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1 Introduction 

Consider the cusp 

c = {(x, y): x _>_ 0, - xP ___ y __< x~} 

where fl > 1. Let ~3C1 = {(x, y): x > 0, y = - x a} and 0 C  2 = {(x,  y): X ~ 0, 
y = XP}. For  each z s ~?C~\ {0},j = 1, 2, let nj(z) be the inward unit normal to OCj 

a n d l e t v j ( z ) m a k e c o n s t a n t a n g l e O j E ( - 2 , 2 ) w i t h n ~ ( z ) . W e t a k e O j > O i f f  vi(z ) 

has a negative first component in sufficiently small neighborhoods of the origin. We 
normalize via vj(z), ni(z ) = 1, z ~ OCj\ {0}. All vectors are column vectors. 

Let f2c be the space of continuous paths from I-0, oc) into C endowed with the 
topology of uniform convergence on compacta. For  each t > 0 let ~ ' t  be the 
a-algebra of subsets of f2c generated by the coordinate maps 

x ~ ( @  = ~(s ) ,  o~ s ~ c  

for 0 < s _< t. We use ~g//to denote ~r(Xt: t > 0). 

Reflecting Brownian motion in C, starting at x, is a probability measure Px on 
(f2c, J [ )  that solves the following submartingale problem: 

Px(Xo = x) = 1 ; (1.1) 
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for e a c h f ~  C2(C), 

1 
Af(X~)ds (1.2) f ( x o  - ~ o 

is a Px-submartingale on (Qc, Jd, {~ t})  wheneverfis  constant on a neighborhood 
of O and vj. V f >  0 on OCj, j = 1,2; 

E P x [ J l ~ o } ( X s ) d s l = O .  (1.3) 

In [2] we showed RBM in C starting at x exists and is unique (as a law on 
(f2c, d{)) if 01 + 02 < 0. It does not exist when 01 + 02 > 0. We call {Xt: t > 0} on 
(f2c, Jg, {Malt}, Px) the canonical realization of RBM in C starting at x. 

In this paper we decide whether or not such a process is a semimartingale, in 
which case we identify the local martingale and describe the finite variation part. 
Our main results are the following theorems. We take R(z) to be the 2 x 2 matrix 
whose first and second columns are the directions of reflection vl(z) and v2(z) 
respectively: 

R(z) = (vl(z), v2(z)) . (1.4) 

Theorem 1.1 If01 + 02 < O, or if01 + 02 = 0 with fl < 2, then reflectin9 Brownian 
motion in C startin9 at z ~ C has a semimartingale realization. More precisely, on 
some filtered probability space (f2, 5 ~, {SPt}, P) there is a triple (Z ,  k,, Bt) of continu- 
ous 5~r processes satisfyin9 

(i) the P-law of Z on (f2 o Jd') is RBM in C startin9 at z; 
(ii) kt ~ [0, oo) x [-0, oo), ko = 0; 

(iii) Bt is 2-dimensional 5et-Brownian motion starting at 0; 
(iv) z~ = z + B, + f '  o R(Z,)dk,; 
(v) the components of k are nondecreasin9 and can chanae only when Z ~ OC\ {0}: 

f lacj\o(Z(u))dkj(u) = kj(t) j = 1, 2 .  
o 

I f  the startin9 point z @ O, then RBM in C is a semimartingale if 01 + 02 = 0 and 
f i>2 .  

Theorem 1.2 If01 + 02 = 0 and fl > 2, then reflectin 9 Brownian motion in C startin9 
at 0 is not a semimartingale. 

Our method also works for a wide class of asymmetric cusps. 

Theorem 1.3 Consider the asymmetric cusp 

d = {(x, y): x ___ 0, - x ~ __< y __< x~} 

where fl > 1 and 6 > 2fl - 1. Then the conclusions of Theorems 1.1 and 1.2 hold for 
instead of C. 
The proof is the same and is omitted. The condition 3 > 2 / / -  1 is a purely 

technical assumption needed for the proof of existence of Z. 
In 1-2] we constructed RBM in C by conformally mapping RBM in the upper 

half plane to the cusp and then time changing. In 1-1] an explicit semimartingale 
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representation of RBM in the upper half plane was given. We use these representa- 
tions to get the results in this paper. 

The paper is organized as follows. In Sect. 2 we describe RBM in the upper half 
space and give some preliminary results. Sections 3 and 4 are devoted to the proof 
of Theorems 1.1 and 1.2 respectively. 

2 Preliminaries and RBM in the upper half plane 

To prove Theorem 1.1 we make the following reductions. For RBM in C starting 
away from 0, we know from 1-2] that the process will never hit 0. Since 8C\{0} is 
smooth and the direction of reflection at the boundary varies smoothly along 
8C\{0}, the theorem follows from standard results [3, 6]. 

Thus we need to verify Theorem 1.1 only for RBM in C starting at 0 when 
01 + 0z < 0 or when 01 + 0 2  = 0 with fl < 2. By localization, it suffices to prove 
(i)-(v) in Theorem 1.1 up to the first exit time from a small neighborhood of 0 in C. 

We now give a detailed definition of RBM in the upper half plane. Let 

s = {(x, y): y ____ 0} 

with 3S1 = {(x, y): x > 0, y = 0} and 8S2 = {(x, y): x < 0, y = 0}. The direction of 
reflection at 8Sj\{0} is given by the constant vector 

The angle of reflection 0js  ( - ~ - , ~ - ) h a s  the same value as above and j - -  1,2. 

represents the angle Vj makes with the inward pointing unit normal Nj to 8S j \  {0}, 
j = 1, 2. Here 0j > 0 means V~ points toward {0}. 

Reflecting Brownian motion in S starting at x is defined as a law on the space of 
continuous paths in S analogously to RBM in C. Varadhan and Williams [5] 
proved the existence and uniqueness in law of such a process for any 01 and 02. 

In 1-11 the following semimartingale representation of RBM in S starting at 
0 was given. On some filtered space (f~, 5P, {5~t}, p), there is a triple (G, fl, Y) of 
continuous 5Pcadapted processes such that the P-law of 

Gt = fit + MYt  (2.1) 

on the space of continuous paths in S is RBM in S starting at 0, where fit is 
two-dimensional 5Pi-Brownian motion and M = (VI, V2). Moreover 

Yj(t) = f IosAo(G(u))dcp(u), j = 1, 2 (2.2) 
o 

where (Po = 0, t ~ cp(t) is continuous and nondecreasing, and ~o can change only on 
8s\{o}:  

f I~s\o(G.)&p. = 9 t .  (2.3) 
0 

In fact, (p is the local time at 0 of fl2(t). 
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For  each r > 0 and Zo E ] R  2, let 

B~(zo) = {z: I z -  z0l < r } .  

In [2] we showed there exist e e (0, 1), a closed set H _ B~ (0) n C, and a homeo-  

morphism ~ - = ( ~ 1 , ~ 2 )  from S nB~(O) onto  H, where 0 e g H  and 

H n B~(0) = C c~ B~(0) for s small enough. Moreover ,  ~ :  S c~ B~(0)\{0} ~ H \{0}  
is conformal  with conformal  inverse F, ~ ( 0 )  = 0 and for some k, K > 0 

klCl-l( - ln]~[) -a /a -  1 N I ~'(C)I ~ KIr - ln]r -p/p-  1, ~ e s n B,(0) \  {0}. 

(2.4) 
Let  

q~ = inf{t > 0: IG~I = ~}, (2.5) 

tA //~ 

A, = A(t) = f ] Y ' ( G , ) ] Z l s \ o ( G , ) d u ,  t > O . (2.6) 
o 

In [2] we showed t ~ A(t)  is cont inuous and strictly increasing on I-0, ~/,], with 
cont inuous strictly increasing inverse v, = v(t), and we have 

EA(q,)  < ~ if 0~ + 02 < 0 .  (2.7) 

In this case the P-law of 

Zt = ~ ( G ( v ( t  /x A(r/~)))), t __> 0 (2.8) 

on (t2c, Jg) is RBM in C starting at 0 s topped at the first exit time A(rh) of Z from 
5(B~(0)). 

Our  goal is to use (2.1) and It6's formula to calculate the stochastic differential 
d~(Gt) .  Since ~ is singular at {0}, we cannot  do this directly. Therefore we make 
use of the remark in [ l ]  after the proof  of Lemma 2.7. Paraphrased,  this remark is 
the following theorem. 

Theorem 2.1 Assume h ~ C2(S ~ B~(0)\{0}) n C(S n B,(0)), h(0) = 0, Ah = 0 on 

s n B~(O)\{O}, 

E IVh(G.)12I~\o(h(G.))du < oo , (2.9) 
0 

and 

Then 

I tAq~ 1 E f ]Vh(G,,)lI~\o(h(G,))d% < ~ . (2.10) 
0 

h(Gt ^ ~~ = 
t A lle 
f I~\o(h(G,))(Vh)*(G,)dfi ,  
0 

+ f Ia\o(h(G~ Vj. Vh(G.)dYj(u 
o j 

+ a(h, t /x rl~), 
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where a(h, t ix th) = a + (h, t ^ ~h) - a- (h ,  t /x qe), t ~ a + ( h, t /x qe) are continuous, 
nondeereasing and can change only when h(G) -- 0: 

f I~ol(h(G.))d.a+(h,u) = a+(h, t A tle ) . 
0 

is co=uou  wit  1]  and Suppose g,: IR ~ [0, ~ )  

fg . ( r )dr  = 1. Set 

k . ( t ) =  f f g.(r)drds. (2.11) 
0 0 

Then  k, eCZ(lR),  k , -  0 in a ne ighborhood  of 0 and for some 

A > O , ] k . ( t )  t v O ] < =  A - --. Also, 0 _< k'. < 1, k" > 0 and k;(t) ~ I(o, ~o)(t) as n ~ oo. 
n 

We use k. to prove  the next result of this section. 

Theor e m 2.2 Let h e C(S c~ Be(0)) c~ C2(S n B e ( 0 ) \ { 0 } )  satisfy 

h(0) = 0 

Ah = f l  + f 2  on S n Be(O)\{O} where f2 > 0 

Vh = f3 + f4 on S n Be(O)\{O} where Vj' f4 >-_ 0 on (OS]) n B~(O)\ {O} for j = 1, 2 

and 

Then 

] E f If~(G.)lI(o, oo)(h(G.))du < oo 
0 

] E f lvj'fa(G.)lI(o,o~)(h(G.))dYj(u) < oo, 
0 

j = l , 2 .  

and 

[ "/I2/ ] E G,)I(o, o~)(h(G,,))du < 
0 

] E f Vj.f4(G,)Ito ,~)(h(G.))dYj(u) < or, j = 1, 2 .  
0 

Proof. Since h(O) = O, k, o h ~ C2(S c~ Be(0)). Hence by I t6 's  formula  and (2.1), upon  
taking expectations,  we get 

^ - f l  ( G . ) k ' .  o h(G.)du 
0 

- e Yj.f~(G.)k'~ o h(G.)dYAu 
j = 1  0 
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E l = E ~ [f2(G,)k" o h(au) + [gh(Gu)12k "o h(G,)]du 
0 

+ E V j . A ( G . ) k . o  h(G.)dr~(u . 
j = l  0 

All integrands on the right are nonnegative. Hence by dominated  convergence on 
the left and Fatou 's  lemma on the right, we can replace t /x  t/, by q~ and let n ~ oo 
to get 

[:1 ] 
> El0 v h(a01 - E ~ f l (G. ) I (o ,  ~(h(G.))clu 

0 

- E f V~.A(G.) I (o ,~(h(G.) )c lr j (u)  
j=l o 

> E G.)6o, ~ (h(G. ) )du  

+ E f V:.A(G.)I~o, ~o~(h(G~))dYj(u) . 
j = l  0 

The desired conclusion follows from this. [] 

A first application of this theorem is the following result. 

Theorem 2.3 Let  p > O. Then for 01 + 02 < 0 

E f IG. l -Z(- lnlG.])  s\o(G.)du < co 
0 

Proof  Define for z = re ~~ 

[ -  lnr + f ( O ) ]  -p  z s S ca B~(0)\{0} 
h(z) = 0 z = 0 (2.12) 

where f e  C2([0, ~]). Then h ~ C(S ca Be(0)) c~ C2(S ca B~(0)\{0}) with h(0) = 0. 
Moreover ,  in polar  coordinates ( r ,  0 )  for z 4= 0 

Vh = p r - l [  - l n r  + f ( 0 ) ] - P - l ( 1 ,  - f ' ( 0 ) ) ,  (2.13) 

Ah = p r - 2 [  - l n r  + f ( O ) ] - P - 2 { ( p  + 1)(1 + I f ' ( 0 ) ]  2) - [ - l n r  +f(O)] f " (O)} .  

(2.14) 

In polar  coordinates,  V1 = ( - tan 01, 1 ), V2 = ( - tan 02, - 1 ) so that  

V1 .Vh  = p r - ~ [  - l n r  + f ( O ) ] - P - l {  - tan01 - f ' ( 0 ) }  (2.15) 

V2.Vh  = p r - * [  - l n r  + f ( O ) ] - v - * {  - tan02 +f ' (0 )} .  (2.16) 

Now specialize: let f (O)=  - ( t a n 0 1 ) 0 .  Then for 0 < [z I __< e, V l . V h ( z ) =  0 and 
since 01 + 02 < 0, V2. Vh(z) > 0. Moreover ,  for some constant  K > 0 (making 
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e smaller if necessary) Ah > Kr-2(  - lnr )  - p - 2  on S c~ B~(0)\{0}. Hence by The- 
o rem 2.2 with f l  -- 0 and  f3 - 0, 

E I ~ l Q l - 2 ( - l n l Q l ) - p - 2 l s \ o ( G ~ ) d s l  

< K -  1E Ah(G.)I(o, ~)(h(G.))du 
0 

<oo.  [] 

The final result in this section will be used to prove  Theo rem 1.2. 

Theorem 2.4 Let h e C(S n B~(0)) c~ C2(S ~ B~(0)\{0}) with h(O) = O, 

Ah = fa + f2 on S c~ B.(0)\{0} where f2 > O, 

E f ]Vh(G.)[2I(o,~)(h(G.))du < oo, 
0 

f ]fl(G,)[I~o, o~)(h(G,))du < oo a.s., and 
0 

f I V~.Vh(G.)II(o, oo)(h(Gu))dYj(u) < oo a.s., 
0 

Then 

j = 1 , 2 .  

f f2(G.)I(o, ~)(h(G.))du < oo a.s. 
0 

Proof Since h(O) = O, k. o h ~ C2(S n B~(0)). By I t6 's  formula  and (2.1) 

k.oh(G,)- o f k'.oh(Gu)(Vh(G.))*dB,,- ? fl(G.)k'.oh(G.)du 

2 rl. 

- ~ f Vj'Vh(G.)k'n~ 
j = l O  

2 [f2(G.)k.oh(G.) + Igh(G.)12k~oh(G.)]du 

By hypotheses  and domina ted  convergence 

E f k'.oh(G.)(Vh(G.))*dB.- f I(o,~o)(h(G.))(Vh(Gu))*dB. 
0 0 

= E f [k'oh(G.)-I(o.~o)(h(a.))]21Vh(G.)t2du --*0 as n ~ o o .  
0 

Hence by passing to a subsequence nm, 

f k'.oh(G.)(Vh(G.))*dB. ' f I(o,~)(h(G.))(Vh(G.))*dB. a.s. 
0 0 

(2.17) 
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Take the limit on the left-hand side of (2.17) along this subsequence; by hypotheses 
and dominated convergence this limit exists and is finite a.s. On the other hand, in 
the right side of (2.17), all integrands are nonnegative. Hence by Fatou's  lemma a.s. 
we have 

of A (  ' ov > lim LHS(n = nm) > lira ~ G,)k,,, o h(G,)du 
?tl --* oO m ~ o O  

> - f f2(G.)l~o, ~o)(h(G.))du 
= 2  6 

as desired. [] 

3 Proof of Theorem 1.1 

3.1 

The method is to apply Theorem 2.1 to h = ~ ,  j = 1, 2. Hence we verify (2.9) and 
(2.10) for these choices of h. Theorem 2.2 is the tool for this. First we consider (2.9) 
for h = ~-i, J = 1, 2. 

Lemma 3.1 For j = 1, 2 

E[3lV~j(Gu)12l~\o(~j(G.))du 1 

Proof Since G. = 0 ~ ~j(Gu) = 0,j  = 1, 2, and since 
z 4: 0, j = 1, 2, (by conformality), it suffices to show 

E f lY(G.)12Is\o(a.)du < oo. 
0 

By (2.4), this follows from 

E f IG . l - 2 ( - l n l a . I ) -Z~ / (~ - l ) I s \ 0 (G . )du  < co , 
0 

2 
which in turn follows from Theorem 2.3 with p fl - I" [] 

The next lemma verifies (2.10) for h = ~ j , j  = 1, 2. 

Lemma 3.2 If  01 + 02 < O, or if 01 + 02 -- 0 with fl < 2, then 

E f IV~j(G.) lI~xo(~j(G.))&o.  < oo, j = 1 ,2 .  
0 

Proof. As in the proof of Lemma 3.1, it suffices to show 

E I  o f [G~l-~(-ln[G"l)-~/~-l)Is\~176 < oo. (3.1) 

l~ ' ( z ) l  2 = IV~-j(z)l 2 for 
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First  consider the case 01 + 02 < 0. Define for z = re i~ ~ S c~ Be(O), 

{ ~ - l n r + c l 0 ]  -1/(p-1) z ~ S ~ B ~ ( O ) \ { O }  
h3(z) = z = 0 

where cl ~ (tan 02, - tan 01). This choice of  cl is possible  because 01 + 02 < 0. 

Then  h3 ~ C(S c~ B~(0)) n C2(S c~ B~(0)\ {0}), h3(0) = 0 and by mak ing  e smaller if 

necessary, h 3 ( z ) > 0  for z6Sc~B~(O) \ {O} .  By (2.12) and (2.14)-(2.16), on 

S c~ B~(0)\{0}, Ah3 > 0 and 

1 
V1. Vh3 = ~ r -  1 [ _ In r + cl 0]-~/(~-  1){ _ tan 01 - cl } ,  

1 
V 2 �9 Vh3 = ~ r -  1 [ _ In r + c10 ] -p/(ll- 1){ - -  tan 02 q- C1} . 

Since tan02 < c1 < - tan01,  we get for some K > 0 

Vj. Vh3 > K r -  1 [ _ In r ] -~ / (~-  1), j = 1, 2, z ~ S c~ B~(0)k {0} . 

Applying Theo rem 2.2 with h = h3, f l  = 0, and f3 = 0, by (2.2) we get 

g f ] G , l - l ( - l n [ G , l ) - P / ( P - 1 ) I s \ 0 ( G , ) d c p ,  < oo,  
o 

as desired. 

Next  we consider 01 + 02 = 0 with ~ < 2. By Theorem 2.3 with p = /~  _ 

and (2.2) 

g f IG.I-2(- lnlG,[)-~/(~-~)Is\o(G,)du < oo . (3.2) 
0 

C h o o s e f e  C~( [0 ,  rc]) such that  i n f f >  0, 

- tan  01 - f ' ( O )  > 0, and 

- tan  02 + f '  (~) > 0 .  

Define for z = re i~ ~ S c~ Be(O) 

J ' [ - l n r  +f(0)] - 1 / ( , - 1 )  z ~ S  c3 Be(O)\{O} 
h~(z) 

z ~ O  . 

Then  h4 E C(S c~ B~(0)) c~ C2(S c~ B~(0)\{0}) and h(0) = 0. By (2.12)-(2,16) for 
some constant  k > 0, 

Vj.Vh,~ > k r -a (  - lnr)  -~/(~-1), z ~(OSj) c~ B~(0)\{0}, Izl < e , j  = 1, 2 (3.3) 

(note z ~ ~$1\{0} <=~0 = 0; z ~ ~$2\{0} , ~  0 = re) and 

Ah4 --- h5 + h6 on S ~ B~(0)\{0} 
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where for z = re ~~ ~ S ~ B,(0)\{0} 

1 
hs(z) - 

f l - 1  
r - 2 [ - l n r + f ( O ) ]  

h6(z ) - ( f l _  1) 2 
r - 2 [  - lnr +f(O)] 

- lf"(O) and 

1 

/~-~ 2(1 + [f'(O)] z) > O. 

By (3.2) 

E f Ihs(G.)[I(o,~)(ha(G.))du < 
0 

so by Theorem 2.2 (with h = h4, f3  --- 0) and (2.2) 

E f vj. Vh~(G,)Ir ~ ( h , ~ ( G , , ) ) I o s , \ o ( G . ) d ~ o .  < oe . 
0 

The desired bound (3.1) follows from this and (3.3). 

Corollary 3.3 I f  01 + 02 < 0 or if O~ + Oz = 0 with fl < 2, then 

E [~- (a . ) ld  < oo, j = 1 ,2 .  [] 
0 

By Lemmas 3.1 and 3.2, the hypotheses (2.9) and (2.10) of Theorem 2.1 hold for 
h -- ~-j, j = 1, 2. Hence by that theorem, 

t A ~  

Jj(G~ ,, ,~) = f 
0 

I~ \ o(~,~ j( G~) )(V ~j)* ( G,)dfl, 

+ f I~\o(~j(Gu)) Irk. V~-i(G,)dYk(U) 
0 k = l  

+ a ( ~ j ,  t /x r/,), j = 1, 2 .  (3.4) 

3.2 

The next step is to replace the Ir~\o(o~j(G,)) factor in the martingale part of (3.4) by 
Is\o(G~,). By Theorem 2.1 with h = ~ t  + ~,~z, 

~ l ( G t  A ~) + ~ 2 ( G t  A ~) = 

tAr /~  

f 
0 

I~\0(-~-i + J~2)(V~-i + V~z)*dfl  

+ 
t A q ~  2 

f l~ \0 (~z  + o~21 ~ Vk'(Vo~l + VY: ldY~  
0 k = l  

+ a(,~l + , ~ ,  t A ~ ) .  (3.5) 



On the semimartingale representation of RBM in a cusp 515 

Here we have written ~1 + o~2 for ~1 (G,) + ~2  (G,), etc., in the integrals. On the 
other hand, by (3.4), 

t A r / ~  

~l (Gt  ^ ~) + ~2(Gt ^ ~,) = f (IR\0(~l)(Vo~l)* + IR\o(~2)(Vo~z)*)df i  
0 

tAr/~ 2 

+ f E Vk'(I~\0(~-~)V~ + I ~ \ o ( ~ 2 ) V ~ 2 ) d Y k  
0 k = l  

+ a ( ~ ,  t /x t/~) + a ( ~ ,  t /x tl~) �9 (3.6) 

Thus the martingale parts of (3.5) and (3.6) are the same, so their quadratic 
variations are the same: (for t __< t/~) 

I~\0(o~ + ~2)2[~ ' [2  dt = (I~\0(@~) + I R \ o ( ~ 2 ) ) l ~ ' 1 2 d t ,  (3.7) 

where we have used conformality of ~- once again. Since ~-' + 0 away from 0, 
(3.7) is the same as 2I~,\0(~x + ~ 2 ) d t  = ( Ia \0(~ l )  + I~ \o (~2) )d t .  Multiplying 
through by I~o~(~2) yields 

2I~0}(~2)I~,\o(o~1)dt = I~\o(  ~ . 

Hence 

I(ol( ~ z ) I~ , \o (~ l )d t  =- O . 

But ~-t(G,) = 0r Gu = 0 and we know I(o~(Gt)dt - O. Thus 

I~oi(~l(Gt))dt  - 0 

and so addition of the last 2 equalities gives 

I lol(~2(Gt))dt  =- O . 

Therefore (3.4) becomes 

~j(Gt ^ .) = f Is\o(G.)(V~j)*d~. 
0 

+ f I~\o(~j(G. gk.v~j(G.)dYk(u 
0 k 1 

+ a ( ~ j ,  tArl~), j =  1 ,2 .  (3.8) 

3.3 

Next consider the finite variation parts in (3.5) and (3.6). They are the same: for 
t<r/8= 

2 

I~\o(o~1 + ~z)  ~', Vk.(Vo~l + Vo~2)dY k + d a ( ~  + ~ z )  
k = l  

2 

= ~ V~.(I~x0(~I)V~-~ + I R \ o ( Y 2 ) V ~ 2 ) d Y k  + d a ( ~ t )  + d a ( ~ 2 ) .  (3.9) 
k = l  
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Since Yk changes only when G E OSk\O we have for t < q~ 

dYk(t) = Ies,\o(Gt)dYk(t) 

= Iec~\o(~(Gt))dYk(t) 

and consequently (making e smaller if necessary) for j, k e {1, 2} and t < r/c, 

[IF.\0(~-I + ,~2) - -  I~(\o(~j)JdYk(t) 

= i-I~\o(,fil + .fi2) - I~\o(ffj)JI~c~\o(ff)dY~(t) 

= [1 - 1]Ioc~\o(~)dYk(t) 

= 0 ,  

Using these in (3.9) gives for t < q~, 

da(@l + ~-z) = d a ( ~ )  + da(~-2) �9 (3.10) 

Recalling that a ( ~ a  + ~2),  a(~-l)  and a (~2 )  are carried on Y~ + ~ 2  = 0, ~-z = 0 
and ~-2 = 0 respectively, we see (3.10) implies each is actually carried on ~,~ = 0. In 
particular, for t < tl~ 

t 

a(~j, t) = f I(oi(~(G,))d,a(~j, u) j = 1, 2 .  (3.11) 
0 

The following argument  to show a(~-j , .  ) --- 0 is due to Ruth Williams. Since 
Go = 0 and 0a + 0z _-< 0, by (4.14) in [1] 

I=P(GteS \{O}  fo ra l l  t > 0 ) .  

Thus 

1 = P(~(Gt)e C\{0} for all t~ (0 ,  t/c] ) . (3.12) 

By (3.11) a(~j, t) can change only when i f ( G )  is at {0}; hence by (3.12) a ( Y j , . )  
must  be constant  (a.s.) on the time interval (0, r/c]. By continuity of a(~j,.  ) we get 
(a.s.) 

O=a(@j,O)=a(Yj,  t), t<tl~. 

Thus (3.8) becomes for j = 1, 2, 

t A th  

Nj(G, A ,)  = f Is\o(G,)(V~j)*d~, 
0 

t A rl~ 2 

+ f l~\o(~j(G.)) ~ Vg.V~j(G.)dYk(U). (3.13) 
0 k = l  

3.4 

N o w  we examine the dYk terms in (3.13). For  j, k E {1, 2} and Ill ~ ~, 

~-j(() 4 :0  and ( ~ OSk\O ~-  Yj(()  4 :0  and ~ ( ( )  ~ ~Ck\O <:~ ~ ( ( )  ~ ~Ck\O. 
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Using this in (3.13) yields for j  = 1, 2, 

tAt /~  

~j(Gt ^,.) = f I s \ o (Gu) (V~ j )*d f i ,  
0 

2 tArl~ 

+ ~ f I o c A o ( ~ ( G , ) ) V k ' V ~ j ( G , ) d Y k ( u ) .  
k = l  0 

If 

J ( 0  = 
cg~l c9~2 
c3~ 2 c9~2 ' 
c9~ 1 c9r 

= (~1,  ~2) ~ S (~ B~(O)\{O} 

is the Jacobian of ~ ,  then by conformality 

v / ~ - ( 0 )  = l Y ( 0 1 - 1 J ( 0 v j ,  ~ ~ 0sj ~ B~(0)\{0}, 

Thus 

R ( ~ ( O  ) = I ~ ' ( O [ - ~ J ( O M ,  ff E S ~ B~(O)\{O} . 

j = l , 2 .  

(3.14) 

(3.15) 

Now define 

tAt/~ 

fk( t  /x tl~ ) = f ]~.~'(G(u))lI~ck\o(~ k = 1 ,2 .  (3.16) 
0 

This is well defined by Corollary 3.3. Then it is easy to see (3.14) is equivalent to 

tAq~ 

f R o ~ ( G . ) d ~ . ,  (3.17) 
0 

o~ (Gt ^ q.) = JV't A ~ + 

where 

w t A  ~, = Is\o(C.)(vo%)*(~.)dfl., 
0 

t A rl~ ) 

f I s \ o ( a , ) ( V f f 2 ) * ( G , ) d f l ,  . 
0 

3.5 

Now we complete the proof of Theorem 1.1. We set (recall zt is from (2.8)) 

B t  = JV ' ( z t  ^ A(~)) 

k t = 1 o zt ^ Affix) " 

Then by (2.8), (3.15)-(3.17) 

Zt  = ~-~(G(z(t /x A(q,)))) = Bt + f R ( Z , ) d k , .  
0 

Since f o  l~o}(G,)du = 0, standard theorems show Bt is two-dimensional Brownian 
motion stopped at time A(th).  We know from [-2] that the law of Z on (f2c, ~///{) is 
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RBM in C starting at 0. The proofs of the remaining statements in Theorem 1.1 are 
left to the reader. [] 

4 Not a semimartingale when starting at 0 with fl > 2, 01 + 02 = 0 

4.1 

In this section always assume fl > 2 and 01 + 02 = 0. Our characterization of RBM 
in C is as a law on (g2c, ./~). It is possible to have realizations of this law on different 
filtered spaces. So to prove RBM in C starting at 0 is not a semimartingale, we must 
show no realization is a semimartingale. To be precise, a realization of RBM in 
C starting at z is a continuous adapted process Zt on some filtered space 
(f2, b ~ {5"t}, P) satisfying the following properties. 

(i) z,(o~) ~ c v(~o, t) ~ ~2 x [0, ~); 
(ii) Zo(cO) = z a.s.; 

(iii) the law of Z on (Oc, rig) is RBM in C starting at z. 

The next lemma and uniqueness in law simplify our job by showing that it suffices 
to pick our favorite realization of RBM in C starting at 0 and prove it is not 
a semimartingale. 

Lemma 4.1 Suppose the process Zt on (Y2, ~ ,  {Yt}, P) is a realization of R B M  in 
C starting at O. Let P o Z  -1 be the law of Z on (Oc, M{): 

P o Z - I ( A ) =  P(o:Z(co)~A),  A ~ d g .  

Then Z is a semimartingale on ( 0 , ~ ,  {~t} ,P)  iff the coordinate process 
Xt(co) = o~(t ) is a semimartingale on (Y2c, J/{, {J~t}, P o Z-1).  

Proof This was done in Williams [8] (Lemma 2) for C replaced by a wedge S, but 
the proof carries through in the present context. Let us also point out that the proof 
is also an almost immediate consequence of Theorem 3.1 in Stricker [5]. [] 

The proof of Theorem 1.2 is by contradiction. Hence assume RBM in C starting 
at 0 is a semimartingale. By Lemma 4.1 this means that any realization is 
a semimartingale. We use the realization (2.8). Thus we assume 

Zt = ] ~ t  A Aff/~) + "zlt A a(t/~) (4.1) 

where _~rt is a continuous local martingale with respect to the filtration ~tt~ t = {Se~,} 
(recall Gt from (2.1) is defined on the filtered space (f2, 5a,{Set} , P)), At is a continu- 
ous 24~ finite variation process, and Ao = Mo = 0. (Here we use the 
notation and terminology of Rogers and Williams [4]). Below in Sect. 4.3 we show 
"(4.1) implies 

f IG, I - I ( - l n I G ,  I) f l -~Is\o(a,)dYj(u)<oo a.s., j =  1 ,2 ,  (4.2) 
o 

where G is RBM in S given by (2.1). 
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Taking this for granted, choose f e  C~([0, hi) such that sup f "  < 0 and 
i n f f >  0. Define for z = re i~ 

1 

[ - l n r + f ( O ) ]  f l -1 z e S ~ B ~ ( O ) \ { O }  

h(z )  = 0 z = 0 . 

Then h ~ C(S c~ B~(Oj) c~ C2(S c~ B~(0)\{0}) and h(0) = 0. By (2.12)-(2.16) 
2 

- - - - 2  
] V h l 2 < = C r - 2 [ _ l n r ]  ~ - 1  , 

I Vj. Vh[ =< C r - ~ [  - lnr]  ]~-1 on (QSs) c~ B,(O)\{O} , 

and Ah = f l  + f2,  where 
1 

fl r -2 [  - lnr +f(0)]  - ~----5- ~(1 + [f '(O)] 2) 
f~ = (fi 1)------5 

1 
f 2 = f l Z 1  r - 2 [ - l n r + f ( 0 ) ]  e - l ( - i f ( 0 ) ) > = 0 .  

By Theorem 2.3 and (4.2) the hypotheses of Theorem 2.4 hold. Then by that 
theorem we have 

f f2(Gu)Is\o(Gu)du < m a.s. 
0 

By choice off(0), 
B 

r -Z(  - lnr) /~- 1 < cf2 , 

and so 

f [G.I-2(--lnlG.[)  ~ - l l s \ o ( O , , ) d u <  oo a.s. (4.3) 
0 

We will show this is impossible, giving the desired contradiction. 
For 0 < V < c~ < e and n _>_ 1, define 

T~ = inf{t > t/h: [G,,J = 7} 

S n = i n f  t > 0 :  f [G.l-Z(-lnlG.I) ~ - l l s \ o ( G , ) d u > n  . 
0 

By (4.3) S, ~ o0. Let p > 0 be small and define for z = re i~ 

f [ - l n r - 0 t a n 0 1 ]  -p z~Sc~B~(O) \ {O}  
hi (z) ( o z -=0  . 

Then hi e C(S a Be(O)) c~ C2(S c~ B~(0)\{0}) and h(0) = 0. Since O1 = - Oz, by 
(2.12)-(2.16), 

Vj. Vhl = 0 on (c~Sj) c~ Be(0)\ {0}, j --- 1, 2 .  
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By (2.12) and (2.14), for some C > 0 independent of p, 

0 <= Ah~ < Cp(p  + 1 ) r - 2 [ -  l n r -  0tan0~] -p-2  . 

fl 2 - 2 - f l < 0 < p ; t h a t i s ,  - p - 2 <  fl 
B u t f i > 2 s o f i _ l  fi 1 =  = f l - l '  
making e smaller if necessary (independently of p), for 0 < r __< e, 

0 <= Ahl  <= C p ( p  + 1 ) r - 2 [ -  l n r -  0tan01]  ~-1 

Hence by 

P 
< K p ( p +  1 ) r - 2 [ - l n r J  /~-J (4.4) 

where K > 0 is independent of p. 

By It6's formula and (2.1) 

k,, o hi (Gt ,, r, ~ ,~ A s,) - k,, o hi (Gt ~ ~ ~ s.) = 

1 t /x T~ A rl~ A S.  

f 
Jr- 2 t A q~ A S n  

t A Ty A I"]~ A S n 

f k~oh~(G.)(Vhl(G.))*dfl. 
t A rt~ A S, 

]-k~n ~ h i  ( G u ) A h l  ( G u )  

+ k's h l ( G . ) r V h l ( G . ) l Z ] d u .  

Since [ 7 h l [  2 ~ C ( p ) r - 2 [ -  ln r ]  -2p-2, by Theorem 2.3 the martingale part con- 
verges in L 2 as t ~ oo to  

T~ A rl. A S. 

f k'~o hz(G.)(Vh~(G.))*dfl.. 
tl~ A S. 

By passing to a subsequence te ---, oo we get a.s. 

T~ A r/~ A S.  

k m o h l ( G ~  A ~ A s.) - k m ~  ^ s.) = f k ' o h ~ ( G , ) ( V h t ( G , ) ) * d f l .  
r B A S, 

1 r, A ,~ A S. 
f [ k ' , , ~  + k ; ; ~  

q - 2  ~ A S .  

If m is large enough, supp k~ c~ {ha(G,): t/~ A S, < u < T~ A t/~ A S.} = 0; also, 
as m ~ oo the martingale part converges in L 2 to f r ,  ~ ~o A s. ~ S" Is \o (G. ) (Vhl  (a , ) )*d f i .  
(using Theorem 2.3 as above) and the k~, part of the du integral a.s. converges to 
�89 A S. I s \ o (G , )A h~ (G . )du  by dominated convergence and (4.3)-(4.4). Thus 
we have (a.s.) 

T? A tl~ A S n 

ha(Gr,  ^ ,~ A s.) - h~(G,~ A s.) = f I s \o (G. ) (Vh~(G, ) )*d f l ,  
r B A S, 

1 TvAr&AS. 
f I s \ o ( G , ) A h ~ ( G , ) d u .  

q- 2 q~ A S. 
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Upon taking expectations and using (4.4) this becomes 

E [ h l ( G r ,  ^ ~o ^ s.)] - E[h l (G , ,  ^ s.)] 

K [ r ,^ ,~^s .  _ ~ ] 
<--p(p+l)E f I G,,I-2 I- - lnl G,,I-1 f l - l d u .  
= 2 ,~^s. 

Since T~ ~oo  as 7 ~ 0, by dominated convergence and (4.3) we can let y ~ 0 
and omit T v. Another application of (4.3) and dominated convergence as 6 + 0 
yields 

E[hl(G,.^s.)]-O<=-~p(p+l)E f I G I - 2 [ - l n l G I ]  ~ lls\o(G)du . 
0 

By making ~ smaller - independently of p - if necessary, 

0 < - l n r -  0tan0~ < C ( -  ln r ) .  

Then we get 

C - V E [ (  - lnl Gn. ^ s.I) -v] < E[h~(G,.  ^ s.)] 

K n~^s. fl 
< - - p ( p + l )  f I G . [ - 2 ( - l n [ G , I )  f l - l l s \o(G, , )du  
= 2  0 

K 
< - - p ( p  + l)(n + l) 
= 2  

by definition of S.. Since Gt never hits 0 (a.s.) for t > 0, by Fatou's lemma 

} I = E  l i m C - e [ - l n l G . ~ ^ s . ] ]  -v _ - _ _ l i m ~ - p ( p + l ) ( n + l ) = 0 .  
lv-~o ~ z 

Contradiction. Thus our assumption that RBM in C starting at 0 for fl > 2 is 
a semimartingale is false and Theorem 1.2 is proved. 

All that remains is to show (4.2) holds assuming (4.1). Below we will see it is easy 
to identify Mt ^ A(~,) as two-dimensional Brownian motion stopped at time A(~) 
and see that At ^ A(~~) is supported on ~C. The trouble lies in getting an explicit 
representation of At. The trick is to use (2.8) to get an explicit semimartingale 
representation of F(Zt  ^ A(,13) (recall F = ~ - a )  and compare it with the one 
obtained by using (4.1) to compute dF(Zt  ^ A(~,)). Unfortunately matters are com- 
plicated because F is not C 2. 

4.2 

Since 01 + 0 2  = 0 RBM G in S never hits 0 once it is away from 0. Hence by (2.8) 
RBM Z, in C stopped at time A0/~) never hits 0 once it is awaz from 0. Since 
0C\{0} is smooth, standard results show that for each 6 > 0, {Mr ^ a(n,): t > 6} 
is two-dimensional Brownian motion starting from / ~  ^ a~,.) and t e [6, oo) 
--* At ^ A(n~) can change only when Zt is on t?C\ {0}. Thus taking the limit as 6 --* 0, 

b~r continuity and a.s. uniqueness of semimartingale representations, we see 
Mt ^ A(,7,) must be two-dimensional Brownian motion stopped at time A(q,) and 
~z~ t ^ A(t/8) can change only when Z is in OC. 
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Thus we have for o-, = inf{t > O: IF(Zr = 5} = A(~/~), 

d [ ~ , M 2 ]  = 0 , t < o - ~ .  

d [2hr2, M2]  dt 

(4.5) 

4.3 Proof of(4.2) 

Using It6's formula and (4.1), by (4.5) for any real a, b, and t < a,  

d[kn(aF1 (Zt) + bF2(Zt))] = k'~(aF, (Zt) + bF2(Zt))(aVF~ (Zt) + bVF2(Zt))* 

1 . 
x [dffIt + dAt] + ~ k,(aFI(Z,) 

+ bF2(Zt))[a 2 + b 2] ]VFI(Zt)I 2 dr. (4.6) 

On the other  hand, by (4.5) and (2.2)-(2.3), for t __< a~, 

d [kn (aF~ (Zt) + bF2 (Zt))] = k'n(aF~ (Zt) + bF2 (Zt)) [a {d(fi~ (rt)) + yd(q)(%))} 

+ b{d(fi2(rt)) + d(~o(%))}] 

+ �89 k~(aF1 (Zt) + bF2 (Zt)) [a 2 + b2]IVF1 (Zt)[ 2d t .  (4.7) 

sions hold for k. replaced by h.. 
For  typographical  clarity we write 

H,(a, b) = [k'~ + h',](aF1 (Zt) + bF2(Zt)) , 

(u, ~) = F ( Z , ) ,  

Vu = VFI (Z,), etc. 

Then we have two ways to compute  

d(k, + h,)(aFl(Zt) + bFz(Zt)) : 

from (4.6) with its analogue for hn and from (4.7) with its analogue for h,. In 
particular, first taking a = b = 1 and then a = 1 = - b, upon compar ing finite 
variat ion parts we get 

H,(1 ,1 ) [Vu+ Vv]*dA, _ ~ = ( H . ( l ,  1)(7+ 1)dcp(%) ~ t < a ~  

H,(1, -- 1)[Vu - Vv]*dAzJ \ H , ( 1 ,  - 1)(y - 1)dq~(zt)J' = " 

Replace the first and second rows by 

�89 - 1) Row 1 + �89 1) R o w 2  and �89 - 1) Row 1 - �89 1) R o w 2 ,  

respectively, to end up with 

"\(Vv)*d2 / = 
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S,nce =(  ifweset 

We have (by (2.2)) 

By (3.15) 

Thus  for j = 1, 2 

[ ~zl ~Z2 
J(z) -- l a F 2  0F2 

\ ~-~z~ ~z~ 

H.(1,  1)H.(1, - 1)J(Z~)d.~ = H.(1,  1)H.(1, - 1)Mdr('ct) .  

J -  l ( z )M = J ( F ( z ) ) M  

= I ,~'(F(z))lR(z) .  

H.(1,  1)H.(1, - 1)l~cj\o(Zt)dAt 

: H.(1,  1)H.(1, - 1)I~cAo(Zt)]~'(F(Zt))[R(Zt)dY(zt) ,  

In  part icular,  

0" e 

f H.(1, 1)H.(1, - 1)Iac,\o(Z(t))(R2j(Z(t)))-ld.~2(t) 
0 

= f H,(1,  1)H,(1, - 1)Iec~\o(Zt)[,~'(F(gt))idYg(zt), j -- 1, 2 .  (4.8) 
0 

By mak ing  e smaller  if necessary, our  normal iza t ions  vj. nj = 1,j = 1, 2 force 

inf{}Rzj(Z)]" j = 1,2, zeB~(O) c~ ~Cj\O) > O. 

Hence for some constant  C > 0, 

lira ] '  - t dA2(t ) H,(1,  1)H.(1, - 1)Iac~\o(Z(t))ER2j(Z(t))] 
n--> oo 0 

_-< cI1~211~ 

< o 0  a.s., j = l , 2 ,  

where II �9 II T is the total  var ia t ion over  [0, T] .  By (4.8) and Fa tou ' s  l emma this yields 
(since H,(a, b) ~ Igt\o(au + by)) 

f I~\o(U + v)Im\o(u - v)Iac~\o(Zt)lY(F(Z,)) ldYj(~3 < oo a .s . ,  
0 

j = 1, 2. But 

I~\o(U + v)I~\o(U - v)Iocj\o(Zt) 

= IR\o(Fl(Zt)  + Fz(Z,))I~\o(FI(Zt)  - Fz(Zt))I~ss\o(F(Z,)) 

= I~sj\o(V(Z,)) 
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and  so (recall a ,  = A(t/,)) 

.4(n,) 
f Ios~\o(F(gO)l~"(f(gO)ldYs(z3 < ~ a.s. j = l ,  2 .  
o 

M a k i n g  the change of  var iables  u = zt and  using (2.8) we end up with 

t/. 
f Ios~\o(G,)l~"(G,)ldYj(u) < ~ a . s . j  = 1, 2 .  
o 

F o r m u l a  (4.2) follows f rom this and  (2.4). [] 

Acknowledgement. We wish to thank Chris Burdzy for telling us how to greatly simplify Sect. 4.2 
above. 
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