - 1 occurs for a vertex j
and c(j) = h. Then if c(i) = h, we define d(i) = d(j) <_ (s - 1)k + h. In this way
we use at most k colors for vertices o f in rank 0 and at mos t k - 1 new colors for
every other inrank. For vertices not in G* we let d coincide with c.

Notice that if i , j ~ G* and r (j) = r(i) + 1, then d(i) <_ d(j) , and in fact d(i) <
d(j) unless c(i) = c(j) . We conclude from this remark that if (i , j) is an arc in (9
(so that r(i) < r(])), then d(i) < d(j) , since { i , j } ~ E. Let now { i , j } be an edge.
We conclude similarly that d(i) # d (j) if i , j ~ G*, and obviously the same holds
if i, j r G*, so we may assume that i e G*, j r G*. If d(i) <_ k, then d(i) = c(i) :b
c (j) = d(j) , so in any case d(i) # d(j) .

Notice that d uses at most k colors on vertices of inrank 0, and that, for
s > 0, the set {d(i): r(i) = s}\{d(i): r(i) < s} has at most k - 1 elements. Since
vo(G*) > 1, we conclude that d uses at most v(G) + (7o(G*) - 1)(7(G) - 1) =
vo(G*)(v(G) - 1) + 1 colors.

Remark: The bound of Proposi t ion 5 is best possible. Take for example r copies
K l, . . . , K r of a clique with s vertices. Let xij (i = 1, . . . , s) be the vertices of K j
and for u = 1 r - 1 introduce arcs (x~,u, xj,,+l) where i # j . The mixed graph
Go thus obtained satisfies

v o (G) = s + (s - 1) (r - 1) = r (s - 1) + l .

Notice that To(G*) = r. Since the chromat ic number of the underlying graph is s
(vertices x~ may get color i for j = 1 r), we have

y~(G) = y d 6 *) (y (G) - 1) + 1 .

Mixed Graph Colorings

3 Coloring Algorithms

151

Proposition 2 suggests a possible coloring algorithm for mixed graphs. One
need only devise a branch-and-bound procedure in which the branchings repre-
sent the two possible orientations of an unoriented edge, and the bounds are
given by the lengths of the longest directed paths. Our computational experi-
ence with such an algorithm has not been promising though, so we will present
later in this paper a more direct approach.

As a first approach to coloring a mixed graph, we classify unoriented edges e
locally. Let e be an unoriented edge such that neither of its orientations creates
a circuit. We say that e is a 0-(1-, 2-) edge iff 0 (resp. 1, 2) of its possible
orientations increase the length of the longest directed path of Go. We present
this concept more formally. Here G* ~ e denotes the graph G* to which edge e
has been added.

Definition: Let a, - a be the two possible orientations of e, (9+ = (9 w {a}, (9- =
(9 w { - a}. Then

e is a 0-edge iff 7o+(G* w e) = To-(G* u e) = yo(G*),
e is a 1-edge iff 7o+(G*u e)> 7o(G*) or 7o-(G*u e), >yo(G*), but not both,
and
e is a 2-edge iff 7o+(G* u e) > To(G*) and 7~-(G* u e) > To(G*).

As in Proposition 5, G* is the directed graph consisting of the arcs in (9 and
the vertices incident to them.

Remarks 6:

i) A 0-edge may not be assigned an arbitrary orientation, i.e. it may happen
that 7~+(G)> y~(G). Consider for instance the mixed graph in Figure 1.
Orienting e upwards does not change yo(G*) = 3, but increases yo(G) to 4.

eli
Fig. 1. A O-edge

152 P. Hansen et al.

- . , , /
Fig. 2. A 1-edge

ii) Similarly, assigning to a 1-edge the orientation that does not increase the
maximum inrank may be incompatible with an optimal coloring. This is
shown by the mixed graph in Figure 2. Clearly, e is a 1-edge. A greedy
algorithm would orient e upwards. But then completing the orientation
arbitrarily one obtains a directed path of length 7. However, reversing the
orientation of e in this orientation one obtains a complete orientation in
which the maximum inrank is 6.

iii) Eliminating the rightmost vertex in Figure 2 we obtain a similar example in
which e is a 2-edge.

Proposition 7: Let e be a 2-edge in Go.

a) Both orientations of e increase the maximum inrank by exactly 1.
b) The endvertices of e have the same inrank and the same outrank.

Proof:

a) Let E be the maximum inrank of Go, and let a, - a be the two orientations of
e. We write (9 + = (9 w {a} and (9- = (gw { -a} . Since e is a 2-edge, the
maximum inrank of Go+ is greater than f ; it is attained by a directed path
(o-, a, tr'), where ~ and o-' are directed paths in Go. Hence L(e) + L(o-') > Y,
where L(.) denotes the length of a directed path. If a has tail i and head j, we
clearly have that L(~) is the inrank of i and L(~') is the outrank of j in
Go. Similarly, the maximum inrank of Go- is attained by a directed path
(z, - a, z') where z and z' are directed paths in Go with L(z) + L(z') > E. Now
L(r) is the inrank ofj and L(~') is the outrank of i. Adding the inequalities we
obtain 2f _< L(a) + L(G') + L(r) + L(r') < 2#, since (r, ~r') is a directed path
of length L (z)+ L (a ') < g, and similarly for (a, z'). Hence we must have
L(a) + L(a') = L(z) + L(z') = f. This proves that both orientations of e in-
crease the maximum inrank by exactly 1.

Mixed Graph Colorings 153

b) Adding again L (J + L(a') <_ E and L(a) + L(z') <_ E we obtain 2t' = L(a) +
L(a') + L(z) + L(r') _< 2f, and hence L(r) + L(a') = L(a) + L(z') = t ~, so
L(a) = L(z) and L(a') = L(v').

Case of trees

Some results in this subsection will hold for arbitrary bipartite graphs, but we
will focus primarily on trees.

By Proposition 5, if G is bipartite and (9 e (2, then yc0(G) _< yo(G*) + 1, so we
have only two possibilities for the chromatic number of Go.

Definition: Let G be a bipartite graph and (9 c D. We say that Go is short iff
To(G) = 7e(G*), and lon9 iff 7~(G) = To(G*) + 1.

A long mixed graph is the one of Fig. 1 with edge e oriented upwards.

0-2 Algorithm: Let G be a tree and (9 e s such that Go only has 0- or 2-edges.
Then the following algorithm provides an optimal orientation of Go, i.e., an
orientation giving an optimal coloring.

Let G be rooted at an arbitrary vertex r. A Boolean variable f e {up, down},
a parameter, is set originally equal to up. We traverse the tree in depth-first
order (preorder, see [TAR]). Each time we encounter an unoriented edge we
orient it according to f if it hasn't been assigned an orientation before and
switch f in any case.

If e is an unoriented edge of Go then we will refer to the path from r to one of
the vertices of e that does not contain the other as the path from r to e. The
orientation that the algorithm assigns to e is determined by the number of
unoriented edges contained in the path from r to e: the edge is oriented up if this
number is even and down if it is odd.

The main property of the orientation N given by the algorithm is that no
! e t! directed path of ~ contains more than one unoriented edge. In fact, let e ,

belong to a directed path of N, and assume without loss of generality that all
arcs in the path which are between e' and e" belong to (9. This directed path will
be denoted by (xl, . . . , xs) and we will assume that e' = {xl, x2}, e" = {xs-i, xs}.
For brevity we will set X = {xl , xs}. Let (yl yp) be the path from r to
e', and let i be minimum such that y~ e X, say y~ = x t. Notice that y~+l, . . . ,
yp E X, for otherwise (x t , x2) and (Yi yp) would be two different paths
from xt to x2.

Assume first that s > t > 1. In this case the number of unoriented edges in the
path from r to e' is equal to the number of unoriented edges in (y, yl) and
must be even. On the other hand, the path from r to e" is (y, y~, xt+~
x~_,), and the number of unoriented edges in this path is equal to the number of
unoriented edges in (y~, . . . , y~), and must be odd, a contradiction.

154 P. Hansen et al.

If t = 1, a similar argument shows that the orientation of e' forces the number
of unoriented edges in (Yl , . . . , Yv) to be odd. But now the path between r and
e" is (yl , yp, x2, . . . , xs-1), which contains one more unoriented edge than
(Yl, . . . , Yv), and again we reach a contradiction.

If t = s, again a similar argument shows that the orientation of e" forces the
number of unoriented edges in {Yl Yv} to be even. But then the path
between r and e' is {Yl , " " , Yv, xs x2} which contains one more unoriented
edge than {y~ yp} and once again we reach a contradiction.

Let E be the length of the longest directed path in G*. Then, if G e has only
0-edges, N cannot contain a directed path of length E + 1, and if it also has
2-edges, by Proposition 7, it cannot contain a directed path of length ~ + 2.

If G is an acyclic digraph having m edges, the inranks of its vertices can be
obtained in O(m) time. It follows that the 0-2 algorithm has O(n) complexity.

Corollary 8: Let G be a tree and (9 e f2. If G~ has only 0-edges, then it is short.

Remark: Replacing "0" by "0 or 1" in the above corollary does not result in a
generally true statement. Consider for instance the graph in Figure 3 where
every unoriented edge is a 1-edge.

The following result, which we need for our algorithm, sheds some light on
Remark 6 ii).

Proposition 9: Let G be bipartite and (_9 e O. Suppose that e is a 1-edge and a is
the orientation that does not increase the maximum inrank in G~. If we denote
(9 + = (9 w {a}, then Vet(G) = y~(G).

Fig. 3. A tree with 1-edges

Mixed Graph Colorings 155

Proof: If G0 is short, then ~(G) = To(G*). If N is a complete circuit-free orienta-
tion containing (9 which realizes the chromatic number, then a e N, so 7o+(G) <
~dG).

If Go is long, since 7o + (G*) = 7~(G*), we have by Proposition 5 ~o + (G) <
re(G*) + 1 = 7e(G).

Definition: Let e be a 1-edge in Go. The orientation of e that does not increase
the maximum inrank of Go is called the conformal orientation of e.

Tree Algorithm: If G is a tree with more than one vertex and (9 e (2 the following
algorithm provides an optimal coloring of Go.

1. If (9 = ~ traverse the tree coloring alternately the vertices with two colors
and exit. Otherwise go to 2.

2. Classify all unoriented edges as 0-, 1-, or 2-edges.
3. If the graph contains a 2-edge, go to 6. Otherwise go to 4.
4. If there are no 1-edges go to 7. Otherwise go to 5.
5. Orient one arbitrary 1-edge conformally. Go to 2.
6. Apply the method of Proposition 5 to obtain a coloring with 7o(G*) + 1

colors and exit.
7. Apply the 0-2 algorithm and exit.

Proposition 10: The previous algorithm results in an optimal coloring of Go
when G is a nontrivial tree.

Proof: Note that as soon as we know that Go is long, applying the construction
of Proposition 5 will result in an optimal coloring. This justifies the two in-
stances of the algorithm where step 6 is invoked.

Since the 0-2 algorithm has complexity O(n), this algorithm has complexity
O(nZ). We remark that the complexity depends basically on the number of
1-edges that may appear during the execution of the algorithm. The next two
results which are valid for general mixed graphs, give some information about
this number.

Proposition 11: Let (el ek) be a path in Go, where el = {x~-l, xi} is a 1-edge
for each i. Suppose that each orientation (X~_l, x~) increases the maximum
inrank. Then k _< 2# + 1, where E is the maximum inrank of Go.

156 P. Hansen et al.

Proof: By assumption, for 1 _< i _< k there exist directed paths a~ ending at x~_l
and -c~ start ing at x~ such that, in the no ta t ion of Propos i t ion 8, L(o-,) + L(z~) _>
f. We write for brevity a~ = L(a~), b~ = L(ri), so that the last inequality reads
a~ + b~ > ~ for 1 _< i _< k. On the other hand, since e~ is a 1-edge, we necessarily
have a~ + b~_ 2 _< E - 1 for 2 <_ i _ k, where we define bo = 0. It follows that
b i > (- a~ _> bi-2 + 1 for 2 _< i _< k, while b o, b~ >_ 0. By induction, i < b2i _<
if 0 < 2i _ k, and hence k <__ 2Y + 1.

Proposition 12: Let Go have 1-edges e 1 ek and suppose that al , a k are the
conformal orientat ions of these edges. We set ~ = (9 u {al ak}. Further , we
denote by E the length of a longest directed pa th of G(Q and by L~ the length of a
longest directed pa th of G~ containing r of the arcs a 1 , a~, where 0 _< r _< k.
If r, s _> 0 and r + s < k, then

Lr+~+ 1 < _ L r + L s - - E + 1 .

Proof: We denote A = (a t , . . . , ak). Let a be a directed pa th in G~, longest
a m o n g those containing r + s + 1 of the arcs in A. Then a is a concatenat ion
(fl, a, 7) where fl and 7 are directed paths in G~ containing respectively r and s
arcs in A, and a = (x, y)E A. On the other hand, since a is the conformal
or ientat ion of a 1-edge, there exist oriented paths in Go a ending at y and
start ing at x such that

L(a) + L(z) > f

Note that

L(fl) + L(O <_ L ,

and

L(a) + L(y) < L~ .

Using the last three inequalities we obtain L(fl) + L(7) <_ Lr + Ls - L(a) -
L(z) _< L~ + L~ -- Y.

Corollary 13: Let el , e2, e3 be 1-edges in a bipart i te mixed graph Go. Assume
they are the only edges in Go. Then, orienting these edges conformal ly does not
increase the chromat ic number of the mixed graph.

Mixed Graph Colorings 157

Proof'. This is certainly true if Go is short. If it is long, a longest directed path in
G~ has length at most L3 _< 2L1 - ~ + 1. The result follows from the observa-
tion that L1 = {.

Remark: The mixed graph in Fig. 4 shows that the last result does not hold for
four edges.

Algorithms for 9eneral 9raphs and computational experience

We have used a branch-and-bound algorithm to color a collection of randomly
generated graphs. To generate a graph with m, arcs and m e edges we choose
uniformly at random without repetition m, + me integers vi e {1, . . . , M}, where

M=(~).Thisdef inesalabeledgraphonnvert iceshavingarcsri , l < i < _ m a

and edges r~, ma < i _< m, + me.
In every stage during the coloring process we have a partial coloring of Go.

We use now the fact that assigning a color to a vertex x implies that certain
colors will not be available for vertices on directed paths passing through x. We
will say that those colors are forbidden for the corresponding vertices. A similar
remark applies to neighbors of x, i.e. vertices that are incident to an edge of
which x is an endvertex. The next vertex to be colored is one with the least
number of forbidden colors. The branching is done according to the color
assigned to the current vertex.

Some of the procedures deserve comment. As we mentioned above, we need
to keep current the inrank and outrank of x. To exemplify, we describe the
calculation of the inranks. Initially, we assign to every vertex x its indegree (the
number of arcs which have x as their head). During stage k, we identify the
vertices of inrank k (these are those vertices for which the assigned value is 0)
and reduce the value assigned to their outneighbors by 1. At the beginning

Fig. 4. Four 1-edges which should not be oriented simultaneously

158 P. Hansen et al.

of stage k, the value assigned to the vertices of inrank at least k is the number of
inneighbors of inrank at least k. This invariant shows the correctness of the
algorithm.

We also have to maintain maxima and minima of the sets of feasible colors
for all vertices. To this effect we use min-max heaps, a data structure introduced
by Atkinson et al. [-ASST]. This structure is similar to a heap, but it has two
types of levels: values stored on even (odd) levels are smaller (greater) than or
equal to values stored at their descendants. A maximum or a minimum value
can be retrieved, and the heap updated, in O(log n) time, where n is the number
of elements in the heap. Creating the heap requires O(n) computations.

The following tables (1 and 2) show sample times needed to color mixed
graphs. The graphs in the first table have order 50, and those of the second table
have order 70. In both cases we have colored 10 graphs of each edge density/arc
density pair. The numbers given are seconds of CPU time per graph on a Sun
Station. They are sometimes large, as graph coloring is NP-hard, notoriously
difficult in practice; furthermore we use only simple bounds in the algorithm.
Notice that adding a few arcs makes the problem easier.

Table 1. Graphs of order 50

Arc
densities

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0,8

0.10

10
8

11
17
22
20
58

175
523

Edge densities

0.20

34
13
27
54
89

1866
585

Table 2. Graphs of order 70

Are
densities

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.10

12
15
19
27

119
629

2079

Edge densities

0.20

6374
47

363
1980

Mixed Graph Colorings 159

We observe that there is a large amount of time spent on graphs of order 50
having edge density 0.20 and arc density 0.5; it may have happened that we
came across one pathological case which took much time. We have however no
explanation why this case should be more difficult than the neighbour cases.

Similarly for graphs of order 70 having no arcs and edge density 0.20 we have
no explanation for this pathological behaviour.

Concluding Remarks

Although the model described in this paper seems rather natural for some
scheduling problems involving disjunctive as well as sequential constraints, we
do not know of a similar approach in the scheduling or graph coloring litera-
tures.

Some questions remain open; among those the complexity of deciding
whether for a bipartite mixed graph G, the chromatic number is 7~(G*) or
~/o(G*) + 1.

Besides this more experiments should be carried out on other types of graphs
and as far as applications are concerned it would be worth developing heuristic
procedures for solving large problems with guarantees of performance. Proposi-
tions 4 and 5 are a first step in this direction.

Acknowledgments: This paper was written partially when the third author visited RUTCOR at
Rutgers University, New Brunswick, N.J. and partially when the first author visited the Dept of
Maths at Ecole Polytechnique F6d6rale de Lausanne in 1994-1995. The support of both institutions
is acknowledged. The first author was also supported by NSERC grant GP 0105574 and FCAR
grant 90 NC 0305. We thank three anonymous referees for useful comments and suggestions.

References

[ASST] Atkinson MD, Sack J-R, Santoro N, Strothotte T (1986) Min-max heaps and generalized
priority queues. Communications of the Association for Computing Machinery 29:996-
1000

[BALI Balas E (1969) Machine sequencing via disjunctive graphs: An implicit enumeration ap-
proach. Operations Research 17:941-957

[GALl Gallai T (1968) On directed paths and circuits. In: Erd6s P, Katona G (Eds.) Theory of
graphs - proceedings of the colloquium held at Tihany, Hungary. Academic Press

[MMI] Matula DW, Marble G, Isaacson JD (1972) Graph coloring algorithms. In: Read RC (Ed.)
Graph Theory and Computing. Academic Press

160 P. Hansen et al.

[ROYa] Roy B (1966) Prise en compte des contraintes disjonctives dans les m6thodes de chemin
critique. RAIRO 38:69-84

[ROYb] Roy B (1967) Nombre chromatique et plus longs chemins d'un graphe. Revue Franqaise
d'informatique et de Recherche Op6rationnelle 1:129-132

[TAR] Tarjan RE (1983) Data structures and network algorithms. SIAM
[VIT] Vitaver LM (1962) Determination of minimal colorings for vertices of a graph by means

of Boolean powers of the adjacency martix. Soviet Mathematics - Doklady 3, no 6:
1687-1688

Received: April 1995
Revised version received: April 1996

