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Abstract: In this paper we will consider two-person zero-sum games and derive a general approach 
for solving them. We apply this approach to a queueing problem. In section 1 we will introduce 
the model and formulate the Key-theorem. In section 2 we develop the theory that we will use 
in section 3 to prove the Key-theorem. This includes a general and useful result in Lemma 2.1 
on the sufficiency of stationary policies. 

1 Introduction 

Model: We consider the following network consisting of two single server 
queues each with an infinite buffer. The system manager controls the service 
rates in both queues, whilst basing his decision on the present and past queue 
sizes. He has to pay some costs per unit time. Upon his arrival to the system a 
customer has to decide which queue to join. How he chooses is unknown 
to the system manager. We want to guarantee a minimum service level and 
therefore we assume that the customers choose in the worst possible way for the 
system manager. We model this by introducing an arrival controller, called 
nature, playing against the system manager by assigning arriving customers to 
a queue in the worst possible way. Our objective is to find a strategy that 
minimises the expected average costs for this behaviour of the customers under 
weak stability conditions and separable immediate costs. Weak stability means 
that there exist controls under which the associated queue size process becomes 
transient, but there is a non-empty set of strategies of the system manager under 
which the process is always positive recurrent no matter how arriving customers 
select what queue to join. This model is a continuous time two-person zero-sum 
Markov game. Because we assume additive costs and transition probabilities we 
can restrict ourselves to state dependent strategies [9], apply a standard uni- 
formisation procedure [8] and formulate the problem as an equivalent discrete 
time stochastic game. 

We will show that there is a stationary optimal strategy for the system man- 
ager prescribing a non-decreasing service rate as a function of the queue size and 
that there is a stationary optimal strategy for nature of the following form: if 
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arriving customers  choose queue i in state x = (xa, x2) , they also choose queue 
i in state y = (Yl, Y2) if Yi -> xi and Y3-i < x3-~ for i = 1, 2. These structural  
propert ies  have already been derived in Al tman [1] for the ~-discounted cost 
criterion. Under  strong stability condit ions this follows f rom Al tman & Hord i jk  
[2], but  the case of  weak stability was left open. 

Markov Games: We consider a countable  state space X; at each state x e X the 
compac t  sets of  actions A(x), B(x) are available to player  1 and 2 respectively. 
Let  A = ~:~A(x), B = UxB(x). Let K : =  {(x, a, b): x s X,  a e A(x), b e B(x)}. 
P = {Px, by} are the transi t ion probabili t ies,  where P~aby is the probabi l i ty  to go 
f rom state x to state y given that  actions a and b are chosen by the players. 
c: K ~ R is an immedia te  cost  paid  by player 2 to player 1, assumed to be 
cont inuous in a and b. Let  H and R denote the set of  strategies for player  1 and 
2. A policy rce H ( p  ~ R) is a sequence ~ = (~l, re2,-..) (P = (P,, P2 . . . .  )), where 
rct(pt ) is the probabi l i ty  over  A(B) condi t ioned on the history of all actions of 
both  players and on the state till t ime t - 1, as well as the state at t ime t. The 
actions of the two players at t ime t are chosen independent ly according to ~, and 
Pt. We denote by H(M), R(M) the set of M a r k o v  strategies for player  1 and 2, 
and by H(S) and R(S) the s ta t ionary randomised  strategies. Let  N7 'p and E~ 'p 
denote  the (unique) probabi l i ty  measure  induced by an initial state z and 
policies To, p, and the corresponding expectation.  Let {Xt, A,, B,} be the resulting 
stochastic process describing the evolut ion of states and  actions. 

We consider two cost criteria. First  let the infinite hor izon discounted cost  be 
defined by: V~p(z) = E'~ '~ ~=1 ~-lc(X~, A~, B~) with ~ < 1. The infinite hor izon 
expected average cost is defined as follows: 

1 
9~,p(z) = lim sup fi-,p2 L c(X~, A s, B~) . 

t - * c o  z ~ s = l  

We define the following values: 

_Vr = sup inf V~p(z) , Vr = inf sup V~o(z ) , 
r~ p p 

g(z) = sup inf g~,p(z) , ~(z) = inf sup g~,p(z) . 
p p r~ 

A policy re* is called discounted opt imal  if infp Vf.,p(z)= _V~(z). Moreover ,  if 
inf o Vf.p(z) = Ve(z), ~* is called strongly opt ima.  Similarly, p* is (strongly) opti- 
mal  if sup~ V~o.(z ) = V~(z) (sup~ Vfp.(z) = _Ve(z)). For  the average cost criteria, 
opt imal i ty  of  policies is defined similarly. 



Optimal Service Control against Worst Case Admission Policies 283 

Mathematical Model: We assume that  customers  arrive according to a Poisson 
process with rate 2. The service dura t ion  of a cus tomer  in queue i is exponen-  
tially distr ibuted with pa rame te r  b~ e Bi = [b(i), b(i)] for i = 1, 2. Since control  
is based on the queue sizes, we define the state by the queue lengths and hence 
the state space is X = N 2. By y = d~x  we denote  the state y with y~ = xf + 1, 
yj = xj for i C j, and  by y = ~ i x  the state Yi = max{0,  x i - i}, yj = )9, j r i. 
We assume tha t  the rates are normal ised so that  2 + b(1) + b(2) < 1. Then  we 
have the following transi t ion probabilit ies: 

2 ,  

P x a b y  ~ -  b~ , 

- - b l{x  > o ) ) ,  

a = i , y = s ~ x , i = l ,  2 ; 

y --/= x, y = ~ix ,  i = 1, 2 ; 

y = x  . 

The immedia te  costs are of  the form: 

2 2 

c(x, a, b) = h(x) + ~ O~(bi) + ~ ( , l  {a = i} . 
i=1  i=1  

We see that  the costs consist  of  three separable  parts.  Par t  one is the holding 
cost, which is nondecreasing in the queue lengths. The  second par t  is the cost of  
providing service. The  third and last pa r t  is the cost the system manage r  pays  to 
a cus tomer  that  is joining a certain queue. This cost can be negative, which 
means  tha t  the cus tomer  is paid  for joining a queue. 

We use the following conditions. 

Assumption 1.1: 

h(x~ 
i) ~ is bounded for all ~ > 1, x e X. 

ii) Oi(bi) is bounded for b, ~ Bi. 
iii) h(x) is non-decreasing in both components and is a moment function, i.e. for 

every q ~ R: I{Y e X: h(y) < q}] < oe. 
iv) 0 i (and thus c) is a continuous function of  the actions. 
v) weak stability, i.e. 2 < min(b(1), b(2)). 

Because c(x, a, b) is bounded  f rom below we can assume that  c(x, a, b) >_ 0 for 
all states x and  actions a, b. To  achieve this, we can add a constant  to h(x) and 
so the structure will not  change. 

Definition: We say that  a decision rule is of monotone switching curve type (see 
Hajek  [4])  if it has the following properties.  There  exists a curve in X with a 
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non-negative slope separating X into two connected regions, Xa and X2 and 
there exist two actions, such that action ai is optimal in region Xi. 

Key-Theorem: Suppose that Assumption 1.1 holds. 

i) For nature there exists a optimal stationary strategy of  the monotone switching 
curve type. 

ii) There are positive constants y l  and Y2 such that there exist an optimal policy 
p for  the system manager with 

pk(xl, xz)  = b(k) for  x k >_ yk and k = l, 2 , 

where pk(Xl, X2) is the service rate at queue k in state x = (x 1, x2). Moreover, 
pk(Xl, X2) is non-decreasing in x k. 

iii) I f  Ok is concave for  k = 1, 2, then pk(X) E {_b(k), b(k)} for  x ~ X ,  and this is 
again a policy of  the switching curve type. 

2 General Optimali ty  Results 

First we will show a general result on sufficiency of stationary policies in a 
Markov decision process (MDP), sufficiency is related to, but different, from the 
notion minimum pair in [6]. To this end we introduce some notation for 
MDP's. Let go(O be the expected average reward under policy p if we start in 
state i, similarly defined as in the game context. 

Lemma 2.I: Consider a (possibly multichain) M D P  with an immediate cost struc- 
ture that is a non-negative moment function. Then the stationary recurrent policies 
are sufficient for  the average cost criterion, i.e. for  any policy p ~ R there exists a 
stationary policy fl(p) ~ R(S) and a state x ~ X with 

gpo) (x)  = inf gp(p)(i) <_ inf gp(i) , (1) 
i ~ X  i e X  

and x recurrent under fi(p). 

Proof: First, some more notation for MDP's. We denote by p(i, a , j )  the proba- 
bility to jump to state j if the present state is i and action a is chosen, while c(i, a) 
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is the cost associated with this state and action. Since we assume arbi t rary  
chosen, but  fixed, s tart ing state ii and policy p, they are often omit ted  in the 
notat ion.  Say g is the average expected cost  under  the fixed policy and start ing 
state. Clearly there ~ nothing to prove  if lg[ = oe and so we assume tha t  g is 
finite. More ,  let for X c X, A ~ A 

f t ( s  A-) = Po(Xt ~ )~, A t ~ AIX 1 = il) , 

i f ( X )  = Pp(X t ~ 21x~ = i~), 

i f ( X ,  A)  = t 
/=1 

--+• i f ( X )  = ' . 

Since lim inft_~o ~ St,, e(j ,  a)df~(j,  a) <_ lim supt~oo ~j,a c(j ,  a)df t ( j ,  a) = g, and c is 
a m o m e n t  function, for every e > 0 there exists a state j( ,)  such that  

~ df~(j,  a) >_ 1 - ~ , 
j<<_j(e) a 

and therefore there exists a sequence {t~} and foo(X,  Y), such that  

l im f f k ( X ,  A)  = T~176 A)  V X  ~ X , ,4 E A , 
k --+ oo 

d f ~ 1 7 6  = 1 . 
j , a  

(2) 

Using Fa tou ' s  l emma  gives 

.~ c(j ,  a)dfoo(j, a ) < _ g o ( i l ) .  
J , a  

Since 

f t + l ( j )  = .~ p(i, a , j )d f f ( i ,  a) , 
i , a  

we have 
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a) 2 
f t+l( j)  _ ~ p(i, a,j)dft(i, <_ - . 

i ,a t 

Hence, 

f ~ ( j )  = ~ p(i, a, j)df~176 a) 
i ,a 

--oo �9 . , , f  (t, a) 
= Z f ~ ( i )  S p(i, a,j)a = (3) 

i a fr~ 

The first equality follows from Fatou's lemma and the fact that (2) holds. Define 
the stationary policy fl by 

~ f~176 A) 

[. arbitrary 

iff~176 > 0 ; 

otherwise . 

Let P(fi) be the transition matrix for the stationary policy fi, i.e. 

[P ( f l ) ] i j  = Pij(fl) = ~ p(i ,  a , j ) d f l i ( a  ) . 
a 

For n a stationary probability measure corresponding to P(fl) we have 

~ ( j ) =  ~ n(i)Pij(fl) 
i :  ~( i )  > 0 

= ~ =(i)~p(i,a,j)dfl,(a) 
i : ~ ( i ) >  0 a 

= E re(i) ~ p(i, a, j)df-~ (i' 
i :n:(i)  > 0 a f~( i)  

So by virtue of (3), foo is a stationary probability measure corresponding to 
P(fl). 

Define Ey~ = {i ~ X: f~~ > 0}. Ey~ is a set of recurrent states under fi, which 
we can write as the union of minimal closed subsets E,, and so Ei~ = [_)kEg. 
The expected average reward for initial states in E k are all equal, 9(k) say. Let 
q(k)(i, a) be the stationary state-action ffequences under fi for initial states from 
Ek. Then there exist 2, _> 0 with ~k 2k = 1, such that 
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f~(i ,  a) = ~ 2kq(k)(i, a) . 
k 

Using this, we see that 

gp(il) >_ ~ c(j, a)df~~ a) 
j,a 

= ~" 2 k ~ e(j, a)dq(k)(j, a) 
k j ,a 

= ~ 2kg (k) , 
k 

where we used Fubini's theorem in the second equality. As a consequence there 
exists a set E k with g(k) < gp(ia). This shows the assertion. [] 

In Proposition 4.7 of [5] for Borel state and action spaces and in Theorem 1 
of [-7] for countable state and finite action spaces it is shown that the assump- 
tion of strong duality of the linear programming formulation implies the exis- 
tence of a minimum pair, i.e. a state x and a policy fl such that (1) holds for all 
policies p. In Theorem 2 of [-7] it is proved that the moment condition together 
with some technical assumptions implies the existence of a minimum pair in the 
class of stationary policies. Combining this result with our Lemma 2.1 gives that 
the pair is minimal in the class of all policies. 

The remaining theory in this section is an extension of results that can be 
found in Altman, Hordijk & Spieksma [3], Altman & Hordijk [2] and in 
Sennott [-11]. 

Assumption 2.1: There exists a positive function #: X ~ [1, oo) such that 

i) the immediate cost is positive and #-bounded, i.e. 

c(x, a, b) 
c * : = s u p  sup sup - - < o o  ; 

x ~ X  aeA(x) b~B(x) # ( X )  

ii) ~ r  exaby#y  <~ O0 V X  ~ X ,  a ~ A(x), b E B(x); 
iii) the transition probabilities are #-continuous, i.e. for  all x ~ X and any se- 

quences a(n) ~ n, b(n) --* b, 

lim ~ [exa(n)b(n)y - -  Pxaby I #y  = 0 �9 
n-+oo yEX 
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Assumption 2.2(4): There exists a state Xo, a constant ~ < 1 and for every x ~ x o 
an action b(x) e B(x), such that for any x # Xo, a �9 A(x), 

~ oP~.b(~)y/ty < ~/tx , (4) 
y~X 

for /t as in Assumption 2.1, where o P is the matrix of taboo probabilities, i.e. 
~oPxaby is equal to P~by and to O, if y # x o and y = x o respectively. 

Lemma 2.2: Under Assumptions 2.1 and 2.2(~), with ~ < 1, the following holds. 

(i) There exists a/t-bounded solution of the optimality equation, 

v~(x) = val [c(x' a' b) + ~ ~ PxabYv~(Y)l (5) 

This solution is unique in the class of/t-bounded functions. The stochastic 
game has a value V ~ and V ~ = v ~. 

(ii) Let r, u be any decision rules that are optimal in the dummy game [c(a, b) + 
~PabVe]. Then the stationary policies ~, fl such that at = r, [3t = u (for all t) are 
strongly optimal for both players. 

Proof: [-3] proves this lemma for the strongly stable case. Our  weakly stable case 
follows easily. [ ]  

Lemma 2.3: Assumptions 2.1 and 2.2(1) imply that (1 - 4)lye(0)[ is bounded for 
4 < 1 .  

Proof." First note  that  with r and u two deterministic and stat ionary policies, 
with u(x) = b(x) for all x, it follows from Assumption 2.2(1) that  

Pr./t < oPr./t + e/to < ~/t + / t o e  �9 

Iterating this gives 

n--J. 

P~,/t -< ~"/t + / t o e  Z ~k . 
k=O 
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Combin ing  this with the definition of the expected discounted costs we have 
that  if r r and u r are s ta t ionary  ~-discounted op t imal  policies and u is the policy 
for player  2 as defined above: 

v ~ V r 

<_ ~ ~"P~c(r ~, u) 
n = O  

_< c* ~ ~'P,~,,u 
n=O 

< c* 4" ~"~ + ~oe ~ ~k 
n = 0  k = 0  

< c* ~"# + #oe 4" 2 (k 
= k = 0  

= c* ( ' #  + #oe (k ~. 
k=O n = k + l  

< c*(#(1 - ()-1 + #oe(1 - ~)-~(1 - ()-1} 

and it follows that  for ~ = C*#o(1 - ( )-a  

re(0) ~ ~(1 + (1 - ~)-1} 

and so 

0 < (1 - ~)ve(0) < 2 ~ .  [ ]  

Let (a e, fie) be a s ta t ionary  discounted opt imal  policy pair  for discount  factor 
~. N o w  let ~(k) be a sequence a long which the following limits exist: 

l i m ~ ( k ) = l  , 
k ~ c o  

lim a r  = a *  , 

k - * ~  

lim fie(k) = fi,  . 
k ~ o o  
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Since (1 - ~)v~(0) is bounded for ~ e [0, 1) it follows that  for {~,}~=o a se- 
quence as mentioned before, there exists a subsequence {(,~}k~_-0 with nk+l > nk 
such that l imk-~ (1 -- (,~)Ve"~(0) = g* for some g*. 

Assumption 2.3: L e t  w ~ ( k ) ( x )  = ve ( k ) ( x )  - -  ve(k)(o). Assume that there exists a func- 
tion M(x) and a positive number N such that 

(i) - N  <_ w~(k)(x) <_ M(x) < oe; 
(ii) ~,Px~b,M(y) < ~ .  

Let {~,~}~=o be a subsequence of the previous sequences along which the 
following limit exists 

lim wr = w* . 
m ~ o o  

The existence of this limit is ensured by the bounds - N  and M(x) using a 
diagonalisation procedure. It follows that  

lim (1  - ~ . m ) v e " m ( x )  = l i m  (1 - ~.~)(we-~(x) + ve-~(O)) = g* . 
m---~ o~ m--*  go 

Assumption 2.4: g~,,p > g*, Vp ~ R. 

Theorem 2.1: Suppose that the Assumptions 2.1, 2.2(1), 2.3 and 2.4 hold. Then the 
pair (g*, w*) is a solution pair to the average optimality equation, 

w*(x) = val [c(x' a' b) - g*e + ~ P~ab'w*(Y)] (6) 

the stochastic game has a value, given by g*, and (e*, fl*) is an optimal policy pair. 

Proof: If we subtract re(O) from both sides in equation (5), we obtain for any 
~ ~ I-0, 1) 

we(x) = vala, b I c(x' a, b) - (1 - ~ )ve(0)  + r Z, Px,b,we(y)]  . 
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By taking the limit m -o o0 along the sequence {r in both sides, (6) follows 
from Assumption 2.3 and dominated convergence. We see that (~*, fl*) solves (6) 
for the solution (g*, w*). For an arbitraty strategy n = (rot, 7/;2 . . . .  ) for player 1 
we have that 

w* > c (~ ,  fl*) + P(7 h ,  fl*)w* - g*e 

> c(~1, fl*) + P(=I, fl*)c(~2, fl*) + P(Tzl, fl*)P(~2, fl*)w* - 2g*e 

K 

2 ~ P(k-1)(n, fl*)C(TZk, fl*) + Pr fl*)w* -- Kg*e . 
k = l  

This implies for g* that 

g ,_>~l  ~ p(k_l)(IZ, fl,)C(~k, f l ,)  ~- 1p(r)(lr, fl*)w* -- l w *  
k=l 

so that 

1 K 
g* > lim sup k~=l P(k-1)(rC, fl*)C(rC k, fl*) = g,~,~, . (7) 

Next, let p be an arbitrary strategy for player 2. From Assumption 2.4 it 
follows that g~,,p > g* and therefore we have 

g=,P* --< g* = g~*,t~* -< g~*,p 

and the game has a value given by g*. [] 

Assumption 2.4 is generally hard to check. Therefore we introduce Assump- 
tion 2.5, which will be shown to imply Assumption 2.4 in Lemma 2.4. This 
lemma and proof are generalisations of Assumption D and Lemma 4.7 in [2]. 
First we define a minimal closed subset (MCS) under a stationary policy pair 
(~,/3). This is a set of states C e X, such that Px~(x)~(x)r = 0 for x e C, y ~ C. 
Moreover, C does not contain a set of states with the same property. 

Assumption 2.5: 

(i) Assume Assumptions 2.1 and 2.2 and f ix  A ~ X. There exists a class of 
stationary policies for player 2, denoted by R(S), which the property that for 
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any policy fl ~ ,R(S), the average cost g,,,p(x) is constant on A, for a* defined 
above; moreover, A is a closed set under (a*, fl) and for all p ~ R, there exists 
f l~ R(S) with 

g~, ,(x) _> g=, dx) 

for x 6 A. 
(ii) There is some (partial) order on A; for all fl ~ R(S), there exists a sequence 

pair {ak, ilk} of stationary policies with limk_~:o ~k = a ,  and limk~o~ flk = fl, 
such that PTke~. < pT,p. for all x ~ A and T E N in the stochastic order 
corresponding to the partial order on the states. Moreover, A is a closed set 
under (~k, ilk). 

(iii) The immediate cost is separable, i.e. c(x, a, b) = q(a ,  b) + h(x); h is a mono- 
tone nondecreasing function in x and satisfies the moment condition, i.e. 
for any constant q E R, the set {y ~ X: h(y) < q} is finite. Moreover, c 1 is 
bounded. 

(iv) g~,k, pk(X) > g*, Vk ~ N, x ~ A. 

Lemma 2.4: Assumption 2.5 implies g,,,p(x) > g* for x ~ A. 

Proof: F o r  checking g,,,r > g* we may  restrict to f le/~(S).  Fix x and ft. First  
assume that  the M a r k o v  chain induced by ~*, fl and start ing state x is not  
positive recurrent.  The m o m e n t  condit ion implies that  g,,,~(x) = ~ ,  thus prov-  
ing thhe assertion for x and ft. Next  assume tha t  this M a r k o v  chain is positive 
recurrent.  Let  

P~(cr fi) lim 1 ,-1 = - ~ P:~.(~*, f i ) .  
t -~m t n = O  

Assume that  for some x ~ A, P~(~*, fl)h = oo. Itfollows f rom the fact that  c I is 
bounded  together  with Fa tou ' s  l emma  that  g, ,  p ( x ) =  m > g*. As a conse- 
quence it suffices to fix some x e A for which P2(e*,  fl)h < 0o. Hence, 

m ~k 

yeA 

by virtue of the above  and the fact that  A is closed under  all considered policies. 
Next  we show that  this implies that  the sequence {P~(a k, flk)}~= 1 is tight. Fix 
some e > 0, and let q(e) be such that  for all T, 

[ P ~ L y ( ~ * ,  f l )  >-  1 - ~ �9 
y_<q(e) 
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Then by Assumption 2.5(ii) it follows that 
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[pr]~y(ak, i l k )  >_ ~, [p r ]~y (a ,  ' fl) >_ 1 - e , 
y <_q(e) y <_q(~) 

for any k, T. Hence {p~(ak ,  flk)}~= 1 is tight. Suppose/~oo is a limit measure of this 
sequence, obtained along some subsequence k(n). Clearly it is a proability mea- 
sure on A. Since 

y e a  

it follows from the bounded convergence theorem that 

P~P(~*, fl) = p~ 

H e n c e / ~  is an invariant measure of P(a* ,  fl). Since 

(8) 

p~(~(,), ~(.)) <_ P;~.(~,, ~) 

and 

P~(~*, f l)h < oo , 

it follows since h non-decreasing 

P~(o~ k, f lk)h(y) <_ Y' P~(a*, fl)h(y) . 
y>_q y>-q 

Using that 

lim ~ P~(~*, f l )h(y)  = 0 
q-~oo y>_q 

we find that h is uniformly integrable with respect {p~(~k ,  flk)}~= 1 and hence 

lira p~.(~kt.), flk(n))h = ~6~ h . 
n ~ o o  

(9) 
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Since c a is bounded,  we have 

lim P~(o~ k(n), flk(n))C a = fi~176 a . 
n -.~ o~ 

Combin ing  (8), (9) and (10) gives for x e A 

lim p2(ek(,),  ilk(n)){ h + Ca} = P~P~(~*,  fl){h + ca} 
n ---~ co  

= ~, P~(Y)g , , , , (Y)  
y e a  

= m p ( x ) .  

The last equality follows because g,,,~(y) is cons tant  on A. Hence  

g,, .p(x) = lim P~(O~ k(n), flk(n)){h + e l }  = lim g,k,.,,#k,.~(X) > g* . 
tl ---> oo n ~ oD 

A. Hordijk et al. 

(lO) 

[ ]  

3 Proof of the Key-Theorem 

Definition: We define the propert ies  II~ and I I2  for a function z: X ~ FI: 

I I , :  z ( d Z x )  - z ( d i ~ x )  > z ( d i x )  - z ( ~ x )  , i , j  = 1, 2 , i r  . 

IIz:  z (d~sJ jx )  - z ( d # )  >>_ z(suC'ix ) - z(x)  , i , j  = 1, 2 . 

L e m m a  3.1: Le t  g* E FI and w: X ~ FI ~ satisfy the fol lowing optimality equation. 

g* = h(x) + max  {(a + 2 [ w ( d , x )  - w(x)]} 
a 

2 

+ ~" min {O(b(i)) + b ( i ) [w(~ i  x) - w(x)]} . (11) 
i = 1  b ( i )  

I f  w satisfies H 1 and 112, then for  the maximiser  in (11) there exis ts  an optimal 
action o f  the switching curve type and for  both minimisers one that is monotone 
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non-decreasing. Moreover, if 0 i is concave for i = 1, 2, then the optimal service 
rate for server i is one of {b(i), b(i)}, this again is a switching curve type structure. 

Proof: The maximiser in (11) chooses action 1 if 

r + ,~[-w(dlx)  - w(x)]  _> r + ,~ [w(d2x)  - w(x)]  , 

and hence if 

w ( d l x )  - w ( d 2 x )  >_ - -  
~ 2  - -  ~1  

The left-hand side is, according to / /1  non-decreasing in x~ and non-increasing 
in x2, so if in state x action 1 is optimal for nature the same holds for y with 
y~ > x~ and Y2 --- x2- Identical results can be shown for action 2. 

If w satisfies Hz then w(@ix) - w(x) is non-increasing in x~ and xz and so 
there exist optimal minimisers that are non-decreasing in xl and Xa. If O~(pi) is 
concave in Pi then Oi(p~) + pi[w(~ix) - w(x)] is also concave in p,. Since the 
minimum of a concave function on a bounded interval is always achieved at one 
of the end-points, it is one of {b(i), b(i)}. [] 

Proof of the Key-Theorem: First we will show that the assumptions for Theo- 
rem 2.1 from the previous section are satisfied. 

Ass. 2.1: Let Px = (1 + c) x'+x2. Assumption 1.1 implies Assumption 2.1(i) for 
every c > 0. Assumption 2.1 ii) and iii) follow from the fact the jump distribu- 
tions from each state have a finite support that is uniformly bounded in the 
action pairs. 

Ass. 2.2(1): Because 2 < b ( i )  there exist ~ > 0  and c > 0  such that 

2 + 2)(1 + c) < Substituting (4) b(x) = (b(1), b(2)) 
k 

~(i). this in with for all 
/ 

x ~ X we have three different cases. 

(1) xl > O, x2 > O. 
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F~ e~ab,#, = (1 + e) ~ 1 + ,t[(1 + c) - 13 + (g(1) + g(2)) C + 1 
y 

-<#~{1+c[(2-b(1))+( 2c+lj cb(2))]~+lJJJ 

A. H o r d i j k  et  al. 

<#~{I-2e} ; 

(2) x l > 0 ,  x2=0 .  

{ E Px ,b ,# ,= ( l+c )  xl 1 + 2 [ ( 1 + c ) - 1 ] + b ( 1 )  e + l  
Y 

{ [ ( b ( 1 )  "]]~ 
___#:, l + c  2 - c + l ] j  j 

(3) X 1 = 0 ,  X 2 > 0 .  

{ ]} F~ P~ob,#, = (1 + c) ~2 1 + ,t[(1 + c) - 1] + ~(2) c + 1 1 
Y 

< # x  l + c  2 c + U J )  

< #~{a - ~} . 

Ass. 2.3: Let p* be the stationary policy for player 2 that serves at the highest 
possible rate in all states, i.e. p*(i) = (b(1), b(2)). We define 

oo 

M(x) = sup ~ oP"(~ ~, p*)c(n ~, p*) . 
0 

Since 2 < rain{b(1), b(2)} and player 2 uses strategy p*, it follows that the 
process will always be #-geometric recurrent for any c~ and so M(x) < oo. We 
obtain that 
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w e < c(rc r p*) - (1 - r162 + r r p*)w r 

< c(~ r p*) + oP(~ r p*)w r 

< ~ oe"(~ r p*)c(~ r p*) 
n = l  

< M(x) . 

2 9 7  

We can take N = 0, since re(x) is increasing in xl and x2. The second part of 
Assumption 2.3 is easy because the number of states that can be reached in one 
step is finite. 

Ass. 2.4: Figure 1 illustrates some aspects of this proof. It shows a part of the 
state space and the thick line is the switching curve corresponding to the policy 
~*. Recall that ~* is a limit policy of ~e(k) and that ~(k) is of the monotone 
switching curve type (see [1]), and so ct* has this structure. Customers are 
assigned to the first queue in the region containing the xl-axis and to the 
second queue in the other region. Assume that ~t*(0, 0) = 1 (the case ~*(0, 0) = 2 
is similar), so if the system is empty, an arriving customer is routed to the 
first queue. We will show that there exists /~ e R(S) such that g~.,~(x)= 

t 

$2 
�9 �9 ~ 5  . .~r . s :  

�9 �9 �9 �9 �9 �9 $5 

> 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~3 �9 �9 �9 �9 �9 $3  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0i ~l . . . . . . .  Ci 
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 

Fig. 1. The state space with some structure 

~ 1  " +  
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m i n o , R g , , p ( x  ) for all x �9 X. To this end we define the sets 

C 1 = {(x1,  0): x I �9 ~ }  , 

C2 = {(0, x2): x2 �9 rq, ~*(x) = 2} . 

Let y~ = (0, 0) and denote by y2 e Cz as the state in C 2 with minimum second 
coordinate. For  k = 1, 2 . . . .  let 

s �9 Dk is the state in D k with minimum coordinates and 

~{(x~, x2) end: ~*(x,, ~zl) 2 
sk = [{(x~, x2) �9 Dk: ~*(2~, x2) 1} 

if k even ; 

if k odd . 

CI is closed under all policies, so apply Proposition 5 in [10] to C~ gives the 
existence of a stationary policy/~1 for player 2, such that/~1 is optimal against a* 
and g~.&(x) = 01 for all x �9 C1. Next, consider C2. The only state where player 
2 can force the process to leave C2 is in 372. If we restrict player 2 to policies such 
that the process cannot leave C2, it is clear (again using [10]) that there exists a 
stationary policy/~2 that is optimal on C2 in this class and g~.22(x) = g2 for all 
x ~ C2. We can distinguish two cases. 

(i) gl > g2. We will show that the minimum average cost is equal to gl for the 
process starting in $1 w C1, and for the process starting outside these sets to g2. 
To analyse the states in $1, we have to introduce dummy transitions. If the 
process is in a state with no jobs in queue 2, player 2 can still decide to serve this 
queue. The duration of such a service has the same distribution as a normal 
service. Upon its completion, there is no transition, but a policy might depend 
on the number of completed dummy services in the past. Suppose, that there 
exists a state y and a policy p e R with expected average cost 0 := g~,.p(Y) < 91. 
We define the state 37 and the policy ~ �9 R on C 1 as 37 = (Yt, 0) and ~t(xl, x2, 
N2(t)) = p t (x l ,  Y2 - N2(t)) with N2(t)  the number of previous completed dummy 
services at the second queue. We see that 

P~. o(Xt  = (xl, x2)lXo = y) = P~.,~(Xt = (xl, 0), Na( t  ) = Ya --  x 2 [ X o  = 37) �9 

We can now couple the processes starting in y and in )7 respectively, the first 
under the policy pair (~*, p) and the second under (~*, t~). Then 
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as > 0 = 0. . .o(y) -> g.. . ,(Y) -> a,,,~,(Y) = 01 . 

since/~1 is opt imal ,  h(x) is non-decreasing and the number  of d u m m y  transit ions 
is finite and  therefore does not  influence the average cost. Next  we show that  the 
minimal  cost in the states in X\(S1 w C1) is equal  to g2. First, consider the states 
in C 2. If  the process leaves C2 it will be absorbed in C a w $1 with expected 
average cost equal  to ga > g2, and so this action will not  be chosen. To  show 
that  the min imum average cost for the states in Dz equals g2, we define for k >_ 1, 
Ok := inf:,~s~ infp g~, p(x). I f  there exists a s t rategy p and  a state x ~/)2 such that  
g,,p(x) < g2, we can define Sk as the set with the smallest  index containing a 
state x with infpg~, p(x) < g2. It  follows tha t  gk < g2. Consider  the M D P  with 
state space C~ w C2 ~t<kS~. F r o m  L e m m a  2.1 we know that  there exists a 
s ta t ionary  policy fl and a recurrent  set E'  corresponding to (e*, fl), such 
that  g~,.~(x)< infx~xg~,,p(x)< g2 for some state x ~E ' .  Clearly, E'er(C1 u 
C1 ~l<kSl) = 0, and so E' ~ Sk. Without  loss of generali ty we assume that  k is 
odd. F r o m  the structure of ct it follows tha t  E'  must  be a subset of one row. So 
let a, b, z e N (b might  be infinite) be such that  E'  = {x e Sk: a < Xl < b, x2 = z}. 
We define the s ta t ionary  policy ff on D := {x ~ Ca: a < Xl < b} as follows: 
fl'(xa, O) = fl(xl, z). D cannot  be left if we start  there, and so using the non-  
decreasingness of  h and the opt imal i ty  of/~1, we can derive 

92 > g~*j(xl, z) >_ g,,,~,(xl, 0) _> ge,,/~l(Xl, 0) = ga > g2 , 

yielding a contradict ion.  This implies that  g2 is the opt imal  average cost when 
we start  in X\(Ca ~ $1). 

As a consequence the following s ta t ionary  policy is optimal.  

~ ( x )  

L(b(1),  0)) 

if x e C 1 ; 

i f x  e C2 ; 

i f x ~ D  l a n d x  a % y 2  ; 

i f x ~ D  l a n d x  2 = y 2  . 

In  order  to verify Assumpt ion  2.4 it remains to be shown that  g2 > g*. There  
are two different ways of doing this. The first is to use Assumpt ion  2.5 and 
L e m m a  2.4. Let  A = C2, then Px,,& = 0 i fx  ~ A, y r A. We take/~(S) = {/~}, and 
the order  on A defined by x < ye*'x2 < Yz. The  sequences {~k} and  {ilk} are 
defined as follows: ct k = a* and 

flk(O' X2) = [(0, b(2)) , 
i f x  2 _<k ; 

otherwise . 
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It  is easily checked that  the process is #-geometr ic  recurrent  under  policy pair  
(~k, ilk) and thus (see L e m m a  2.1 in [3])  lim,_,~on-~P~")(a k, ilk)w* = 0. Using this 
we can show samilar ly to (7) that  f rom 

w* < c(a*, fig) + P(~*, ilk)w* - g*e 

it follows tha t  

g* _< g~.,t~k = g~k,pk . 

Applying L e m m a  2.4 yields g2 = g~,.9(x) ~_ g*. 
The second way of proving g2 --- g* is s traightforward.  Since for 9 a there 

exists a positive number  mo such that  a r  2) = a , ( )2 )  for m > m o, it follows by 
the monotonic i ty  of  a* that  ~r = a*(x) = 2 for all x ~ C2, m > too. There-  
fore, for x ~ Cz and m > mo: 

g2 = g , * 2 ( x )  

= l ira (1 - ~ . ) V ~ ,  ~ (x)  
n ---~ o ~  

= lim (1 - ~.)VJ."2(x ) 
n ---~ o o  

_> lim (I - ~ . )V~".  r (x)  
n --4 c o  

~_ g* . 

(ii) g~ _< g2. This case is similar, but  we now choose/~ as follows: 

x ) 

((b(1), b(2)) 

i f x ~ C ~  ; 

i f x ~ X \ C 1  ; 

and g~,2(x) = gl for all x a X. Again we can prove  with the previous methods  
that  g~,2(x) = g~ >_ g*. 

Finally we derive some structural  properties.  Denote  

Fr x) = (a + ~2[Vr x) -- Vr , 

G~(b, x )  = O~(b) + ~ b [ V r  - -  Vr 
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The dynamic  p r o g r a m m i n g  equat ion has the form: 

2 
Vr = h(x) + ~Vr + max  Fr x) + ~ min G~(b(i), x) . 

a i = l  b ( i ) ~ B  i 
(12) 

We know that  for every r < 1 this equat ion has a unique solution for V r If  
we take a sequence ~(k), k = 1, 2, . . .  with lim,_,o~ ~(k) = 1 then the previous 
theory  implies the existence of a subsequence r such that  the limits 9" = 
limi_,~ (1 - r r and w = lim~_,~o w r exist and satisfy (11). 

Al tman  [1] shows tha t  V r satisfies H 1 and H 2. Therefore  w does and so the 
Key- theo rem follows f rom L e m m a  3.1. [ ]  
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