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Abstract

For a given volume form fdx on a bounded regular domain €2 in IR"™, we are
looking for a transformation u of €, keeping the boundary fixed and which
sends the Lebesgue measure dz into fdz (i.e. we solve det(Vu) = f). For f
in various spaces, we propose two different constructions which ensure the
existence of u with some gain of regularity. Our methods permit the recovery
Dacorogna and Moser’s results [4], but also, we prove the existence of such
v in Holder spaces for f in C°, or even in L*°.

1 Introduction

Let €2 be a regular bounded domain of IR™ and let f be a positive function
on 2 verifying the following hypothesis denoted by (H)

Jc¢ > 0 such that f > cin O

(H) /Qfdxzml,

where | is the Lebesgue measure of 2.

We are interested in finding an application v from € into itself which trans-
forms the Lebesgue measure dz; A ... A dxy, into the measure f(z)dz1 A... Adz,
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and such that u(z) = 2 on 9. More precisely, we are looking for u satisfying

u#(dzy A ... Adxy) = f(z)dzy A ... Adz,, in O (11
u(z) =z, on 99 ; 1)

this is equivalent to solving the following equation

Lieen o a2)

This equation, which can be called the prescribed volume form equation, has a
lot of applications in physics, mainly in elasticity theory as for example, in the
problem of equilibrium of gases (see [3]). On the other hand, this equation contains
the construction of volume preserving mappings as indicated in [4].

The difficulties of solving (1.2) come, in particular, from the strong non-
unique-ness and the strong non-linearity of the Jacobian determinant. One of the
natural questions is how to find a solution u having the best regularity as possible
for a given f. We observe that for any given f € C'°, one can find v ¢ C* solving
(1.2), this illustrates the difficulties mentioned above.

In [4], Dacorogna and Moser have overcame those difficulties in the case where
f belongs to the Hélder spaces C*(Q) for 0 < @ < 1 and 0 < k < oo. In fact,
they proved the existence of u in C*+1%(Q) solving (1.2). Clearly, this is the best
regularity that one can expect.

In [12], the optimal result, in the sense of regularity for u, has been obtained
for f in W™P(Q) with max(1,n/m) < p < oo.

For f in other spaces, the optimal regularity of u is not decided. For example,
an interesting case would be to consider f in C*(Q) for k in IN, and to know
whether one can expect to get a u in C*¥T1(Q) or at least in C*1(Q).

Until now, the best regularity of u proved for f in C°(Q) was if u was a
homeomorphism (see for example [8] or [4]), but the equation (2) is meaningless
for such u and has to be replaced by a weaker form

V E open set in Q, / fdz =|u(E)|,
E
u(z) =z, on 9N.

(1.3)

In the first part of our paper (section 2), we propose a constructive method based
on dyadic decomposition of the domain 2. This method, which permits the re-
covery of Oxtoby and Ulam’s result for f € L'(Q) in one hand, and gives on the
other hand the existence of more regular solutions % of (1.3) under some control
conditions on the oscillation of f.



Vol. 3, 1996 Resolutions of the prescribed volume form equation 325

Our main results in the first part are
Theorem 1 Let f € C°(Q) verifying (H), then there exists w solution of (1.3)
such that u, ™ € Npe1 CO(Q). n

Theorem 2 Let f € L®(Q) verifying (H), then there exists u solution of (1.5)
such that u, u=t € COP(Q) for any B > 0 satisfying

c

1
< |min | inf f, ——
b TS 5 sup f
Q
where ¢ is a positive constant independent of f. |

Theorem 3 Let f be in BMO(Q) verifying (H), then there exists u € C%7(Q)
solution of (1.8) for any v > O satisfying

inf f €2
”<“(memm>

where ¢; and ¢ do not depend on f. |

For f in C°(Q), one could expect to arrive at a C*(Q) or a C*1(Q) solution of
(1.3), but we have to add some stronger hypothesis on the oscillation of f for
ensuring the existence of a Lipschitz solution. We have the following theorem:

Theorem 4 Let [ be a positive function on Q verifying (H) and such that there
1

exists an increasing function ¢ : Ry — Ry satisfying / et dt < +oo for
0
which

1 _
Voetso, Iﬁ;ﬂLmtﬂw~fm|@S¢@, (1.4)

where Q. » = B (z) N Q, fm,t = (/ f(y)dy) /1 Qg1 |. Then there exists a Lip-
Qz,t

schitz homeomorphism solving (1.2).

Remark 1 The previous hypothesis for f ensures that f is continuous but it is
weaker than the Dini-continuous condition. |

Theorem 5 Let f be a positive bounded function verifying (H) and such that
there exists o € (0,1), p > 1 for which f € WPP(Q,R), then there exists ¢ € R..
and a homeomorphism u € WH9(Q) verifying

u¥(dz) = f(z)dz. (1.5)
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Moreover, for any neighborhood U of Q, one may ensure u(Q)) C U. Precisely

. " . oln2 ) )
q is any positive number in |1, ——————~ | where Cy is o universal constant and
In(1+ Cyr)
To 18 the following constant:
To = hm Sup l f(y +Z) - f(y) I (16)
=0 \ 12/<t, yen inf f
|

Remark 2 For q sufficiently large (for example ¢ > n?/(n+1)), (1.5) is equivalent
to det(Vu) = f. ]

Finally, using the same method, we have the following theorem:

Theorem 6 Let [ be a positive function verifying (H) and (1.4). If f verifies

//QXQ }xwy]n(ﬁz ;d:zcdy<oo

for some o € (0,1), then there exists u solution of (1.2) such that u € W1 >=(Q)

and
| Vu(z) — Vu(y) |
dzdy < oo. 1.7

//stz |z —y |nte Y @7

As it can be noted, employing using the details of the dyadic decompositions
we use, this method is not adapted to the regular cases, but to the limiting ones
(f € C° L®,...). In the second part of our paper (section 3), we reconsider the
flow method of Moser (see [7]) with regularizing paths in the forms space which
interpolate f(x)dx and dz. This idea leads, on one hand to a new and direct proof
of Dacorogna and Moser’s results with also new estimates which could be useful for
numerical approaches. On the other hand, we establish new results for f € C*(Q)
(k>1).

It is also interesting to note that this method, completely different from the
dyadic decomposition proposed above, leads to the same gain of regularity in the
limiting cases, f € CY, L> and BMO. (cf. § 3.3)

Our main results, with the second method, are the following (for simplicity
we always assume 2 to be regular):

Theorem 7 Let k € IN, 0 < o < 1 and f € C**(Q) verifying (H), then there
exists u € CF*TL2(Q) solving (1.2). Futhermore we have the following estimate,
v 6 € (0, min(l, k + o)),

[ = Id]| grsramy < ClS = Ulorag (1.8)
where C only depends on || fllo,s, igf f, 6, a, k and Q. |
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Remark 3 e Some similar estimates have been obtained by Zehnder in [13]
under more a restrictive hypothesis: for ||f — 1|lo,s small enough.

e The method that we use for proving Theorem 7 is a direct one and could be
useful for a numerical approach. Futhermore, estimate (1.8) illustrates the
stability of the method.

Theorem 8 Let k € IN and let f be in C*1(Q) = WFTL(Q) verifying (H), then
there exists u, solution of (1.2) such that, for any a < 1, u is in C**1%(Q) and
such that for any 0 < 6 < 1,

v = Id|lk1,0 <ClIf -1

k1 (1.9)

where C only depends on «, k, Q, iréff, 6 and || fllos- ]

Remark 4 e Asa consequence of Theorem 1 in [4], for each o < 1, there ex-
ists uq in C*1(Q) solution of (1.2), but it is not clear whether u, remains
the same for oll o < 1 or not.

o The best regularity for u that one can expect, under the conditions of Theorem
8, is u in C**L1(Q). But we are not able to decide whether the u obtained
here is in this space.

2 A constructive method for prescribing
a volume form f(z)dx

2.1 Presentation of the constructive method

Let f € L(S2) verifying (H). First of all, we consider the case Q = (0,1)™.
For i € N and k = (k))1<i<n € Z", we denote by C(k, 1) the following cube in the
dyadic decomposition of [0, 1]™,

N ki k41
k)= IT [2 = } 2.1)
Let f; € L°(Q) be the following approximation of f
1 .
fi(z) f(y)dy on C(k,1) (2.2)

Ok | owa

for any C(k,i) C [0,1]". Note that f; verifies always (H) and tends weakly to
f(z) in L'(Q2). Our aim is to construct by induction a sequence (u;) of Lipschitz
homeomorphisms from 2 into itself verifying

{ det(Vu;) = f; inQ

ui(x) =z  on O (2.3)

We use the following lemma which is the key point of our construction.
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Lemma 1 Let D = [0,1]", A = [0,1]*7! x [0,1/2] and B = [0,1]""1 x [1/2,1].
Let o, B € R} such that o + 8 = 1. There exits a Lipschitz homeomorphism ®
from D into itself such that

(@) @)=z,  z€dD;
det(V®) =a in A

@)\ deqve) =5 i B (2.4)
(#ii) V(@ = Id)||lLe(py < Cpl 1 —2cx |
where 0 <n < a < (1-1n) <1 and C, only depends on 1. |

Take w3 = Id and w;41 = u; o ®;, where ®; is constructed in the follow-
ing way: Using the previous lemma: ¥V k& = (k) € {0,1,...,2° — 1}, ®; is a
homeomorphism from C(k,¢) into itself such that ®,(z) = z on dC(k, 7). Take
e = (g;) € {0,1}" and denote by A?(¢) and BY(e) the following subsets of C(k, %)
(for 1<p<mn)

ki ki+1 k, 2k, +1 ky g ki g+ 1
A= I {2%’ 9 ]X [2“ 9iF1 ]X Ip+1 [21 ot e |

ki ki+1 2k, +1 k,+1 ki ek g +1
II — - p P - X 11 — - — -
1<p1 {2%’ 9 JX[ il 7 g } 1Zpt1 [21 917 9i T Tgitl

Denote by of (¢) and 37 (¢) the following positive numbers:

/Al’( )f(:v)doc
af(e) = =
/ f(@)da
AP ()UBF () (2.5)
 fl@)dz
Ble) = ¢ =1-0f(e).
/ f(@)dz
AP (e)UBZ(g)

Consider ® the homeomorphism given by Lemma 1 for a = o (¢) and 8 = 57 (¢)
and using dilatations, translations and rotations, we get a homeomorphism ®¥(¢)
from AP(e) U BY () into itself such that

detV®L(e) =2a2(e) in  AL(e)
detV®?(e) =280(e) in BP(e),

and ®%(e)(z) = z on d(AL(e) U BY(¢)). Denote by ® the homeomorphism from
C(k, %) into self such that ® = ®P(g) in A?(¢)UBP (¢). Take ®; = ®70d7 'o...0d}
and

(2.6)

Uit1 = U O @i, in C(k, Z) (27)
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In constructing ®;, one has composed homeomorphisms whose Jacobian determi-
nants are constant by parts in the way that one can easily calculate det(V®;) on
each sub-cube C(k’,i + 1). More precisely, for x € C(k',i+ 1) C C(k, 1),

/ f(z)dz
C(k',i+1)
/ f(z)da
Clk.)

and this proves the existence of u;4 verifying (2.3).

detV®;(x) =

bl

The problem now is to understand under which condition for f the sequence
u; converges in a way that det(Vu;) passes also to the limit at least in the weak
sense (1.5).

Under the hypothesis that f belongs only in L', we have already that u; !
converges in C°(£)) to a continuous map v : Q — Q verifying

V E open set of Q, / f(x)dz = | v H(E) | (2.8)
E
where v~ 1(E) denotes the co-image of E by v. In fact, since ®;(C(k, 1)) = C(k, 1),

one has |Ju; )}y —u;t||_ < diam(C(k,i)) = C/2"

On the other hand, if we suppose that f € L°(Q) and || f — 1|, < n where 7
will be chosen small enough, clearly using (2.4)(iii), one has [|V(®; — Id)|[p(p)y <
Cn and then

11l oo = (Va0 8 V], < [ Vi (1 + O, (2.9)

thus ||Vu|| < (1+Cn)*. Moreover, since ®;(C(k,4)) = C(k, 1), we get [|®; — Id]|
< /2. Considering

it = vill oo = lJus 0 s — usll oo < Vil o l|9s — Id]l o,

and the two previous inequalities implies that

1+Cn ‘
5 )

w1 —uill < C ( (2.10)

For (1+Cn) < 2, the sequence u; converges in C°%(Q). Since now we have f; — f
in L% weak-x, u;' — w™!in C°(Q) and w; — u in C°(Q), u verifies (1.3).
Indeed, let F' be any compact set of Q, u(F) is compact. Consider V, = {z €
Q, s.t. d(z,u(F)) < €}, since u(F) is compact, we know that | V.| — | F'| as ¢

tends to 0. For ¢ sufficiently great, u;,(F) C V. and we have | u;(F) | = / fi(z)dz <
F
| Ve |, thus

hm fz (x)dz —/ fl@)dz <] u(F)|. (2.11)
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Since w is a homeomorphism, w(F°) is an open set, we prove exactly in the same
way that

lim [ fi(z)ds = . f(x)dz < | u(F°)|. (2.12)

31— 00 Fe

Adding (2.11) and (2.12), we have
mx:/ﬁf(:c)dzgm(m|+|u<FC>4=|u<ﬁ)|:|m

this proves that the two previous inequalities (2.11) and (2.12) are equalities.

In general cases, we solve by induction the following problems: wg = /d and
for any k < (p— 1),

fk/p
# _ /Q 1/p —1)
w dr) = ——=— X ov dzx,
e () / 0 0/p (f .
Q

where v = wy, 0 wy,_1 © ... wy. For p sufficiently large such that ||f1/? — 1| < 7.
u = wp o...0w is a homeomorphism satisfying (1.3) (cf. § 2.2.2).

Under the hypothesis that f belongs only to LY, we recall that v ! converges
to v in C°(Q2) verifying (2.8), but if we want to ensure that v is a homeomorphism,
we have to refine the previous process using Oxtoby and Ulam’s idea (see [§]).

Here we are more interested in the case where f is more regular than L' (for
example f € BMO(R), L>(Q), C°(Q) etc.) for which the previous construction
permits achieving a solution u having more regularity than C°(Q). Moreover, if
supp(f — 1) CC Q, we can assume that supp(u — Id) CC €, since we can work
in a smaller domain as @' = [(,1 — ¢]™ (¢ > 0). Thus by the partition argument
of Moser in [7], the proofs of our theorems for the case 2 = [0,1]" are valid for
general Lipschitz domains or manifolds.

2.2 Proof of Theorems 1 to 4
2.2.1 Proof of Theorem 1

Take f € C%(Q) verifying (H) and follow the method in § 2.1. Let 0 <

1+ Cn

a < 1. Then there exists a sufficiently small 1 such that = 27%, where

C is the constant in Lemma 1. For ¢ sufficiently great (i > i), for any p and &,

| aP(e) —1/2 | < m, since f is uniformly continuous in .
Consider  # y € Q such that | z —y | < 27%. Then there exists P> g such
that 2771 < |z —y | < 27% From (2.9), we have | Vil < (14+Cn)" " |V, ||oo
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and from the same argument for (2.10) we have

1+Cn\°
[ — tljoo < Ca ( +2 ") : (2.13)
We get then the following estimate
lu(@) —uly) | < [u@) —uil@) |+ | wle) —wily) [+ uly) —wly) |
1+Cn\* - 1+Cn\’
< a(F52) +Catt+ Cnfl o -y +0, (L5
o ‘ 2.14
< zca(i) +Ca<1+0”> (2.14)
2t 2
1 (23
< Ca<§{> <2C,|z—y |~
This proves that u is in C%2(Q).
On the other hand, by noting that det(Vu;) > o > 0 and that
lui? —u M, <C27° )
_ c (2.15
196 e < P04l
one proves in the same way that u~! € C%*(Q) for any 0 < a < 1. |

2.2.2 Proof of Theorems 2 and 3

a) Let f € L>(Q) verifying (H) and let C be the constant in Lemma 1, for
p sufficiently great such that 1+ C||f/?P — 1||_ < 2. Let

ck:</ﬂfk”z_a—ldx>/</ﬂf%dm).

We will construct, by induction, a sequence of homeomorphisms wy, for 0 < k <
(p — 1) such that

VY E open set C ), |wi1(E)| = / Ck+1fl/p(vzzl) dx
B (2.16)

wk-i—i(w) =z, on 897

where vg = Id and vy, = wg owy_1...0ws for 1 <k < p, with wy, € CH1~*(Q, Q)
and wg(z) = x on ON.

For k =1, (2.16) is equivalent to

YV E open set C £, luw (B)| = / e fH? da.
E
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Note that the problem is well posed since ¢1 f1/? verifies (H) on Q. More precisely,
/clfl/p dr = | Q| and ¢; /7 > al/P (since /fl/p dr < | Q| by Hélder’s
Q Q

inequality). Note also that f/# and ¢; f1/? give the same estimates for af and 67
defined in § 2.1, thus w; constructed in § 2.1 for ¢; f1/? belongs to C%%» (1) where

ap = {—111(”0”12/1]’1”00) /mz]. (2.17)

Suppose that w; are constructed for I < k, we construct now wy 1 in the same way.

Note first that the problem (2.16) is well posed. Indeed, by / f 5 de <| Q) we
I9)

get

P .

/ fp dz it
a'’P >0 (2.18)

1
cr+1f /o U

dx
Q

Moreover, (2.16) implies, for 1 <[ < k,

V he L®(Q), / hdz = / al (h o wl> (fl/P o U;}l> dz. (2.19)
Q Q

/ckﬂf /pov dr = /ck+1ckf /pov (fl/Pov owk) dx
Q Q

2 -1
= ck+1ckf /povk~1 dx
Q

(/ e > 1§zgic+1 a=1a

Since we always have |[fY/Povyt —1|| = [|fY/? — 1|,
way (for ¢ f1/P o Uy D), is always a homeomorphism in C%%#(Q). Thus we get the
sequence of wy, verifying (2.16).

Thus

(2.20)

Il

wyg constructed in this

Consider now w = v, = wpo...ow; which is a homeomorphism from Q into itself.
By (2.16), w is a solution of (1.3). Furthermore, w € C%#(Q) with 8 = (a,)".
Making p tend to infinity, one easily proves that

l_nc_ﬂ ~ min {ln (igff), —In (s%p f)}

where ¢ does not depend on f. |
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b) Let f be in BMO(Q) verifying (H). Let M > inf f and note Trnf the

following truncated function Thf = min(M, f). Denoting h = f/Ta f, we remark
that HhHBMo(ﬁ) tends to 0 as M tends to co. In fact, for any z € R™ and r > 0,

denoting Qs = Bi(z) N Q and hy . :][ h dz, one has
Q 3

1 / 1 1
_— h(y) — hao| dy = ——/ hy—————/ hdz
|Bm77'| Qm,z | ( ) (t| |B$:T| QQ;,t ( ) lBiﬂﬂ"l Qx,t

1
e / /QQ Ih(y) — h(2)] dydz.
1rty) - 162
M

dy
(2.21)

Clearly we have |h(y) — h(z)] < , 80 (2.21) leads to

1 11
|Ba.r| /{;N [7(y) — hael dy < M|Q—m,t|§ //waﬂu If(y) — f(2)| dydz

1 1
< —_—— _
- MIBx,r|2//Bi,pr,,,<if(y) for

< Zlflso.

C1fE) - fx,,,|) dyd>

2 1
So we get the estimate |k||papo < Ml|fHBMO- Let ¢, = ﬁ/ h(z)dz and write

o}
f = (h/ew) xepTuf. Clearly 1 < ¢ < (1 + 1/M). First we solve the problem
for h/cn. Note that we can apply the method in § 2.1, since we can estimate
laf(e) —1/2] by CHhHBMO(—ﬁ)/a, where a = igff. Thus for [|h[ 00 small

enough, we get a v in C%*™(Q) satisfying v¥ (dz) = h(z)dz/c, where

In (1 + C’HhHBMO(ﬁ)/a)
In2 ‘

ay =1- (2.22)

Let w be the solution given by § 2.2.2 a) for ¢TI f o vl then u = wowis a
solution of (1.5) and u € C%(§)) where

. 1 ¢
T < Gpm [mln (Cha, m):l .

By choosing a good value of M, one proves the assertion of Theorem 3. |

2.2.3 Proof of Theorem 4

In view of § 2.1, we are interested in finding a condition on f which ensures
the existence of a Lipschitz solution u since, in this case, (1.5) is equivalent to the
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following equation

{ det(Vu) = f inQ (2.23)

u(z) =2 on .

The condition that we propose here is a kind of Dini decrease of the mean oscilla-
tion

1
3 ¢ an increasing positive function such that / ()t~ dt < +oo
(D)
VzeQandt>0, / | Fy) = Froe | dy < (1),
| Q:v t I

where Qg ; = B(z) N Q, fz)t = (/ f(y)dy) /| € ¢ |. This kind of condition (a

x,t

strong one) was already considered in [9] and [11].

Under this hypothesis, we have the following estimation on | of () — 1/2 |,

flz)dz — flz)dz
laf(e) -1/2] < 5//%) /Bf(e>

-2 / f(@)dx (2.24)
AP(e)UB] ()

(27,

<

2 |Q

where C'is a universal constant. By Lemma 1, we have |V(®; — Id)||, < Cp(27%),
and we get ||V, < (1+Cp(27"))||Vuil| - By induction, this yields

IVul, < m (1+Cao<2*k>)nwonm

1<k<i—1

¢ > "“)} Vol
Z / ols)s 1ds} Vol

< c( / go(s)s-lds) Va0l

This implies that w is Lipschitz. Moreover, we can prove that u; converges to u
in WI’P_(Q) for any p € [1,00), since u; tends to u in C°(), u; is bounded in
Whe(Q) and clearly ||Vu;ll, tends to {|Vul, for any p € [1, 00). |

(2.25)
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2.3 Proof of Theorems 5 and 6
2.3.1 Proof of Theorem 5

Cousider the dyadic decomposition of 2 = [0,1]™ as in § 2. For i € N,
k= (k) €{0,1,...,22—1}" and z € Q, denote by C(k,%)(z), AY()(z), B} (¢)(),
the C(k, 1), A?(¢) and BY (¢) which contain z. By of (¢)(x) and 8 (¢)(x) we denote
the following values

/AP( I )f(m)dx
o (5)(17) - * f(g;)dm (2.26)
AL (£)(x)UBT (e)(z)

Bl (e)(@) =1 - (e)(z).
By Lemma 1, we have

| V(@} —1d) |(z) < C| of(e)(z) — 1/2,
thus we have

| V(®; — Id) |(x) SCZ[af{s)(m)—l/Ql. (2.27)

In fact, ®; = ®F 0 ®7 1 o...0d! and since of (¢)(x) (resp. FF(e)(x)) is constant
in A7 (e)(z) (resp. B (¢)()) and &;(Af(e)(z)) = AP (e)(x) (resp. R{(BY(e)(z)) =
BP(e)(x)) for l < p,so V2 <p<n,

o?(e) (27 0.0 8}(2)) = al(e)(a)
) (277 0.0 B} (x)) = () @).

Moreover for, z € Q, u;y1(z) = u;(®;{z)), this implies

| Vuipi(z) | = | Vuz'(‘l’z(ﬂﬂ))wI> (z) |
< | Vui(@i(2))(Vei(z) — 1) | +] Vui(®i(x)) |
n (2.28)
< (1 + OZ| of -1/2 I) [ Vui(®(x)) |-

Using the previous inequality and the fact that V i < j, of (€)(®,(z)) = of (¢) ()
for any 1 < p < n, we can prove by induction that

0<5<i—

|Ve(w) | < I (1+czla )e) —1/2 |) (2.29)

We ask how one can determine under which condition on f, in view of the previous
estimate (2.29), Vu; remains bounded for some L? norm. Take f bounded verifying
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(H) and suppose that f is in Wo?(Q,1R) for some 0 < ¢ < 1l and 1 < p < 0.
Furthermore, to avoid any problem with the boundary, we suppose supp(f —1) C
Q. Recall the definition of W>P(,IR) (cf. [1], chapter 7)

WP, R) = {f € LP(Q) such that // ‘ . — /W) ’pdxdy < —+—oo} .
QxQ -

‘?H—ap

Consider a cube ¥ = [(,1 — ¢]™ such that supp(f — 1) C €. We claim that
we can find an orthonormal system (eq,es,...,e,) such that

Vo' <oand1<i<n, i@",)k/ [ flz+27%e;) — fz) |dz < +00,(2.30)
Q

where we have defined f(y) = 1 if y ¢ Q. Note that f extended in such a way, on
all of R™, still belongs to Wa’p(IR"). So we have

[ fz+2)~ f(z) ]
/131(0)/ | z ["ﬂfp drdz < o< .

This implies (using Holder’s inequality)

/ | it w\jl—zjnﬂr, (=) ’dmdz < o0, Vo' <o (2.31)
B1(0

and we have then

lf($+2)-f(m)|
dxd
Z/ & (OB, —r—1(0) | 2 |nte’ R

yielding

/ / Z | f(x:,_ — ) n_{a(,m) |d:z:du < 00, Vo' <o, (2.32)
BiO\Byo(0) S i (27)7F [u

This means that

=S [ | @+ 2R - o) e
o

is finite for almost every w € B1(0) \ By /2(0). Thus we can find an orthogonal basis

(e1,€2,...,en) such that Vi and 7, | e; | = | ¢; |, I(e;) < oo and (e1,€2,...,€p)
can be chosen to be as close as we want to the canonical basis. We fix in particular
(e1,eq,-..,ep,) such that we can find a cube £ parallel to (e, e,. .., eﬂ) of length

le; | and Q' cC € cC Q. Modulo a small scale change transforming O to {0,1]”
we have (for 1 <i < n)

P /Q| f@+27%;) - fz) |dz < o0, Vo' <o, (2.33)



Vol. 3, 1996 Resolutions of the prescribed volume form equation 337

where (g;) is the canonical basis of IR™. Note that (H) is still verified for f after
this scale change. Define the global oscillation 7 to be

sup f
Q
1gf I

Let a?(z) be the quantity af(z) = | af(e)(x) —1/2| = | 87 (e)(z) — 1/2 | where
o (¢)(z) is defined by (2.26). We clearly have

Vze[0,1",  al(z) < -Z (2.34)
We have also V z € [0,1]™,
al(z) < — ! X —= = |fly+27%,) — Fy)| dy. (2.35)
dinf f | A7(€)(@) | Jaz o))
By (2.29), we get
Vu,; < 1I 1+C —1/2
| Vui() | 0<j<i~-1 ( Z' % / l) (2.36)
= ogjlgifl (1 -I—Ca](ac))
where a,(z) = Zaf(m). In view of (2.35), (2.33) implies (a = igf 1D
p=1
2‘7)/a1 dm<—ZZ(2” /|f +27%,) — f(z) |dz < co. (2.37)

p=1 i=0
We now use the following lemma whose proof is straightforward by induction.

Lemma 2 Let a; be a sequence of positive numbers, then we have

o0
M (1+a)<1+ 1+ A)la; 2.3
Zem(ﬂb ;(Jr )'a (2.38)

where A = sup a;. [ |
i€cIN

Apply the previous lemma with

= (1+ Ca;(z))? ~ 1 (2.39)
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where C' is the constant in (2.36) and p will be fixed later. If (1 + %) -1<
(2" — 1), we deduce from (2.37) and (2.38)

/Ql Vu(z) Pdz < / (1 + i(?’,)iai(x)) dx

; (2.40)
<|Q|+—ZZ2 /}fm+2 ‘e,) — flz) |d
p=1i=0
<C,
where C does not depend on 3. This implies thas, if p > 1,
/ [ Vu |7 < .
Q
Thus if oln2 > 1 (where Cp is a universal constant), u € W1P(Q) fo
L gs r ;
In(1+ Co7) 0 ), '
oln2

< ——
lsp< In(1 + Cyr)

Remark that, instead of 7, we could take a global bound for the local oscil-
lation g defined by (1.6). The proof is completed. ]

Corollary 1 Let f € C°(Q) verifying (H). Suppose that there exist o € (0,1)
and p € (1,00) such that f € WoP(Q) and supp(f — 1) C Q, then there exists

U € Npeoo WHP(Q) satisfying (1.2). |
Proof of Corollary 1. Indeed, for f € C°%(Q), 7o defined by (1.6) is equal to zero.
]
Remark 5 By the proof, we see that it suffices to suppose
// +2Idxdy<oo o€ (0,1)
axe ' z—y|*
for getting the same result in Theorem 5 and Corollary 1. ]

2.3.2 Proof of Theorem 6

As in the beginning of § 2.3.1, modulo some changes, we can suppose that
= (0,1)™ and (2.33) holds. That is,

D> @)k /lf(x+2 &) — f(z) |dz < oo, Vo <o, (2.41)

i=1 k=0
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where (g;) is the canonical basis of R". Define af(z) and a;(z) in the same way
as in § 2.3.1 and we have

2(2”)’“/ ax(z)dz < oo. (2.42)
k=0 @
Moreover, for u; defined by (2.7), we have

Yz e, | Vui(z) | < o (14 Ca(x)). (2.43)

0<j<i—1

For any h € L}(Q). Denote Fq(h) to be the following quantity:

h(y) |
= dxdy.
//QXQ |x_y|n+o

We claim that, under the previous hypothesis, we have
Fo(V®;) < Cp(2™) (2.44)
where ®; is defined in § 2 and ¢ is the increasing function for which f verifies
(1.4). For proving (2.44), it suffices to prove the following upper bound in Lemma
1:
Fp(V®) <Cpl1—2a| {2.45)

where C;, only depends on 7 such that 0 < n < a <1—75 < 1. To this aim, we use
the following lemmas whose proofs are straightforward.

Lemma 3 Let w be a Lipschitz homeomorphism of Q and v € WH°(Q, R"). We
then have

Fo(V (v ow)) < Fa(V0) (|IVwllZ* |det(Vw )2, ) + Fo(Vw)|| Vol . (246)
|

Lemma 4 Let £y and Qg be two disjointed bounded Lipschitz domains of IR™. Let
2

fi be in L*°(Y;) for i =1, 2. Define h = ZfiXQw we then have
=1

Fa(h) sz A(f3) +CZi|f1H (2.47)

where C only depends on n, o and Q;. |
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Recall that on AU B, in Lemma 1, ® = ¥ o ¢ where ¥ is given by (A.1) and got_l
is the solution of (A.21). From (A.4), we get

Fa(V¥) = (1 — 20)F4(V(znh)) (2.48)
where
zTph = / div(w) (', s)ds. (2.49)
0
By definition, div(w) is C* by parts in A, thus Lemma 4 ensures that F'4(V(z,h))

< 00. On the other hand, from (A.21), we have

d _ _
L b= X )

where X; is in W1*°(A) and is C™ by parts, so Fa(VX;) < oo. Thus we get
(using Lemma 3 and the fact that o will be close to 1/2 for ¢ sufficiently great)

%FA (Vo) < C'l—;ji' (1+Fa (Vo). (2.50)
Remark that Fu (V') = Fa(Id) = 0, using Gronwall’s Lemma, we have
Fa (V™) =Fa (Vo) <C|1-2a] (2.51)
and we easily deduce that
Fa(Vy) <C|1—2a|. (2.52)
Combining (2.48), (2.52) and (2.4)(iii), using Lemma 3, we obtain (« close to 1/2)
Fa(V®) = FA(V(T o) <Cj1-2a]. (2.53)
Similarly we get
Fp(V®) = Fg(V(T o) <C|1-2a]. (2.54)

Using again Lemma 4 and (2.4)(iii), (2.45) is proved.
By (2.45), we deduce

Fo,n(VO;) < C(27) ailow,iy- (2.55)
Thus
- ] | Vo) V() |,
Qx9 E
2" -1
S // | V8:(@) = VOily) |,
nizo’ JCk)xCW) lz—y |t
i1 o ‘ (2.56)
- Y V) = V) |,
pico e Jowixowy 1Ty
201

-+ Z Fo,i (V®;).
E=0
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On one hand

2t_1

// | VO;(z) — Vfi(y) !da:dy
C(k,i) X C(L,3) |z —y|rte
V(®; — 1) || oo s
// [V(®; )Hi+g O,
k=0 k£l Y O(k1)xC (L) lz—y|
2t—1 o _
n Z // [V (®; Id)HL‘”(C(l,z))dmdy (2.57)
kim0 k1) Y ClRi)XC(L3) lz—y[nre
2t 1
[[ oy,
ke 1=0, k1Y Y C (DX O lz—y|
21

dzd
DM
C(hyi) NGk | T— Y|

Since a;(z) is constant on each C(k,4), we are led to bound the following

// | dﬂcdg(+
Clki)x (ACTe) | T =Y 1"
gmit 00 e (2.58)
<[ (H\-m ({gecans @acam =t}) | %W) d

k,1=0, k#l
2t 1

IA

IN

A

where H\~% stands for the (n — 1)- dimensional Hausdorff measure, so

H= ({secql), st rsoedm=1}) =e\ (e 1) 7. @59
Combining (2.57), (2.58) and (2.59), we get

2t—1 201
V(I)i T) — V(I)Z —ivn—o
> / / | Vei(a) - +U(y) |d3:dy <CET"7 Y arlow,q)(260)
ki=0, k1Y J OO L0) lz—y]| P
Combining now (2.55), (2.56) and (2.60), we obtain
Fo(V®;) <C / (29 a;(x)dz. (2.61)
Q
From (2.7) and Lemma 3, the following inequality holds
Fo(Vu;) < Fo(Vui 1) (1 + 099(2—1')) + Fo(V®)|| Vi1 - (2.62)

Recall (2.25), that is

Vuile <€ T <1 + Cso(T’“))- (2.63)
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Using (2.62) and (2.63), by induction, we have

Fa(Vu;)) <C [ g . (1 +C’g0(2’k)> } X [ (2”)]‘“/ ak(ac)d:n} .
< X Q
From (2.42) and (2.25), we get the following bound

Fo(Vu) < C / 1 f-(:—)ds (2.64)

and this implies that Fo(Vu) < oo, since u; converges to u in WP(Q) for p €
1, 00). |

Remark 6 In fact, g € L>°(Q) and Fa(g) < oo imply that g € W&/€(Q) for any
£€(0,0). |

3 The path-regularizing flow method

3.1 Presentation of the method
3.1.1 The flow idea of Moser

Let f and g be two volume forms on € (i.e. two functions on 2 verifying (H)),
let f¢ for ¢ € [0,7] be a family of volume forms conunecting f and g. Any familly
of transformations ¢; sending f to f; (ie. @f’g fe = f) verifies

]
{ pm (fc(«pt)det(wt)) =0, inQ (3.1)
fo=Ff wo=1d, fr=g, infL

This is equivalent to

0 a .
f0:f’ (pO:Id7 fT=97 in €.

As J. Moser proposed in [7], we look for ¢, solution of a flow having the following
form

% = Ay(p2), in Q. (3.3)
A classical computation yields
9 det(Vipy) — divA(0y) det (Vipy) = 0. (3.4)

at
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Then it suffices to find A; solution of the following transport equation which is
equivalent to say that there is no volume creation.
0 .
,ﬁ _|_ le(ftAt) — 0, (35)
ot
in view of solving (3.1). The difficulty in solving (1.2) by this method, remains in
choosing an appropriate path f; connecting f and 1, and a vector field A; satisfying
(3.5).

3.1.2 A construction of f; and A4,

Let © be a bounded regular domain. Let f be in C>(£2) verifying (H). We
first extend f to all of R™ into a function denoted by f. Let £ be a cut-off function
in C§°(R",[0,1]) such that £ =1 in Q and inf f>a > 0. f will be extended

supp(€)
now by the following function in R".

f=Ef+(1-¢).

Note that f(z) > a > 0, for any z € R". Following the ideas of section 2.1, we
will construct f; and A; verifying

% + le(Atft) = 0, in ﬁ X IR+,
A =0, on 00 x Ry, (3:6)
fO - f7 in ﬁ)

and ¢, the solution of the following flow

ot

) -
{ ﬂ = At(%)a in 2 x ]R-H (37)
Yo = Id in ﬁ

In view of § 3.1.1, under the previous notations, we have the following lemma.

Lemma 5 For ¢; and f; defined above, one has for any t > 0,
det(V) X felpr) = f, in Q. |

Now we construct f; and A; in C*°(Q x IR4) verifying (3.6). Let 7 be a non
negative function in C§°(R™) such that

/ ndzr =1, / zn(z) dz =0

and such that there exists some r¢ > satisfying B(0,7¢) N supp(n) = §. Denote

x

¥@) =)z, (@) = 50 (%) ad vi@) = 2o (L) wR

Define g; = f *n; and By = f = ¢. One then has the following elementary lemma.
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Lemma 6 Let g, and B, be as above, one has

99

5+ divBi =0, in IR™ x Ry. (3.8)

Proof of Lemma 6:
Ogy 0 1 -y
5 @) = 5 </1Rn t—nn( ; f(y)dy>
1 T —
[ e (57Y) Sy (39)
— T

!

On the other hand,

1 _ _
divB; = / — div, (un =) F)dy
—_— ¢ ¢
1. T — T —
= / o div <( ; y)) 1\ = y) f(y)dy (3.10)
]RTL
lz—y -y
- ~fly)d
R e ( )W
We clearly have (3.9) + (3.10) = 0 and this proves the lemma. |

One has / g: dz > |Q]inf g, > |Qinf f. Then ¢, = / f dm// g¢ dz is well
Q Q2 o Q Q

defined in IR... Since we have / cigrdr = | |, and by Lemma 6
o

0

/gt %dm = - Egﬁct dr = ¢ /divBt dz

Q g O o (3.11)
= ¢ B;.vdo,
a0
the following linear problem admits a regular solution (see [4])
. 1 dc; .
leDt = C—tgt— X G¢, in (312)
Dt = Bt, on 89

19
Since ——% x g; and B; depend regularly on ¢, the construction of solution of
Ct

(3.12) in [4] ensures the regularity of Dy on Q@ x IR.

Let f; = cig; and Ay = (D; — By)/gt, one verifies that_(ft,At) is a regular
solution of (3.6). We turn now to the construction of u from € into itself, solving



Vol. 3, 1996 Resolutions of the prescribed volume form equation 345

(1.2). First we remark that there exists some 0 < T' < +oc such that fr =1 in
diam () 4 diam(supp(§))
To

Q. Indeed, for t > T =

, one has (recall that B(0,r,) N
supp(n) = 0.)

Veef, Yy e supp(é),

This leads to V z € Q,

Lo(z—y - o[y d
Awwn(t )ﬂm@ (@Awmaﬂn(t )f@)y

L ey Oy (3.13)
/] dy = A\ =1
R™\supp() t R~ !

and similarly, we get

I

gi(z)

I

— lz—y [fz—y
v Q B = — d

el @ = [ ST () s
le—-y (z—y

= ——=n| —=) dy=0.

/]Rn ot T\ Y
L
Moreover, for such t, ¢; = -~ = =1, and by definition f; = 1 in .

/fd:z:—/fdx

Q Q
Then for ¢t > T, Lemma 1 implies that ¢ is a solution of (1.2). So we have proved
the existence of v € C°°(2) solution of (1.2) for any f € C*®(Q). |

We will always follow this method in the proof of Theorems 1 to 5 but justi-
fying each step more carefully.

3.2 Proofs of Theorem 7 and 8
3.2.1 Proof of Theorem 7

Let Q2 be a bounded regular domain of R™ and f be a C*%(Q) function where
0<k<ooand 0 <a <1 Weextend f to all of IR"™ using the following lemma
proved in the appendix.

Lemma 7 Let be_a tubular neighborhood of  (i.e. @ CC ), 0 < m < oo,
there egists Ly, : C™(Q) — C™(IR"™), a linear operator such that

i) Ln(f) = f, in Q.
i) Ln(1) = 1.
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i) ¥ B € [0,1], V1 < m, there exists C(I, 8) such that ¥ f € CHP(Q) verifying
(H)

[ Lmfllcrerny < CU BN fllcre @y (3.14)
i) Ly f =1 in IR™\ . [ |

Denote f = L (f). Then, there exists Q0 a regular domain containing € such
that

inf f .
: 7 Q
> = - . .
1{1212ff__ 5 2>O (3.15)

More precisely, by choosing § € (0, min(k + «, 1))

1/8
ngz{yem,d(y,) Conll } (3.10)

where C(0,6) is the constant given by (3.14) for [ = 0, one verifies easily that
(3.15) is true. Choose a cut-off function ¢ as follows:

d(.%‘, IR”\QQ)

veelR" @)= S Rm Gy < d( )

(3.17)

We replace now f by the following extension on all of IR™ (still denoted by f)

VeeR",  f(z)={((@)f(z)+1-((a). (3.18)
Take 10, n, 1, g+ and By as in § 3.2.2, Lemma 6 still holds. Moreover, let c; be
fdz

one has (3.11) :

aCt
— = B;.v do.
8t/ﬂgtdl‘ CtLQ t-V aa.

By =y x f == (f—1),
hence || Biflo < C|lf — 1]lo. Recall that

equal to <& ,
/ gt dx
Q

By definition

/ g¢ dz > |9 1nfgt > |9 1nff > [Q}a

thus by (3.11)

(9Ct

= (3.19)

) I - 1)
< () 1ol < c Il
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As in § 3.1, we solve the following linear problem

]. (9Ct .
divD,; = o Bt X gy, in £ (3.20)

D, = By, on O9.

By the method in [4], we derive a solution of (3.20) with the following estimates:
VielN,0< B <],
I: l 1 8ct 1 8Ct

[Dilurs <€ Ioe = Dllonoqe + |5 5

+ 1 Bell g, 5(9)] (3.21)

where C depends on [, 8 and Q. Turning now to the estimations of g; and By, we
have the following lemma proved in the appendix.

Lemma 8 VI € IN, V~, 8 € [0,1], we have a constant C depending only on (2,
B, v and l such that Vit >0,

lge = Uy + 1Belly < CIF = Hliys (3.22)
and
1
llge — Llli41,8 + | Belli1,8 < C(W + 1) T (3.23)
n

Combining (3.19), (3.21), (3.22) and (3.23), we obtain that, forany 0 < 5 < 1,
l € N,v € [0,1] satisfying I +v < k + o,

1Dus < €890 1), (3.24)
and
IDdusss <080 | Lotopg, s i |25 B |
< 000,79 (e + 1) 120 - 1 >

As in § 3.1, in view of solving (1.2), we study the flow (3.7) by paying more
attention to the regularity of ;. First of all, the existence and uniqueness of y;
comes from the fact that

1 _ _
Ay = —(D; — By) € L (Ry, WH=(Q)) N C=(RY x Q).

gt
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The condition A; = 0 on 92 x IR ensures that ¢; is always a transformation from
(2 into itself. Moreover, using a classical interpolation result in Holder spaces (see
[6]), one has

1 1
[Aellipr,8 < C ||; = U1,/ Dy — Bello + H;HOHDt = Billit1,6| . (3.26)
Since one has also the following estimate in Holder spaces
1 C
— -1 < lg — 1 L 3.27
I35 = U < Gagrrs o= Uil (3:27)

using (3.21), (3.22), (3.23) (3.24) and (3.25), we deduce that for any 0 < § < 1
and 0 <~ <1,

|If|l+2 1
HAtHH-l,ﬁ < C(Lﬂa 5777 ) 4 ”f”() 5Hf_ Hlv’Y t1+,6’ v +1 (328)

and

I£ 116" _
1Adlins = CU B, 8 Q=751 fllosllf = Llue- (3.29)

Remark 7 We have bounded || Dy — Bi||o in (3.26) by || Dy — Byllo,s and finally we

can bound it by C'HfHO |l f = 1llo,s using (29) and (3.24).

For proving ¢, € C*t1.2(Q) we will use the following lemma, proved in the
appendix.
Lemma 9 Let 1 > 1,0 < 8 < 1 and A¢ € L}, (R, CH(Q)) N C= (R x Q).
Considering the solution w; of the following flow

"’gf Algs), i Dx Ry,
_ 1d, in Q, (3-30)
AtEO, on 00 x Ry,

one has the estimates

foudua <o [ 1o as) xeso(e [ 19 Aclo ). (3.31)
e — Idlli 5 < c</0t 1Al ds) < [eXp(c/Ot ]VASHOds) 1], @s2)

where the constant ¢ only depends on [, 8 and 2. ||

and
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By the previous lemma, for [ = k, § = « and by (3.29), we already establish
that ¢; € C**(Q). In view of proving ¢; € C*T1%(Q), we cannot use directly
the previous lemma for | = k + 1 and 8 = «. Indeed, by (3.28), we just have
NA¢llk+1,0 < CHf — Lik,a/t for t < T, and this cannot imply that ||As|lk+1,6 €
L} (IR.). But, on the other hand, since we have the existence and uniqueness of
@ in C*2 we simply have to establish some a priori estimate for the C*+%(Q)
norm of ; in the case where 4; € C®°(Ry x Q) (i.e. f € C®).

Using a classical result proved in [6], on the C%# estimation of the composition
of applications, we have VI e IN, V 3 € [0,1],

4cpllus < OB, Q)| 1Adusl Veells™ + [V Adlollgelss + 1 4slo |- (3:33)

This leads to the following inequality: There exists C' depending on [, G and Q
such that VI e IN, V 3 € [0,1],

l4dee)lus < C[ 14dlls (1+ e — TG ) + 19 Asllolies — Tdlus | (3:39)

We will also use the following lemma proved in the appendix. For z,y in Q,z#vy,
1 an application from € into R™ and [ € IN*, we denote by be (z,y) the following
quantity

Th(z,y) = Y 0"p(z) — "(y)] - (3.35)

|h|=L

Lemma 10 Let A € C4#(Q) and ¢ € C*P(Q,Q). Then there exists a constant
C(,8,9) such thatV z,y € Q,

Ty@y) £ Cla—yl x | +Thiple), o)) + [V Alollo - Id]is

N (3.36)
+ Al = 1d)lo (1+ o — 1)) ]
|
Deriving (k + 1) times the flow equation (3.7), we obtain that
- 5}

Applying Lemma 10, with l =k + 1 and 8 = o, we have V z,y € Q,

at Pt
C{ T (u(z), 0 () + 2 — yl* x { IV Aellollws — Id||k41,a (3.38)

+ Hdllers.al Ve = 1d)]o (14 IV (e — 1) 1E7) | ]

IA
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First, using (3.28), we have

2
v 4o < 0.0 L0 s (55 +1) (3.39)
and
k+3
4o < O a kDL ool - Lo (§ 1) Ga0)

Moreover, by Lemma 9, we have

V(e — Id)o < c(/[: IIVASHOds> x [e:vp (C/Ot ||VA,S||0d8) _ 1} C(3.41)

By (3.39) this leads to ( for ¢t <T)
V(s — Id)||o < ct® [exp (ct®) — 1], (3.42)

where ¢ only depends on a, 8, T, | f|los and Q.

¢
Now, we estimate / T3t (ps(z), 0s(y)) ds for any z # y in Q.
0

¢ [z—y]
/ 5 (po(), 05 (9) ds = / Ta." (@s(2),0s(v)) ds
; 0o (3.43)

+ /|a;_y1 T]le (SDs(x), Vs (y)) ds

the first integral in the right-hand side of (3.43) can be bounded by

A

lz—yl lz—y| 1
/0 2| Asllgr1 ds < C/O 1f = Hle,a (Sl_a + 1) ds (3.44)
< Clf = Uralz—yl*,

A

where we have used (3.28). The second integral can be bounded in the following
way

t

/It TE  (ps(), 0s(y)) ds < o — yla'X</ 1Al t,0 Vs 16 d8>7(3-45)

z—y| |z—y]
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1
where we have chosen o/ = _;_a_ > a. By (3.28) and (3.31), (3.45) leads to (for
t<T),

/| Th 1 (s(), 05 (v)) ds

z—y|

; ¢ 1
< Jz-yl¥ xC UH” (m + 1) I/ = e ds} (3.46)
a, o0 C/
< lz—yl x </| » i 1f —Llka ds)
< C"If = Ulkale —yl*,

where C" only depends on a, 6, k, a, T, | fllo,s and Q2. Combining (3.43), (3.44)
and (3.46), we obtain that for any z, y € @ and for any t < T,

/0 Tt (ps(@), 0s(y)) ds < C|If = 1lx,alz —y|*. (3.47)

Integrating (3.38) by using (3.39), (3.40), (3.42) and (3.47), we have (for t < T')

b1
77 w) < O [ sgllon = s ds + 1 = la ) %o = 5% (349
0

Va,ye ﬁ,_vvhere C only depends on a, 6, k, a, T, || fllo,s and Q. Taking the sup
on z,y, in £ in (3.48), we obtain

¢ s —1Id a
o= Tl < 0| [ 1200 gy )

t
ds
Since / 1 < 400, we get the desired result by Gronwall’s Lemma. |
0

3.2.2 Proof of Theorem 8

Take f in C*1(Q) for k > 0 and verifying (H). We consider A, f; and ¢,
constructed as in the proof of Theorem 1. By (3.28), for any 0 < « < 1, we have

1 = e

| Atllk41,0 < O i

(3.49)

Thus || A¢||k+1,e € L},,(IR+) and by Lemma 9, we get the desired regularity result
and the estimate follows from (3.32) and (3.39). |
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3.3 The limiting cases

In this last section, we treat the limiting cases considered in § 2.2 (f € C°, L™
and BMO) by the path- regularizing flow method. Let U be a neighborhood of Q.
We are looking for u solution of

4l (3.50)

det(Vu)y=f, onQ
{ u(Q?) C U.

This method leads to exactly to the same gain of regularity of u, established in
§ 2, but without keeping the boundary fixed except under an additional regularity
hypothesis for f closed to 952

3.3.1 The CY and Dini-continuous cases

Taking f # 1 in C9(Q) or in Wh N L°(Q) verifying (H), we extend f into Lo(f)
on all of IR™ as indicated in Lemma 7. Clearly, in this case, %15 Lo(f) = igf f and

sup Lo(f) = sup f.
R~ Q

Let U be a neighborhood of € included in ©;. We can always ensure that
(see Lemma, 7) supp(Lo(f) — 1) € U. We also need to have an extension f of f
such that

supp(f, 1)cU, inff: inf f, supf: sup f and / fd:r = || (3.51)
2 Q o} Q

1

Consider ¢ a cut-off function 0 < £ < 1 such that supp(€) € U\Q. The function
g=(1~&Lo(f)+&inf f (3.52)

verifies a) and

/ngdsc:/ﬂl(l—f)Lo(f) dz +inf f £ da. (3.53)

Q

Since igff < 1, we may choose £ such that / §dz < |Q]. (In fact, £ can be
Q1

taken as close as we want from the characteristic function of U\()). Similarly,
by using sup f instead of igf f, we can construct a function A verifying a) and
0

h dz > |Q|. Finally, a convex combination of § and h may ensure (3.51).
Q1

Let n, 4, n: and 1 be as in § 3.1. Denote by g; and B; the following applications

go=m*f and By=yx*f. (3.54)
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Clearly gg gy > igf f and

1 Btllo < CIlf = Lo- (3.55)
We need the following lemma (a refinement of Lemma 8).

Lemma 11 Let g; and B, be as above. Then, for any € > 0, there exists T, > 0
such that vVt < T,

I Vgello + |VB:lo <

oM

: (3.56)
|

Proof of Lemma 11. Suppose first f € C°(Q). We have

Vae) = [ Vnte-niwir= [ () 00 - f@) iy 37

where we have used the fact V7 dx = 0. This leads to
]Rn

Voe)= [ 3vn) (s e - f(x)> .

upp(n) t

Since f is uniformly continuous on R"™, we get ||Vgi(z)||o < £/t for ¢ sufficiently

small. We can estimate in the same way ||V Bilo, and this proves the lemma for
feCco@). u

Take A; = B./g; and consider the flow (3.7) on all of R”. Combining (3.54),

(3.55) and (3.56), clearly, we deduce that if || A:|lg < C’Hi_—lu—q and Y € > 0, there

a
exists T, > 0 such that Vit < T,
€
IVAdllo < = (3.58)

For any z € IR", the existence of ¢ (z) for all t > 0 is given by classical arguments.
We prove now the uniqueness and some regularity result on ¢; (a crucial point of
our proof!).

Lemma 12 V p € [ 0,1), there exists T,J > 0 such that for any two continuous
solutions o} and ©? of (3.7), for anyt <T,, x £y € R"

ot (#) — @ ()] < C(lz —y|* + |z — y|) (3.59)

where C only depends on ||f — 1||o and a. |
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Proof of Lemma 12. Let = # y be two points of R". Let ¢; (), 0?(y) be two
continuous solutions of (3.7). Defining 7 = |z — y| we have

o (z) — GRy) = / A9} (@) — As(92()) ds + () - (3.60)
For ¢t < 1, since || 4]0 < Cﬂf—_—gl—ng,
i (z) — 07 (W) 570”1_71-”—” +lz—yl <z —yl (3.61)
And for t > 7, (3.60) yields
() — 2)| < / "Nl ds + [ 146k - At ds
+ |z —yi ) (3.62)
< Clo—y+ / A} (@) — A(e2(W))| ds.

Denote by ¢ the solution of the following flow

op . .
a_tt = At (@), InQ
@0 = Id, in Q.

Clearly, since A1, € C°(R" xIR.), § exists and is unique, then we have ¢} (r) =
B1_+(@L(x)) and $3(y) = Pr+(2(y)) for any ¢ > 7. This implies

[ 14k — A2 s
< / IV Asllo % [V @s—rllo x oz () — ¢2(y)] ds (3.63)

Clz - | / IV Aullo X [Fa_rlp ds.

A

IA

Let € > 0, if t < T, by (3.38), |[VAsllo < i— for s in [r,%]. So we get, for any
s<t—r,

5] £
O osil < & 1vus
52 IV@sllo < S+T!|Vspsflo

and this yields

Vs<t—r, IV @sllo < (sz> . (3.64)
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Combining (3.62) (3.63) and (3.64), we get for ¢ < min(1,T;

)
Clz —y| +CT/ = (7_)5 ds

<
< Ol -l +or (e - )
< Clle—ol+lz—9l].

|0 (z) — i (y)]

By taking T, = min(1,Ty_,), this proves Lemma 12. ||

Lemma 12 implies that ¢; is unique for ¢ < T,. Moreover, since A; €
C=(R"™ x IRY), if there exists some 1 > a > 0 and some ¢ > 0 such that ¢
lies in C%%(IR™), then ¢; € C%*(R") for any s > t. Combining this remark
with Lemma 12, we deduce that ¢, solution of (3.7), is unique and belongs to
ﬂa<1co’a(]Rn).

Let T'> 0. Now we are going to prove that ¢p is an homeomorphism from
Q into ¢7(Q), which is a solution of (1.3). Let B, be the solution for ¢ < T of the
following flow

8¢t — : 7
Bt = —Ar_+(%;), in R (3.65)
(1_0‘0 - Id, in Rn.

Since Ap_; € C*([0,T) x R") and Ur<rsupp(Ar-+) is included in some compact
set, @, is well defined in C*°([0, T) x IR™). Furthermore, since || Ar_||o is uniformly
bounded on [0, T], B, converges in C°(IR™) when t — T, so P is continuous on
R"™.

Moreover, by a simple computation similar to the proof of Lemma 5, we have

0]
Vi<T, En [fT_t(@) det(Vg“ét)] =0,

and this implies

_ fr
Vi<T, det(Vp,) = —, 3.66
(V&) @ (3.66)
This can be written in a weaker form
V E open subset of IR™, / Jrdz= / fr_: dz. (3.67)
E %, (E)

By the uniqueness of the flows on [0,T) we have
VSE(O,T], (,_O‘T_SO(PT:QOSa

implying, in particular, that @y o ¢r = Id on R"™. Using the same argument, we
also have @1 o Py = Id. Thus ¢r and Py are two homeomorphisms of R™ and
(3.67) implies

V E open subset of R", / dz = / f dz. (3.68)
wr(E)
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Finally, since supp(f — 1) C U, we may choose T sufficiently small such that
supp(fe — 1) C U, so / fide = |U| for t < T. Moreover, fr € C*(IR") and
U

verifies (H), thus there exists some v € C°°(U) solution of

det(Vv) = fr, onU
v(z) =z, in U,

and for u = v o o7, we have

¥ E open subset of Q, |u(E)| = / fdz and w(Q)CU.
E

This proves the case where f € C°(€2). Suppose now f to be verifying (1.4), then
there exists an increasing function d : Ry — IRy such that

1
/Ofl—?—)-ds<+00 and Vaz,yeQ, |f(z) - f(y)| < d(jz —yl).

This property is preserved by the extension construction in Lemma 7. Let Ay, fi,
d(tR
w; and B, be chosen as above. One verifies easily that [|[VAs|lp < C —(t—)7 thus

Ay € L} (R4, WH(IR™)), implying that o7 and @, are Lipschitz. Furthermore,
since

Bp_, €C®, for T >t >0, and |[@p_, —@rllog — 0ast—0,

we get P € C1. Then by the fact that det(Vg,) > a > 0, we easily obtain that
or € C! and thus v o pr € CL. This proves then the following result:

Theorem 9 Let ) be a reqular domain, and f be verifying (H) and (1.4). Then
we have u € Ct solution of det(Vu) = f. |

3.3.2 The L* and BMO cases

a). The C? case: Let Qg be a regular bounded domain of R" and n, v, 7
and ¢ be as in § 3.1. The proof comes from the following lemma.

Lemma 13 There exists ¢ > 0 depending only on Qq, n and ¥, such that for any
0 < a<1landge L®(Qy) verifying (H), if there exists a positive constant cg

w < 2. Then there exists a homeomorphism v in C%1~%(Qp)

in, c
59

0
solution of (3.50).

such that

Moreover, if supp(g — c4) C o, v is an homeomorphism from Qq into dtself veri-
fying v(z) = x on 9. |
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Proof of Lemma 13. Suppose supp(g — ¢4) C . We extend g by ¢, out of

B
Q. Let g, and By be defined as in § 3.1. Define A; = j Clearly, for t > 0, we
t

have

*CQHOE

lg
A < .69
IV4dJo < X205, (369)
1]

where C only depends on Qp, 7 and 9. Let 0 < o < 1, if C'||g — ¢4ljc0 < @ iélfg.
iy

Since ||A¢||o is bounded independently of ¢, following the arguments of the proof
of Lemma 4, we get that ¢, solution of the flow (3.7), is in C%1~%(Qy).

Furthermore for ¢ sufficiently small (depending only on dist(0€, supp(g — ¢q)) we
have By = 0 on 8 and ¢; is a homeomorphism from £}y into itself and ¢i(z) = =
on 0€. Solve now the following equation

{ det(Vw(z)) = g:(z), in Qo
w(z) =z, on 99 .

This can be done as in § 3.1, since g; € C®(Q) and / gi dr = / gdz =]
Q Q
for ¢ chosen as above. Now v = w o ; is a solution of L%mma 13.

In the general case, g can be extended on all of R™ as in § 3.3.1, but by using 1
instead of ¢4, and the rest of the proof is similar as in § 3.3.1. This concludes the
proof of this lemma. ]

Consider [ verifying the hypothesis of Theorem 2. We proceed as in § 2.2.2,
and by using Lemma 13, we prove that the existence of the sequence w;, € C%1~«
with

—Ina Inb
1n(1+%),ln<1+%a)

where a = iréff and b = sup f. Then w = wy, o... 0o w; belongs to C%?, with
Q

P 2 max (3.70)

B = (1 —)?. Taking « tending to co and p as in (3.70), we get the desired result.
b). The BMO case: The proof is based on the following lemma.

Lemma 14 Let Qg be a regular bounded domain of IR"™. Then there exists ¢ > 0
depending only on Qo,n and ¢ (defined in § 3.1), such that for any 0 < a < 1 and
9 € BMO(Qq) verifying (H), ingiilL%gMo < %, then there exists a homeomorphism

Qo

v in C%'=%(Qy) solution of (3.50).

Moreover, if there exists ¢y such that supp(g — cq) C Qo,v is a homeomorphism
from Q into itself verifying v(z) = x on 6%y. |
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Proof of Lemma 14. Suppose that supp(g — ¢g) C Qo, we extend g by ¢, out
of (. Let g: and B; be defined as in § 3.1.2 and define A; = B;/g;. We have then

/ - : 7 Wa — y)oty) dy B /supp(ﬂ) vt

/nm(m—y)g(y) dy - / ( )n(y)g(w+ty) dy
< diam(supp(n)).

| Ay(z) |

On the other hand,

Vo (z — y)g(y) dy Vne(z —y)g(y) dy
VAo = ||ZB" — A B

[ one-vewds [ et dy
—tq 19(y) = ol dy
Bstr
"Rl

o (3.71)

k)

where R = diam(supp(n)), (we have used the fact that / Vi, do = / Vn: dz
]R’I'L k2

R
= 0). The constant C in (3.71) only depends on 7 and 1. Thus we have established
the following estimate

1
(Al < cl8lBro L (3.72)
infg
Qo
We finish the proof of Lemma 14 by following the arguments of Lemma 13. n
We extend f to all of R™ as in § 3.3.1 such that supp(f — 1) C U. Let
M > i%f f, we use the same notation as in § 2.2.2, we decompose f as cph X Tpr(f)

where h = f/Ty(f), we use Lemma 14 to resolve det(Vv) = cxh on U, and then
we resolve det(Vw) = Tas(f) ov™, u = wo v is the desired solution. |
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A Proof of Lemma 1

Suppose first ¢ to be close to 1/2. We will construct ® as the composition of
two Lipschitz homeomorphisms ¥ and ¢ (¢ = ¥ o ¢) where @ realizes a homeo-
morphism from A into A (resp. B into B) such that ¢(x) = = on A (resp. 9B).
On the other hand, ¥ realizes a homeomorphism from A into A (resp. B into B)
such that A and B is a partition of D with | A| =a, | B| =8 and ¥(z) = z on
aD.

More precisely, we are looking for ¥ of the following form, (for a close to

1/2)
1 -
U(z) = 2,2z, l:a + (— - a) h(m’,mn)]) in A
2
] 4 (A1)
U(x) = |2/,1-2(1 —=z,) [ﬁ+(§—ﬁ> h(m’,xn)}> in B
where x = (¢',z,,) (i.e. 2’ = (21,...,2,_1)) and where h and h will be determined

below with the conditions

hh=1 on dD N a([0,1]"! x R) (A.2)
and
h(z',1/2) = h(z',1/2) for #’ € [0,1]". (A.3)
Thus we have
0
V() = It 0 in A (Ad)
(1-20)2,Vorh, 2a+ (1- 2a)%(mnh)
Then we get
det VU (z) = 20+ (1 — 2a)%(mnh) in 4, (A5)
and
detV¥(z) = 26 + (26 — 1)%— ((1 - xn)ﬁ) in B. (A.6)

n

Since we would like to ensure

200 in A

detV®(z) = detVT(p(z)) x detVip(x) = { 98 in B
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it suffices to construct ¢, homeomorphism of A (resp. B) verifying

-2
detVy Yz, z,) =1+ <1 a) —a—(xnh) in A

20 Oz (A.8)
o Hz) == on OA,
and
261\ 8 N
—1 ! —_ —_ —
detVo™t{z',z,) =1+ ( 27 > B, ((1 xn)h) in B (A.9)
N z) = on 8B,

(A.8) and (A.9) will be solved by following the flow-method of Dacorogna and
Moser [4]. The difficulty here comes from the fact that we are working on non
smooth domains which are only Lipschitz and we want to obtain the Lipschitz
estimation (2.4)(iii) (the same regularity). This is the reason why we should in-
troduce some particular functions for A and A so as to solve the first step of the
method (that is to solve div{v) = f — 1) with the desired regularity.

We are looking for h and w defined in A such that
a

div(w) = éz—n(xnh) in A (A.10)
w =10 on JA.
Indeed, by taking v = _ aw we have solved
diviv) = f—1 (A1)

1-2a 0
< ——(znh). We remark that, if (A.10) is true, we have
200 Oy,

where f(z/,z,) = 1+

1
h(z', xy) :/ div(w)(z’, sz, )ds in A
0
w =10 on 0A .

(A.12)

This is equivalent to (A.10). With view to reaching a Lipschitz solution A of (A.12)
verifying (A.2), we would construct w such that

w € WL (4)
div(w) € Wh>e(A)

w=0,  indA (A.13)
div(w) =1, on 0A.

Remark 8 The combination of the two last constraints on w in (A.13) is an
obstruction to a better regularity for w. But we will see that w is C* by parts. B



Vol. 3, 1996 Resolutions of the prescribed volume form equation 361

Define

w(z) = ((1 — 2z;)d(z, 8D)> in D. (A.14)

1<i<n

We have i € WH* and div(w) € W, but this is not the case for Vig. In fact,
we have

div(@w) =1 —2(n + 1)d(z,8D). (A.15)

Take now
1
w(z', zn) = (Tu‘l(x',2xn), ey W1 (2, 22,), —2—En(;1:',2xn)) in A, (A.16)

we have div(w)(z) = div(w)(z', 2z,) € WH(A). Thus w clearly verifies (A.13).
Then take h verifying (A.12) and h such that

h(z', xn) = bz’ |1 — 2,,) in B. (A.17)
We are looking for #(z) in B satisfying
- 0 = .
div(®) = . ((1 - :cn)h> in B (A.18)
w =0 on OB.

From (A.10), we have

div(w)(2',1 —z,) = _9 ((1 —zn)h(z', 1~ xn)>
0z (A.19)
15} - . '
=~ o, ((1 acn)h> in B.
Using (A.17) and {A.19), we consider
w(z'z,) = ( —w (2,1 = xp), ., — W1 (&, ), wi (2, 1 — mn)) in B,(A.20)

and verify that (A.18) holds for @ defined above.

Then we will construct ¢ , verifying (A.8) and (A.9) with some estimates for
[IV(p — Id)||,, by the flow method in [4]. With this aim, we solve the following
equation

do b vl oA
dt t+ 1 =t)f( ) (A.21)
0o t(z) =z in A,
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where v and f are defined by (A.11). By [4], o' is a solution of (A.8). Now we

establish a bound for | V(¢ — Id)|| . Denote H(t,z) = | V(p; * ~ Id) |2(a:) We
deduce from (A.21) the following differential inequality

d 1-2a
— <
dtH(t,x) < C

X <E{@,m)4— H(t,z)
‘1—2a rdiv<w>||1,wuwuoo] (4.22)
2a ft2(<Pt_1)

[Vwlloo
Seler ™)
where fy =t + (1 —-1)f.

If « is close to 1/2, we have a positive lower bound for f; depending only on
|div(w)||,, and not on ¢t and z. Thus, in this case

d
dt

+(1-1)

— 20
2

Ly )_0‘1

X (H(t, )+ VHG, x)) , (A.23)

where C' is a constant. From (A.23), we deduce

190 = 1)y = VBT < 0|52 (a24)
then, for a close to 1/2, we get
IV (o~ 1) ooy < C1 1 - 20| (A.25)
Similarly we get
V(g ~1d)|| ooy S C| 1 =2 |. (A.26)

For « close to 1/2, (2.4)(iii) can be deduced from (A.25), (A.26) and from the
explicit expression of ¥ given by (A.1).

More generally, let 0 < 7 < 1/2, for a € [n,1 — 7], we construct ®, solution
of (2.4)(ii) such that

IV{®a = Id)| oo () < C{n), (A.27)

where C(n) only depends on 7. Let ¥,, be the following homeomorphism of D such
that | ¥p(4) [=1-1,

U (2, 2,) = (2, [1+ gn(:c’)]xn> in A
(A.28)

U, (2, zn) = (2,1 —[1—gp(z")](1 - :cn)> in B

where g, is defined in the following way: g, € C§°([0,1]"~1,10,1)) in [0,1]" ! with

/ gn(z)dz’ =1 - 2n. (A.29)
[071]11 1
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20— 1
This is possible since (1 —2n) < 1. Let A = i%;y_’ define ¥, as follows

V(2 x,) = 2, [1+ /\gn(x')]xn> in A
(A.30)
Uo(e,zn) = (2,1 —[1 — Agn(z")](1 — :17")) in B.

We have | ¥, (A) | = a. As in the previous case, we will find @, in the form ¥, 00,
where i, realizes a homeomorphism from A into A and from B into B, satisfying

_ det(V¥,) 14+ Agy(z') .
1y _ n
det(cha ) = %% = % in A (A31)
oal(z) =z on dA,
and
det(V¥,) 1-Xg,(z) .
-1y _ _ n
det(Ve, 1) = 5 = 500 in B (A.32)
pal(z) =z on dB.
For solving (A.31) and (A.32), using a Lipschitz homeomorphism 7" from A into
1/n
the ball of radius 79 = | — in R" (where wy, is the volume of B;) such

2w,
that det{VT) = 1 in A, we are left with solving the equivalent problem on the ball
B,,(0), i.e. consider

der(ve) = YD T T ) LA )y

{(z) == on 9B,,(0).

Since g, € C* and T' € W, we deduce the existence of £ € W1 solution of
(A.33), using the flow as (A.21). Take

pa=T totloT in A, (A.34)

it verifies (A.31). Similarly we can construct a solution of (A.32). (A.27) can be
obtained by the resolution of (A.33) and by an estimation of the W norm of
U, given by (A.30).

Finally we get (2.4)(iii) by combining (A.25), (A.26) and (A.27). |

Remark 9 Since the best regularity that we can expect for T and T~ is W1, we
cannot preserve the estimation of type (2.4)(i) after an operation as in (A.34).
Thus we cannot get the desired estimation globally following the second construc-
tion. [
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B Proof of Lemma 7

Let m € IN,0 < 6 < 1. Let U be a tubular neighborhood of 99, included in
2; and such that the orthogonal projection 7 from U onto 91 is well defined and
is regular. For z on 9, we denote by v(z) the unit exterior normal vector of 92
at . We define f on U U ) in the following way :

f(z), forz € Q
m+1

flz) = Zalf(ﬂ(x) - /\lu(ﬂ(@)>> for z € U\Q, (-1

where ) is a constant chosen small enough such that V z € U\Q, n(z)—Mv(n(z)) €
U and a; verify:

m—+1
for 0 <i <m, > (-A)'a =1 (B.2)

=1

Clearly (a;)1<i<m+1 is uniquely determined. One verifies that for m’ € IN, m’ < m,
for 0 < <1 and for f € C™*, one has f lies in C™*(U UQ).

Let £ be a positive function in C§°(IR™) whose support is included in U U Q and

such that &€ = 1 in §. Take L,(f) = £f + (1 — &) in R™ (i) - (iv) hold true
obviously. |

C Proof of Lemma 8

Since g; = ny * f, we have for gy =g — 1
e < [ s N =l o= 1 = 2o

The same holds for B;, proving (3.22). To prove (3.23), we consider first 4 = 0
and g = 1.

vz eR", (Vitlg | = |V = VS|
L oy (E‘i.;) V!f(2) dz

R~ tn-&-l

(C.1)

il
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Since Vndz =0, (C.1) leads to V2 € R",
]R’IL

1
|Vig,(z)] < / pr, vn(ff x \vlf(z) — vlf(x)[ dz
Rn
1 -z
< ([ g |7 sl ol ) 17 = 1y
7] t ©2
= v m/ Cly " dy
supp(€)
— tl Hf ||l77'
In the same way, using one more time Vndr=0,VzyecR"
IR"VL

'VHLZ?;(ZE) - vl+1§t(3})| = |V * Vlf(x) v Vlf(y)]
. /]R et .W (x 7 Z) -V (yt;z>’ % [V f(2) ~ V(@) de. (D)

If |z — y| < ¢, recalling that supp(n) C Br(0) and noting R’ = R+ 1, (C.3) yields

Vi1 gy(z) — Vg, (y)l

< / 1 || ||
>~ 77 0
i+l

x|V f(z) = V' f(x)| dz

x, t R’
zT—y (C4)
< oW [ s -1,
<, tR!
oz =l
S tQ ~ Hf_lll,"/
If |z -yl > ¢,

~ ~ z—
V() ~ V)] <2 [Vl < oo~ Uy < 05 W -y

Thus we get
- ollf =1k,
[g¢lli41,1 < C PO St (C.5)
Let 0 < 8 < 1, we have the classical interpolation estimate (see [6])
1Gellesn.s < OO BGeN o X 15607, (C.6)

Combining (C.2), (C.5) and (C.6), we establish (3.22) for §;. The estimations for
B; can be obtained exactly in the same way, this proves Lemma 8. |
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D Proof of Lemma 9

By classical arguments, ¢ solution of (3.30) is unique C* (IR, W (f2)). Thus
we just need to establish (3.31) for the case A; € C°°(IR4 x §1). We will use the
following elementary lemma

Lemma 15 Let h € C®([0,T] x Q), let L € N and 0 < 5 < 1, one has
|0clIPlls ol < HOehll g, — VE>0. (D.1)
[ |

Proof of Lemma 15. Let wy,ws € L°°(E) where E C R”, it is clear that

< sup fwi (2) — wa(2)]. (D.2)

sup wy (z) — sup wa(z)
z€EE z€E

Let ¢ <1, j=1,2 and t; € IR;. Consider

Vihy, () — Vb, (y) ‘

wiley) = l lz —yl?

where E = Q x M\A with A = {(z,z),z € Q} (resp. wi(z) = |V'hy,(z)| with
E =Q), one has

sup wy (z) — sup w2(2) = |hey lig — he, i85 (resp. |hey i — [heyls)
zcE z€E
and
sup [wi(2) —wa(2)] = sup |wi(z,y) — wi(z,y) |
x€E vAyel . . .
< sup vzhtl (m) — Vﬁlhtl (y) _ Vzh’tz (‘T) - ‘ghtz (y) ‘
tyel |z —yl |z -yl
ta i _\7i
<y [7|2 [Frb0-Vre])
z;étyeQ t1 ot Im—yi

< / 1uhls 5 dt,

t1

2]
(resp. < / |O:h; dt). This implies for £y > 1

t1

ta

el = alis| < [ 10l

and making t» tending to ¢t;. W

which implies (D.1) by multiplying P
22—t
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Turning now to the proof of (3.31), (3.30) implies
15}

by Lemma 15, we get
3]
5 Vello < VAl [Verfo- (D.4)
Integrating this ineqguality, we obtain
¢
Vel < cap ([ 1940 ds). (D3)
0
Applying Lemma 15 to h = p, we get
1Bl gl < I1Adpe)llis. (D.6)
We consider the following classical estimate, proved in [6],
£ 0 glls < €8N Il allgls + I llgles + 1716 ], ©7)

and we have then
2 pdss < 00, 5,0 14 sIVel5 + [V Adoligifes |

< c<z B[ IV Aolledles +eav ((0+5) / IVAulo ds ) 141 ] o

Integrating this inequality we get (3.31). (3.32) could be proved in the same way,
by using (3.34) instead of (D.7). This proves the lemma. |

E Proof of Lemma 10

We prove Lemma 10 by induction on {. For [ = 1 we have

n

Thop(a,9) EPIC aongo)(y)]

IN

> 9 (@)D" (2) — B Ao 1) Dis* )|

ik=1
c[ IV Al T3 (2, ) + Ve loTh ((a), 2 (w) | (1)

C[ IV AT 1aw.) + (199 = dlo-+1)Th(o1e), ) |
C| IV Alolie = Idls,s =~y |°
+ 148V (o - id)lif] = =y I° + Th(e(@),00)) |-

IA A

IA
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Suppose the proposition is true for [ < m, we prove it for [ = m + 1.
T,Zg.;l (JI, y) S T{;’}(AW)(% y) = T{?A(Lp)vcp(mu y)
< Toup)ve10)(@9) T TG (@)
< o{lo— ol < [I946) V6 - 1D)ms

(E.2)
T T T (PR
IV ALl — Il | + TF"0l) o)}
By a classical estimate, we have (see [5))
VAT~ 18)ms < CLIVA@mal Ve~

+ [V AolIV (o = 1d)lm,z |
and using (3.34) for estimating ||V A(yp)]

m,3, We get
IVA@)ms < C[ I Almi1,s (1+ e = 1IT) + IV Alllp = Tdllmys | (E-4)

Moreover, using interpolation inequality for the Holder spaces (see [6]), we obtain

IVAlL e Idjms < C(HVAHOHW dlrp+ (Al gl Idm). (E5)

Combining (E.3) to {E.5), the worst term obtained is: |V A|1lj¢—Idl|m sllo—Id|:-
Using one more time the following general interpolation result (see [6]): V a,b € IR™
and A € [0,1], there exists C'(Q, a,b, \) > 0 such that

VgemeD@),  lglara-xp < € a0, M)[gl2 gl ™,
where ||gll, = [|9ll(p],p—1p)- We obtain then

1_m}(-5
IV Al lig = Idlm gl — Td] < C(!WAHOW - fd!|m+m)
i (E.6)
x (uAumH,ﬁn@ - Id||1) o — Idlh.

Applying Young’s inequality in (E.4), we get
VALl ~ dlmalle = 1als = € (19 Alole = Tdlmivs
(E.7)
m 1
+ Al ol = T,
Combining (E.2)—(E.7) we prove the lemma. |
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