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Summary. We consider all solutions of a martingale problem associated with the 
stochastic pde u, -- �89 + u '~ ~//and show that  u(t, ') has compact  support  for all 
t > 0 if u(0, ") does and if 7 < 1. This extends a result of T. Shiga who derived this 
compac t  suppor t  proper ty  for 7 <= 1/2 and complements  a result of C. Mueller who 
proved this proper ty  fails if 7 > 1. 

1 Introduction 

Consider  solutions u(t, x) with t __> 0, x ~ IR, to the stochastic partial differential 
equat ion 

ut = �89  + u ~ 
(1.1) 

u(O, x) = Uo(X) 

where W = IAV(t, x) is 2-parameter  white noise and ut denotes the partial derivative 
of u with respect to t. Assume that u(0, x) is cont inuous with compact  support.  
D. Dawson  asked us the question: For  which 7 does u(t, x) have compact  support  
as a function of x? In  this paper, we prove compact  support  for 7 < 1, with a certain 
caveat to be ment ioned later. Com pa c t  support  had been shown by Iscoe (1988, 
Theorem 1) for 3' = �89 and by Shiga for 7 < �89 Mueller (1990) showed non-compac t  
support  for ~ > 1. Iscoe's proof  used properties of super-Brownian motion,  and 
Shiga expanded on Iscoe's proof. The case �89 < 7 < 1 is more  delicate, as we explain 
below. We ment ion in passing that  our  theorem deals with a more  general equat ion 
than (1.1), namely 

ut = �89 + a(u) FV 
(1.2) 

u(O, x) = Uo(X) 

where a(u) > aKu ~ for u < K and some aK > 0, and a(u) < c(u ~ + u) for some 
0 < 0 < 1 and c > 0. See Corol lary  3.9 for the precise statement. 
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The solution u(t, x) can be viewed as the density of a super-Brownian motion, 
with birth and death rate depending on u(t, x)�9 Loosely speaking, super-Brownian 
motion Xt(dx) is a measure-valued process arising as a limit of branching 
Brownian motions�9 To be precise, let B~(t), . . . .  B,(o(t ) be independent Brownian 

�9 Let motions which split in two or die, with equal probability, at times N ,= 1 

1 
XUr(dx) 

Choose Xg(dx) to  converge weakly, as N ~ o e ,  to a finite, nonnegative initial 
measure Xo. Then X)' converges weakly to the super-Brownian motion Xt. For  
more details, see Watanabe (1968) and Perkins (1988, Theorem 2.8). Although Xt 
can be defined for x e IR d, it is only when d = 1 that the measure X~ has a density 
dXt(x) 

= u(t, x). This density u(t, x) satisfies (1.1) with ? = �89 (see Konno and Shiga 
dx 

1988 or Reimers 1989). Iscoe showed that Xt has compact support for all t a.s., ifXo 
has compact support. This was the motivation for our question. 

By itself, (1.1) has no meaning since solutions u(t, x) are not differentiable. We 
reformulate it as an integral equation: 

t t 

fu(t, x)c~(x)dx = f fu(s, x)q)"(x)/2dxds + f fu(s, x)~4)(x)dW(s, x) Vd~D(A/2), 
0 0 

where D(A/2) = {e~ ~ C: ~b"~ C} and C is the space of continuous functions on the 
one point compactification of 1R. (Equivalently D(A/2)_is the generator of one- 
dimensional Brownian motion on the Banach space C.) The second integral is 
given meaning via the theory of martingale measures of Walsh (1986). Walsh also 
discusses existence and uniqueness results for such equations with Lipschitz coeffic- 
ients. In our case, if 7 = 1, then existence and uniqueness hold for all time. If 7 > 1, 
existence and uniqueness hold up to an explosion time (which may be ~).  Finally, 

1 for ? < 1, solutions exist for all time, but uniqueness is not known. For  ? - 2, 
however, uniqueness in law follows from the martingale problem, which is tractable 
for this value of ~, (see Roelly-Coppoletta 1986). 

Here is the intuitive reason that the compact support problem is more delicate 
for ~ > �89 We note that u, = �89 + cu~l~gives a super-Brownian motion with rate 
of birth and death equal to c. Our equation may be written as 

u, = �89 + u ~-~u ~ IP.  

The behavior of u(t, x) near the boundary of its support, where u(t, x) is small, is 
critical for determining the nature of the support. Thus, if u is small and 7 < �89 then 
u(t, x) is a super-Brownian motion with rate of birth and death speeded up. This 
means that particles are likely to die before they get very far, and the support will be 
compact�9 Our case was harder, since if 7 > �89 and u(t, x) is small, then u(t, x) is 
a super-Brownian motion with birth and death slowed down. Of course, if the birth 
and death rates slowed down to 0, then u(t, x) would satisfy the heat equation 
without noise, and hence u(t, x) would have noncompact support. 

Our proof makes use of a "historical process" Ht, similar to the process 
introduced in Dawson and Perkins (1991) for studying the super-Brownian motion 
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(the case ~ = �89 For  fixed t, Ht(dy) is a measure on continuous paths y(s) which are 
held constant after t. This measure gives the ancestry of particles which are at 
position y(t) at time t. We view these particles as infinitesimal components of the 
measure u(t, x)dx.  To be more precise, 

u(t, x) dx = H, {y(') : y(t )e  dx} . 

This particle picture is consistent with our description of u(t, x) as a super- 
Brownian motion with birth and death rate depending on u. In order to use 
stochastic calculus, we construct H, as a solution of a martingale problem. We do 
not know if Hr is the unique solution, but show that all densities u(t, x) which arise 
from this martingale problem do satisfy (1.1) and do have compact  support  for all 
t > 0. (This is the caveat mentioned above.) We conjecture that uniqueness in law 
holds for solutions of (1.1), and therefore that all solutions of (1.1), have compact 
support. 

Working with these richer processes will allow us to prove a stronger result. 
We give a uniform modulus of continuity for all paths y(-) in the closed 
support  of HT(dy) for all t in a compact  interval. More precisely, for all 
c > c~ = (2/(1 - 7 v �89 and T > 0 there is a c3(c, T, co) > 0 a.s. such that 

]y(r) -- y(s)] -< c([r -- sllog l/Jr -- s[) i/2 - ch(r - s)Vy Eclosed support of H,, t < T 

and r, s < T satisfying I r - s[ < d .  

See Theorem 3.5 for the precise result. For  ~ = 1/2 this agrees with the modulus of 
Dawson and Perkins (1991) for which cl/2 = 2 is known to be the best constant. It 
is not hard to derive a modulus of continuity for the support  of u(t, "), S(u(t)). More 
precisely if c, T, a are as above and S t = {x ~IR: [x - x'[ <__ ~ for some x ' ~ S }  then 

S(u(t)) c S(u(s)) ch(~-s) Vs, t s  [0, r ]  satisfying t - s < 6 and s ra t ional .  

See Corollary 3.8 (and the ensuing discussion on the unpleasant but harmless 
assumption that s, but not t, be rational). For  y = �89 this result was proved in 
Dawson et al. (1989). 

Now we give a summary of the proof. The reader will note that the important  
ideas are simple, as are the key calculations given in Sect. 3. Setting up the historical 
process H,, however, involves many technicalities. 

Recall that we need to show a modulus of continuity for paths y(t) in the 
support  of H,(dy). The proof proceeds as in L6vy's modulus of continuity for 
Brownian motion. That  is, we get estimates for the probability that any of the 
differences [y(r) - y ( s ) l  are large, where r, s are dyadic rationals of the form k/2". 
Assume r < s < t, and consider the set A = {y(.): ly(r) - y(s)] > K}. Here K is 
related to the modulus. We show that He(A), z > s can be compared to X:, where 

dX~ = X~ e dB~ . 

This involves using Jensen's inequality to "split off" the evolution of the particles in 
the set A from the others. We show that H,(A)  is small for r < t, (at least in 
expectation). Now if Xo is small, then it is not hard to show that X~ hits 0 very 
quickly. Of course, once X~ hits 0, it stays there. Thus, with high probability, 
H,(A) = 0. This means that, with high probability, there are no particles alive at 
time t whose ancestors satisfied ]y(r) - y(s)] > K. Some further analysis, following 
arguments in Dawson et al. (1989), gives us the modulus. 
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As far as we know, (1.1) might have solutions u(t, x) not arising from the 
historical process Hr. Our original proof of compact support did not use the 
historical process. We outline it here, in hopes that an industrious reader can use it 
to show compact support for all solutions. Consider Eq. (1.1) on the interval 
x e [ - J ,  J ]  with Dirichlet boundary conditions. If u(t, ") has compact support in 
( -  J, J), it will have compact support on all of IR. There are 3 steps. 
1. Using integration by parts, show that M(t)= I "s u(t, x)h(t, x)dx is a non- 

J - s {  x2 } 
negative supermartingale, where h ( t , x ) - 7 1 t  exp 2 ( - - ~ t j  " (Note that 

ht = -�89 Hence M(t) is bounded uniformly in t by a finite random variable. 
Therefore the integral of u(t, x) over Ix[ large must be small. 
2. Split u(t, x) into two parts as follows. Let W1 and 1~2 be independent white 
noises and show that if 

a, = �89 +  'wl, x)  = u(0, x ) l ( I x l  _-< L) 

= + + - --   )l(Ixl > L) 

then u = ~ + v satisfies (1.1). 
3. To show, for example, that u(1, ") has compact support argue as follows. Use 
Jensen's inequalit y to show that f JjJ. v (t, x) dx dies out faster than. the solution X(t) 
of dX = X~dB (we leave the latter for the reader, along with many other things). 
This means that as v will have died out with high probability by time l we need 
only consider ~. Now split i] as in step 2 but with t = 1/2 in place of 0 and L1 in 
place of L. Using step 1 and the above one argues that the contribution from the 
mass outside [ - L 1 ,  L~] is extinct by t = 1 with high probability. Continuing in 
this way one obtains a sequence ~i~")(t, x) such that z2~")(1 - 2-", -) is supported on 
[ - L , ,  L, ]  and u(1, x) = ~(")(l, x) with high probability: Let n ~ ~ to show that 
with high probability u(1, ") is supported on [ - L ,  L] where lira L, = L < J. To do 
the argument for all times one would imitate the proof of the modulus of continuity 
for super-Brownian motion (eg. in Dawson et al. 1989). 

The catch in the above is that in step 2 it is not clear how to decompose a given 
solution of (1.1) in this manner. The historical approach allows us to decompose 
solutions in a natural manner and also allows us to formulate a more precise result. 

Section 2 of this work sets up a martingale problem for the historical process 
associated with an ordinary super-process (7 = �89 We allow our spatial motions to 
be the paths of a cfidl~ig Borel right process Y taking values in a Polish space and 
consider branching mechanisms in which the branching rate at x is a(x) where 
a : IR -* [0, oo) is a bounded Borel measurable function. Hence, in the terminology 
of Dawson and Perkins (1991), we introduce a martingale problem for the (Y, q~)- 
historical process where ~(x, 2)=-aZ(x))~2/2. Using the general results of 
Fitzsimmons (1988, 1990) it is easy to obtain a martingale problem which charac- 
terizes the (Y, q~)-historical process. Section 2 enlarges the class of test functions to 
a simpler and more useful class. Although this extension is needed for the proofs of 
our main results in Sect. 3, it has also found application in the construction and 
characterization of "interacting super-processes" and we therefore have presented 
these results in a more general setting. The martingale problem for the historical 
process associated with (1.2) is introduced in Sect. 3, where the main results 
described above are proved. Section 4 contains the proof of existence of solutions 
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for this martingale problem. Although this is just a tightness argument, things are 
fairly complicated because we are simultaneously constructing a random density 
u (t, x) and a process Ht taking values in the space of finite measures on continuous 
paths. The final argument (in Proposition 4.11) uses nonstandard analysis which is 
an efficient took for handling complicated tightness arguments of this sort. The 
reader who is unfamiliar with nonstandard analysis and in particular the Loeb 
space construction may wish to consult Cutland (1983) or Albeverio et al. (1986). 
We will use standard terminology and notation regarding Loeb measures from 
these references in the proof of Proposition 4.11 without further comment. How- 
ever, we suspect that most readers will find this result "intuitively obvious" given 
the technical lemmas which precede it. 

2 A martingale problem for the historical process 

Our goal in this section is to derive a martingale problem for the historical process 
of Dawson and Perkins (1991). It will be used in the next section to set up the 
corresponding martingale problem for the historical process associated with (1.2). 
We begin by giving some definitions and results from the general theory of 
processes. 

Assume Y = (D, 9 ,  ~t+,  Or, 1~, Py) is the canonical realization of a Borel right 
process with cfidl~ig E-valued paths on [0, oo). ~ is the Borel a-field of 
D = D([0, co), E), Yt(Y) = y(t) ( y ~ D )  and ~t  = a(Ys: s < t). If w, y e D  and t >_- 0, 
let y'(s) = y(s /x t) and 

y(u) if u < t .  
(y / t /w)(u)= w ( u -  t) if u > t  

We s e t / ~ =  {(s,y)~[0, oo) x D : y  = y~} and let ~ denotes its Borel a-field, g de- 
notes the Borel a-field on E and pg (respectively, bg) is the cone of non-negative 
(respectively, bounded) g-measurable N-valued functions. Throughout this section 
we work with a fixed s > 0 and 

m6MF(D)  s = { m e M r ( D ) : y  = yS m-a.s.} . 

Define a finite measure Ps, m on D by 

Ps,,,(A) = f P,(~)(y/s/Y~ A) din(y). 

We will usually work under a fixed Ps,~, and let N~' = Nt+ v {Ps.,,-null sets in D}. 
If {-~-t : t _>_ s} is a filtration on some measurable space (~2, ~ } the a-fields of 

(~, ) t~-opt ional  sets ((9(~-,)) and (o~)~=~,-predictable sets (N(~-~)) in [s, oo)x ~2 
are defined as in (Dellacherie and Meyer 1978, Chap. IV) with s in place of 0 and ~ 
playing the role of ~ o - .  

Part (a) of the following theorem may be "well-known" but we have been 
unable to find it in the literature. 

Proposition 2.1. (a) Every (~';')t~s-optional process is P~,m-indistinguishable fi'om 
a (~t)t>=~-optional process. 
(b) A Borel map X : [s, ~ )  • D --+ N is (~) t~-op t iona l  if and only if  

X(t ,  y) = X( t ,  yt) V(t, y)~ Is, oo) x D .  
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Proof Let ~b: D ~ IR be bounded and Borel measurable and let T > s be a (~')t__>s- 
stopping time. Then the strong Markov property of Y implies 

(2.1) Ps,,,(d? o OTIS7) = Pr(r)(~b(Y)) P~,m-a.s. 

(eg. see Dawson and Perkins 1991, Theorem 2.21 and its proof). It follows easily 
that 

(2.2) Ps, m(q5 [ ~ ) ( Y )  = Py(r)(O(y/T(y)/Y))P~,m-a.e.y. 

For example, argue as in Example 6.12 of Sharpe (1988) but take his G to be 
(9((~'/)t~s) x g-measurable. Let (N~)t>=s be a cfidlfig version of P~,m(~b ]~i") and let 
R~ Y) = Py(t)( O(Y/t/Y)) (t > s, y ~ D). R O is Borel measurable because Y is Borel 
right, and an application of (b) shows R ~ is (~,) t~-optional .  (2.2) and the section 
theorem imply that N o and R ~ are Ps, m-indistinguishable. 

Let ~ respectively +X, denote the Ps, m-optional projections of a bounded 
measurable X: I-s, oe)x D ~ IR with respect to (~t)t>=s, respectively (~t+)t~s (see 
Dellacherie and Meyer (1980, p. 412)). If X ( t , y ) =  ~bl(t)q~z(y ) (q~i bounded 
measurable), then up to P~.m-evanescent sets in [s, oe)x D we have 

+X(t, y) = c~l(t)N~ y) = 01(t)R~ y) (by the above). 

Hence +X is Ps, m-indistinguishable from the (~t)t>=~-optional process 
dpl(t)R~ y), which is therefore ~ (up to P~,,, indistinguishability). 

Let 

cg = {X: [s, oe) x D --* IR bounded, measurable: ~ and +X are 

P~, m-indistinguishable}. 

Then S = {X(t, y) = q~l (t)q~z(y): q~i bounded measurable} ~ Cgby the above. It is 
clear that cg is a real vector space and is closed under bounded monotone limits. 
Therefore a monotone class theorem (Sharpe 1988, pp. 369) shows that cg contains 
all bounded Borel measurable functions on Is, oe)x D. Therefore any (~+)~e~- 
optional process is Ps, m-indistinguishable from a (~t)t>~-optional process (it is 
trivial to remove the boundedness assumption). As every (~i")t~s-optional process 
is P,,m-indistinguishable from a (~+) t~-opt iona l  process (Dellacherie and Meyer 
1980, p. 413), the proof of (a) is complete. 

(b) This is immediate from Dellacherie and Meyer (1978, IV. 97). [] 
We are now ready to describe the historical process/4 of Dawson and Perkins 

(1991). The reader should think of H as giving the past histories of particles alive at 
t. The particles move according to independent copies of Y and branch into two or 
die with equal probability at rate a(x), depending on the location, x, of the particle. 
This means that although some of our results extend to more general branching 
mechanisms, we consider only 

�9 (x, 2) = -o2(x)22/2 x~E,  2~IR , 

where ~r: E -~ [0, oe) is bounded and measurable. H = (G, ~, N[s, t + ], Ht, Qs,,,) 
denotes the (Y, q~)-historical process introduced in Dawson and Perkins (1991) (see 
Theorem 2.2.3 of that work for a precise characterization). Here G = D(MF(D)) 
(cfidlfig Mv(D)-valued paths), (r is its Borel a-field, H~ is the coordinate mapping, 

~r t + ] = (~ ~(/-/~: s -< r -< u) 
u > t  
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and although Q~,m is defined on fq[s, oo) for any s > 0 and m e M e ( D )  s we are 
focussing on our particular (s, m). H is an inhomogeneous Borel strong Markov 
process with cfidlfig paths in Mr(D) and such that Ht_6 Me(D) t Vt > s r m-a.s. (see 
Dawson and Perkins 1991, Definition 2.1.0). Let Nm[s, t] = ~q[-s, t + ] v {t~s,~- 
null sets in G }. 

T o h e l p u n d e r s t a n d H w e  introduce the Borel right process I~ with cfidl~ig paths 
in E ( Y  = (D, 9 ,  @t+, 0~, P,,y)) and its semigroup 

~g(u, y) = P,(.>(g(u + t, y / u / ~ ) )  

(see Dawson and Perkins 1991, Proposition 2.1.2, Theorem 2.2.1). If Xt is the 
(4~, Y)-superprocess starting at 6~xm, then (Xt)~> o is equal in law to 
(6~+t x H~+t)~>o, where H has law Q~,m. This is the definition of ~s,~ given in Sect. 
2.1 of Dawson and Perkins (1991) where the reader may find a more detailed 
description of H. 

If E~ -- ([s, oo) x D) r and (b:/~ --* [0, oo) is Borel we let 

(2.3) Ht(O,) = f O(t, yt)Ht(dy) t > s .  
D 

Proposition 2.2 Let 0: J~ ~ [0, ~ )  be Borel measurable. 

(a) {Ht(Ot) ' t  ~= s} is {~ Is, t] : t ~= s}-optional. 

(b) I f  Y is a Hunt process, {Ht(Ot):t ~ s} is {.~[s, t] :t ~ s}-predictable. 

Proof. (a) is proved via a standard monotone class argument, starting with 
O(t, y) = 01(t)Oz(y t) where 01 and 02 are Borel on Is, ~ )  and D, respectively. 
(b) If O(t, y ) =  01(t)O2(y t) where 01: Is, oo)~  [0, oo) and 0z: D ~ [0, oo) are 
bounded and continuous then H~(Ot) = q~l(t)Ht(02) is predictable since H~(02) is 
Qs, m-a.s, continuous for t _-_ s by the weak continuity of H. The latter holds because 
Y is Hunt (Dawson and Perkins 1991, Theorem 2.2.3(c)). A monotone class 
argument gives the result for O(t, y) = ~(t, yt) when ~: [s, oo) x D ~ [0, oo) is Borel 
and the result follows. [] 

Fitzsimmons (1988) established the path regularity of a broad class of super- 
processes by a clever use of Rost's theorem on Skorokhod embedding. Since Ht is 
a trivial projection of a super-process O~t) which falls under the purview of 
Fitzsimmons' work it is easy to apply his results to this setting. Our point of view is 
a little different as we prefer to work with a fixed initial measure. We sketch a few of 
the arguments in the following proof only because of some minor technical 
modifications we make to the arguments in Sect. 3 of Fitzsimmons (1988). 

Notation, F = Fs, m = {0 :/~s ~ IR: 0 Borel measurable 0(s, Y~) is right-continuous 
P~,,,-a.s. and sup~>_sl0(t, yt)] ~ K Ps, m-a.s, for some K}. 

Theorem 2.3. (a) I f  c~, O: E~ ~ IR are Borel and satisfy O(t, yt)  = t)(t, Y') Vt ~ s 
P~,m-a.s., then Or(Y) = Or(Y) Ht-a.a.y, and hence Ht(Ot) = Ht(tP~), (one exists iff the 
other does, in which case they are equal) Vt > s Q~,m-a.s. 
(b) I f  O ~ F  . . . .  then Ht(Ot) is right-continuous on Is, oo) II),,~-a.s. I f  in addition 
O(t, Y*) has left-limits on [s, ov)P,,m-a.s, then so does Ht(O,)Q~,m-a.s. 
(c) I f  Y is a Hunt process and OsF~,,, is such that {0(t, Y~):t > s} is quasi- 
left-continuous under P . . . .  then Hi(O,) is continuous on Is, oo)Q,,m-a.s. 
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Proof  L e t  T > s be a bounded {~ " [s, t]: t > s}-stopping time, e > 0, and define 
v on (E, d ~) by 

V(g)  ( ] ) s ,m(e-~T H T ( g T ) )  - u T  ^ = = Q~• XT-~(g ) ) .  

If U is the potential operator of I~ but killed at rate e, then an easy calculation 
shows vU < (6~ x m)U and so, using Rost's theorem as in Fitzsimmons (1988), one 
sees there is a randomized stopping time V(x, 12) for 12 (x e [0, 1]) such that 
Vg ~ p~ 

= s• m(e g(12v)) = fPy~s)(e-~Vg(s + V, y / s / yV ) )dm(y )  

(2.4) e~sP "e -~w "W, , = s,m [, g t  , y W ) )  

where W(x,  Y)  = s + V(x, (s + . ,  ys+.)) is a randomized stopping time for Yand 
we have suppressed the integral over ([0, 1],dx). Apply (2.4) to g( t , y )=  
]r y ) - r  y)p (set g(t, y ) =  0 for t < s) and use the hypotheses on 4, r to 
conclude that HT(]r -- Or[) = 0 Q~,m-a.s. The result now follows by the section 
theorem and Proposition 2.2. 
(b) We omit the proof as it will be clear from that of (c) below and the proof of 
(Fitzsimmons 1988, Theorem 3.5(a)). 
(c) Let s-_< T, 1" T~ be bounded {(r t ] :s  > t}-stopping times, let c~ > 0, and 
define v,, v~o on (E, g)  by 

e -aT 'H v , (g) - -Q~,m(  r,(gr,)), n e N w { o o }  

If U is as in (a) then one can easily check (6~ x m) U > v, U $ vU, and so, as in 
Fitzsimmons (1988, Proof of (3.4)) there are randomized stopping times { V,, V~ } 
for I2 such that V, t V| pointwise and Yg e pal, n �9 N w { oo }, 

v.(g) = fi~ • m (e-~V"g(12(V,))) 

(2.5) = ~sp -~w, e ~ , m ( e  g (W, ,  yW, ) )  

where W,(x,  Y) = s + V(x, (s + ", Ys+))  is a randomized stopping time for Y, as in 
(a). (2.5) extends immediately to g: Es--+ IR which are Borel and such that sup 

t>s 

]g(t, yt)] __< KP~,~-a.s. Setting g = q5 in (2.5) and using the P~,m quasi-left-continuity 
of qS, we see from (2.5) that v,(qS) ~ v~(qS). Therefore e-~tHt(q)t) is Q~,m-a.s. left- 
continuous on (s, oo) by (Dellacherie and Meyer 1978, IV. 44) and the predictabil- 
ity of Ht(q~t) established in Proposition 2.2. The right-continuity of H,(4t)  (from 
(b)) completes the proof. [] 

In Fitzsimmons (1988, 1990) a broad class of superprocesses were characterized 
as solutions of a martingale problem, described in terms of a weak generator of the 
underlying process Y. A direct interpretation of these results in our setting gives 
a class of functions q~(t, W) which is a little too restrictive for our purposes. For our 
fixed P~,m we introduce the domain 

D(A,,m) = {c~�9 �9 F~,~ such that 

t 

M4'(t, Y )  = 4)(t, Y ' )  - O(s, Y~) - f A~,mO(r, Y")dr  is a (N,),__>~ 
S 

- -  martingale under Ps, m } . 
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Note that As, m4) (or A4) if there is no ambiguity) is uniquely defined up to P~,m- 
evanescent sets. We call A~,m th Ps,,~-weak generator of Y. 

Remark 2.4 If A is the weak generator of the/~-valued Markov process^12, defined 
in (Fitzsimmons 1988, Se~.4) it is easy~ to check that 4)~D(A) implies 
4)[s e D(A .... ) and As, m4) = A4)[~ . Since D(A) is dense in bo ~ (for bounded point- 
wise convergence), we see that D(As, m) is dense in b ~ ,  again in the bounded 
pointwise sense. A slightly stronger result for one-dimensional Brownian motion 
(the proof in fact holds for any Feller process) will be derived in Sect. 4 
(Lemma 4.10). 

Corollary 2.5 I f  Y is a Hunt process and 4)sD(As,m), then Ht(4)t) is continuous on 
[s, oe )Qs, m-a.s. 

(~t)t_>~ is quasi-left-continuous (Sharpe Proof. Since Y is Hunt it follows that ^m _ 
1988, (47.6)) and so M ~ (in the definition of D (A~, m)) is quasi-left-continuous under 
P~,m. It follows from the definition of D(As, m) that 4)(t, y t )  is quasi-left-continuous 
under P~,m and so the result follows from Theorem 2.3. [] 

Remarks 2.6 (a) The restriction to Borel maps on/~s, or equivalently (by 2.2(b)) 
(@t)t>_s-optional processes is necessary. It is not true that if 4) and ~/J are P~,m- 
indistinguishable bounded (Nt+)t~-optional processes, then Ht(4)~) and Hr(~Pt) are 
Q~,m-indistinguishable. To see this let (s, m) = (0, 80), to > 0 and set 

O(t, y) = l(t > to, limh,O]y(to + h) -- y(to)[(hloglog 1/h) -1/2 = 1) 

where Yis Brownian motion on IR. Then 0(t, y) and 4)(t, y) = l(t > to) are P~,m- 
indistinguishable (~t+)-optional processes but HtoOPto)=O because y tO=y 
Hto-a.a. y and Hto (Oto) = Hto (1). This explains the importance of Proposition 2.1 (a). 
(b) The converse to Theorem 2.3(a) is false. To see this let (s, m, Y) be as in (a) 
above and let 4)(t, y) = l({y: Yt ~ A}) where A is a non-empty Lebesgue null set of 
I R -  {0} and let 0(t, y)---0. Then Ht(4)t)= Xt (A)  where X is super-Brownian 
motion. By Reimers (1989) X~(B) = 0 Vt > 0 Qo,m-a.s. if and only if B is Lebesgue 
null (see also Perkins 1991). Hence Ht(4)t) and Ht(Ot) are Qs, m-indistinguishable but 
clearly 4)(t, y t ) =  I ( Y ( t ) s A )  and 0 are not Po,0o-indistinguishable. In view of 
Reimers' theorem, the natural conjecture is: 

(2.6) If A ~ g~ then f lA(t, y)dHt(y) = 0 Vt > s Q~,m-a.s. 

if and only if Ps, m(1A(t, y t))  = 0 Vt > s 

(at least for an appropriate class of Y's). The necessity of the latter condition is of 
course trivial. 

Theorem 2.7 Assume Y is a Hunt process. Qs, m is the unique probability on (~ [s, oQ ) 
such that V4) ~ D(As, m) 

t 

Zt(4)) = Ht(4)t) -- rn(4)s) - - f  H~(A4)~)dr, t > s 
8 

is a continuous {~q[s, t + ] :  t > s}-martingale such that Z~(4)) = 0 and 
t 

( Z(  4) ) )~ = f f ~r20,~) 4)(r, y)2 H~(dy) dr . 
s 
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Proof Since A~,,, is an extension of Fitzsimmons' weak infinitesimal generator 
^ ^ 

of Y, A, (see Remark 2.4), the uniqueness of ~s,m now follows easily from the 
uniqueness of the martingale problem for X (under tl)a~ • established in Fitzsim- 
mons (1990). 

Let t > r > s and q~ e D(A~,m). Therefore 
t 

P~,m(d#(t, Y*) - 4)(r, Y~)INP) = f Ps, m(A4(u, Y~) iNp)du 
r 

and so by the Markov property (see (2.2)) for P~,m-a.a.y. 
t 

(2.7) Py(r)(dp(t, y/r/yt-r)) = 4(r, yr) + f Py(r~(AO(u, y/r/Y"-")) du. 
Y 

By the superprocess property (Dawson and Perkins 1991, Theorem 2.1.5(d)) we 
have 

(2.8) ff).~,m(H~(9)) = P~,m(9(Y~)) Vr > s, 9: D ~ [0, oo) Borel measurable, 

and so 

(2.9) (2.7) holds for H~ - a.a.y Qs, m-a.s. 

The Markov property of H (Dawson and Perkins 1991, Theorem 2.1.5(a)) implies 
that Q~,,,-a.s., 

(2.10) ff)~,m(H~(~)l~'~[s, r]) = t~,,rt,(H,(~br)) 

= fP,( , ) (4( t ,  y /r /Y ' - ' ) )H~(dy)  (by (2.8)) 
t 

= H~((a~) + ffPy(.)(A(a(u, y/r/Y"-~))H.(dy)du (by (2.9)) 
r 

t 

= H.(4~.) + f r r])du 
r 

where we have used (2.10) with A~b in place of ~b and u in place of t. We have shown 
that Zt(q~) = H,(c~) - m((o~) - fs H,(A(~,)du is a { ~ [ s ,  t]: t _> s}- and hence 
a {N[s, t + ] : t  ~ s}-martingale. Since t ~ f s  ~ H,(Ac~,)du is Q~,m-a.s. continuous 
(H,(IAc~,I) <_ KH,(1) for all u _>__ 0 Q~,,~-a.s. for some K by Theorem 2.3(a) and the 
latter is Q~,m-a.s. continuous by Corollary 2.5), Corollary 2.5 implies Z,(~b) is 
a continuous martingale under Q . . . .  

We may, and shall, assume ~b and Aq~ are uniformly bounded o n / ~  (not just 
P~,,,-a.s.) since Theorem 2.3(a) shows an appropriate truncation will not affect the 
processes of interest. This will avoid any integrability concerns in what follows. 

A direct calculation using the definition of H in terms of the Y-superprocess, )~, 
and the known formula for ~e,• ~()~t_r(~b) 2) (see Fitzsimmons 1988, (2.7)) gives for 
s<_r<_t  

(l~r, H r ( H t (  ( ) t )  2 )  ~- nr, H,( ()(t, yt))2 
t --r  

+ f fPy(.)(a2( Y.)Pr~,,)(4~(t, (y/r/Y")/r + u/"-~-"))2)H~(dY) du 
0 

= Pr, u,((~(t, y,))2 + P~,n, a2(Y~)Pr(~)(~( t, Y/v/ '*-~))  2d 
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(2.11) Qr, ur(Ht(~)t)2) = pr, m(~b(t, yt))2 + P~,u~ a2(Y~) r Y~) 

12 ) + fPy(v~(A4)(u, Y/v/'u-v))du dv 

(this follows from (2.7) as for (2.9)). Therefore 

~s,,, ( ( H t  (qSt)- Hr (~b~)) 2 --~cr2(Yv)O(v, YV)aH~(dy)dvlaffm[s,r])l 

= I I1~,m(H,(qS~) 2) - 2H~(O~)Pr, ur(O(t, Yt)) + H~(4)~) 2 

( / )  - Pr, ur o-2(yv)q52(v, Y~)dv (by the Markov property of Y and (2.8)) 

(/ = [-P~,m(qS(t, Y~) - qS(r, Y~))32 + P,.,m o-:(Y~)24(v, Y~) 

x f Pr(~(A O(Y/v/'"-~))dudv 

+P~,H~(/G2(Y~)[/Pr(o)(A4(Y/v/',-~))dut2dv)f (by (2.11)) 

<= Pr,~I~(A~o(u, Y"))du + [2jJ qSlJoo llaz It ~o llA~b]l ~o(t - r)2/2 

+ II ~2 II ~ [I A4  II ~(t  - r)3] H~(1) 

(use (2.9) in the first term) 

< c(a 2, qS)Hr(1)[(t - r) 2 + (t - r)a]. 

It follows that the quadratic variation of the continuous semimartingale H,(~bt) is 
( H ( 4 ) ) ,  = f',fa2(y~)4)2(v, y~)Hvdy)dv (note this process is continuous in t) and 
we are done. [] 

3 The compact support property 

Now we focus on Eq. (1.2) described in the Introduction and introduce a martin- 
gale problem which should be solved by a "historical process" H associated with 
(1.2). The existence of a solution to this martingale problem will be established in 
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the next section. The reader should pay close attention to the estimates (3.15) and 
(3.16) since these are key steps in our argument. 

Y = (C, c~, c~t+, 0~, Y, Py) is the canonical representation of Brownian motion 
on the space C of continuous IN-valued functions on [0, oo) with its Borel o--field cg. 
(C is given the compact-open topology). A/2 denotes the generator of Y on D(A/2) 
in the Banach space C of continuous functions on IP,, the one point compactifica- 
tion of IN. Let a: [0, oo)) ~ IR be a continuous function satisfying 

(3.1) [a(u)l-_<c3.1(u+u ~ for some 0 < 0 < i .  

In order to study solutions of 

gu 
(3.2) ~-(t) = (A/2)ut(x) + a(u(t, x))17g 

where W is white noise on [0, oe ) x IR we introduce a martingale problem for an 
Me(C)-valued process. We further specialize the notation of the last section by 
letting f~ denote the space of weakly continuous MF(C)-valued paths on [0, ~ )  
with its Borel o--field ~" and canonical right-continuous filtration (~t+) .  We 
slightly abuse the notation of the previous section and continue to let Ht(o)) = ~o(t) 
denote the coordinate mappings on f2. Let ~t: C ~ I R  be the projection 
mapnt(y) = y(t) and define X t 6 M v ( I R )  by Xt(A  ) = Ht(rct l (A)) .  Fix Uo(X) > O, 
a bounded, continuous, Lebesgue-integrable function on the line and let 
m(dx) = Uo(X)dx ~ Me(IN). We use the notations A = Ao, m and P,, = Po,,, from the 
previous section with Y as above. Let 

b(u) = a(u)2u- l l (u > 0) .  

Assume II~m is a probability on ((2, @)  which solves the following martingale 
problem: 

(M~)  V~ ~ D(A)  Zt(~)) = Ht(~ot) -- m(~Oo) - f H,(A~o~)dr 
0 

is a continuous, square-integrable (fft+)-martingale such that Zo(qb) = 0 and 
t 

(Z(4o) ) ,  = f fb (u ( r ,  y~))4o(r, y)2dH,(y)dr.  
0 

Here u(t, x) is a jointly continuous non-negative density such that 

Xt (A)  = f u(t, x )dx  VA ~ N(IR), t _-> 0 Qm-a.s. 
A 

Also y = y' for Ht-a.a. y Vt > 0 Qm-a.s. 
The existence of such a Q,, will be established in the next section under an 

addition condition on Uo. To be consistent with the previous section let 

IR = {(t, y) ~ [0, oo ) x C:y  = y~}, ~ = the Borel cr-field of IR. 

Lemma 3.1 Qm(Ht(qSt)) = Pro(alp(t, y t ) )  VO E b~,  t > O. 

Proof. Fix qS, t as above and let 0(s, y) be a right-continuous, bounded, (cgs)- 
optional version of the martingale Pm(4(t,  Yt)IC~)(y). (Here we are trivially 
extending Proposition 2.1, as well as its notation, to the setting of continuous 
paths.) We may, and shall, also assume /p(s ,y)= ~ ( t , y  t) Vs >= t, y e  C. Then 

~ D(A), AO = 0, and so (M~) implies 

Qm(Ht(d~t)) = Q~(Ht(tPt)) = m(Oo) = P~(~o(t, Y~)). [] 
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If q~, ~ D(A), 0 ~ b ~  and ~b, bp , q5 (bounded pointwise convergence), then 

Q m ( ( z ( ~ ~  - z (4k ) ) , )  = q)m b(u(r, y~)) (4 , ( r ,  y) - 4k(r, y))2/- / , (dy) dr  

--+0 as n, k---~ oo . 

the last by dominated convergence (recall Q~( (Z (1 ) ) r )<  co). Hence Z(~b,)(t) 
converges uniformly in t on compacts in L 2 to a continuous square integrable 
martingale. Using the denseness of D(A) in b ~  (see Remark 2.4) we extend Z to an 
orthogonal martingale measure {Z(~b): ~b ~ b~  } (see Walsh 1986) such that 

t 

(3.3) ( z ( o ) ) ,  = f fb(u(r, y~))O(r, y)2H~(dy)dr V4' ~ b~ . 
0 

As in Walsh (1986, Chap. 2) if q~: [0, oo ) • ~2 x C ~ IR is ~(~- ,+)  x Cg-measurable 
and satisfies 

1?, ) (3.4) Q,, b(u(r, y,))O(r,y)2H,(dy)dr < oo V~ > O, 

then one may further extend Z to stochastic integrals of the form 

(3.5) Z,(qS) = f f 4 ( r ,  w, J )dZ( r ,  y).  
0 

Here Zt(q~) is a continuous square integrable martingale which satisfies (3.3) (with 
~b now depending on co as well). 

By working on an appropriate product space we may introduce a white noise 
on [0, oo) x 1R (based on Lebesgue measure) which is independent of H. If 

~b: IR ~ 1R is square integrable, define 

t 

(3.6) W,(~b) = f fa (u(r ,  y,))-~4(y(r))l(u(r, y~) =r O)dZ(r, y) 
0 

t 

+ f f l ( u ( r ,  x) = O)O(x)dg/(r, x) .  
o 

It is easy to check the integrability condition (3.4) required for the existence of the 
first stochastic integral. Then Wt(qS) is a continuous orthogonal martingale 
measure with square function ~ W(qS)), = t f42(x)dx .  Hence l~is a white noise on 
[0, oo)x IR with respect to Lebesgue measure (Walsh 1986, 2.10). 

Let p(t, x) denote the transition density of standard one-dimensional Brownian 
motion and let P~f(x) = f f (y)p( t ,  y - x) dy denote the Brownian semigroup. 

We now show that the density u(t, x) in (M~) does satisfy the stochastic pde 
(3.2). 

Proposition 3.2 The density u(t, x) in (Mm) satisfies 

1 
(3.7) Oust (t, x) = ~u,~(t, x) + a(u(t, x) I~, u(O) = Uo 

(3.8) u(t, x) = P~uo(x) + f f p ( t  - s, x' - x)a(u(s, x'))dW(s, x') Q,~-a.s. V(t, x) . 
0 



338 C. Muelter and E.A. Perkins 

Proof. If ~p ~ D(A/2), Dynkin's formula implies that qS(t, y) = O(y(t)) ~ D(A) and 
AO(t, y) = (A/2)O(y(t)). Therefore (Mm) implies 

t 

Xt(O) = Ht(O~)= m(~)+ Z~(4)+ f Hr(A(~)dr 
0 

t t 

= m(~,)+ f fa(u(r ,  x))4,(x)dW(r, x)+ f X~((A/2)#,)dr. 
0 0 

The last line is an easy consequence of (3.6) and a(0) = 0. This proves (3.7). 
The derivation of (3.8) is then standard. In fact it is probably simpler to derive 

(3.8) directly from (mm) by taking ~b(s, y) = pt-,At+~(y(s/x t) - x) in (M~)(A~ = O) 
and letting e ~ 0. The argument is then almost identical to the derivation of 
Proposition 4.2(b) in the next section. The required integrability conditions on 
u follow easily from the estimates in Sect. 6 of Shiga (1991) (as will be discussed in 
detail on Sect. 4 below). [] 

We will need to know that our solutions u(t, x) are sufficiently rapidly decreas- 
ing in x. For  g ~ C(IR) (continuous functions from IR to IR), let 

Ig[p = sup eplXl]g(x)] 
x 

and define 
C r + , p = { g a C ( l R ) : g > 0  and Ig[p<oo g p > 0 } .  

We topologize Cr+~p by the collection of norms {[ Ip:P > 0} in the usual way. 
The following result follows from Theorem 2.4 of Shiga (1990) and its proof. It 

is the first time (3.1) is used. 

Proposition 3.3 I f  

(3.9) Uo ~ C~+p , 

then 

(3.10) t--+ ut(') is a continuous C+p-VaIued mapping. 

Note that we have not verified that t -~ ut is a continuous C+m-valued mapping- 
see Shiga (1990) for this terminology and see the proof of Theorem 2.4 of that 
article for the apparent need of this hypothesis. An examination of Shiga's proof 
shows that this condition is not needed to derive his moment condition (6.5) and it 
is easy to see that this, together with the joint continuity of u will give (3.10). 

Now we begin the heart of the argument. We will use Lemma 3.4 to show that 
certain parts of H die out rapidly. 

Notation. If Mt is a stochastic process let 

U M = i n f { t : m t = o }  (infqS= + w ) .  

Lemma 3.4 Let fi E (1,2) and c3.2(fi)= 2 ( ( 2 -  fi)-I  + ( f i _  1)-1). I f  (Mr, ~ t )  is 
a non-negative continuous martingale and T is an (J~f~t)-stopping time such that for 
s o m e  c > O ,  

t 

(3.11) < M > , - < M > s > c f  l ( r < T ) M ] d r  g s < t ,  
s 
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then 
P(U M A T >  tl.N~o) < c s . 2 ( f i ) c - l M 2 - r  x Vt > 0 . 

Proof  Let V =  UM A T, W =  ( M ) ( V )  and let zt = i n f { u : ( M ) ,  > t} 
(inf 5Z5 = oo). Enlarge the space to introduce an independent  Brownian mot ion  

/~t (/~0 = 0) and define 

~M('ct) if t < W 

B~ = ( M ('cw) + J~t- w if t > W.  

By the Dubins-Schwarz  theorem, condit ional  on -~o,  B is a Brownian mot ion  
starting at Mo(co). It is also easy to check that 

(3.12) W < UB. 

Integrate  l(r  < V)M~ -p with respect to either side of (3.11) to conclude 

V 

cg<  f M ; - e d ( M ) r  
0 

W 

= f BT~dt 
0 

u8 

<= f B;-e dt (by (3.12)). 
0 

If L~ is Brownian local time, then 

P(VI ~,~0) < c - ~ P  B2~&]Y~o  
0 

oo 

= c -1 f Pvo(~(Lb.)x ~ dx 
0 

= c -1 f 2(Mo(cO) /x x ) x - e d x  (Ray-Knight  Theorem) 
0 

= c3.2(~)c-'M~-e. 

The result follows by Markov ' s  inequality. [] 

Notation. If  v is a measure on a topological  space, S(v) denotes its closed support.  
Let h(t) = (t log+(l / t ) )  ~/2 and for 8, e, T >  0 define 

K(~, c, T) = {y E C:[y(t)  - y(s)[ =< ch(t - s) Vs, t e [0, T],  0 < t - s < cl} . 

Here then is our  main result. 

Theorem 3.5 In addition to (3.9) and (3.1) assume there is a ~ e (0, 1) and a positive 
sequence {aK} such that 

(3.13) a ( u ) > a K u  ~ for 0 - < u < K .  

For  Qm-a.a. co gc > x/2(1 - (7 v 1/2)) -1/2 = c7, V L e N  there is a c3 = 6(c ,L,  co) 
> 0  such that S(H,)  c K((~, c, L)  gt < L. 
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Proof. We may  assume without  loss of generali ty that  7 > 1/2. Let  c > c~ and 
choose e > 0 sufficiently small so that  

fi = (27 - e)(1 - 0 -1 e (1 ,2  - 4 c  - 2 )  . 

Next  select N e N larger than  both  II uo ]l ~ and fuo(x)~dx (see (3.9)). Let  

TN = inf {t" lLutll~ > N or fut(x)~ dx > N }  . 

It  is clear f rom (3.10) ( fu , (x)~dx < ]utl~2e -1)  that  

(3.14) lim TN = + oo a.s. 
N+oo  

For  non-negat ive  integers 0 < j < k, n, let 

a,,j,k = { y ~  C: ly (k2  " ) -  y ( j 2 - ' ) l  > c h ( ( k - j ) 2 - ~ ) }  , 

let M,,  j,k(t) = H(k2-,+OA T~,(G,, j,k) and let 4~,, j,k(S, y) be a (cgs)-optional, bounded,  
r ight-cont inuous version of the mar t ingale  Pm(G,, j ,k]~ ' ) (y)  such that  
O,,i,k(t, y) = l~,.j.~(y) for t > k 2 - ' ,  y ~ C (see Propos i t ion  2.1). To  relieve eye-strain 
we suppress the subscripts until further notice. Then  Aq~ = 0 and (Mm) implies M is 

n k  m " n , k  an ( g t u  ar tmgale,  where ~ = Yk2 "+~, and 

k 2  - n + t  

<M)~ = f f l(r < TN)b(u(r, y~))l~(ylHr(dyldr . 
k 2 - n  

The next two calculations are the key steps in our argument .  We use L e m m a  3.4 
and Jensen's  inequali ty to show that  the "bad"  parts  of H (where the particles have 
large modulus)  die not  quickly. 

Let  v(s, co, x) be a ~ ( (~ ,~ ,+ ) )x  ~( lR) -measurab le  process such that  

v(s, x )dx  = Hs(y:  y s G, y(s) ~ dx) , v(s, x) < u(s, x) V(s, x) , 

and let I(s) = fv(s ,  x) ~ dx. Then for s < t, 

(3.15) 

( M ) ~ -  ( M ) ~  = f f  l ( k 2 - "  + s < r < k2 -"  + t ,r  < TN)b(u(r, x ) ) v ( r , x ) d x d r  

> a N f f l ( s  < r - k2 " < t, r < Tn)(u(r, x))2~-lv(r, x )dxdr  

(by (3.13)) 

> a N f f l ( s  < r -  k2-" < t, r < TN)(v(r, x)l-~)~v(r,  x)~dxdr 

>aN l(s <= r -  k2 " < t ,r  < TN)v(r ,x )dx  I (r ) l -~  dr 

(Jensen's  inequality) 

> aNN 1-~ f l ( r  < T N ) M ~ d r ,  
s 
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where TN = ( T N -  k2-")  + is an (~-p3) -s topping  time. N o w  use Lemma 3.4 to 
conclude 

(3.16) Qm(UM > 2-",  TN > (k + 1)2-") 

G c 3 . 2 ( f i ) N * - l a ; 1 2 ~ Q m ( l ( T  N > k 2 - n ) H k z _ ~ ( G ) 2 - * )  

<= c 3 . 2 N ~ - i a ; i 2 n P m ( I  Y(k2-")  - Y(j2-n) l  > ch((k  - j ) 2 - " ) )  2 ~ 

(Jensen's inequality and Lemma 3.1) 

~= c 3 . 2 N ~  - 1 a N  i m(IR)2"-"c2(z- ~)/2(k _ j)c2(2 -~I/2 , 

where the last line holds for all k - j  __< 2 "/2 and n > no(C). The choice offl  allows us 
to choose t / s  (0, 1/2) sufficiently small so that 

2 + I? + r /c2(2  - f i ) /2  - c 2 ( 2  - f l ) / 2  < O .  

Since H(k + ,)2-,, +dG) is a cont inuous non-negat ive martingale (by (M,~)) it sticks at 
zero as soon as it hits zero. Therefore we have proved that for L, N e N 

Qm(TN > L + 1, max sup H(k+l)2- ,+t (G, , j , k )  > O) 
O < j < k < 2 " L , k - j < 2 " "  r>_O 

~-~ C3.2 N/~ - 1 a N  1 Ffl,(lR) L 2  ~(2 + ,7) ,,c2(2 - /0 /2  + ~ 2 ( 2  -/3)/2 

which is summabte  over n by the choice of r/. By Borel-Cantelli and (3.14) we may 
fix co outside a (I)~-null set such that  TN(co) I" + oo and for any L, N e N there is an 
no(L, N ,  co) such that  for all n > no(L, N )  if Ts(co) > L + 1, then 

H,(G~,a,k ) = 0 g 0 < j < k < 2 " L , k - j < 2 %  t > (k + 1)2 - n .  

Fix L e N,  choose N = N(co) such that TN(co) > L + 1 and set 
no(L, co) = no(L, N(co), co). If n > 'no(L ) then 

(3.17) ly(k2 -~) - y ( j2 -~) l  < ch(k - . 1 ) 2  -~) Vj2-" < k2-*' < L, 

k - j = < 2  ~,  ( k +  1)2-" =< t for Hca.a.  y V t > _ 0 .  

We now modify L6vy's derivation of the exact modulus  of continuity for Brownian 
mot ion  (see I t6 and M c K e a n  1974, Sect. 1.9) to show 

(3.18) ]y(v) - y(u)[ < (1 + 2rl)ch(v - u) for all 0 < v - u < 2 -%(L'~ 

- cS(L, c, r/, co) 

O < = u < v < = t  f o r H c a . a ,  y V t < L .  

We must  slightly modify L6vy's a rgument  to accommoda te  the restriction 
(k + 1)2 -n < t in (3.17) and therefore briefly sketch a proof  of (3.18). Choose  
n > no(L, co) such that 

2 -(n+l)(l-~7) --< V -- U --< 2 -n(i-") 

Let ul = j 2  -n - ([u2"] + 1)2 " and vl = k2-"  = (Iv2"] - 1)2 -n. Since 
vl + 2 -n -< v _< t, (3.17) implies 

(3.19) l y (v l )  - y(ul)l < ch(v - u) . 
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Choose  vl < vml"v such that v,~ = k, ,2-"% v,,+l =(k,~ + 1)2 -"~ and 
vm+ ~ + 2 - ' ~  < v (at each stage we can always reduce the distance to v by a factor of 
3/4). As in Lbvy's a rgument  we can check that 

(3.20) ly(v) - y(vl)l  < ~ lY(Vm+l) - y(vm)l < qch(v - u) . 
m> 0 

Arguing exactly as in L6vy's proof, one obtains 

(3.21) ly(u) - y(u,)l  < ~lch(v - u) 

((3.20) and (3.21) also require n > n~(r/), which we may  assume without  loss 
of generality). (3.19)-(3.21) give (3.18), Hence we have shown that  
Ht(K(6,  (1 + 2r/)c, L) ~) = 0 Vt < L (6 = 6(L, c, r/, co) > 0). N o w  note that  since 
K(c~, c, L)  is closed we have S(H,)  c K(a, (1 + 2~/)c, L) for all t < L, and as c > c.e 
and q > 0 are arbi t rary we are done. Q 

Remark  3.6 If a(u) = O'Ul]2(O " > 0 ) ,  then Q~ is the law of  the (Y,  r 
process, constructed in Sect. 2 of Dawson  and Perkins (1991). In this case the 
critical constant  cl/2 = 2 in Theorem 3.5 was shown to be sharp in Theorem 8.7 of 
Dawson  and Perkins (1991). In light of Corol lary  3.8 below and the non-compac t -  
ness result of Mueller (1990) for a(u) = u "~ with ~J > 1, it is gratifying to note 
c~ T + oc as 7 ]" 1. We have not,  however, checked whether or not  c~ is critical for 

# 1/2. 

Corollary 3.7 Under the hypotheses o f  Theorem 3.5, 

S(X , )  = rc~(S(Ht)) Vt > 0 (l)~-a.s. 

Proof. Fix co so that the conclusion of Theorem 3.5 holds. Let {x,} be a sequence in 
~,(S(Ht)) converging to x. Choose  L > t, L > Ixol for all n (L ~ N). Then  x,, = y,(t) 
for some 

y , ~ S ( H t ) m { y ~ c : [ y ( t ) [  <=L} ~ K(6(c ,L,  co), c, L )c~{y~C: l y ( t ) ]  < L , y  = yL} �9 

(Here c > c~.) This last set is compact  in C by Arzela-Ascoli, and so we may  choose 
a subsequence Y,k --* Y in C. Clearly y ~ S(Ht) and x = y(t) ~ ~zt(S(H~)). Therefore 
~(S(H~)) is closed. The inclusion S(X~) ~ 7~t(S(Ht)) is now immediate from 

Xt(TCt(S (Ht) ) c) = Ht(Tz~- I (g~(S(Ht)  ) ) c) ~ H~(S(Ht) ~) = O . 

Conversely if y~ ~ S(Ht) then 

X~(B(yL  ~)) = u , ( { y ' l y ,  - y~l < ~}) > 0 w > 0 

and so y~ e S(Xt).  [] 

Notation. If A c IR, A a = {x ~ IR: Ix - y[ < 6 for some y ~ A}. 

Corollary 3.8 Under the hypotheses o f  Theorem 3.5 for Q,,-a.a. co Vc > c~, L ~ N 
~3(c, L, co) > 0 such that 

(3.22) S(X, )  c S(XJh(t-~)Vs,  t ~ [0, L],  s rational and 0 < t - s < 6(c, L, co) . 
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Proof. Let ~' be a countable  base for C, G ~ ~' and s ~ Q ca [0, ~) .  As in the proof  
of Theorem 3.5 it follows from (M~) that {Ht({y:yS~ G}) : t  > s} is a cont inuous 
( ~-t+)t__>~-martingale. Therefore H~(G) = 0 implies Ht ({y :  y" e G}) = 0 Vt > s Q~- 
a.s. Fix co outside a Q,,-null set so that this holds simultaneously for all s ~ Q --> o and 
G in ~', and so that  the conclusions of Theorem 3.5 and Corol lary 3.7 hold. Let c, L, 
s and t be as in the statement of the corollary where c5(c, L, co) is as in Theorem 3.5. 
Let x ~ S(X~), so that  x = yo(t) for some Yo ~ S(Ht) (by Corol lary  3.7). Ify~ ~ G ~ ~?/, 
then d = {y:y~ ~ G} is an open ne ighbourhood  of Yo and hence 0 < H,({y:y" 
G}). The choice of co implies HdG) > 0. This proves Y~o ~ S(Hs) and so yo(s) ~ S(X,) 
(Corollary 3.7 again). Since Yo s K(6, c, L), it follows that  

I x  - y o ( s ) l  = l y o ( t )  - y o ( s ) l  =< c h ( t  - s) 

and therefore x ~ S(X~) ch(t-~), as required. [] 

Remark. The restriction that s ~ Q in the above result is a nuisance but as there is 
no such restriction on t, (3.22) still provides on effective means of controll ing the 
expansion rate of  S(Xt). The problem is that  we have been unable to rule out 
sudden exceptional drops in the size of S(X~) for s < t. Lemma 4.9 of Dawson  et at. 
(1989) handles this problem for super-Brownian mot ion  (a(u) = u~/2). The proof, 
however, relies on the uniqueness in law of the process, a luxury we cannot  afford in 
the current setting. 

Corollary 3.9 Assume (3.1), (3.13) and Uo(X) is a continuous function with compact 
support. Then S(Ht) and S(X~) are compact in C and IR respectively, for all t > 0 
(Dm-a.s. 

Proof. If  Ko = S(m) (compact) then Ht({ y" y(0) q~ Ko }) = 0 Vt > 0 Qm-a.s. since it is 
a r ight-cont inuous (Yt+) -mar t inga le  starting at 0 (again by (Mm)). Fix co so that 
this mart ingale is identically 0 and so that the conclusion of Theorem 3.5 holds. 
Then for c > c~, L ~ N and c~ as in Theorem 3.5 we have 

S(H~)c {yeK(c3, c ,L) 'y(O)eKo,  y =  yL} Vt < L .  

This latter set is compact  by Arzela-Ascoli and hence S(H,) is compact  for all t > 0 
a.s. The corresponding result for S(Xt) now follows from Corol lary 3.7 (or is 
immediate f rom Corol lary  3.8). [] 

We let Ux = inf{t: X, = 0} denote the lifetime of X. Since X,(IR) is a martingale 
X t = O  Vt > Ux on {Ux < ~ }  a.s. 

Theorem 3.10 Assume (3.1), (3.9) and 

(3.23) a(u)>aou ~ Vu>O and some 7 e  [ �89 

Then Ux < oe and Xt+vx = 0 Vt > 0 Qm-a.s. 

Proof. Let O(x) = t)(~/(x) = cosh(c~x) and qn(x) = ~,}~(x) = cosh(ax)e -x~/~. Then 
~ ~ D(A/2) and so Propos i t ion  3.2 implies 

t 

(3.24) X~(~,~) = m(~,~) + f fa(u(r,x))4,n(x)dW(r,x) + f x~(~,/,/2)dr Vt > 0 Qm-a.s. 
0 0 
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(3.10) and the estimate 14"1 + 14'.1 < c~4` allows us to use dominated  convergence 
to let n ~ oo in each of the terms in (3.24) except the mart ingale term. To handle 
this term, note that  

f fa(u(r, x))a(G(x)-  @(x)) 2 d x  dr < c2 f f(u(r, X) 2 -~ /g(F, X)20)(I / In(X)-  4`(Y)) 2 d x d r  
0 0 

- + 0  as  n ---~ oo 

by (3.10) and dominated  convergence. N o w  we may  let n ~ oo in (3.24) to conclude 
that  

Xd4' )  = re(O) + f fa(u(r ,  x ) )O(x)dW(r ,  x) + (cd/2)Xd4`)dr Vt > 0 @,,-a.s. 
0 0 

(3.25) - m(4`) + M~ + (a2/2) f X.(4`) dr. 
o 

Mr is a cont inuous martingale such that 

d 
~t KM), >__ a2ofu(t, x)Z~4`(x)2 dx (by (3.23)). 

Let us first assume ? > 1/2 and let c3(7) = Y~o (cosh x) (2~- 2)/(2y-~)dx. Then 

d 
(3.26) ~ ( M ) t  > a2 f(4`(x) 1/(2'-l)u(t, x))2'4`(x) ~2'-2)/~2' 1) dx 

= a~x,(4`)~-"(c~(~,)/~) ~ - ~, 

- a ~ X d 4 ` 7 ' .  

(Jensen) 

If 7 = 1/2 then simply use 4` > 1 to get the same conclusion with at = ao 2. Let 

C, = f Xs(4`)-2~d(M)~ for t < Ux 
0 

z t = i n f { u : C . > t }  for t < C v ~ .  

Then 

(3.27) dt (t) = (z,) = X~,(4`) 2' (z,) < ai  -1 for t < Cv, 

(by (3.26)). Therefore z(Cvx) = z(Cw - ) < oo if Cvx < oo. Let 

2~)( t )  = 2 ( 0  = x ( z ( t  A cu~))(4`~)), 

so that UF = Cvx, and let Mt = M(z(t/x U,2)). 37I is a cont inuous martingale 
('c~ < a [-1 0 and for t < Ux, 

d d ( M )  (re) dz dt (37I), - du ~ (t) = 3~2, (by (3.27)). 
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Hence by enlarging the space we may assume there is a standard Brownian motion 
Bt ~ IR such that aTI, =fo X~dB~. Therefore (3.25) implies 

z(t A U~.) 

(3.28) J~t = m(0) + f Y~dB, + (e2/2) f X~(~h)dr 
0 0 

t t 

= re(O) + f Y~sdBs + (~2/2) f Y~z'(s)ds. 
0 0 

If X~) is the pathwise unique solution of 

t t 

X, = re(g,) +f  2~dBs + ~:(2a~)-~f 2~ds, 
0 0 

then since z'__< ai-~, a standard comparison theorem (see Rogers and Williams 
1987, V.43.1) shows that 2~ =) _-< X} =) Vt > 0 a.s. 

A direct calculation (see Knight 1981, p. 92) shows 0 is an accessible boundary 
point for the diffusion X, and that )~ has scale function 

Sc(X)-~exp{-c(1  7) ~(y2-:~ 1)}dy,  
1 

where c = ~2(2al) -1. Note that 

c = cd(Zal) -1 = ~ a~ 7 > �89 
1 

~ ~ 2 a o 2 / 2  7 - 2 

--+0 as ~ 0 +  . 

Therefore (see Knight 1981, p. 95), 

(3.28) Qm(Ux< oo)>_ lira Qm(U2(~,<oo) (z(t)<a~lt) 
a ~ O +  

_> lira ll)m(U~c,,,<oo) (J~(~) =< X(~)) 
a-+O+ 

_< lira so(~176 &(m(~(~))) 
- ~ o +  s c ( o o )  - s o ( 0 )  

=1 .  [] 

4 Existence of solutions to the martingale problem 

In order to prove the existence of a solution to (Mm) we assume (3.9) throughout 
this section and will initially strengthen (3.l) to 

(4.1) la(u)r < c4.1(u + u 1/2) Vu > O, 

where a: [0, oo) -+ IR is continuous. Then 

( 4 , 2 )  b(u)=a(u)2u-ll(u>O)<c4.2(u+ t) V u > 0 .  
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Let ( ~ , ~ , ~ t + , H ~ )  be as in Sect. 3, let o~[r,s]=a(H,:r<_u<<_s) and let 
II)~ . . . .  ~ denote the law of the (B, a ~ 22/2)-historical process where B is one-dimen- 
sional Brownian motion and a:  IR ~ IR is bounded and measurable. Define 
{u(t,x)(o9)" t >-_0, xe lR}  by 

f lira 2"Ht(y:yteI . (x))  if the limit exists, 

otherwise 

where x e I ,  (x) = [j2-",  (j + 1) 2-  "), j �9 ;g. Recall that A~, ,, denotes the weak gener- 
ator constructed in Sect. 2, where our underlying Markov process is now Brownian 
motion in IR. Also let A denote Ao,,, as in Sect. 3. 

Let 6, $ 0 and for fixed n e N construct ~"  on @~, by induction on i as follows. 
~"  Io%, = II)o,,,,b(,o)[~. (note that b(uo) is bounded and continuous by (4.2)). By 
Konno and Shiga (1988, Theorem 1.4, Remark 1.6), {u(t ,x): t  < 6 , , x~ lR}  is 
II~"-a.s. continuous and 

( 4 . 3 )  Ht(y :y t eA)  =f u(t,x) dx VAe~( lR) , te[O,  6,] Q"-a.s. 
A 

By Theorem 2.4 of Shiga (1990) (see also the comments following Proposition 3.3 of 
the previous section) t ~ u~ is a C+p-valued continuous mapping on [0, 6,] Q"-a.s. 
Let Q~.,~,~176 E~., 2~,1 be the regular conditional distribution of Q" t~E~~ given 
~-~. Since b ( u J  is Q"-a.s. a bounded continuous function this is well-defined and 
since u~sC~+v a.s., we can argue as above to see that t~-+u~ is a continuous 
C+p-valued mapping on [0, 26,] satisfying (4.3) on [0, 2~,]. Continuing in this way, 
we define ~" on ~ so that t~+u~ is a continuous map from [0, oo) to C+pll~"-a.s. 
and (4.3) holds on [0, oo) a.s. 

Recall the notations IR and ]R~ = IR c~ ([s, oo) x C) from the previous sections. 
Let 4) e D (A). If rna, (.) = P,, (B ~"e �9 ), then P,, = P~,,~,, by the Mark or  property (see 
Dawson and Perkins 1991, Theorem 2.2.1). Therefore 4)]a,~ ....... and so 
4) 1~,, ~ F~,,H,~ ~"-a.s. because m~, is the mean of H~, under Q". The Markov property 
implies 

M ~  '~" = 4 ) ( t ,B  t) - r B ~") -)~ A4) ( r ,B~)dr ,  t >= rS. 
On 

is a (cgt+ : t > 6,)-martingale under P~.., for ma -a.a.y. and hence also with respect to 
P~ m Q"-a.s. This proves 4)[e~ sO(A~,, m ) and A~,,,H, 4)(t, y) = A4)(t, y) for t > 6, 
Q~'-a.'s. we may therefore apply Theorena 2.7 conditional on ~ ,  to see that 

-/ Z~"(4)) = H,(4)t) - Ha,(4)o,) Hr(A4)r) dr, t~ [6,, 26,] 
gin 

is a continuous ~-t+-martingale under ~" such that 

-/ ( Z~"( 4)) ), - b(u(6,, yr)) 4)(r, y)Z H~(dy) dr, t s [ 6 , , 2 6 , ] .  
6n 
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Let u"(t, x) = u([t/6,] 6n, x), Using the above on [6,, 26,] and Theorem 2.7 on 
[0, 6,],  we see that for t < 26,, 

(M,~) V(aeD(A)Z~(O)=Ht(4)t)-m(~o)-fHr(A~r)dr is a continuous 
0 

(~t+)-martingale under ~ satisfying 

t 

(Z(qS))~ = f  f b(u"(r, yr)) 4)(r, y)2 H~(dy) dr ~"-a.s. 
0 

As in the proof of Lemma 3.1 this implies Q"(Ht(G)) = P,,(Bt~G) for t < 26, 
(recall this fact for t = 6, was used in the above). We can proceed inductively to 
arrive at (M~) for all t > 0 and also 

(4.4) ~"(H,(~b)) = Pm(dp(Bt)) Vt > O, ~ bounded measurable. 

As in Sect. 3 we may extend Zt(~b) first to an orthogonal martingale on 1R and 
then to ~b: [0, oe) x f~ x C --, 1R which are ~ ( ~ )  x C-measurable ( J r  = g f f ' )  and 
such that 

Q" f fb(u"(r ,y , ) )O(r ,y)2H~(dy)dr  <oe V t > 0 .  
6 

By localizing we may define Zt(~) for ~b ~ ( ~ )  x Cg-measurable satisfying 

f 

f fb(u"(r ,  y~))4)(r, y)2 Hr(dy)dr< ov Vt > 0 Q"-a.s. 
o 

Zt(q~) is then a continuous local martingale whose square function is given by the 
above integral. We write 

t 

z,(4)) = f  f O(s, co, y) dZ (s, y) . 
0 

Lemma 4.1 Assume 9: [0, T]--* [0, Go) is bounded, f :  [0, T]  ~ [0, or) is non- 
decreasing, and g(t) < c ( f ( t )  + f~ (t - s)-1/2 g(S)ds) Vt < T. Then 
9(0 < f ( t )  exp{4et 1/2} Vt < T. 

Proof. Iterate. 

Notation. v,(q, 2, t) = sup~st f e zl~l Q"(u(s, x) q) dx, q, 2, t > O . 

Proposition 4.2. (a) sup, v,(q, 2, t ) = v ~ ( q ,  2, t)<oo Vq, 2, t > 0 .  

(b) u(t, x) = Ptuo(X) + fo~fp,-Ay(s) - x)dZ(s, y) Q"-a.s. V(t, x) 

r x)) = P~uo(X). 

Proof Fix 2 > 0 and choose K > lUo[;~ = sup~e~l~lUo(X). Let T(k) = inf{t : lu~]z > k}. 
If q5 : IR --+ IR is bounded and measurable and t > 0 is fixed, then 

O(s, y) = Pt-~^tO(y(s /x t))~D(A) 
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and Aq5 = 0 .  (Mr,) implies that H,(4)u)=P~(4)(Bt))+Z,(O) and setting 
u = t A T(k) and ~b(x) = p~(x - xo), we get 

l (T(k )  > t) f p,(x - Xo)U(t, x) dx 

+ l (T(k )  < t)fp~-r(k)+~ (y(T(k)) - Xo) H(T(k))(dy) 

t A T(k) 

= fp~+~(y - xo)uo(y) dy + f fp,_s+~(y(s) - xo) dZ (s, y) .  
0 

It  is easy to see that each of the terms in the above, except perhaps the last one on 
the right, has a II~-a.s. limit as e ~ 0. Hence we have 

(4.5) l (T (k )  > t)u(t, xo) + l (T(k )  < t) fpt-r(k)(Y - Xo)U(T(k), y) dy 

t ^  T(k) 

= P~uo(Xo) + lim f fp t -s+~(y(s) -  xo)dZ(s,y) Q"-a.s. 
~$0 0 

Now 
tAT(k)  ) 

r f f(P,-~+~(Y(S)- X o ) - P , - s ( Y ( S ) -  Xo))2b(u"(s, Ys))H~(dY) ds 
0 

<c4.20d f f ( p t _ , + = ( y - x o ) - p t _ ~ ( y - x o ) ) 2 ( u " ( s , y ) +  1)u(s,y)dyds 
0 

t 

< c,.2(k + 1)k f f (p ,_=+,(y  - Xo) - pt-~(Y - Xo))2dY ds 
0 

0 as e $ 0 (by dominated convergence). 

This identifies the limit in (4.5) and implies that 

(4.6) l ( T ( k )  -> t)u(t, )Co) + l ( T ( k )  < t)Pt-r(k)OAT(k))(Xo) 
t A r (k)  

= P~uo(xo) + f f p~_s(y(s)- xo)dZ(s, y)ffg-a.s. 
o 

As t ~-~ u(t,.) is a C~p-valued continuous mapping it is easy to see that 

t 

f f b ( u " ( x ,  y))p,-s(y'x)2u(s, y)dy ds< o~ Vt > 0 ll)n-a.s., 
0 

and so we may let k-- ,m in (4.6) to get the first part  of (b). This together with 
Fatou's  lemma implies that 

•"(u(t, x)) <= P~Uo(X) 

and so 

v,(1, 2, t) < s u p f e  ~lxl Psuo(X) dx = sup f Ps(e xl't) (X)Uo(X) dx 
s<t s<-t 

<= c(t, 2) feZlXluo(x) dx 

= c(t,  ,t, Uo)< o o ,  
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where in the next to last line we have used Lemma 6.2 of Shiga (1990). This gives (a) 
for q = 1. For  q > 2 use (4.6) to see that  (cq changes from line to line) 

~"(u( t ,  x)~ l ( t  < r(k))) 

< cq(P, uo(x) q + Q, l(s < T(k))p~_,(y - x) 2 b(u"(s, y))u(s, y) ay ds ~/2) 

<= cq(P~uo(X) q + % f f t(s < T(k))pt_s(y - x) ~ (u"(s, y)2 
0 

u(s, y)2 + u(s, y)) dy dsq/2)) (use (4.2)) + 

( < c,(P~uo(X)" + % f f l ( s  < T(k))p,_s(y - x) 2 (u"(s, y)" 
0 

+ u(s, y)q + u(s, y)q/2) dy ds) ( J  f pt_s(y - x)2 dyds)  (q/z)-1 

(Jensen's inequali ty).  

As Pt-s(Y - x) 2 < (t - s) -1/2 Pt-s(Y - x), this implies 

Q"(u(t, x) q l ( t  < T(k))) N cq(Ptuo(x)q 
t 

+ t (q-2)/4 f f ( t  - s) -1/2 p,_~(y - x) (l)"(l(s < T(k))(u"(s, y)q 
0 

+ u(s, y)q + u(s, y)q/2)) dyds).  

If v,(q, 2, t, k) = sup,=<~fe ;'Iyl q2"(u(s, y)q l(s =< T(k))) dy, then the above implies 
(use Lemma 6.2 of Shiga (1990) again) that  for u < T 

v,(q, 2, u, k) < Cq sup ( f P,(e ~l'l) (x)uo(x)q dx 
t < u  \ 

t 

+ Cq-2)/~f f ( t  - s) -1/2 P,_,(e ~ll) (y) 1)" (l(s < T(k)) 
0 

X (Un(S, y)q ac U(S, y)q + U(S, y)q/2)) dyds) 

<= c(q, 2, T) ( f e zlxl Uo(X) q dx + sup 3~ (t - s)-1/2 (v.(q, 2, s, k) 
\ t<=u 0 

+ v,,(q/2, 2, s, k)) ds) 

< c(q, 2, T) luql2;)~ -1 + f  (u -- s)-~/2 (v.(q, ;. s, k) 
0 

+ v.(q/2, 2, s, k)) ds'} 
% 

/ 
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It is easy to see from the definition of T(k) that v,(q, 2, t, k)< oo for q > 1. Now use 
Lemma 4.1, the above bound on v,(1, 2, t) and an obvious induction on q = 2" to 
see that 

supv,(q, 2, u , k ) < c ( q ,  2, u)<oo V u > O .  
n 

Let k--.oo to complete the proof of (a) for q = 2". An elementary argument shows 
the result follows for all q > 0. 

Finally it is easy to use the estimate in (a) to show the stochastic integral in the 
first part of (b) is square integrable and hence has mean 0. The second part of (b) 
follows, [] 

Lemma 4.3 I f  T, 2 > 0 there is a C(T, 2)< oo such that 

j f(P~-s(Y - x) - Pt,-~(Y - x')) 2 e -~lyl dyds 
0 

< C ( T ,  2 ) ( i x  - x '[  + ( t  - t ' ) l / 2 ) e  -alxl  

V 0 < t ' < t <  T , [ x - x ' [ <  1 , 2 > 0 .  

where p,(z) is defined to be 0 if u < O. 

Proof This is a routine, if lengthy, calculation. The estimate 

Pt(e-Zq'l)(x) < C(T, 2) e -~1~1 for t < T 

from Lemma 6.2 of Shiga (1990) is used frequently. The result is in fact implicit in 
the proof of Theorem 2.4 of Shiga (1990). [] 

The following result is a slight extension of Lemma 6.3(ii) of Shiga (1990). The 
proof is a minor modification of the usual proof of Kolmogorov's continuity 
criterion and is omitted. If X is a stochastic process, Px denotes the law of X on the 
appropriate space of paths, 

Lemma 4.4 Let {X,(t,-): t_>_ 0, n~N} be a sequence of continuous C~p-valued 
processes. Suppose 3q > 0, y > 2 and VT, 2 > 0 3C = C(T, 2) > 0 such that 

(4.7) 

P ( l X , ( t , x ) -  X n ( t ' , x ' ) l  q) <= C ( I x  - x ' [ '  --b It - t'lV)e -xl~l Vt, t ' e  [0, T], 

I x - x ' l <  1, n ~ N .  

I f  {Px.(o): n e N }  is tight on Cr+~,, then {Px.: n e N }  is tight on C([0, oo), Cr+~p). 

Proposition 4.5 {Q"(u~ .): n~N}  is tight on C([0, oe), Cr+p). 

Proof If fi(t, x) = u(t, x) - Ptuo(X), then since t~-+ Ptuo ~ C([O, oe), Cr+p), it suffices 
to show {II)"(~E .): n e N }  is tight. Let q >= 1, 2 > 0, 0 __< t' < t =< T a n d  Ix - x'l 
<= 1. Allowing Cq to vary from line to line, we have from Proposition 4.2(b), 

Burkholder's inequality and (4.2): 

Q"(la(t, x) - O(t', x')l 2q) 

<= e q Q  n ( P t - s ( Y  -- x )  --  P t ' - s ( Y  --  x ' ) )  2 e-~lYt 

x eZlrl(un(s, y) u(s, y) + u(s, y)) dydsq~ 
/ 
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t t < cqQ" f f ( u " ( s , y ) q u ( s , y )  q + u(s ,y )q)e  ~(q-1)I'l 
0 

(p t_ , (y  - x) - P, ' -s(Y -- x')) 2 d y d s )  • 

x f ( P t - s ( Y  - x) - pt,_~ (y - x')) 2 e -xl'l dyds 

< c~"  f f(u"(s,y)  8q + u(s,y)  sq + u(s ,y)4q)e 4~'(q-1)1'1 dyds 
0 

x ) f lp~-~(y - x) - pt,-s(y - x')[ s/3 dyds a/4 
0 

X C ' ( T ,  ~, q) ( I x  - -  x ' )  q-1  ~- It --  t'[ (q-1)/2) e - a ( q -  1)1~1 

(H61der's inequality and Lemma 4.3) 

< C(T, 2, q)(Ix - x'[ q-a + [t - t'[ (q-1)/2) e -*l~l 

by Proposition 4.2 and an elementary calculation. Since u(O,. ) = u0(" ) Q"-a.s., the 
result is now immediate from Lemma 4.4. [] 

Turn now to the tightness of {1I)"} itself. We first show that, uniformly in (n, t), 
almost all of Ht can be supported on a compact set with high Q" probability. 

Lemma 4.6 For any bounded (~ f ) - s topping  time S and any bounded measurable 
~, : C--+ IR 

(4.8) f O(yS) H, vs(dy) -- Hs(O) = f f  l(S < r <= t )O(y  s) Z(dr, dy) gt >= 0 Q"-a.s. 

Proof  By first considering qS(r, 03, y) = l(r >= S(co)) ~1 (S(co)) O2(Yr) and then boot- 
strapping, it is easy to check that the integrand on the right-hand side is 
P(~#~) x cg _ measurable and hence the stochastic integral is well-defined. 

If S = So is constant, the result is a simple consequence of (M~) with qS(t, y) 
equal to a bounded cgt-optional version of Pm(tp(B~~ ) (A~ =0).  For 
general S, approximate it from above by stopping times {Sr~} taking on finitely 
many values, for which the result follows easily from the above. If 0 is also 
continuous we obtain the result by taking a.s. limits (as Sm I S) on the left side of 
(4.8) and L2-1imits on the right (use Proposition 4.2(a)). Finally take bounded 
pointwise limits in ~ to obtain the result for all bounded measurable ~b. [] 

Notation. If G c C, let G t = {yt: y ~ G } ,  G~ = vo o<,<-~ Gt. 

Lemma 4.7 For any e, T > 0 there is a c5 > 0 such that 

~ s u p  Q" (sup H~((G'y)> e~ <e. Gscg, Pm(B T c a  
T) < 3 

n \ t < T  / 

Proof  Let g, T, 5 > 0 and assume Pm(B r (~ G T) < 6. By the section theorem there is 
a bounded (~t)-stopping time S = S, such that 

(4.9) [ S ] c  {(t, co): Ht((Gt) ~) > ~, t < T}  vo I T  + 1; 

Q"(S < T)  > (1)"(sup Ht((Gt)~) > e) - e . 
\ r < T  
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Here [S] denotes the graph of S. Let 

C, = C~ = f fu(r ,  x) b(u"(r, x)) dx dr 
0 

and T(L) = T"(L) = inf{t:  C~' >= L}. Use the elementary inequality 

X > 0, f r  a-field =~ P(X  > e/2lf~) > ((P(X [ re) - e/2) +)2 p ( x  2 i•)-1 
(this is a simple application of H61der's inequality), to see that on {S < T A T(L)}, 

Q"(H(T A T(L)) (y" yS C GS) > ~/21g~) 

>=((Q"(H(T A r (L) ) (y  yS~GS)l ~"  �9 ~" s )  - e / 2 ) + )  2 

�9 ~ n ~ - i  • A r ( L ) ) ( y  yS(~GS)2l sJJ 

= ((I-Is((GS) c) - e / 2 ) + )  2 (t-ts(GS)c) 2 + Q" f f l ( S  < r _< T ( L ) )  l ( ySCG s) 
0 

x b(u"(r, y(r))) H,(dy) dr 12~) (by Lemma 4.6) 

n c 1 = > I-Is((GS)c) 2 [4(/-/s((GS)c) 2 + • ( T(L) I g S ) ) ]  - "  - 

_-> e 2 [ 4 ( e  2 + L ) ]  - ~ - p(e, L ) .  

Integrate both sides over {S _<_ T A T(L)} to arrive at 

q~"(H(T A T ( L ) ) ( y ' y S C G  s) > ~/2, S <= r A T(L)) >= p(e,L)Q"(S <_ T A T(L)) 

and therefore 

(4.10) Q"(S <= T) <= ~"(S ~ T A T(L)) + Q"(T(L) < T) 

< p(e, L) -1Q"(H(T  A r (L) ) (y :  yS(~GS) > e/2) + Q"(C~ >= L) 

< p(~, L)-~Q"(HT(y:  ySCGS) > e/2) 

+ (1 + p(e, L)-I)Qn((C~) 2) L -2 

<--<_ p(e, L) -~ Q"(HT((GT) ~) > e/2) + 8(1 + L e - 2 ) L - 2 c ( r ) ,  

by Proposition 4.2(a) and (4.2). Choose L = L(~, T) so that 
8(1 + Le-Z)L  -2 c(T) < e. Use the above and (4.4) in (4.10) and conclude 

ff~"(S < T) < p(e, L) -1Pm(BT(~GT)2~ -1 -I- ~ <~ p(e,L) -1 2e-~ 6 + ~ . 

Choose 6 so that p(~, L) - t  2e -~ 6 < ~. Finally use (4.9) to see that 

~ " ( s u p  Ht((Gt)~)> e) < Q"(S <= T) + e < 3~. [] 
\ t ~ T  

C o r o l l a r y  4.8 For any e, T > 0 there is a compact subset K of C such that 

n t < T  
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Proof For e, T > 0 choose K '  c C compact such that Pm(B ~ K')  < 6, where 3 is as 
in the previous result. Then K = K~ is also compact (see Dawson and Perkins 
1991, Lemma 7.6) and since K t c K, Lemma 4.7 implies 

supQ"(supHt(KC)>e)<supQ"(supHt((Kt)C)>~)= =<e. D 
n \ t N T  n \ t < T  

Lemma 4.9 V~b ~D(A), T >  0, q __> 2 ~C(T, ~), q) such that V0 _< t _< u _< T 

~"(]Zu(~b) - Zt(d?)l q) + Qn(IH,(4,)  - Ht(c~t)[ q) < C(T, O, q)lu - t] q/2 . 

Proof Choose K such that supt ]0(t, yt)[ < K for P,,-a.a.y. Applying Lemma 4.7 
with G c { y" sup I~b(t, yt)[ <= K}, O e Z ,  Pm(BS G c) = 0 we see that IqS(t, Y~)I < K 
for Ht-a.a.y Vt > 0 Qn-a.s. Hence, by truncating we may assume wolog that 141 and 
[A ~b[ are uniformly bounded. Burkholder's inequality implies (cq changes from line 
to line) 

Q " ( I z . ( 4 )  - z~(4)l ~) 

<= cql~" b(u"(r, y~)) 4)(r, y)2 Hr(dy) dr q/z 

(/ ) < ca [Iq~il~ ~"  f (u" ( r , x )+  1)u(r,x)e21~[e-Zt~Idxdr q/2 (by (4.2)) 

u 

cq II ~b 11% f fQ"(u"(r, x) q + u(r, x) q 
t 

+ u(r, x)q/Z)e(q-2)i~l dxdr[u - tl ~q/2)-I (by Jensen) 

<= c'( T, q)II q~ II q lu - tl q/2, 

where we have used Proposition 4.2(a) in the last line. We also have 

u 

< c~ II A0  II ~ f re(l)" + Q"(Z~(1)") dr lu - t)o-~ (by (M~)) 
t 

<-_ c'(T, q)II A4 II~ lu - tl ~ 

by the above. The result is now immediate from the above estimates and (M~). [B 

Notation. If ~b: IR ~ IR a n d / s  c IR let II q~ II ~ = sup {10(t, y) l: (t, y) s /~  }.  

Lemma 4.10 I f  Is ~ IR is compact, there is a countable set {~b,,} c D ( A ) ~  Cb(N) 
such that {A0,} ~ Q(lR) and {~b, Ig" n e N }  is a dense subset of C(K). More 
precisely V ~ C ( K ) ,  ~ > 0 3~b, such that II 4~,t1~ < It0ll~ and 114, - ~llk < a 

Proof Let O e Cb(IR) and define 
1/n 

~,("~(s,y) = n f P,(~(~,(s + t ,y/s/Bg) dt .  
0 
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It is easy to see that r  Cb(IR). A routine calculation using the Markov property 
shows that 

(p(") (t, B ~) PB(s) (d?(s + n -1, B/s / .  1/,)) _ O(s, B ~) ds 
0 

is a continuous Pro-martingale. Therefore ~ (') ~ D (A) and 

A (P(")(s, Y) = Py(s)(r + n -1, y /s /  B1/") ) -- r y~) 

is in Cb(IR). We claim that 

~(") -+ ~ uniformly on compact subsets of ]R as n-+oo . 

Let /s be compact in IR. Let ^ ' 1+ I[y [Ioo for (s,y), d((s, y), (s, y')) = Is - s' - y'  
(s', y ' ) s  IR. Note that d is a metric for the topology on l~ (which is the subspace 
topology it inherits from [0, ~ )  x C). The usual proof of the uniform continuity of 
~ l ~  in fact shows that for 5 > 0 (fixed) there is a 6 > 0 such that V(s',y')~IR, 
( s , y ) s K  

^ 

d((s ,y ) , ( s ' , y ' ) )  < 6 =~ ]~h(s, y) - ~b(s', y')[ < e.  

Therefore if (s, y) ~/s 

IPm, (~(s + t, y/s/Bt)) - ~(s, y)[ < 5  + 2 [I (P II~ Py,s) ( t  + sup [Bu - Bo[ > 6 )  < 

k 

2e 
k u<__t / 

providing t < to (to is independent of the choice of (s, y)). It follows that 
II~ b(") - ~[Ik < 25 if n -1 < to and the claim is proved. 

Fix K as above and let {~hj: j s  IN} be a countable dense set in C(/() with 
~1 - 0. By the Tietze extension theorem we may extend each ~j to a function in 
Cb(IR), which we also denote by ~bj, such that [l~,jl[k= [l~bjl]~. Claim 
S = {~h} " ) :n , j s lN} is the required countable set. By the above results 
S c D(A)  n Cb(IR) and A~ ~ Cb(IR) V~ ~ S. Let ~ ~ C(/s and 5 > 0. Choose (pj such 
that ]l ~bj - ~ ]lk< 5/2 and II ~bi]]~ --< II ~b I[k (find a good approximation to (1 - d)tb 
for appropriate 5' and note if ~ - 0 we take j = 1). Choose n sufficiently large so 
that II ~ j  - 4')")[I k < e/2. Then I[ r - r [Ig< 5 and I] 0} ") II~ =< l[ ~ j  II ~ = 
I[~'jll~ _- < IlO I[~. 

Proposition 4.11 Assume (3.9) and (4.1). Then {Q": s N }  is tight on Y2 and any weak 
limit point, ~ ,  is a solution o f (M, , )  and is such that t ~ u, is in C([O, oo ), C,+ap) ~-a.s. 

Proof  The basic plan is clear. The compact containment given by Corollary 4.8 
reduces tightness of (Q ' )  to tightness of {~ '(H.(~b.)~ .): n~N}  for a suitable 
countable collection of (p's (e.g. see Roelly-Coppoletta 1986, Theorem 2.1). Such 
a collection is provided by Lemma 4.10, in conjunction with Corollary 4.8, and the 
required tightness is given by Lemma 4.9. The existence of a continuous Crop + - 
valued density u, follows from Proposition 4.5 and it remains only to let n--,oo in 
(M",,) to derive (M,,). It is this last step which is a little delicate as D(A)  contains 
functions which are not continuous and hence may not behave well with respect to 
weak convergence. This problem was also encountered in the proof of Theorem 
7.13 in Dawson and Perkins (1991). As in that paper, Lemma 4.7 provides the key, 
and (also as in Dawson and Perkins 1991) we give a proof using nonstandard 
analysis as it seems simpler than the standard proof (which we have not been able 
to find). 
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We work in an coi-saturated enlargement of a superstructure containing N. Fix 
r/e *N - N and work with respect to the Loeb measure L(*Q ") on (*~, L(*~)) .  
We let *Ht denote the canonical paths in *f2. Let *)(t = g, x *H,. By Corollary 4.8 
3{K j} an increasing subsequence of compact sets in C such that 

* ~ ( s u p  *H~(*K~)> 2 - j )  __< 2 -j  and hence L(*Ht)(ns(*C) c) = 0 Vt~ns(*[O, ~)) 
\ 

\ t<_j / 
L(*Q~)-a.s. Therefore Ht=stM(*Ht) (=L(*Ht)(Stcl())) exists for all 
t E ns* [0, oo) L(*Q~)-a.s. and the same is true of Xt = st~t(*X~) = (~o, x Hot. (Here 
Stc is the standard part map on C and stu denotes the standard part map on the 
appropriate space of measures.) Let Kj -- {(t, S) :  t ~ [0,j],  y ~ Kj}. Note that/s is 
compact in IR. By Lemma 4.10 there is a countable set {~bn} in D(A)m Cb(IR) such 
that {~b, lkj" n~N}  is dense in C(Kj) Vj and q~l = 1. By Lemma 4.9 we may fix 
co outside a L(*~')-nul l  set such that *Ht(d~,) is S-continuous on * [0, oe) for all n, 
sup*2,(*K~) < 2 - i  for j ~ N  sufficiently large, and L(*H,)(ns(*C) ~) = 0 
t <.i 
u oo)). I f s  ~ tens(*[O, oe)), and s < t, then 

f 4), d2, = o  f*O,(x) d*2, = ~ = ~ = f O, d2~. 

If ~b~Cb(N) choose ~b,~ such that Hq~,j- ~b]lkj < 2 - j  and I[qS,jtlca < IlqSt[e (use 
Lemma 4.10). Then 

t f O d X , -  f OdX,[ <= I f  c) - 0., df~,l + [ f O - 4).jdXsl 

< 2 -a+~ sup )(~(1) + 4 l] q~ I1~ sup s 
u<-_t u< t  

< 2 -i+~ sup H,(1) + 4 ]t ~b rl~ 2-J 
u<t  

for j sufficiently large. This proves that J(t = J(~ and hence *H. is S-continuous 
L(*Q")-a.s. (This is equivalent to tightness of {Q" 'n~N}. )  

Proposition 4.5 implies that t~+*u(t,.) is L(*Q~)-a.s. an S-continuous * + Cra p- 
valued mapping. This implies *u is a.s. S-continuous on *([0, oo) x IR) and 

l*u(t, x)I < C(T)e -I~l g(t, x)s *([0, T] x IR) for some C(T)s[0 ,  oe) L(*Q")-a.s. 

Fix *H outside a null set so that these conclusions hold and *u(t, x) is an internal 
density for *Ht(y" y, edx) for all t~*[0,  or). Let u = st(*u) where st denotes the 
standard part map on ns(*C([O, oo), Cr+p)). If q~ e Q(IR), then for t~ [0, or) 

f O(y,) Ht(dy) = f  4~(~ L(*H~)(dy) 
C *C 

=o f *O(y,)*/4~ (dy) 
*C 

= o f *~(x)*u(t, x)* dx 
*R 

= fck(~ ox) L(*dx) 

= f~(x)u(t,  x)dx.  
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Hence u(t, x) is a jointly cont inuous  density for Ht(y: y ~ d x )  for all t > 0 and 
t ~ ut is in C([0, oe), C~p) L(*Q,)-a.s.  Note  that  this shows that  (up to null sets) our  
nota t ion  is consistent with our  earlier definition of u as a measurable function of H. 

As an immediate  consequence of Lemma  4.7 we have 

(4.11) VG e a(*cg) L(*Pm) (Be G c) = 0 

L(*Ht) (G t~ = 0 Vt s ns(* [0, oo )) L(*Qn)-a.s. 

Let  qS e D( A ). ( M"~) implies that  

(4.12) *Zt(qS) = *H~(~b,) - *m(q5o) - f  *Hr(A4,)* dr 
0 

is an internal , -cont inuous  mart ingale with internal quadrat ic  variat ion 

t 

< *Z(O)),  = f  f*b(u"(r, Yr)) (~(r, y)2 *H, (dy) *dr. 
o 

Lemma 4.9 implies *Z.(~b) is a.s. S-continuous and I*Z~(q~)[ p is S-integrable Vp > 0 
and nears tandard  t. This implies that  Z~(~b)= Stc(*Z(d)))(t)^is~a cont inuous 
square integrable martingale. If qS(y) (t) -- ~b(t, y ' )  (y  E C), then (~b, A~b) ( y ) e  C x O 
for Pm-a.a.y because all Pro-martingales are a.s. continuous.  By the nons tandard  
form of Lusin's theorem (see Anderson 1982, Theorem 3.7) 

(4.13) Stc• *A'~)(y) = (~(stcy), AJ'~(stcy)) for L(*Pm)-a.a.y. 

Choose  K such that  

(4.14) ]*A~(t, yt)l + l*4(t,  Y')I < K V t e * [ 0 ,  oe)L(*P,,)-a.a.y. 

By (4.13) and (4.14) we may choose Gsa(*cg) such that  L(*Pm)(B(~G) = 0 and 

G c t Y :  *(o6ns(*C), *AJ'~ns(*D),sup [*~b(t, yt)l + t*A(o(t, yt)l <= K, 
k t 

i .  ! .  } 
~ 4)( t, y') = (o(~ Stc(yt) ) Vt sns(*[O, oo)), stD(* A4) ) ( y) = Adp(Stc( y)) . 

(4.11) implies that  L(*H,)(G to) - -0  u 1 7 6  oe L(*Qn)-a.s. Fix such a */-/. If ~  oo 
and y e G  ~ then y~ = ; t  for some )~eG and so 

(4.15) O,~b(t ' y,) = O,~b(t ' ~t) = ~b(ot, Stc(~')) = 4)(~ Stc(y')) 

(4.16) i,~b(t ' yt)[ + [*A~b(t, y")[ = l*4~(t, ~t)l + I*AqS(t, ~t)t _-< K 

(4.17) ~ yt) = O,AO(t ' f t )e  { A~'~(Stc(~)) (~ A'~(Stc(~))(~ } 

= {Adp(~ stc(~)~ lim A~(s, Stc(~)s)} 
s f t  

= {A~b(~ Stc(y)~ lira A4)(s, Stc(y)S)}. 
s f t  

(4.15) and (4.16)imply 

(4.18) ~ qS,) = f e)(~ Stc( y')) L( *H,) (dy) = Ho,(qSot)V~ ooL(*Q")-a.s.  
Gt 
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[This is really the key step. Note the above would be trivial if 0 were continuous.] 
(4.17) and (4.16) imply that L(*tI)")-a.s. V~ oo 

(4.19) ~ f *H~(*A4))* dr - f ~ y~) L(*Hr) (dy)L(*dr)  
0 0 O ~ 

- f Ad?(~ Stc(y>)) L (*H, ) (dy )L (*dr )  
0 G r 

~ 

= f  f A~(r ,  yr)Hr(dy) dr .  
0 

The nonstandard form of Lusin's theorem implies 

(4.20) ~ = m(0o) �9 

(4.18), (4.19) and (4.20) allow us to take standard parts in (4.12) and conclude 

z t (o)  : Ht(O~) - m(Oo) - ]  Hr(AOr) dr 
0 

is a continuous square integrable martingale. Now *Zt(0) 2 -  (*Z(qb))~ is an 
S-integrable, S-continuous internal martingale (use (4.2), Proposition 4.5 and 
Lemma 4.9 to get S-integrability). Therefore for L(*@")-a.a. *H and all ~ < oo 

( ) ( Z ( O ) ) ( t )  = st f f*b(u~(r,  yr))*4(r,  y92*Hr(dy )dr  (t) 
0 

4 - f b (u ( r ,  y~))q~(r, yr)2 H~(dy)dr 
o 

where we have used the fact that ~ Yr))= b(u( ~ st(y)(~ for any S- 
continuous y in *C L(*Q")-a.s. (by the a.s. S-continuity of *u). We have also used 
(4.15), and the moment estimates from Proposition 4.2(a) to take the standard part 
through the integral sign. We have shown that Q = L(*Q")(stM(*H)~ �9 ) is a solu- 
tion of (Mm). As t/ranges over *N - N these laws are precisely the limit points of 
{Qn: n~N}  and the proof is complete. [] 

We now assume the weaker condition (3.1) in place of (4.1). Note that 

a.(u) = (u/(u + n - l ) )  1/2 a(u) 

satisfies (4.1) and b,(u) = an(u)zu - 1 satisfies 

(4.21) ub,(u) < c4.3(u 2 + u 2~ Vu > O, n ~ N  . 

Let Q(") be a solution of (Mm) but with b, in place of b. ~)(") exists by Proposition 
4.11. Here then is our main existence result. 

Theorem 4.12 Assume (3.9) and (3.1) {Q(")" n~N} is tight on f2. Any weak limit 
point, ~ ,  is a solution of  ( Mm) and is such that t ~ ut is a continuous C +v-valued map 
Q-a.s, 

Proof. The proof proceeds exactly as for Proposition 4.11. The only reason we 
could not allow 0 < 1/2 in the argument was the lack of a uniform bound on 
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b(un(r, y))u(r, y). (4.21) gives us precisely such  a b o u n d  in the p resen t  con tex t  a n d  
the p r o o f  n o w  proceeds  as before us ing  (4.21) in  place of (4.2). [] 
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