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All generating pairs of all two-generator Fuchsian groups 

By 
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Introduction. The problem of when two transformations A, B in PSL(2, R)  generate a 
Fuchsian group was thought to have been solved completely in the paper  [14] of Purzits- 
ky, when taken together with the results in [6], [12], [13], [15] and [16]. 

However,  in [9] Matelski pointed out an error in the main statements of [14] and 
showed geometrically that there is just one more possibility for two hyperbolic elements 
with axes intersecting in exactly one point to generate a (2, 3, 7)-triangle group 
(A, BIA 2 = B 3 = (AB) 7 = 1). 

He gave an algorithmic approach for deciding the discreteness of two-generator sub- 
groups of PSL(2, R). His approach is not very effective and does not help very much for 
the original problem. Especially, Matelski did not describe all generating pairs of all 
two-generator Fuchsian groups and also did not present criteria for deciding the discrete- 
ness of all two-generator subgroups of PSL (2, R).  

In this paper  we give a complete correction of the paper  [14], describe all generating 
pairs of all two-generator Fuchsian groups and present a short algebraic algorithm for 
deciding the discreteness of all two-generator subgroups of PSL (2, ~ ) .  We think that  this 
is necessary for three reasons. First the results of Purzitsky in [14] are used and mentioned 
in several papers, for instance in [1], [5], [7], [11] and [17]. Second these descriptions and 
criteria are important  for some unanswered questions about  the Nielsen-Thurston theory 
as I learned from the talk of Jane Gilman at the Alta conference on combinatorial  groups 
theory and very low dimensional topology t984. Third, last but not least, it is good to 
have a final version because the partial results are strewed about  several papers. 

1. Preliminary remarks. In this paper  we use the terminology and notat ion of [1], [8] 
and [19]; here ( �9 �9 �9 I " " ")  indicates a description of a group in terms of generators and 
relations. By (A, B)  we denote the group generated by A and B. 

We write {A,B} ~ {U, V} if there is a flee (Nielsen)-transformation from {A,B} to 
{U, V} and call {U, V} Nielsen-equivalent to {A, B}. 

Let G = (A, B)  be a group such that  A has finite order n ~ 2. We call a t ransformation 
{A, B} ~-~ {A m, B} with 1 ~ m < n and (m, n) = 1 an E-transformation (here (m, n) denotes 
the greatest common divisor of m and n). 

BY an extended free transformation from {A, B} to a pair {U, V} we mean each finite 

sequence of free transformations and E-transformations. We write {A,B} ~ {U, V} if 
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there is an extended free t ransformation from {A, B} to { U, V}. It should be remarked 

that (A, B)  = (U,  V)  if {A, B} ~ { U, V}. Frequently we obtain from a pair {A, B} a new 
one by extended free transformations and then denote the latter by the same symbols. 

We write [A, B]. = A B A -  1B- 1 for the commuta tor  of A, B e G (G a group) and tr A 
for the trace of A ~ SL(2, l l ) ;  also E denotes the unit matrix in SL(2,IR). We identify 
PSL(2 ,N)  with the group of all automorphisms of the upper  half plane .~. It is 
PSL(2, N) = SL(2, R)/{E, - -E} ;  that means PSL(2, ~ )  consists of the pairs {W, - W),  
W s SL (2, N.). There is no space for confusion if we abbreviate W for { W, - W} and do 
not distinguish between W and {W, - W}. We name an element W e  PSL(2, IR), W + E, 
hyperbolic if I tr W[ > 2, parabolic if [ tr W[ = 2 and elliptic if I tr W I < 2. 

Now let G be a subgroup of PSL (2,1l). We say that G is elementary if the commuta to r  
of any two elements of infinite order has trace 2; equivalently, G is elementary if any two 
elements of infinite order have at least one common fixed point. G is said to be discrete 
if it does not contain any convergent sequence of distinct elements. 

A Fuchsian group is a non-elementary discrete subgroup of PSL(2,N) .  

Lemma 1 (cf. [10] and [14]). A two-generator Fuchsian group G has one and only one o f  
the following descriptions in terms o f  generators and relations: 

(1.1): G = (A ,  B;) ,  that means G is a free group o f  rank two. 

(1.2): 6 = ( A ,  B I A  p = l ) f o r 2 < = p .  

(1.3): G = ( A ,  B I A  p = B  q = l ) f o r 2 < p < q a n d p + q > 5 .  

(1.4): G = ( A , B [ A P = B " = ( A B )  r = l ) f o r 2 < = p < q < = r a n d ~ - + "  _1 +-1 <1 .  
p q r 

(1.5): G = (A ,  B I[A,B] p = 1) for  2 <= p. 

(/.6): G = ( A , B ,  C t A  2 = B 2 = C  z = (ABC) p = l )  for  p = 2k + l,  k > l. 

R e m a r k .  In (1.6) is G = (AB ,  C A )  and [AB, CA] = (ABC) 2. 
A group G of type (1.1), (1.2) or (/.3) is a free product  of the two cyclic groups ( A )  and 

( B ) .  We call a group of type (/.4) a (p, q, r)-triangle group; in some sense the triangle 
groups are the most  complicated two generator Fuchsian groups. 

In the following we use the notat ion of Lemma  1 and refer to the presentations and 
canonical generators in Lemma 1. 

2. Generating pairs of two-generator Fuchsian groups and discreteness criteria. In [9] 
Matelski showed geometrically that  there exists a generating pair {U, V} of the 
(2, 3, 7)-triangle group with [U, V] = (AB)4; that means especially the order of [U, V] is 7 

and [U, V] rotates by - ~ .  This possibility was omitted in [14]. Matelski did not describe 

U, V as words in A, B. He also did not answer the question when two elements U, V of 
PSL(2, N) with [U, V] v = 1 generate a (2, 3, 7)-triangle group. Therefore first we want to 
handle with these two problems. 

Lemma 2. Let G = ( A, B IA  2 = B 3 = ( A B )  7 = 1 )  be a (2,3,7)-triangle group. Let 
U .  = A B 2 A B A B 2 A B 2 A B  and V. = B2ABAB2ABABA.  
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Then the following hold. 

a) [U,V] = (AB) 4. 

b) U and V generate G. 

c) I f  {R, S} is any generating pair of  G such that [R, S] is conjugate to (AB) 4~, ~ = +_ 1, 

then {R, S} ~ {U, V}. 

P r o o f. I t  is a s traightforward calculation that  [U, V] = (AB) 4 by using the relations 
A 2 = B  3 = ( A B )  7 = 1 .  

Let H = (U,  V) be the subgroup of G generated by U and V. Because [U, V] = (AB) 4 
we have AB ~ H. Therefore (AB)-  2UV = BAB2 ~ H, V. AB �9 BAB 2 = B2ABABaA ~ H 
and AB �9 B2ABAB2A �9 AB = BA ~ H. Final ly BA �9 AB = B 2 ~ H, B ~ H and AB �9 B 2 = 

A e H;  that  means H = G. 
Now let {R, S} be a generating pair  of G such that  [R,S] is conjugate to (AB)'~% 

e = + 1. Since two (2,3,7)-triangle groups are conjugate in P G L ( 2 , N )  and since a 
(2, 3, 7)-triangle group is not  a proper  subgroup of any other Fuchsian group, {R, S} must 
be Nielsen-equivalent to {U, V} (cf. also Lemma 1 of [5]). [2 

Lemma 3. Let U, V be two elements of  PSL(2 ,N)  such that 0 < tr U, 0 =< tr V and 
4re 

t r [ g ,  V] = +_ 2 cos -if-. 

Assume that G = (U,  V )  does not contain an element of order 4. Then G is discrete if 
4~z 

and only if tr [U, V] = - 2 cos -~- and {U, V} is Nielsen-equivalent to a pair {R, S} which 

also satisfies t r R - - - t r S ,  t rRS  = t r R - - 1 .  Moreover, if G is discrete then G is a 
(2, 3, 7)-triangle group. 

R e m a r k .  If {U, V} is Nielsen-equivalent to {R, S} then tr [U, V] = tr [R, S]. 

P r o o f. F r o m  0 < tr U, 0 < tr V and tr [U, V] < 2 we automatical ly  get 2 < tr U, 
2 < tr V (cf. Lemma (2.2) of [4]); that  means U and V are hyperbolic  elements. 

Let G be discrete. Then by [9] G is a (2, 3,7)-triangle group G = 
(A,  B [ A 2 = B 3 = (AB)7 = 1) because G does not  contain an element of order  4 (cf. also 

47z 
[141). Moreover,  [U, V] is conjugate to (AB)4% a = + 1, because tr [U, V] = _+ 2 cos i f - .  

By Lemma 2 {U, V} is Nielsen-equivalent to the pair  {R, S} with R = AB2ABABZAB2AB 
and S = B2ABABZABABA. 

Since 2 < tr U, 2 < tr V we have also 2 < tr R, 2 < tr S in the languages of traces 

(cf. [51). 
We remark  that  R = AB2ABS - tB2ABA and RS = ABABZAB 2. A straightforward 

calculation gives tr R = 2 z = tr S and tr RS = 22 - 1 = tr R - I where ~. = 2 cos 7 '  
This leads to 

t r [ R , S ] = 2 2 4 + ( 2  z - l )  z - 2 4 ( 2 2 - 1 ) - 2 = 2 2 - 2 - 1  = - - 2 c o s ~ .  
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Now l e t t r [ U , V ] = - 2 c o s ~ a n d t r U = t r V = . x ,  t r U V = t r U - l = x - 1  (this 

we may  assume without any loss of generality (cf. for instance [5])). Then 

0 = tr[U, V] + 2 c o s ~ -  = 2x 2 + ( x -  1) 2 -  x 2 ( x -  1 ) -  2 + 2cos  

4~ 
= - -  X 3 -'~ 4 X  2 - -  2x - I + 2 cos ~ - .  

The polynomial  f ( x )  = - x 3 + 4x z - 2x  - 1 + 2 cos ~ has 3 real zeros and only 

one of these zeros has an absolute value greater than 2, namely the zero 22 where again 
7r 

2 = 2 cos 7" Therefore tr U = tr V =  22 and tr U V=  2 2 -  1; that means G is a (2,3,7)- 

triangle group G = (A, B IA 2= B 3 =(AB)  7 =  1) because each subgroup ( R , S )  of 
PSL(2 ,R)  with t rR  = t r S =  2 2 and trRS = 2 2 -  1 is conjugate in P G L ( 2 , R )  to 
G= ( U , V ) .  [] 

R e m a r k .  In Lemma 3 we obtain the pair {RS, R -  1} from {U, V} in a complete trace 
minimizing manner  (cf. for instance Lemma 1 of [5]). 

Now Lemma  2 and Lemma 3 when taken together with the results in [4], [5], [6], [9], 
[12], [13], [14], [15], [16] and [17] give the following final results (we use the notat ion of 
Lemma  1). 

Theorem 1. Let 

(2.1): I f  G is of 

(2.2): I f  G is of 

(2.3): I f  a is of 

(2.4): I f  G is of 

a) 
b) 
c) 
d) 
e) 

G = (U, V)  be a two-generator Fuchsian group. 

type (1.1) or (1.5) then {U, V} s {A,B}. 

type (1.6) then {U, V} s {AB, CA}. 

type (1.2) or (1.3) then {U, V} e2 {A, B}. 

type (1.4) then one (and only one) of the following cases holds: 

{U, V} ~ (A,B).  

G is a (2, 3, r)-triangle group with (r, 6) = 1 and {U, V} ~ {ABAB 2, B2ABA}. 

G is a (2,4, r)-triangle group with (r,2) = 1 and {U, V} ~ {AB 2, B3AB3}. 

G is a (3,3,r)-triangle group with (r, 3) = 1 and {U, V} ~ {AB 2, B2A}. 

G is a (2, 3, 7)-triangle group and 
{U, V} ~ {ABEABAB2ABEAB, BZABAB2ABABA}. 

R e m a r k s. 1. The results of [14] are used in the proof  of Lemma 5 of [17]; that means 
Lemma 5 (and therefore also Lemma 6) contains one error for the (2, 3, 7)-triangle group; 
one has to add case (2.4e). The results of [17] are correct for the (p, q, r)-triangle groups 
which are not isomorphic to a (2, 3, 7)-triangle group; Theorem 1 of [17] naturally is also 
correct for the (2, 3, 7)-triangle group (one only has also to consider case (2.4e) in the 
proof) and in Theorem 4 of [17] one has to add case (2.4 e). Theorem 4 of [17] (the situation 
1 of this theorem) is generalized by Theorem 2 of [5]; one also has to add here case (2.4 e). 
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2. If one is interested in the Nielsen-equivalence classes of generating pairs in (2.3) 
and (2.4 a) one can get all Nielsen-equivalence classes of generating pairs - up to the 
obvious ones - by the following possibilities to generate (p, q, r)-triangle groups by two 
elements of finite order whose product is also of finite order (one can derive the complete- 
ness from [6]). 

a) The (2, 3, r)-triangle group with (r, 3) = 1 can be generated by U = A B A B A  and 
V =  B with U V -  (AB) 3. 

b) The (2, 3, r)-triangle group with (r, 2) = 1 can be generated by U = A and V = BAB 
with U V =  (AB) 2 

c) The (2, 3, r)-triangle group with (r, 2 ) =  1 can be generated by U = (AB)-1  and 
V = B A B A B A B  2 with UV = BZ(AB)4B. 

d) The (2, 3, 7)-triangle group can be generated by U = ABABZABA and V = B with 
U V = A B A B 2 A B A B  = A B A B Z A B A B ( A B ) - 7  = ABABAB2(AB)BAB2ABEA.  

e) The (2, p, q)-triangle group with (2, q) = 1 can be generated by U = A B A  and V = B 
with UV = (AB) z. 

f) The (2, p, q)-triangle group with (2, p) = 1 can be generated by U = BA and V = AB 
with UV = B 2. [] 

Theorem 2. Let U, V ~ PSL(2, IR) with tr [U, V] > 2. Let G = (U,  V )  be non-elementary. 
Then G is discrete if and only if there is an extended free transformation from {U, V} to 
a pair {R, S} which satisfies (after a suitable choice of  signs) 

0 _<_ t rR  _<_ t rS  _< [trRS[,  
rc 

t r R = 2 c o s -  or > 2 ,  
P 

t r S = 2 c o s -  or >=2 and 
q 

7C 
t r R S = - 2 c o s -  or _ < - 2  

r 

where p, q, r ~ N\{1}.  
Moreover, if G is discrete then G is of type (1.1), (1.2), (1.3) or (1.4). [] 

R e m a  r k .  In Theorem 2 we obtain the pair {R,S} from {U, V} in the following 
manner. Assume without any loss of generality that 0 -<_ tr U, 0 _-< tr V. Then after apply- 
ing free transformations in a trace minimizing manner we obtain a pair {P, Q} with 
0_-< t r P  = t rQ and t rPQ < 0. 

Now apply E-transformations as in [5] if necessary. Then (after a possible changing of 
signs) apply again free transformations in a trace minimizing manner and so on. This 
algorithm comes to the pair {R, S} after finitely many steps (cf. also [18]). 
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Theorem3.  Let U , V ~ P S L ( 2 , R )  with 0 < t r U ,  0 < t r V  and t r [ U , V ] < 2 .  Let 
G = (U,  V) .  Then G is discrete if  and only if one of  the following cases holds." 

(2.5): tr[U, V] < - 2. 

(2.6): tr [U, V] = - 2 cos 

(2.7): tr [U, V] = - 2 cos 

(2.8): tr [U, V] = - 2 cos 

mmtmtzmg manner 
tr S = tr RS. 

(2.9): tr [U, V] = -- 2 cos 

(2.10): 

(2.11): 

7~ 
p, p ~ N\(1}. 

27r 
- - , p  ~ N\{1},  with (p, 2) = 1. 
P 

6~ 
- - ,  r ~ N ,  r > 7, with (r, 6 ) =  1 and {U, V} is in a trace 

r 

Nielsen-equivalent to a pair {R,S} which satisfies t rR  = 

4Z,  r ~ N ,  1">5, with (r, 2 ) =  1 and {U,V}  is in a trace 
r 

minimizing manner Nielsen-equivalent to a pair {R, S} which satisfies tr R = tr S 
and t r R S  = �89 R) z. 

3~ 
t r [ U , V ] = - 2 e o s - - ,  r ~ N ,  1->4,  with (r, 3 ) = l  and {U,V}  is in a trace 

r 

minimizing manner Nielsen-equivalent to a pair {R, S} which satisfies t rR  = 
tr S = tr RS. 

4~z 
t r [U,V] = -  2 c o s ~ -  and {U, V} is in a trace minimizing manner Nielsen- 

equivalent to a pair {R, S) which satisfies tr S = tr RS = tr R + 1. 

Moreover, if G is discrete then G is of  type (1.1) in (2.5), of type (1.5) in (2.6), of type (1.6) 
in (2.7), a (2, 3, r)-triangIe group in (2.8), a (2, 4, r)-triangte group in (2.9), a (3, 3, r)-triangle 
group in (2.10) and a (2, 3, 7)-triangle group in (2.11). [] 

Corollary. Let G = (U,  V )  c PSL(2 ,R)  be a Fuchsian group. Then [tr[U, V] - 21 > 
7~ 

2 -- 2 cos ~. [] 

R e m a r k .  In [18] this inequality was used to prove the following theorem (cf. also [2] 
and [3]; we mention that case (2.11) does not affect this inequality). 

"Let  G be a non-elementary subgroup of PSL(2,N).  Then G is discrete if and only if 
each cyclic subgroup of G is discrete." But in fact this inequality is not  necessary for the 
proof and it is very simple and straightforward to prove this theorem. Namely, let G be 
a non-elementary subgroup of PSL(2, R) with the property that each cyclic subgroup of 
G is discrete. Let U, V be any two elements of G with tr [U, V] 4= 2 (such U, V exist because 
G is non-elementary). If tr [U, V] > 2 and (U,  V) is non-elementary then after applying 

2 

extended free transformations we obtain easily tr [U, V] > - 1 (cf. the argu- 

ments in [18]). If tr[U, V] < 2 then tr[U, V U - I V  -1] > 2. So G must be discrete. 
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