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A b s t r a c t  

For a given volume form fdx  on a bounded regular domain f~ in IR ~, we are 
looking for a transformation u of f~, keeping the boundary fixed and which 
sends the Lebesgue measure dx into fdx  (i.e. we solve det(Vu) = f ) .  For f 
in various spaces, we propose two different constructions which ensure the 
existence of u with some gain of regularity. Our methods permit the recovery 
Daeorogna and Moser's results [4], but also, we prove the existence of such 
u in H61der spaces for f in C ~ or even in L ~ .  

1 I n t r o d u c t i o n  

Let ~t be a regular  bounded  domain  of ]R ~ and let f be a posit ive funct ion 
on ~ verifying the  following hypothes is  denoted  by  (H) 

{ 3 s  

(H) f dx = I[~t, 

where ]f~t is the  Lebesgue measure  of fL 

We are in teres ted  in finding an  appl ica t ion  u f rom f~ into itself which t rans-  
forms the  Lebesgue measure  dxl  A . . .  A dxn into the  measure  f ( x ) d x l  A . . .  A dxn 
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and such that  u(x) = x on Oft. More precisely, we are looking for u satisfying 

u#(dxl  A . . .  A dan) = f ( x )d z l  A . . .  A dan, in ft 
(i.I) 

u(:c) = x ,  o n  Of? ; 

this is equivalent to solving the following equation 

d e t ( V u ) = f ,  in~2 
(1.2) 

u(x) = x, on Of 2. 

This equation, which can be called the prescribed volume form equation, has a 
lot of applications in physics, mainly in elasticity theory as for example, in the 
problem of equilibrium of gases (see [3]). On the other hand, this equation contains 
the construction of volume preserving mappings as indicated in [4]. 

The difficulties of solving (1.2) come, in particular, from the strong non- 
unique-hess and the strong non-linearity of the Jacobian determinant. One of the 
natural questions is how to find a solution u having the best regularity as possible 
for a given f .  We observe that for any given f E C ~176 one can find u ~ C 1 solving 
(1.2), this illustrates the difficulties mentioned above. 

In [4], Dacorogna and Moser have overcame those difficulties in the case where 
f belongs to the HSlder spaces Ck,~(Q) for 0 < a < 1 and 0 < k < oc. In fact, 
they proved the existence of u in Ck+l '~(~) solving (1.2). Clearly, this is the best 
regularity that one can expect. 

In [12], the optimal result, in the sense of regularity for u, has been obtained 
for f in W'~,P(Vt) with max(l ,  n /m)  < p < oc. 

For f in other spaces, the optimal regularity of u is not decided. For example, 
an interesting case would be to consider f in Ck(~) for k in IN, and to know 
whether one can expect to get a u in Ck+l(~)  or at least in Ck,l(~).  

Until now, the best regularity of u proved for f in C~ was if u was a 
homeomorphism (see for example [8] or [4]), but the equation (2) is meaningless 
for such u and has to be replaced by a weaker form 

V E  open set in a, /E  f dx = lu(E)I, (1.3) 

u ( z )  = x ,  o n  0 ~ .  

In the first part of our paper (section 2), we propose a constructive method based 
on dyadic decomposition of the domain ft. This method, which permits the re- 
covery of Oxtoby and Ulam's result for f E L 1 (f~) in one hand, and gives on the 
other hand the existence of more regular solutions u of (1.3) under some control 
conditions on the oscillation of f .  
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Our main results in the first part are 

T h e o r e m  1 Let f ~ C~ verifying (H),  then there exists u solution of (1.3) 
such that u, u -~ E n~<lC~ �9 

T h e o r e m  2 Let f E L~(Y~) verifying (H), then there exists u solution of (1.3) 
such that u, u -1 ~ C~ for any ~ > 0 satisfying 

[( /5 < rain in f f ,  s~p~pf 
~2 

where c is a positive constant independent of f . 

T h e o r e m  3 Let f be in B M O ( ~ )  verifying (H), then there exists u E C~ 
solution of (1.3) for any 7 > 0 satisfying 

7 < cl 1+ IIflIBMO 

where el and c2 do not depend on f . �9 

For f in C~ one could expect to arrive at a CI (~)  or a C~ solution of 
(1.3), but we have to add some stronger hypothesis on the oscillation of f for 
ensuring the existence of a Lipschitz solution. We have the following theorem: 

T h e o r e m  4 Let f be a positive function on ft verifying (H) and such that there 
1 

exists an increasing function ~ : IR+ --~ IR+ satisfying ]~ 9~(t)t-~ dt < +oc for 
J r 1  

which 

V x E f~, t > O, } fl~,t I I(Y) - fx , t  I dy < ~(t), 
x t  

where f~,t = B~(x) n f t ,  7~,t 

schitz homeomorphism solving (1.2). 

(1.4) 

R e m a r k  1 The previous hypothesis for f ensures that f is continuous but it is 
weaker than the Dini-continuous condition. �9 

T h e o r e m  5 Let f be a positive bounded function verifying (H) and such that 
there exists cr E (0, 1), p > 1 for which f E W~'P(f~, ]R), then there exists q C IR+ 
and a homeomorphism u C wl'q(~2) verifying 

u#(dx)  = f (x )dx .  (1.5) 
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Moreover, for any neighborhood U of it, one may ensure u(it) C U. Precisely 

q is any positive number in 1, ln(1 + Co~-).] where Co is a universal constant and 

To is the following constant: 
/ 

7-0 = lira { sup 
t-+0 \rzl_<t, yef~ 

\ 
I f (Y + z) - f ( y )  I~ 

i n f f  ] 
(1.6) 

R e m a r k  2 For q sufficiently large (for example q > n2/ (n+ l )), (1.5) is equivalent 
to det(Vu) = f .  �9 

Finally, using the same method, we have the following theorem: 

T h e o r e m  6 Let f be a positive function verifying (H) and (1.~). I f  f verifies 

/ ~  I f (  x ) - f ( Y ) l  
t dxdv < 

.for some ~r ~ (0, 1), then there exists u solution of (1.2) such that u e Wl'e~(~) 
and 

f s  IVu(x)-Vu(v) xa [ x - y ] ~ + ~  I dxdy < ~ (1.7) 

As it can be noted, employing using the details of the dyadic decompositions 
we use, this method is not adapted to the regular cases, but to the limiting ones 
( f  E C ~ L~176 In the second part of our paper (section 3), we reconsider the 
flow method of Moser (see [7]) with regularizing paths in the forms space which 
interpolate f ( x )dx  and dx. This idea leads, on one hand to a new and direct proof 
of Dacorogna and Moser's results with also new estimates which could be useful for 
numerical approaches. On the other hand, we establish new results for f E Ck(~) 
(k _> 1). 

It is also interesting to note that this method, completely different from the 
dyadic decomposition proposed above, leads to the same gain of regularity in the 
limiting cases, f E C ~ L ~162 and B M O .  (cf. w 3.3) 

Our main results, with the second method, are the following (for simplicity 
we always assume 12 to be regular): 

T h e o r e m  7 Let k C IN, 0 < c~ < 1 and f E Ck'~(-~) verifying (H), then there 
exists u C C~+I'~(~) solving (1.2). Futhermore we have the following estimate, 
V 6 e (0, min(1, k + c~)), 

Ilu - IdHc~+l,~(~) _< oilY - lilc**(~), (1.8) 

where C only depends on ]lfil0,e, i~ f f ,  5, c~, l~ and it. �9 
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R e m a r k  3 �9 Some similar estimates have been obtained by Zehnder in [13] 
under more a restrictive hypothesis: for IIf - 1110,0 small enough. 

�9 The method that we use for proving Theorem 7 is a direct one and could be 
useful for a numerical approach. Futhermore, estimate (1.8) illustrates the 
stability of the method. 

T h e o r e m  8 Let k �9 IN and let f be in Ck' l (~)  = W k + l ' ~ ( ~ )  verifying (H), then 
there exists u, solution of (1.2) such that, for any a < 1, u is in C~+1'~(-~) and 
such that for any 0 < 5 < 1, 

Ihu - IdlLk+~,~ <_ CI]f - lilk,~, (1.9) 

where C only depends on (~, k, ~, i n f f ,  5 and HfHo,~. [] 

R e m a r k  4 �9 As a consequence of Theorem 1 in [~], for each a < 1, there ex- 
ists u~ in Ck+l,a(~) solution of (1.2), but it is not clear whether ua remains 
the same for all a < I or not. 

�9 The best regularity for u that one can expect, under the conditions of Theorem 
8, is u in Ck+l'l(-~). But  we are not able to decide whether the u obtained 
here is in this space. 

2 A c o n s t r u c t i v e  m e t h o d  f o r  p r e s c r i b i n g  

a v o l u m e  f o r m  f ( x ) d x  

2 .1  P r e s e n t a t i o n  o f  t h e  c o n s t r u c t i v e  m e t h o d  

Let f �9 LI(~)  verifying (H). First of all, we consider the case ~t = (0, 1) ~. 
For i �9 IN and k = (k~)l<z<~ �9 2Z ~, we denote by C(k , i )  the following cube in the 
dyadic decomposition of [0, 1] n, 

C ( k , i ) = I I  [kl k l + l  I (2.1) 
l<t<n ~ '  2 i " 

Let fi �9 L ~176 (~) be the following approximation of f 

1 / c  f ( y )dy  on C(k, i) (2.2) f i ( x ) -  I c ( k , i )  l (k,i) 

for any C(k,i) C [0, 11 n. Note that fi veri~ies always (H) and tends weakly to 
f ( x )  in L 1 (~). Our aim is to construct by induction a sequence (ui) of Lipschitz 
homeomorphisms from f~ into itself verifying 

{ det(Vu~) = f~ inn  (2.3) u~(x) x on Off. 

We use the following lemma which is the key point of our construction. 
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L e m m a  1 Let D = [0, 1] ~, A = [0, 1] n - 1  X [0, 1/2] and ~ = [0, 1] n - 1  X [1/2, 1]. 
Let c~, /3 E JR+ such that c~ +/3 = 1. There exits a Lipschitz homeomorphism 4} 
from D into itself such that 

(i) ~,(~) = x,  ~ c OD; 
{ det (V~)  = c~ in A 

(ii) det(V~) =/3 in B; (2.4) 

(i i i)  I IV(~ - Zd)llS~O(D) <_ C d  ~ - 2c~ I 

where 0 < rl < c~ < (1 - r]) < 1 and C~ only depends on ~. [] 

Take u-1  = Id and tti+ 1 = U i O (:I)i, where (I)i is constructed in the follow- 
ing way: Using the previous lemma: V k = (kl) C { 0 , 1 , . . . , 2  ~ -  1} ~, q)~ is a 
homeomorphism from C(k, i)  into itself such that  (I)i(x) = x on OC(l~,i). Take 
e = (~l) E {0, 1} ~ and denote by AP(e) and B~(e) the following subsets  of C(k,  i) 
(for l _ < p _ < n )  

l<_p-1 , 2i X , 2i+~ x I I  - t -  - -  - -  - I -  2i+1 j l_>pq-1 ~ 2 i + 1 '  2 i 

Bf (~ )  = 

l>p+l ~ 2 i4-1' 2 i 

Denote by c~. (e). and tiP(e) the following positive numbers:  

fAd(e) f ( x )dx  

~f(~) = f f(*)& ! 
J A f ( ~ ) u v f ( ~ )  ( 2 . 5 )  

f f ( x )dx  

A f ( x )dx  

Consider (I) the homeomorphism given by Lemma 1 for c~ = c~P(e) and /3  = /3 f ( e )  
and using dilatations, translations and rotations, we get a homeomorphism (I)P(c) 
from A~'(c) tO Bf (c )  into itself such that  

{ detV(I)~(c) = 2aP(c) in A~'(c) (2.6) 
detV(I)P (a) 2/3f(e) in Bf(r  

and ~P(e)(x)  = x on O(AP(e) U Bf(a) ) .  Denote  by �9 p the homeomorphism from 
C(k, i) into self such that  (P~ = (I)P(r in AP(e)uBP(r  Take q)i = (I)~oq5~ - l o . -  -oq)/1 
and 

ui+l = ui o @/, in C(k,  i). (2.7) 
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In constructing ~5i, one has composed homeomorphisms whose Jacobian determi- 
nants are constant by parts in the way that  one can easily calculate det (V~i)  on 
each sub-cube C(k', i + 1). More precisely, for x C C(k', i + 1) C C(k, i), 

f 

detVO~(x) = /C(k',i+O 

f ( x )dx  

c (k#) f (x )dx  ' 

and this proves the existence of ui+l verifying ( 2 . 3 ) .  

The problem now is to understand under which condition for f the sequence 
ui converges in a way that  det(Vui)  passes also to the limit at least in the weak 
sense (1.5). 

Under the hypothesis that  f belongs only in L 1, we have already that  u~ -1 
converges in C~ to a continuous map v : ft ~ fl verifying 

V E open set of ft, ~ f ( x )dx  = I v-1 (E) I (2.8) 

where v I (E)  denotes the co-image of E by v. In fact, since q~i(C(k, i)) = C(k, i), 
one has -1 %~+1 - ~-1 Iloo -< diam(C(k, i)) = C/2L 

On the other hand, if we suppose that  f E L~176 a n d / i f  - 11100 _< ~ where 
will be chosen small enough, clearly using (2.4) (iii), one has ]tV ((IN - Id) l I LOO (D) <<- 
Cr] and then 

IIW~+llloo = I[(W~ ~ r162 -< Ilw~lloo( 1 + c~) ,  (2.9) 

thus IIW~ II -< (1 + c~ )  ~. Moreover, since qh(C(k, i)) = C(k, i), we get ]tOi - Idlloo 
<_ C/2 i. Considering 

and the two previous inequalities implies that  

- - -  . (2.1o) 

For (1 + Cr/) < 2, the sequence ui converges in C~ Since now we have fi --+ f 
- ~ ~ i in c~ and ~ -~ ~ in C~ ~ vermes (1.3). in L ~176 weak-*, u~ 1 

Indeed, let F be any compact set of ft, u(F) is compact. Consider V~ = {x e 
ft, s.t. d(x,u(F))  < r since u(F) is compact, we know that  I E I  - -  I F I  as c 

tends to 0. For i sufficiently great, u~(F) c V, and we have 1 u~(F) I = / _  f,~(x)dx <_ 
J / *  

I V~l, thus 

lim [ f i (x)dx = [ f ( x )dx  <_ l u(F) I" (2.11) 
i--+oo J r  JF 
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Since u is a homeomorph i sm,  u(F ~) is an open set, we prove exact ly  in the  same 
way tha t  

.lira f f i (x)dx = f f ( x )dx  l- (2.12) 
~-~ec J F ~ J Fc 

Adding (2.11) and (2.12), we have 

= ~ f ( x ) d x  < I I § I  (F0 I = I = ;, 

this proves tha t  the two previous inequalities (2.11) and (2.12) are equalities. 

In general  eases, we solve by induct ion the  following problems:  w0 = Id  and 
for any k < ( p -  1), 

a f k /p 
( e x )  - 

s f(k+l)/p 
x ( f l / P o v ~ l ) d x ,  

where vk = w~ o wk 1 o . . .  wl .  For p sufficiently large such t ha t  IIf 1/p - i I I  ~ <_ r]. 
u = wp o . . .  owl  is a h o m e o m o r p h i s m  satisfying (1.3) (el. w 2.2.2). 

Under  the  hypothes is  t ha t  f belongs only to L 1, we recall t ha t  u~ -1 converges 
to v in C ~  verifying (2.8), but  if we want  to ensure t ha t  v is a homeomorph i sm,  
we have to refine the  previous process using Ox toby  and Ulam ' s  idea (see [8]). 

Here we are more  interested in the case where  f is more  regular  t han  L 1 (for 
example  f E B M O ( ~ ) ,  L~(gt), C~ etc.) for which the  previous cons t ruc t ion  
permi t s  achieving a solution u having more  regular i ty  t h a n  C~  Moreover,  if 
supp(f  - 1) CC f~, we can assume tha t  supp(u - Id) Cc f~, since we can work 
in a smaller  domain  as 9 '  = [r 1 - r ( (  > 0). Thus  by the  par t i t ion  a rgument  
of Moser in [7], the  proofs of our theorems for the case ft = [0, 1] ~ are valid for 
general  Lipschitz domains  or manifolds.  

2 . 2  P r o o f  o f  T h e o r e m s  1 t o  4 

2 .2 .1  P r o o f  o f  T h e o r e m  1 

Take f E C ~  verifying (H)  and follow the  me thod  in w 2.1. Let  0 < 

c~ < 1. T h e n  there  exists a sufficiently small  ~ such t ha t  1 + Cr] _ 2 _ ~  where 
2 

C is the constant  in L e m m a  1. For i sufficiently great  (i _> i~), for any  p and  ~, 
I aP(~) - 1/2 I -< ~, since f is uni formly cont inuous in f~. 

Consider x # y E ~ such t ha t  I x - y I -< 2- i~.  Then  there  exists i _> is  such 
t ha t  2 - i - 1  _< I x - y I < 2 - i .  From (2.9), we have HVuitl~ _< ( l + C r ] )  ' - i~  [IVui~ Hoc 
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and from the same argument for (2.10) we have 

II u -  uillc~ <- Ca 1 r/ . (2.13) 

We get then the following estimate 

I u ( x )  - u (y )  I <- [ u ( x )  - u i ( x )  [ +1 u i ( x )  - u i ( y )  1+1 u(y )  - u i (y )  [ 
< C ~ ( I + C r / )  i ( +~ ) i  
- 2 +C~(l+C~)~Lx_y[+C~ 1 c~ 

1 o: i 

1 

This proves that  u is in C~ 

On the other hand, by noting that  det(Vui) _> a > 0 and that  

{ I]ui-l--tt--1]'oo ~ C_ 2-i 
IIW~_I ii~ _< [IW~[t~, (2.15) 

one proves in the same way that  U -1  E C~ for any 0 < a < 1. �9 

2.2.2 P r o o f  o f  T h e o r e m s  2 a n d  3 

a) Let f C L ~ (ft) verifying (H) and let C be the constant in Lemma 1, for 
p sufficiently great such that  1 + CI I f  1/p - 111 ~ < 2. Let 

ek = ( f a f - ~  dx) / ( s  f~ dx ) �9 

We will construct, by induction, a sequence of homeomorphisms wk for 0 < k < 
(p - 1) such that  

V E o p e n s e t  Cf~, 

wk+~(X) = X, 

/ ,  
[Wk+l(E)[ = /,~ C k + l f l / P ( v ;  1) dx  

on 0f~, 
(2.16) 

where v0 = I d  and vk = wk o w k - t  �9 �9 �9 0 W 1 for 1 < k < p, with wk E c ~  ~'~) 
and w k ( x )  = x on  Of~. 

For k = 1, (2.16) is equivalent to 

V E o p e n s e t  Cf~, I~I(E)] =/~ elf ~/p dx. 
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Note tha t  the problem is well posed since c l f  1/p verifies (H) on ft. More precisely, 

f~ elf  1/~ d~ --I  ft I and ~xf~/~ >_ a ~/" (since /~ fl/~ & < I f t l  by H61der's 

P and/3~' inequality).  Note  also tha t  f f / v  and elf  1/p give the same est imates for c h 
defined in w 2.1, thus wl const ructed in w 2.1 for e l f  1/p belongs to C ~  where 

~ : [ - l n ( l + C l l f l / P - l l l ~ ) / l n 2 ]  " 2  (2.17) 

Suppose tha t  wl are const ructed for 1 _< k, we construct  now Wk+l in the same way. 
kJ-1 

Note first t ha t  the problem (2.16) is well posed. Indeed, by f ~ -  dx < I f~ I, we 

get 

k 
f ~  dx k§ 

ek+lf 1/p o v k 1 >_ a 1/p > a T .  (2.18) s k+l 
f T -  dz 

Moreover, (2.16) implies, for 1 < I < k, 

v h �9 L~(a), (2.19) 

Thus  

]~ Ck+lf lip o V[ 1 dx = J Ck+lCkfUPovk--l_l• ( fUP Or;  1 o W k ) d x  

: ~ Ck+lCkf 2/p o Vkll dx 

: (ff~ f ~  dx) l<l<k+lII Cl : I ft ]. 

(2.20) 

Since we always have Ilf 1/p ov~ 1 - llloo = Iff 1/p 111oo, wk const ructed  in this 
way (for ckf  1/p o %1) ,  is always a homeomorphism in U~ (~). Thus  we get the 
sequence of wk verifying (2.16). 

Consider now w -- Vp = wp o. . .  owl which is a homeomorphism from ~ into itself. 
By (2.16), w is a solution of (1.3). Fur thermore ,  w E C~ w i t h / 5  = (Cep) p. 
Making p tend  to infinity, one easily proves tha t  

where c does not depend on f .  �9 
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b) Let f be in BMO(~) verifying (H).  Let M > i n f f  and note  TMf the 
f~ 

following t runca ted  funct ion TMf = rain(M, f ) .  Denot ing h = f /TMf ,  we remark  
tha t  tlhlIBMO(~) tends to 0 as M tends to co. In fact, for any x C IR ~ and r > 0, 

denot ing f~x,t = Bt(x) N f~ and hz,t = /  h dz, one has 
f2~,t 

1 s 1 f~ h(y) 1 s d~ IB~,,~I In(y) - hx,tl dy - IBx,,~l [Bx,,~[ h dy 
m,fl x , t  x , t  

1 

It(y) - f(z)] 
Clearly we have Ih(y) - h(z)l _< M , so (2.21) leads to 

(2.21) 

1 f ~  1 1 f f a  I f (Y ) - f ( z ) ldydz  

1 1 
<<- M ,Bx,~,2 J /B~ ~• ('f(Y) - fx,~' + 'f(z) - fx,~') dydz 

2 
<_ ~llflLBMO, 

2 1 fa h(x)dx and write So we get the est imate IlhlluMO < ~[IflI,MO. Let Ch = 

f -- (h/ch) X ChTMf. Clearly 1 < ch < (1 + 1/M). First  we solve the problem 
for h/Ch. Note tha t  we can apply the me thod  in w 2.1, since we can est imate 
I a~(e) - 1/2 I by CllhllBMO(~)/a, where a = i n f f .  Thus  for IIhlIBMO(~) small 

f~ 
enough, we get a v in C ~ (~) satisfying v#(dx) = h(x)dx/ch where 

In (1 + Cllhll~foc~)/a) (2,22) 
C~M = i - in 2 

Let w be the solution given by w 2.2.2 a) for ehTMf o V -1, then u = w o v is a 
solution of (1.5) and u E C ~ (~) where 

"YM <aM[min(cha,  c~hM)]'l c 

By choosing a good value of M,  one proves the assertion of Theorem 3. �9 

2 .2 .3  P r o o f  o f  T h e o r e m  4 

In  view of w 2.1, we are interested in finding a condit ion on f which ensures 
the existence of a Lipschitz solution u since, in this case, (1.5) is equivalent to the  
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following equat ion 

de t (Vu)  =xf  i n f l  (2.23) 
u(z) = on 0a. 

The  condit ion tha t  we propose here is a kind of Dini decrease of the  mean oscilla- 
t ion 

(D) 

/~ 1 
3 ~ an increasing positive funct ion such tha t  ~(t)t-ldt < +oc 

V x  E ft and t > 0, I ax,t I I f(Y) --fx,t I dy <_ ~(t), 
x , t  

ofco d  ion,  

strong one) was already considered in [9] and [11]. 

Under  this hypothesis,  we have the following est imat ion on I ~Y(~) - 1/2 ], 

I o~i (c) - 1 /2  t 

< 
a 

(2.24) 

where C is a universal constant .  By Lemma 1, we have HXT(~i - Sd) ll~ < C~(2- i ) ,  
and we get IIVu~+IH~ _< (1 + c ~ ( 2 - ~ ) ) l l W d l ~ .  By induction,  this yields 

Itvuill~ ,<k<~-, II ( 1 +  c~(2-k)) IlVu011~ 

_< c ~o(2 -'<) tlWoll~ 
(2.25) 

This implies tha t  u is Lipschitz. Moreover, we can prove tha t  ui converges to u 
in WI 'P(~)  for any p E [1, co), since ui tends to u in C~  u~ is bounded  in 
WI '~  and clearly IlVuiHp tends to IIVUltp for any p ~ [1, oc). �9 
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2.3 P r o o f  o f  T h e o r e m s  5 and  6 

2.3.1 P r o o f  o f  T h e o r e m  5 

Consider the dyadic decomposit ion of ft = [0, 1] n as in w 2. For i E IN, 
k = (kt) E {0, 1 , . . .  ,2 i - 1} ~ and x C f~, denote by C(k,i)(x), AP(s)(x), BP(e)(x), 
the C(k, i), AP(e) and BP(s) which contain x. By c?(e)(x)  and/3P(c)(x) we denote 
the following values 

Ap(e)(x f (x)dx 

c? (s)(x) = a Af f(~)(~)uBf(~)(~) f(x)dx (2.26) 

/~P(s)(x) = 1 - c~P(s)(x). 

By Lemma 1, we have 

L v(o~ - rd) I(x) _< Cl ~f(~)(x) - 1/2 I, 
thus we have 

n 

I V(62i-  Id)I(x) < C E [ a P ( s ) ( x  ) - 1/2 I. 
p= l  

(2.27) 

In fact, ~5i = q~ o d)~ -1 o . . . o  ~5~ and since a~(e)(x) (resp. /3f(s)(x)) is constant  
in AP(e)(x) (resp. B P ( s ) ( x ) ) a n d  ~{ (AP(s ) (x ) )=  AP(e)(x) (resp. r  
BP(e)(x)) for l < p, so V 2 _< p _< n, 

{ ~ ( ~ ) ( r 1 6 2  ~f(~)(x) 
~f (g) IO p-I o o •l (g) ) = ~ f ( g ) ( g ) .  

Moreover for, x E ft, ui_l_l(X ) = Ui(~i)i(X)) , this implies 

I w i + l ( x )  t = 
< 

< 

I w~(o~(x))(vO~(x) - z) I + l  w ~ ( e , ( x ) )  I 

1 +  C Z I  o~P(e)(x) - 1/2 ] I Vui (~ i (x) )  I" 
p = l  

(2.28) 

Using the previous inequali ty and the fact tha t  V i < j ,  c~P(s)(@j (x)) = ct p (e)(x) 
for any 1 _< p _< n, we can prove by induct ion tha t  

] Vu~(x) I <- II 1 + C E l  ctp(a)(x) - 1/2 [ . (2.29) 
0_<j_<i--1 

p= l  

We ask how one can determine under  which condition on f ,  in view of the previous 
est imate (2.29), Vui  remains bounded for some L p norm. Take f bounded verifying 
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(H)  and suppose tha t  f is in W~,P(f},IR) for some 0 < cr < 1 and 1 < p < oo. 
Fur thermore ,  to avoid any problem with the  boundary,  we suppose s u p p ( f  - 1) C 
ft. Recall the definition of W~'P(f}, 1R) (cf. [1], chapter  7) 

I/V~'P(f}, I R ) =  { f c LP(f}) such tha t  / f a x a  I f(z)-f(Y)ix--Y I '~+~p Iv dxdy < +oo } .  

Consider a cube fY = [r 1 - r such tha t  s u p p ( f  - 1) C fY. We claim tha t  
we can find an or thonormal  system @1, e 2 , . . . ,  en) such tha t  

OO 

V or' < ~ and 1 < i < n, E ( 2 ~ ' )  k / ~  I f ( x  + 2-kei) - f (x )  Idx < +c0,(2.30) 
k=0 

where we have defined f (y)  = 1 if y r fL Note  tha t  f ex tended in such a way, on 
o-,p ?% all of 1R n, still belongs to Wzo c (1R). So we have 

Ko) I z 1 ~+~p dxdz < c~ . 

This implies (using HSlder 's inequality) 

I s  /a  ' f ( x  + z) - f (x)  (2.31) 1 (o) I z I ~+~'' [ dxdz < oc, V a' < a 

and we have then  

k=0 2-k (0)\B~_k_l (0) ] Z ]~+~' dxdz < oo, 

yielding 

f a r o  I f ( x  + 2-ku) - f (x)  ' dxdu < ~176 V ~ ' < m  (2.32) 
1 (0)\B1/2 (0) ~ i  ~ I ~ ~- O-~ 

This means tha t  
OO P 

z(~) = ~ ( 2 ~ ' )  ~ ] 1  f (~  + 2 - ~ )  - f (~)  Id~ 
k=0 

is finite for almost every u E B~ (0) \ B1/2(0 ). Thus we can find an or thogonal  basis 
( e l , e 2 , . . . , e ~ )  such tha t  Y i and j ,  l ei I = l e y  l, I(ei) < oc and ( e l , e 2 , . . . , e ~ )  
can be chosen to be as close as we want to the canonical basis. We fix in par t icular  
(el, e 2 , . . . ,  e~) such tha t  we can find a cube f~l parallel to  (el,  e 2 , . . . ,  e~) of length 
I ei I and fY CC f~l c c  ft. Modulo a small scale change t ransforming 91 to [0, 1] '~ 
we have (for 1 < i < n) 

O~ P 

~(2~')~ / I f(x + 2-%d - f ( ~ )  ld~ < o~, V~' < ~, (2.33) 
k=0 
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where (c~) is the canonical basis of ]R% Note that  (H) is still verified for f after 
this scale change. Define the global oscillation ~- to be 

sup f 
T - -  1. 

inf f 
f~ 

Let a~(x) be the quantity aP(x) = I aP(e)(x) - 1/21 = I/~P(c)(x) - 1/21 where 
c~P(e)(x) is defined by (2.26). We clearly have 

T 
V x C [0, 1] ~, a~(x) < -~. (2.34) 

We have also V x C [0, 1] ~, 

1 1 JA If(Y + 2-{CP) -- f(Y)l dy. (2.35) aP(x) <- 4inf--~ • I AP(c)(x)[ [(~)(x) 
~2 

By (2.29), we get 

I W (x) L < H 
O<_j<i--1 

= II 
O<j<_i--1 

( ) I+ C E I  ~ ( r  1/2 I 
p = l  

(1 + caj(x))  
(2.36) 

i% 

where ai(x) = Z a P ( x ) .  In view of (2.35), (2.33) implies (a = i~ f f )  
p = l  

L Z ( 2 W ) ~  a~(x)dx < 1 i :o " - 2-~ ~ ( 2 ' ~ ' ) i  I f ( x  + 2-iCp) - f(x)  Idx < c~. (2.37) 
p:l i:0 

We now use the following lemma whose proof is straightforward by induction. 

L e m m a  2 Let ai be a sequence of positive numbers, then we have 

oo 

II (1 + a~) _< 1 + E ( 1  + A)~a{ (2.38) 
icIN 

i=0 

where A = sup ai. �9 
icIN 

Apply the previous lemma with 

ai = (1 + Cai(x)) p - 1 (2.39) 
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where C is the constant in (2.36) and p will be fixed later. If 

(2 ~' - 1), we deduce from (2.37) and (2.38) 

s  IPdx <_ s 1 +  (2~')iai(x) dx 

1 n o~ f 
-< l a l + ~ ~ ( 2 ~ ' ) ~ y a l f ( x + 2 - % ) - f ( x )  Idx 

p = l  i=0  

< C ,  

( 1 +  - 1 <  

(2.40) 

where C does not depend on i. This implies that,  i fp  > 1, 

r V u  I p < oc. 

Gln2 
> 1 (where Co is a universal constant), u �9 WI'B(Q) for Thus if 

in(1 + Co -) 
Gln2 

l a p <  
ln(1 + Cot)" 

Remark that,  instead of r ,  we could take a global bound for the local oscil- 
lation r0 defined by (1.6). The proof is completed. �9 

Coro l l a ry  1 Let f e C~ verifying (H). Suppose that there exist cr C (0, 1) 
and p E (1, oc) such that f E W~'P(a) and supp(f - 1) C a ,  then there exists 
u E Np<ooWl'P(f2) satisfying (1.2). �9 

Proof of Corollary 1. Indeed, for f E C~ r0 defined by (1.6) is equal to zero. 

R e m a r k  5 By the proof, we see that it suffices to suppose 

f s I f(x) - f(y) • i x - y l n + t d x d y < o o ,  cr c (0, 1) 

for getting the same result in Theorem 5 and Corollary 1. 

2.3.2 P r o o f  of  T h e o r e m  6 

As in the beginning of w 2.3.1, modulo some changes, we can suppose that  
ft = (0, 1) n and (2.33) holds. That is, 

~ ( 2 ~ ' )  k I f (x  + 2-kgi) - f(x) [dx < 0% g G' < o-, (2.41) 
i=1 k=0 
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where (ei) is the canonical basis of IR ~. Define aP(x) and a~(x) in the same way 
as in w 2.3.1 and we have 

OO 

E ( 2 ~ )  k s ak(x)dx < oo. (2.42) 
k=O 

Moreover, for ui defined by (2.7), we have 

v x �9 a,  I vu~(x) I -< II (1 + caj(x)). (2.43) 
o<j<i , 

For any h E Ll(ft) .  Denote Fa(h) to be the following quantity: 

Fa(h) = / / ~ •  I h(x) - [ x - y  ~ l dxdy �9 

We claim that,  under the previous hypothesis, we have 

Fa(V4)i) <_ C~(2 -i) (2.44) 

where (IN is defined in w 2 and 9 is the increasing function for which f verifies 
(1.4). For proving (2.44), it suffices to prove the following upper bound in Lemma 
1: 

FD(VO) < C,I 1 - 2a I (2.45) 

where C~ only depends on r/such that  0 < r /<  a _< 1 - r /<  1. To this aim, we use 
the following lemmas whose proofs are straightforward. 

L e m m a  3 Let w be a Lipschitz homeomorphism of ~ and v E wl'~176 ]Rn). We 
then have 

Fa(V(v o w)) _< F~(Vv) ([IVwllL+~+~lldet(V~-l)ll 2) + Fa(Vw) llVvll~. (2.46) 

L e m m a  4 Let ftl and f~2 be two disjointed bounded Lipschitz domains oflR ~. Let 
2 

fi be in L~(fti)  for i = 1, 2. Define h = E fixa~, we then have 
i=1 

2 2 

Fa(h) <_ E Fa,(fi) + C E Ilfilloo (2.47) 
i=1 i=1 

where C only depends on n, ~ and f~i. �9 
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Recall that on A U/3, in Lemma 1, dp = 9 o p where 9 is given by (A.1) and ~gl  
is the solution of (A.21). From (A.4), we get 

FA(Vq*) = (1 - 2a)fa(V(x,~h)) (2.48) 

where  

/f x,~h = div(w)(x', s)ds. (2.49) 

By definition, div(w) is C ~ by parts in A, thus Lemma 4 ensures that  FA(V(xnh)) 
< oo. On the other hand, from (A.21), we have 

d 1 

where Xt is in WI'~ and is C ~ by parts, so FA(VXt) < oo. Thus we get 
(using Lemma 3 and the fact that a will be close to 1/2 for i sufficiemly great) 

d F I 1 - 2a I (1 + FA (V(~)~-I)) (2.50) a7 A(v~;  1)_<c ~& 

Remark that  FA (Vgo 1) = Fi(Id) = 0, using Gronwall's Lemma, we have 

F~ ( V <  1) - F~ ( V ~ I  ~) s Cl ~ - 2~ I (2.5,)  

and we easily deduce that  

fA(V~)  < CI 1 - 2~/ '  (2.52) 

Combining (2.48), (2.52) and (2.4)(iii), using Lemma 3, we obtain (a close to 1/2) 

FA(W) = FA(V(~ o ~)) _< Cl ~ - 2~ I. (2.53) 

Similarly we get 

FB(V~) = Fs(V( 'P o ~o)) < C I 1 - 2a [. (2.54) 

Using again Lemma 4 and (2.4)(iii), (2.45) is proved. 

By (2.45), we deduce 

Fc(k,~) (v~>d _< C(2~)%b(k,.,). (2.55) 
Thus 

f s  Iw~(x)-w~(y)l • I x_y [n+o dxdy 

2~--1 
Z }7c I v<(~)  - v~(v)  I 

k J=0 (k#)xc(<~) i x - Y  in+~ dxdy 

E (k#)• i x - Y  i~+r dxdy 
k,l=0, kT~l 

2~-1 
+ ~ &(~#)(v+d. 

k=O 

(2.5~) 
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On one hand 
2i_1 

dxdy 
(,~ ~)xc( t  ~) ~ x - y n+~ k,l=O, k7s , , 

2~--1 /JC IIV((I)i - [d)llL~ 
k,l #l (k#)• I z -- Y I ~+~ 

2i_1 

k,z=0, kr (k,i)xc(z#) ~ x - y ,n+~ 
2~--1 

~-- k,l ~O. k~l J/C(k,i)xC(l,i) , ~a~n+(r dxdy 
2 i - - l f  /~ dxdy 

<_ ~ Ca~(~) i,,+ ~. 
k=0 Jc(k#) \ ~  / x - y 

Since a{(x) is constant on each C(k, i), we are led to bound the following 

/ ! ~  dxdy 
_?;~) x ( ~ \ ~ )  I x - y  I "--~' (2.58) 

 -J:0 ) V\+~ IV dl 

where ~ \ - ~  stands for the (n - 1)- dimensional Hausdorff measure, so 

Combining (2.57), (2.58) and (2.59), we get 

2i--1 
~"z ffo(  V~i(x)] x ~  -y V~{(y)l ~+--~ Idxdy _< C(2- i )  ~-~ ~ ak Iv(k#).(2.60) 

k,/=O, k~s k=O 

Combining now (2.55), (2.56) and (2.60), we obtain 

Fa(V(IN) <_ C/a (2~)~ai(x)dx. (2.61) 

From (2.7) and Lemma 3, the following inequality holds 

F ~ ( V u i )  _< F~(Vui_ l )  (1 + C~(2-~) )  + F ~ ( V C ' i ) l l V U , - l l l o ~ .  (2 .62)  

Recall (2.25), that  is 

tlW~ll~ _< c l<k<i-ll~ (1 -]- C(/9(2-k)) . (2.63) 
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Using (2.62) and (2.63), by induction, we have 

From (2.42) and (2.25), we get the following bound 

~ ( 2 ~ )  k ~ a k ( x ) d x  . 
k = l  

(2.64) 

and this implies that Fa(Vu)  < oo, since ui converges to u in WI'P(~)  for p �9 
[I,~). �9 

R e m a r k  6 In facf, g C L~(S2) and F~(g) < oc imply that g �9 W~,~/~(ft) for any 
�9 (o, ~). �9 

3 The path-regularizing flow method  

3 . 1  P r e s e n t a t i o n  o f  t h e  m e t h o d  

3.1.1 T h e  flow idea  of  M o s e r  

Let f and g be two volume forms on ft (i.e. two functions on ft verifying (H)), 
let fi for t E [0, T] be a family of volume forms connecting f and g. Any familly 
of transformations Tt sending f to ft  (i.e. qot#ft = f )  verifies 

{ O ( f t ( p t ) d e t ( V ~ t ) ) = = - 0 ,  i n f l  (3.1) 

fo = f ,  ~o = Id, f f  = g, inf t .  

This is equivalent to 

{o 0 
~ d e t ( V ~ t )  + ~-~ ( l n f t (~ t ) )de t (VF t )  = 0, in ft (3.2) 

fo = f ,  ~o = Id, fT  = g, ingt. 

As J. Moser proposed in [7], we look for ~t solution of a flow having the following 
form 

Ot -- At(g)t), in ft. (3.3) 

A classical computation yields 

O det(Vpt)  - divAt(pt)  det(Vpt)  = (3.4) 0. 
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Then it suffices to find At solution of the following transport equation which is 
equivalent to say that  there is no volume creation. 

oft 
O-T + div(ftAt) = 0, (3.5) 

in view of solving (3.1). The difficulty in solving (1.2) by this method, remains in 
choosing an appropriate path ft  connecting f and 1, and a vector field At satisfying 
(3.5). 

3.1.2 A c o n s t r u c t i o n  of  ft  a n d  At 

Let ft be a bounded regular domain. Let f be in C~(f t )  verifying (H). We 
first extend f to all of ]R ~ into a function denoted by f .  Let ~ be a cut-off function 
i n C ~ ( I R  n,[0,1]) such t h a t ~  l i n ~ a n d  inf f > a > 0 ,  f will be extended 

supp(~) 
now by the following function in ]R n. 

f ----- ~ ]  § (1 -- ~). 

Note that  f (x)  > a > 0, for any x C ]R n. Following the ideas of section 2.1, we 
will construct ft  and At verifying 

~ +  div(Atft) = 0, in x IR+, 

At = O, on 0f~ • IR+, (3.t3) 

fo = f,  i n f ' ,  

and ~t the solution of the following flow 

O~t 
Ot - At(~t), in_a x IR+, (3.7) 

~ o  = Id in fl. 

In view of w 3.1.1, under the previous notations, we have the following lemma. 

L e m m a  5 For ~t and ft  defined above, one has for any t >_ 0, 
det(V~t) x ft(~t) ~ f ,  in-~. �9 

Now we construct ft and At in C ~ ( ~  x IR+) verifying (3.6). Let r] be a non 
negative function in C~(IR ~) such that  

rl dx = l, f x (x) dx :- 

and such that  there exists some r0 > satisfying B(0, r0) N supp(r]) = 0. Denote 

Define gt = f * rh and Bt = f * Ct. One then has the following elementary lemma. 
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L e m m a  6 Let gt and Bt  be as above, one has 

Ogt 
O~t- + divBt = O, in IR ~ • ]If+. (3.s) 

Proof  of Lemma 6: 

Ogt 
at  (x) 

On the other  hand, 

(3.9) 

; ~ l ~ x ( ~ ) ~ ( ~ ) s , ~ , ~  ,310, 
1 x - y  x - y  1 

We clearly have (3.9) + (3.10) = 0 and this proves the lemma. �9 

o~ ~ /~ ~x~ ~i~> ~ T~o ~,= / ~ ~/~, ~ ~s wo, 

defined in JR+. Since we have j~ ctgtdx - I ~ I, and by Lemma 6 

9t - - ~ a x  = - f 09tct  d x =  d i v B t d x  Or ct 
(3.11) 

= ct lOf~ Ht.~dcr, 

the following linear problem admits  a regular solution (see [4]) 

1 Oct 
divD~ -- - -  • 9t, in 

ct at (3.12) 
Dt = Bt ,  on Ot~. 

1 Oct 
Since ~ ~ -  x gt and Bt depend regularly on t, the const ruct ion of solution of 

(3.12) in [4] ensures the regulari ty of Dt on f~ x IR+. 

Let f t  = etgt and At = (Dr - B t ) /g t ,  one verifies tha t  (f t ,  At)  is a regular 
solution of (3.6). We turn  now to the const ruct ion of u from f~ into itself, solving 
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(1.2). First we remark that  there exists some 0 < T < +co such that  f r  --= 1 in 

~.  Indeed, for t > T diam(ft) + diam(supp(~)) = , one has (recall that  B(0, %) r~ 
r0 

supp(rl) = ~.) 

V x ~ ft, V y E supp(~), <_to. 

This leads to V x E f~, 

g,(~) f 1 ( x ~ )  / ~  1 ( ~ _ ~ )  ---- ~ ~r] f ( y )dy  = "\~pp(r V~7 f ( y )dy  

L L = -~7 dy = 1 7  dy = 1, 
n \ s u p p ( ~ )  n 

(3.13) 

and similarly, we get 

V x ~f~, Bt(x) t n t rl f ( y )dy  

t ~ ~ ~? dy  O. 

s I~L 
Moreover, for such t, ct - - - 1, and by definition ft  -= 1 in fL 

f a  f dx f a  f dx 

Then for t > T, Lemma 1 implies that  ~ot is a solution of (1.2). So we have proved 
the existence of u C C~176 solution of (1.2) for any f r C~176 �9 

We will always follow this method in the proof of Theorems 1 to 5 but  justi- 
fying each step more carefully. 

3.2 P r o o f s  o f  T h e o r e m  7 a n d  8 

3.2.1 P r o o f  o f  T h e o r e m  7 

Let f~ be a bounded regular domain of IR n and f be a Ck'~(~) function where 
0 _< k < oc and 0 < ~ < 1. We extend f to all of IR ~ using the following lemma 
proved in the appendix. 

L e m m a  7 Let fll be a tubular neighborhood of f~ (i.e. f~ CC f~l), 0 <_ m < 0% 
there exists L ~  : c m ( ~ )  --+ C~(]Rn),  a linear operator such that 

i) L m ( f )  = f ,  i n f , .  

ii) L.~(1) ~ 1. 
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iii) Y/3 ~ [0, 1], V l < m, there exists C(1,/3) such that V f C Cz'Z(~) verifyin9 
(H) 

IlLmfllc,,~(~a~) < c(1,/3)llf/Ic~,~(~). (3.14) 

iv) L m f  ==- 1 in ]Rn\t21. [] 

Denote ] = Lk (f).  Then, there exists f~2 a regular domain containing ~ such 

in_ff 

- ~ -  2 > O. (3.15)  

that 

More precisely, by choosing ~5 E (0, min(k + c~, 1)) 

f~2= y e f h ,  d(y,N)<_ 2c~o,~)llfllco,~ , (3.16) 

where C(0, ~5) is the constant given by (3.14) for 1 = 0, one verifies easily that 
(3.15) is true. Choose a cut-off function ~ as follows: 

d(x, IRn\f~2) (3.17) 
v x c Ja ~, C(.) = d( . ,  13~\~2) + d(x, ~) 

We replace now f by the following extension on all of ]R ~ (still denoted by f )  

V x e ]R n, f ( x )  = ~(x ) f (x )  + 1 - r (3.18) 

Take r rlt, Ct, 9t and Bt as in w 3.2.2, Lemma 6 still holds. Moreover, let ct be 

f f dx 
equal to , one has (3.11) : 

gt dx 

By definition 

_ _  gt dx = ct Bt .v  d o - .  
f~ 

B t = % *  f = $ t * ( f  1), 

hence tlBtllo <_ CI] f - 1110. Recall that 

s  & _> > > _ _  If~l i~fgt [ a l ~ f f  

thus by (3.11) 

If~la 
2 ' 

lO~  < ( 2 )  -111o 
et at - a - ~  10f~lllBtllo < C(f~) l l f  a (3.19) 
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As in w 3.1, we solve the following linear problem 

d i v D t -  1 Oct 
ct Ot x gt, in ft (3.20) 

Dt = Bt,  on cgf~. 

By the method in [4], we derive a solution of (3.20) with the following estimates: 
VIEIN,  0 < f l < I ,  

lOc  ] 
HDtllz+l,~ < C ct 0t I I(gt-  1)llc,,z(~) + ~--~- + IIB~llc,+~,~(~) , (3.21) 

where C depends on l,/3 and ft. Turning now to the estimations of 9t and Bt,  we 
have the following lemma proved in the appendix. 

L e m m a  8 V I E IN, V 7, /3 E [0, 1], we have a constant C depending only on ft, 
fl, 31 and 1 such that V t >_ O, 

IIg~ - lllz,,~ + IIBtl[z,,~ <_ G i l l  - lllz,,~, (3 .22)  

and 

c(1  ) 
IIg~ - 111z+1,9 + IIS~tlz+~,~ ~ .tl+~_q ' + 1 Ilf - lliz,-~. (3.23) 

Combining (3.19), (3.21), (3.22) and (3.23), we obtain that,  for any 0 < fl < 1, 
l E IN, "7 E [0, 1] satisfying l + '7 < k + c~, 

and 

lIDtlll+l,fl 

IlD, IIz,~ ~ c(l,~,ft)I1~1--~ IIf - lllz,~ 

c ( / , 9 , f t )  [ IIf a 111~ lilt - lll/,~ + c~ 0t + IIB~II,+I,~ ] 

(1  )ll41Oll f _<c( l ,Z ,~ , f t )  tl+~_~ + 1  - -  - l l lz ,~.  

(3.24) 

(3.es) 

At = I ( D t  - Bt) E LI~(]R+, W I ' ~ ( ~ ) )  n C~176 • ~). 
gt 

As in w 3.1, in view of solving (1.2), we study the flow (3.7) by paying more 
attention to the regularity of ~t. First of all, the existence and uniqueness of Pt 
comes from the fact that  
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The  condit ion At - 0 on Oft x IR+ ensures tha t  ~t is always a t ransformat ion  from 
into itself. Moreover, using a classical in terpolat ion result in HSlder spaces (see 

[6]), one has 

[1 -1] lZ+l ,~ l lDt  - Btllo + l[ l [lollDt - Btlll+l,~ ] . (3.26) 

Since one has also the following est imate  in H61der spaces 

C 
II - 11lz+1,9 ~< (i~fgt)Z+ 3 ][gt - lllz§ +1, (3.27) 

using (3.21), (3.22), (3.23) (3.24) and (3.25), we deduce tha t  for any 0 < 5 < 1 
and 0 < 7 _< 1, 

_ ~)llfllZo ~ ( 1 ) 
II&llZ+l,~ < c (1 ,3 ,6 ,~ ,  a - j~- I l f l l0 ,~ l l f  - lllt,~ t ~ - ~  + 1 , (3.28) 

and 

l§ 

IIAtllz,~ <_ C(l, 3, 6, ~ ) ~ l ] f l l o , ~ l l f  - lllz,~. (3.29) 

R e m a r k  7 We have bounded lID, - Btllo in (3.26) by [IDt - B, II0,~ and finally we 

can bound it by C Ilfll___2 Ilf - l llo,~ using (29) and (3.2~). 
a 

For proving ~t E Ck+l '~(~)  we will use the following lemma, proved in the 
appendix.  

L e m m a  9 Let 1 > 1,0 _< 3 ~ 1 and At C L~oc(]R+,Cl'~(~)) N C~(IR+ • ~). 
Considering the solution ~t of the following flow 

~ = At(~t),  x JR+, 
~0 = Id, in ~,  (3.30) 

At - O, on Ogt • IR+, 

one has the estimates 

(?o ) x exp(C ~ot [[VA~[[o ds) ,  (3.31) 

and 

where the constant c only depends on l,/3 and ft. �9 
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By the previous lemma, for 1 = k, p = c~ and by (3.29), we already establish 
that  ~t E Ck'~(~). In view of proving ~t C Ck+l 'e(~),  we cannot use directly 
the previous lemma for l = k + 1 and /3 = c~. Indeed, by (3.28), we just have 
[IAt[[k+l,~ <_ VII f - ll[k,c~/t for t < T, and this cannot imply that  I[At[[k+l,~ e 
L~o~(1R+). But, on the other hand, since we have the existence and uniqueness of 
7)t in C k,~, we simply have to establish some a priori estimate for the C~+t,~(~) 
norm of Pt in the case where At ~ C~(IR+ x 12) (i.e. f ~ C~) .  

Using a classical result proved in [6], on the C ~'z estimation of the composition 
of applications, we have V l ~ IN, V/3 ~ [0, 1], 

I]At(~t)]h,z _< C(l, ~, f~) [ IJAtlt~,zJlV~t][~ +z + [IVAtllo}]CptJl~,z + ]l&l]o ]- (3.33) 

This leads to the following inequality: There exists C depending on l, ~ and f~ 
such that  V1 ~ IN, V/3 ~ [0, 1], 

IIAt(~t)ikz <_ C[ IIAtll~,z (1 + ii7)t- Idltlo,~ ~) + IIVAtlioll~t - Idlll,Z ]. (3.34) 

We will also use the following lemma proved in the appendix. For x, y in f~, x r y, 
an application from ~ into IR ~ and l ~ IN*, we denote by T~ (x, y) the following 

quantity 

T~(x, y) = ~ IOhO(x) - ohO(y)[. (3.35) 

ihi=Z 

L e m m a  10 Let A E Cl'Z(~) and ~ C Cl'Z(f~, f~). Then there exists a constant 
C(l,/~, f~) such that V x, y E -~, 

T~(~)(x,y) ~ C Ix-y l  ~ x [ + T~(~(x),~(y)) + IIVAIIoll~- Idllz,~ 

§  .)llo § ] 

Deriving (k + 1) times the flow equation (3.7), we obtain that  

x, y c ~, OT~?l(x ,  y) < V - -  Tk+l~At(~t)(X' y). 
U L - -  

(3.37) 

Applying Lemma 10, with I = k + 1 and/~ = a, we have V x, y E ~, 

k + l  < c {  T~ (~t(x), vt(y)) + I x -  y, ~ • [ IIVdtti0il~t - I~II~+1,~ (3.38) 

§ []Atiik+l,~[lV(qot- Id)[[0 (1 + 11V(: t -  Id)][0 k+a) ] } .  
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First, using (3.28), we have 

and 

) II/lI~+3 1]jk,a (~  1) IIA~ltk+~,~-< C(~,~,k,~ ~ l i f l l o , ~ l l f -  + �9 

Moreover, by Lemma 9, we have 

(/o ) IIv(~t - -rd)llo _< c IlvA~t[o d8 

By (3.39) this leads to ( for t < T) 

x [exp (c ff llVA~llods)-l] 

(3.39) 

(3.40) 

(3.41) 

I l v ( ~  - Id)l,0 _< ct ~ [cxp (ct ~) - 1], (3.42) 

where c only depends on a, ~, T, Ilfllo,~ and ~. 

Now, we estimate T k+l (~s(x), cps(y)) ds for any x r y in ~. A~ 

/o ~T ~+1 ( ~ ( x ) , ~ ( y ) )  de = T~§ ( ~ ( x ) , ~ ( V ) )  de 
A~ J 0  (3.43) 

f~ T ~§ (~(~),~s(y)) d~ 
-[- --Y] A~ 

the first integral in the right-hand side of (3.43) can be bounded by 

f l x -Y '  2,,A~,,k+l ds <_ C f Ix-y' ( 1 ) II.f - 1]1~,~ ~ + 1 ds (3.44) 
JO J 0  

<_ c I I f  - l l l ~ , ~ l x -  yl  ~ , 

where we have used (3.28). The second integral can be bounded in the following 
way 

(/i ) j(~ Tk+sl(~s(X),(~s(y)) d~ <_ Ix- yV'• IIA~II~§ de ,(3.45) 
-yt -yl 
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where we have chosen a ~ - -  - -  

t < _ T ) ,  

l + a  
> a. By (3.28) and (3.31), (3.45) leads to (for 

- Y l  E/:( ) ] _< I x -  yl ~ • c -~1 s l + ~ - ~  + 1 I I f -  lllk,~ d~ 

(I: ) _< Ix - yl  ~ • - , I  s l + W - ~  [ l I -  l l l k , ~  d s  

<_ C"III - l l l k , ~ l x  - yl  ~ , 

(3.46) 

where C" only depends on a, 5, k, a,  T, Iffll0,~ and fL Combining (3.43), (3.44) 
and (3.46), we obtain that for any x, y E fi and for any t < T, 

fo t k+ l  x r),~ ( ~ (  ), ~ ( y ) )  ds <_ Cllf - 1 ] l k , ~ ] x  - yl  ~ (3.47) 

Integrating (3.38) by using (3.39), (3.40), (3.42) and (3.47), we have (for t _< T) 

Tk+l(x~t , '~ ,  ''~ -- < C s-T2-g_~llCPs - Idl lk+l.a ds § I[f - lllk,~ • Ix-  YI% (3.48) 

Y x , y  c f~, where C only depends on a, 5, k, a,  T, Ilf[10,6 and fL Taking the sup 
on x , y ,  in f~ in (3.48), we obtain 

[ [ t  I ]~s -  Idl lk+l,~ ds + IIf - lllk,~] 
[l~t - I d l l k §  <_ a LJo sl-e  J 

~o t ds Since ~ < +oc, we get the desired result by Gronwall's Lemma. 

3.2.2 P r o o f  of  T h e o r e m  8 

Take f in ck ' i (~ )  for k _> 0 and verifying (H). We consider At ,  f t  and ~t 
constructed as in the proof of Theorem 1. By (3.28), for any 0 < a < 1, we have 

[IAtl[k+l,~ < C IIf - lllk'l (3.49) 
- -  tc~ 

Thus IlAtllk+l,~ c Lloc( lR+) and by Lemma 9, we get the desired regularity result 
and the estimate follows from (3.32) and (3.39). �9 
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3.3 T h e  l imi t ing  cases 

In this last section, we treat the limiting cases considered in w 2.2 ( f  E C ~ L ~ 
and BMO) by the path- regularizing flow method. Let U be a neighborhood of ft. 
We are looking for u solution of 

d e t ( V u )  = f ,  on  ft 
(3.50)  

C U. 

This method leads to exactly to the same gain of regularity of u, established in 
w 2, but without keeping the boundary fixed except under an additional regularity 
hypothesis for f closed to 0ft. 

3.3.1 T h e  C O a n d  D i n i - c o n t l n u o u s  c a s e s  

Taking f ~ 1 in C~ or in Wi,'*N L~176 verifying (H), we extend f into Lo(f) 
on all of IR ~ as indicated in Lemma 7. Clearly, in this case, ~afLo(f) = i ~ f f  and 

sup Lo(f) = sup f.  
IR ~ ft 

Let U be a neighborhood of f~ included in ftl.  We can always ensure that  
(see Lemma 7) supp(Lo(f) - 1) c U. We also need to have an extension f of f 
such that  

supp(f -1) C U, i ~ / / = i ~ f f ,  s u p f = s u p f  and an f f dz= ]all. (3.51) 
~i ~ i 

Consider ~ a cut-off function 0 _< ~ < 1 such that  supp(~) c U\~. The function 

0 = (1 - ~)Lo(f) § ~ i ~ f f  (3.52) 

verifies a) and 

Since inf f < 
ft 

s Odx= f~ (1-~)Lo( f )dx+inf fs  ~dx. (3.53) 

1, we may choose ~such  that /~  0 d x <  I~sl. (In fact, ~ c a n  be 
1 

taken as close as we want from the characteristic function of U\Ft). Similarly, 
by using sup f instead of inf f ,  we can construct a function h verifying a) and 

f~ f~ 

/ h  dz > If~LI. Finally, a convex combination of 0 and lz ensure (3.51). m a y  

1 

Let r/, ~b, rh and ~bt be as in w 3.1. Denote by gt and Bt the following applications 

gt = r/t * f and Bt = r * f. (3.54) 
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Clearly inf gt >-- inf f and 
t_>o 

IIBtllo <_ CII f - 111o. (3.55) 

We need the following lemma (a refinement of Lemma 8). 

L e m m a  11 Let gt and Bt be as above. Then, for any e > O, there exists Tz > 0 
such that Y t <_ Te, 

Ilvgtll0 + IIvB~ll0 _< ~ .  (3.56) 

Proof of Lemma 11. Suppose first f E C O (~). We have 

/~a /n~ I V  ( ~ - - ~ )  1 (3.57) Vgt(x)  = ~ V~lt(x - y ) f ( y )dy  = ~ ~ ~ ( f (y)  - f ( x ) )  -~dy 

where we have used the fact f Vr] dx = 0. This leads to 
2n~ n 

Since f is uniformly continuous on ]R n, we get IIVyt(x)11o < e / t  for t sufficiently 
small. We can estimate in the same way 11VBtllo, and this proves the lemma for 
f ~ C ~ �9 

Take At = Bt /g t  and consider the flow (3.7) on all of IR ~. Combining (3.54), 

(3.55) and (3.56), clearly, we deduce that  if IlA~ll0 <_ c IIf - 11to and Y e > 0, there 
a 

exists T~ > 0 such that  Y t _< T~, 

IIVA~ll0 < - .  (3.58) 
- t  

For any x C ]R ~, the existence of ~t(x) for all t > 0 is given by classical arguments. 
We prove now the uniqueness and some regularity result on ~t (a crucial point of 
our proof!). 

L e m m a  12 V # C [ 0, 1), there exists T~ > 0 such that for any two continuous 
solutions ~1 t and ~2 t of (3.7), for any t < T , ,  x 7~ y e IR ~ 

I ~ ( ~ )  - ~ ( y ) l  -< c ( l ~  - yl" + I~ - yl) (3.59) 

where C only depends on 1If - 1110 and a. �9 
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Proof  of L emma  12. Let  x r y be two points of IR ~. Let  ~tl (x), pt2(y) be two 
continuous solutions of (3.7). Defining 7- = Ix - Yl we have 

L 
t 

~ ( x )  ~2t(y ) A~(~(x)) A 2 (x y) - = - , ( ~ . ( v ) ) d ~ +  - . (3.60) 

For t < v-, since tlAsllo _< c I l l  - Xllo 
a 

i~ot~ (x) 2 IIf - 1110 - ~ (y)l  -< ~ c  § Is - yt -< c ' l s  - yl.  (3 .61)  
a 

And for t _> ~-, (3.60) yields 

I ~ ( x )  - ~ (y) l fo _< I I A s l l o d s +  [As(~o~(x) )  As 2 - (~o . (y) ) l  d .  

+ Is  - yt 

- -  i t  A 2 _< c I z - y t +  st s(,))l ds. 
J~ 

(3 .62)  

Denote  by @ the solution of the following flow 

{ cO~t 
cOt - At+-~(@t), in fl 

~o = Id, in f2. 

Clearly, since At+;  E C~176 r~ x IR+), @ exists and is unique, then  we have c, otl (s) = 
@t-r(q@(x)) and 7)t2(y) = @t-~-(qo~(y)) for any t > ?-. This implies 

f ~ A 2 - s ( ~ . ( y ) ) [  d .  

2 _< l lVAsl lo  • I I V ~ - ~ l l 0  • I~L(x)  - ~o~(y)l ds (3 .63)  

C l s  - Yl il~TA~lro x Nv@~-~ l l0  ds.  < 

Let c > 0, i f f  < Te, by (3.58), ItVAsIIo < e for s in IT, t]. So we get, for any 
8 

s < t - T ,  
cO e 

o-SIIV~srlo _< --%-7~ IIV~sllo 

and this yields 

v ~ ~ ~ - ~, l iV~sHo _< �9 (3 .64)  
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Combining (3.62) (3.63) and (3.64), we get for t _< min(1, Ts) 

I ~ f ( x ) -  ~ ( y ) l  -< C l x - y l  + c ~  ~- ds 
8 

_< c l x  - yl + c ~  ~-~ < - ~ )  
<_ C [ I x -  yll-~ + ix - yl ? . 

By taking 2r~ = min(1, T I - , ) ,  this proves Lemma 12. �9 

Lemma 12 implies tha t  ~t is unique for t < T, .  Moreover, since At E 
C ~ ( ] R  ~ x lR+), if there exists some 1 > c~ > 0 and some t > 0 such that  ~t 
lies in C~ then ~ C C~ ~) for any s > t. Combining this remark 
with Lemma 12, we deduce that  ~t, solution of (3.7), is unique and belongs to 
n~<~C~ 

Let T > 0. Now we are going to prove tha t  PT iS an homeomorphism from 
into ~T(~) ,  which is a solution of (1.3). Let ~t  be the solution for t < T of the 

following flow 

{ i)-~t -- AT-t(-~t), in IR ~ 
0t (3.65) 

~o = Id, in IR n. 

Since AT-t E Coo([0, T) • ]R n) and Ut<Tsupp(AT--t) is included in some compact  
set, ~ is well defined in C ~ ([0, T) x ~ ) .  Furthermore, since I I AT - t  It 0 is uniformly 
bounded on [0, T], ~t converges in C~ n) when t , T, so ~T is continuous on 
]l~ n . 

Moreover, by a simple computat ion similar to the proof of Lemma 5, we have 

0 r 1 

(~Z,I_ - -  - -J 

and this implies 

fT 
V t < T, d e t ( V ~ )  - fT-~(~) '  (3.66) 

This can be writ ten in a weaker form 

V E open subset of IR n, [ fT dx = f fT-t  dx. (3.67) 
dE J~ t(E) 

By the uniqueness of the flows on [0, T) we have 

V 8  E (0 ,  T ] ,  ~T_sO~gT =~s, 
implying, in particular, tha t  ~T o ~ r  = Id on IR n. Using the same argument,  we 
also have ~T o ~T = Id. Thus ~T and ~T are two homeomorphisms of IR ~ and 
(3.67) implies 

V E open subset of IR ~, f dx = f f dx. (3.68) 
r(E) JE 
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Finally, since s u p p ( f  - 1) c U, we may choose T sufficiently small such that 

s u p p ( f t - -  1) C U, so / ~ f t d x  = IUI for t < T. Moreover, fT  �9 CC~(lRn) and 

verifies (H), thus there exists some v C C ~ ( U )  solution of 

det(Vv) = fT ,  on U 
v(x )  = x, in 0U, 

and for u = v o ~T, we have 

V E open subset of f~, lu(E)l = f dx  and u(ft) C U. 

This proves the case where f �9 C~ Suppose now f to be verifying (1.4), then 
there exists an increasing function d : IR+ --~ IR+ such that  

fo 1 d(s) d s < + o c  and V x ,  y � 9  I f ( x ) - f ( y ) l  < _ d ( l x - y l ) .  
8 

This property is preserved by the extension construction in Lemma 7. Let At,  f t ,  

~t and ~t be chosen as above. One verifies easily that  IIVA~II0 _< C d~R;~ ' ,  thus 
t 

At �9 L~o~(IR+, W I ' ~ ( I R n ) ) ,  implying that  ~T and ~T are Lipschitz. Furthermore, 
since 

~T--t �9 C ~ ,  for T > t > 0, and I[~T-t -- ~TIIO,1 > 0 as t -~ 0, 

we get ~T �9 C1" Then by the fact that  de t (V~T)  _> a > 0, we easily obtain that  
~T E C 1 and thus v o qoT �9 C 1. This proves then the following result: 

T h e o r e m  9 Let f~ be a regular domain, and f be verifying (H)  and (1.g). Then 
we have u �9 C 1 solution of  de t (Vu)  f . �9 

3 . 3 . 2  T h e  L ~ a n d  B M O  c a s e s  

a). The C o case: Let n0 be a regular bounded domain of IR ~ and r], ~, r h 
and r be as in w 3.1. The proof comes from the following lemma. 

L e m m a  13 There exists c > 0 depending only on ~2o, ~ and ~,  such that for  any 
0 < c~ < 1 and 9 E L~( f~o)  verifying (H), i f  there exists a positive constant  cg 

such that I I g -  cgllo < ~ Then there exists a homeomorph i sm v in C~ 
i n f g  - c 

solution of  (3.50). 

Moreover, i f  supp(g - Cg) C f~o, v is an homeomorphism f rom f~o into itself  veri- 
fy ing v(x)  = x on Oleo. �9 
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Proof  of Lemma 13. Suppose supp(9 - cg) C ft0. We extend g by cg out of 

Fro. Let gt and Bt be defined as in w 3.1. Define At  = --.Bt Clearly, for t > 0, we 
gt 

have 

iiVAtll0 < cIIg - cgllo 1 (3.69) 
- inf g t '  

fro 

where C only depends on ft0, r] and ~. Let 0 < c~ < 1, if C H9 - Cg[[~ < c~ i~fog. 

Since IIAt[Io is bounded independently of t, following the arguments of the proof 
of Lemma 4, we get that  ~t, solution of the flow (3.7), is in C~ 

Furthermore for t sufficiently small (depending only on dist(0f~o, supp(g - cg)) we 
have Bt  =- 0 on 0f~o and pt is a homeomorphism from fro into itself and pt(x) = x 
on 0ft0. Solve now the following equation 

det(Vw(x))  = gt(x) ,  in fro 
w(x)  = x, on Oft0 . 

T h i s  c a n  b e  d o n e  as  in  w 3.1, s ince  gt E C~176 a n d  gt clx =- g d x  = I f~o I 
o o 

for t chosen as above. Now v = w o ~t is a solution of Lemma 13. 
In the general case, g can be extended on all of IR n as in w 3.3.1, but  by using 1 
instead of ee, and the rest of the proof is similar as in w 3.3.1. This concludes the 
proof of this lemma. �9 

Consider f verifying the hypothesis of Theorem 2. We proceed as in w 2.2.2, 
and by using Lemma 13, we prove that  the existence of the sequence wk E C ~ 
with 

{ - l n a  l a b }  (3.70) ( o) , (oo )  
In 1 +  c In 1 +  c 

where a = i n f f  and b = sup f .  Then w = Wp o . . .  c w l  belongs to C ~ with 
t2 t2 

= (1 - a) p. Taking c~ tending to oo and p as in (3.70), we get the desired result. 

b). The B M O  case: The proof is based on the following lemma. 

L e m m a  14 Let t2o be a regular bounded domain of ]R n. Then there exists c > 0 
depending only on fro,r] and r (defined in w 3.1), such that for  any 0 < c~ < 1 and 

g E B M O ( f t o )  verifying (H), if  IIglIBMo <_ ~--, then there exists a homeomorphism 
inf g c 
fro 

v in C~ solution of (3.50). 

Moreover, if  there exists cg such that supp(g - cg) c f~o, v is a homeomorphism 
from f~o into itself verifying v(x)  = x on Ol2o. �9 
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Proof  of L e m m a  14. Suppose  t h a t  supp(g - cg) C gto, we ex tend  9 by Cg out  
of f~0. Let  9t and  Bt be defined as in w 3.1.2 and  define At  = Bt /g t .  We have t hen  

I A~(x) I 
s  - yl [ ~(y)g(x + ~y)l I dy ~?t ( x Y)g(Y) dy Y 

P P 

_< diam(~Vp(~)). 

On the other hand, 

IIVAtll~ = s rh(x- y)g(y) dy - At /a Vt(x_ y)g(y) dy ~ (3.71) 

c_ fR Ig(y) - gx,t.l ey 
< 
- ~ inf  9 ' 

f~o 

where R = diam(supp(~I)), (we have used the fact that f~ V r  dx = / ~  Vr]t dx 

= 0). The  cons tan t  C in (3.71) only  depends  on r / a n d  ~.  Thus  we have es tab l i shed  
the  following e s t ima te  

IIVA~lto < C IrgllBM~ 1. (3.72) 
- inf g 

g2o 

We finish the  p roof  of L e m m a  14 by  following the  a rgumen t s  of L e m m a  13. �9 

We ex tend  f to  all o f l R  ~ as in w 3.3.1 such t h a t  s u p p ( f -  1) C U. Let  
M > i n f f ,  we use the  same n o t a t i o n  as in w 2.2.2, we decompose  f as chh • T M ( f )  

f~ 
where  h = I / T M ( I ) ,  we use L e m m a  14 to  resolve de t (V v)  = cah on U, and  then  
we resolve d e t ( V w )  = T M ( f )  o v -1, u ---- w o v is the  des i red  solut ion.  �9 
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A P r o o f  o f  L e m m a  1 

Suppose first a to be close to 1/2. We will construct  ~ as the composi t ion of 
two Lipschitz homeomorphisms  ~ and ~ (r = qJ o 99) where 99 realizes a homeo- 
morphism from A into A (resp. B into B) such tha t  9~(x) = x on OA (resp. OB). 
On the other  hand,  �9 realizes a homeomorph ism from A into _~ (resp. B i n t o / ) )  
such tha t  A a n d / )  is a par t i t ion  of D with I ~ I = a ,  I / )  I = fl and ~ ( x )  = x on 
OD. 

More precisely, we are looking for qJ of the following form, (for a close to 
1/2) 

= t a + ! h(x', xn) in A 
(A.1) 

where x = (x', Xn) (i.e. x '  = ( x l , . . . ,  xn-1) )  and where h and h will be de termined  
below with the  condit ions 

h, ~ - 1 on  OD n 0([0,1p -~ • ~)  (A.2) 

and 

h(x', 1/2) = h(x ' ,  1/2) for x '  e [0, 1] ~-1. (A.3) 

Thus  we have 

w ( x )  = 

Then  we get 

and 

/ ~ / /n--1 0 

(1 - 2a)xnVx, h, 2 a +  (1 - 2a)O@n(Xnh ) 

d e t V ~ ( x )  = 2a  + (1 - 2a) O@n(Xnh ) 

detV~(x) = 2fl+ (2fl-1) O@~ ((1- x~)h ) 

Since we would like to ensure 

d e t V ~ ( x )  = detVkg(99(x)) x 

in A, 

in B. 

detV99(x) = ~ 2a  in A 
2fl in B,  ( 

in A. (A.4) 

(A.5) 

(A.6) 

(A.7) 
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it suttlces to cons t ruc t  ~, h o m e o m o r p h i s m  of A (resp. B) verifying 

and 

detV~ 1( . ' , .~)  = 1 + \ 2~ ] (x~h) in A 

~ - l ( x )  = x on cOA, 
(a.s) 

where f ( x ' ,  x,~) = 1 + 
1 - 2 c ~  cO 

2 ~  OX n 

{ /01 h(x',x,~) = d iv(w)(x ' , sx ,~)ds  i n A  

w = 0 on OA.  
(A.12) 

This  is equivalent to (A.10). Wi th  view to reaching a Lipschitz solution h of (A.12) 
verifying (A.2), we would cons t ruc t  w such t h a t  

w c W I ' ~ ( A )  
div(w) �9 W I ' ~ ( A )  

w = 0, in OA 
div(w) = 1, on OA. 

(A.13) 

R e m a r k  8 The combination of the two last constraints on w in (A.13) is an 
obstruction to a better regularity for w. Bu t  we will see that w is C ~ by parts. �9 

div(v) = f - 1 (A.11) 

- - ( x , ~ h ) .  We remark  tha t ,  if (A.10) is true,  we have 

{ / d e t V p - l ( x  ', xn) : 1 + 0-77 (1 - x,~)h in B (A.9) 

~ - s ( x )  = x on  OB,  

(A.8) and (A.9) will be solved by following the  f low-method of Dacorogna  and 
Moser [4]. T h e  difficulty here comes f rom the fact t h a t  we are working on non 
smoo th  domains  which are only Lipschitz and we want  to ob ta in  the  Lipschitz 
es t imat ion  (2.4)(iii) (the same regulari ty) .  This  is the  reason why we should in- 
t roduce  some par t icular  functions for h and h so as to solve the  first s tep of the 
me thod  ( tha t  is to  solve div(v)  = f - t )  wi th  the  desired regularity.  

We are looking for h and w defined in A such tha t  

{ div(w) = ~ ( x , ~ h )  in A (a .10)  

w = 0 on OA. 

1 2c~ 
Indeed,  by tak ing  v 2c~ w we have solved 
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Define 

~(x)  = ( ( 1 -  2xi)d(x, OD)) in D. (A.14) 
l<i<n 

We have ~ E W l'~176 and div(~) E W 1'~176 but this is not the case for V~.  In fact, 
we have 

div(~) = 1 - 2(n + 1)d(x, OD). (1.15) 

Take now 

( 1 ) 
W(Xl, Xn) = ~ l ( X ' ,  2Xn) , . . .  ,Wn--I(Xl,2Xn),-~Wn(Xl,r2Xn) in A, (A.16) 

we have div(w)(x) = div(~)(x' ,  2x~) C WI'~176 Thus w clearly verifies (A.13). 
Then take h verifying (A.12) and h such that  

h(xZ, x~)=h(x',l --xn) i nN.  (A.17) 

We are looking for @(x) in B satisfying 

div(@) = ~ 1 - x ~  i n B  

@ = 0 on OB. 
(A.18) 

From (A.10), we have 

div(w)(x', 1 - x, 0 
0 -- Ox~ ((1- xn)h(x',l- x~)) 
0 

07o (/1 
(A.19) 

Using (A.17) and (A.19), we consider 

W(X'Xn)= (--Wl(X',I--Xn),...,--Wn--I(X',Xn),Wn(XI, I--Xn)) in B,(A.20) 

and verify that  (A.18) holds for v9 defined above. 

Then we will construct ~o, verifying (A.8) and (A.9) with some estimates for 
I I v ( ~  - Id)l]oo, by the flow method in [41. With this aim, we solve the following 
equation 

dq~ v(qotx) in A 
dt t q- (1 - -  t ) / ( ~  -1) 

pol(X) = x in A, 
(A.21) 
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where v and f are defined by (A.11). By  [4], 7)~ -1 is a solution of (A.8). Now we 

establ ish a bound  for I I V ( ~ -  Id)ll~. Denote H(t, x) = IV(~/-1 -~d)IN(x). We 
deduce f rom (A.21) the  following differential inequal i ty  

) ~ H ( t , x )  C 
(1.22)  

l rVwlt~  + rl - tsI 1 - 211 I jdiv(w) l l l ,~r lw]r~ ] 
XL ft((Dt 1) \ ' l~V-~ I ~ J 

where f t  = t + (1 - t)f. 
If  o~ is close to 1/2, we have a posit ive lower bound  for ft depending  only on 
Ildiv(w)ll~ and not on t and x. Thus,  in this case 

~/H(t ,  _ ~ x 

where C is a constant .  F rom (A.23), we deduce 

= C 1 - 2 1  . (A.24) IIV(~--rd)llcoo(a) I 1 ~ 1 1 o o - - <  i---yg--a i , 

then,  for a close to 1/2, we get 

jrV(~ - Id) IIL~(A) --< CI 1 - 2c~ F- (A.25) 
Similarly we get 

IIV@ - Id)[Ic~(B) _< CI 1 - 21 [. (A.26) 

For a close to 1/2, (2.4)(iii) can be deduced f rom (1.25),  (1.26) and  f rom the 
explicit  expression of �9 given by (A.1). 

More generally, let 0 < r / <  1/2, for a E It/, 1 - r/I, we cons t ruc t  @~ solut ion 
of (2.4)(ii) such t ha t  

HV(+~ - Id)IIL~(D) < C(rl), (A.27) 

where C(r/) only depends  on r/. Let  ~v  be the  following h o m e o m o r p h i s m  of D such 
that l%(A) l = l  7, 

{ 'I',(z', zn )=  

%(x', xn) I x' ,  [1 + 9v(x')]x~) in A 

x ' ,  1 - [1 - gv(x ')](1 - x ~ ) )  in B 
(A.28) 

where 97 is defined in the  following way: g7 E C~( [0 ,  1] ~-1,  [0, 1)) in [0, 1] ~ 1 wi th  

fo g,(z')dz' = 1 - 2r/. (A.29) 
,1] r ~ - I  
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This is possible since (1 - 2r]) < 1. Let ~ - - -  
2~ - 1 

, define ~ as follows 
1 - 2~ 

[ %(x',x~) 

%(x',x~) 

= t x ' , [ l  + Agv(x')]xn) i n A  

~x ' , l - [1 -Agv(x ' ) ] (1 -x~) )  i n B .  
(A.30) 

We have I ~ ( A )  I = c~. As in the previous case, we will find (I), in the form ~ o 9 ) ~  
where 9)~ realizes a homeomorphism from A into A and from B into B, satisfying 

_ 1 + .~gv(x') in A 
2a (A.31) 

on OA, 

{ d e t ( V ~ l )  = de t (Vg~)  
2a 

(/9~1(X) X 

and 

{ det(V~l) det(Vtg~) 1 - Agv(x') in B 
~al(X) = : ~ -- 20~ on 0B.  

(A.32) 

For solving (A.31) and (A.32), using a Lipschitz homeomorphism T from A into 
(1"~ l/n 

the ball of radius r0 = k.2--~] in IR n (where wn is the volume of B1) such 

that  det (VT) = 1 in A, we are left with solving the equivalent problem on the ball 
Br 0 (0), i.e. consider 

{ det(V~) det(V~) o T -1 1 - Agv ( T-1 (x')) 
= 2 a  (x) = 2 a  in Br0 (0) 

~(x)  = x on  oB~o (o). 
(A.33) 

Since gv c C ~ and T E W 1'~, we deduce the existence of ~ C W 1'~ solution of 
(A.33), using the flow as (A.21). Take 

~flc~ = T -1 o ~-1 o 7" in A, (A.34) 

it verifies (A.31). Similarly we can construct a solution of (A.32). (A.27) can be 
obtained by the resolution of (A.33) and by an estimation of the W 1'~ norm of 
�9 ~ given by (A.30). 

Finally we get (2.4)(iii) by combining (A.25), (A.26) and (A.27). �9 

R e m a r k  9 Since the best regularity that we can expect for T and T -1 is W 1'~, we 
cannot preserve the estimation of type (2.$)(iii) after an operation as in (A.35). 
Thus we cannot get the desired estimation globally following the second construc- 
tion. �9 
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B P r o o f  o f  L e m m a  7 

Let m C IN, 0 _< fl _< 1. Let U be a tubular  ne ighborhood of Oft, included in 
ftl and such tha t  the or thogonal  project ion 7r from U onto 8ft  is well defined and 
is regular. For x on Oft, we denote  by ~(x) the unit  exterior normal  vector of Oft 
at x. We define f on U U ft in the following way : 

m+l / 
f ( x ) =  ~ - ~ a J ~ T r ( x ) - A h , ( z r ( x ) ) ,  f o r x C U \ f t ,  

1 1 

(B.1) 

where A is a constant  chosen small enough such tha t  V x r U\ f t ,  7c(x)-Al~(Tr(x)) E 
U and az verify: 

m + l  

for 0 < i < m, E (-Al)iaz = 1. (B.2) 
1=1 

Clearly (al)l<_I<_m+l is uniquely determined.  One verifies tha t  for m '  E IN, m '  _< m, 

for 0 < a < 1 and for f E C "~''~, one has f lies in C'~'~(U U ~) .  

Let ~ be a positive function in C ~ ( I R  ~) whose suppor t  is included in U U f t  and 
such tha t  ~ -- 1 in ~ .  Take L,~( f )  = ~ f  + (1 - ~) in IR '~. (i) - (iv) hold t rue 
obviously. �9 

C P r o o f  o f  L e m m a  8 

Since gt = tit * f ,  we have for 9t = gt - 1 

llgtllz,~ -< L ~  ~Tt x IIf - 1111,~ dx = Ilf - lilz,~. 

The same holds for Bt, proving (3.22). To prove (3.23), we consider first 3 = 0 
and /3  = 1. 

Vx E ]R n ,  IV1-Flgtl = IV~?t * Vzfl 
(c.1) 
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Since L ~ V/l dx = 0, (C.1) leads to  V x E IR n, 

IVZ+l~e(x) l 1 v/l(m _a) • v'f(=)l dz -< ~ 

f f  1 x - z d z )  x <_ ~ , J l a ~  V V ( ~ )  x ' x - z " r  lllz,v 
/ 

Ill - 111,,., f cI Y 1 "r dy 

C 
< 7 w l l f  - *11,,-, 

(c .2)  

In the same way, using one more t ime L ~ V/l dx = O, V x, y C IR '~ 

< 
I v / + l o s ,  t ( x )  - V / + l g L ( y ) l  : I V / I t  , V l f ( x )  - V ' r ] f  , VZf(y)l 

L n  1 __ __ 
(c .3)  

If I z - yl < t, recalling tha t  supp(/l) c BR(0) and not ing R'  = R + 1, (C.3) yields 

IV~+lO~(x) _ vZ+lOt(y)l 

-< t~+l  IIV2/lll0 • IvZ/ (z)  - v l f ( x ) ]  dz 
:c,t/g r 

< c Ix -y l~  
_ 7 ~ 7 f f  lac - z l  v d z  • I l l  - 111,,~ 

m,kR I 

<- C ~ l t f  - lllz,.~. 

(C.4) 

If Ix - yl -> t, 

c c Ix - yl IV~--lO~(~) - v ' - - l O & , ) l  < 2 IIV'+lO~llo < tq~--~ II f  - 111~,~, < II f  - 111~,.,. 
_ _ _ t 2 _ ~  

Thus  we get 

I1~t11,+1,1 _< c I I f  - lll,,w t~-~ (c.5) 

Let  0 < fl < 1, we have the classical in terpola t ion est imate  (see [6]) 

Iloa~ll,+l,~ ~< o ( z , 9 ) l l . O ~ l l ] ~ o  x .~ l l f§  ~. (c .6)  

Combining (C.2), (C.5) and (C.6), we establish (3.22) for 9t- The  est imations for 
Bt can be obta ined exact ly  in the same way, this proves Lemma 8. �9 
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D P r o o f  o f  L e m m a  9 

By classical arguments, ~)t solution of (3.30) is unique Cl(]P~§ W I , ~  T h u s  

we just need to establish (3.31) for the case At C C~176 • ~). We will use the 
following elementary ]emma 

L e m m a  15 Let h E C~([0, T] x ~),  let l E IN and 0 <_/~ <_ 1, one has 

IO~lthllz,~l ~< Ila~hllz,~, V~ > O. (D.I) 

Proof of Lemma 15. Let Wl, 11) 2 E L~176 where E C ]R ~, it is clear that  

supwl(z)  - supw2(z) < sup twl(z)  - ~(~)1.  (D.2) 
z E E  z C E  z ~ E  

Let i < I, j = 1, 2 and tj  C JR+. Consider 

,IV% (x)T/__~- v% (y) I' y) 

where E = ~ x ~ \ A  with Zk = { ( x , x ) , x  E ~} (resp. wj(x )  = IVtht,(x)i with 

E = ~), one has 

sup w ,  (z) - sup w2(z) = Ih a It,z - Ih,~ It,z, 
z E E  z E E  

( resp.  Iht~ It - Ih~l~) 

and 

sup Iw~(z) - w~(=)l 
zEE 

= s u p  F w~(x ,  y)  - w~(x ,  y)  I 
xCyE~ 

< sup Vthtl (x) - Vtht~ (y) Vtht2 (x) - Vtht2 (y) 

<_ i6htt,z dr, 

( ) resp. _< i0thit dt . This implies for t2 > tl 

t2 

Ilh~l IIt,z - ilh~2 Ik,z -< it0thlkz dr, 
1 

which implies (D.1) by multiplying - -  and making t2 tending to tl. �9 
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Turning now to the proof of (3.31), (3.30) implies 

0 
~ V ~ t  = VAt (~t)-V~t 

by Lemma 15, we get 

(D.3) 

~ llV~otllo < llVAtllollV~otllo. (D.4) 

Integrating this inequality, we obtain 

(/0 ) IlVgtil0 _< exp IIVA~II0 ds . (D.5) 

Applying Lemma 15 to h = ~t, we get 

la~tt~llz,~] _< llAt((pt)llz,f~. (D.6) 

We consider the following classical estimate, proved in [6], 

II/o gllz,~ -< c(1,~, a)[ II/Ik~llgll~ ~ + [[/l[lllgllz,9 + II/lI0 ], (D.7) 

and we have then 

-~ ll~tll,,~ < c(~,~, a)[ llA, l l~ l lv~ , ,~  +~ + llvAtll011~ll~,~ ] 
cqt - 

Integrating this inequality we get (3.31). (3.32) could be proved in the same way, 
by using (3.34) instead of (D.7). This proves the lemma. �9 

E P r o o f  o f  L e m m a  1 0  

We prove Lemma 10 by induction on l. For 1 = 1 we have 

Tio~(X,y) = ~ Oi(A o ~)(x) - Oi(A o ~)(y) 
i = l  

n 

<- E OkA(~(x))Oi~k(x)--OkA(~(Y))Oi~k(Y) 
i , k  I 

_< c[ llvAjlol1~- mll~,zl x- ~ 19 

+ HAIIl,ZIJv(~ - id)IIo~I ~ - y I ~ + T~(~(~), ~(y)) ]. 

(e.1) 
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Suppose the proposition is true for 1 _< m, we prove it for 1 = m + 1. 

< T~A(~,)(V~_Zd ) (x, y) + T~A(~ ) (x, y) 

< C { I x -  yl ~ x [ IIVA(~)V(~- Id)l[~,Z 

+ IIAIIm+l,911v(~ - Id)ll0 (1 + I1~- Idl[~ +~-' )  (E.2) 

,T,~q- i ) + IIVAIIIllg~-IdlI~,Z + "A (~(x),~(y)) . 

By a classical estimate, we have (see [5]) 

- Id)lb~,z <_ C[ IlVA(~)lb~,~l[v(~ - Id)llo IIVA(~)V(~ l (S.3) 
rlVAll01]v(~ - Id)ll~,~ ], + 

and using (3.34) for estimating IIVA(~)I1-~,~, we get 

II~A(~)llm:~ ~ C[ IIAIIm+l,fl (]  -~-11~ - ]dllr~ § ~- I1~AIIl11(r :)- Idllm,/3 ]" (E,4) 

Moreover, using interpolation inequality for the H61der spaces (see [6]), we obtain 

IIVAII~II~ • C(llVAII011~- zall~§ + ItAII~+I,~It~ z~tl~) (S.5) 

Combining (E.3) to (E.5), the worst term obtained is: IIVAII1 tl~-Idll~,911~-Idl]~. 
Using one more time the following general interpolation result (see [6]): V a, b E IR + 
and A C [0, 1], there exists C(t2, a, b, A) > 0 such that 

V g E cmax(a'b>(-~-), IlgllAa+<l-A)b < c(fl, a,b, ADItgll2llgll~ -x, 
where Ilglb = Ilglllp?,p Ipl' We obtain then 

IIVAIIlll~- Idll~,~ll~- Idll~ _< C I[VA[1011~- IdH~+l'~ ~ (E.6) 

( 
Applying Young's inequality in (E.4), we get 

[IVAIIIII~- Zdll.,,~ll~- Idll~ <_ c(llVAlloll~ IdHm+L,~ 
\ (S.7) 

+ IIAII~+~,~II~ - Zdl]F+~+l) - 

Combining (E.2)-(E.7) we prove the lemma. �9 
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