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Introduction

A new kind of backward stochastic differential equations (in short BSDE), where
the solution is a pair of processes adapted to the past of the driving Brownian
motion, has been introduced by the authors in [6]. It was then shown in a
series of papers by the second and both authors (see [8, 7, 9, 107), that this
kind of backward SDEs gives a probabilistic representation for the solution
of a large class of systems of quasi-linear parabolic PDEs, which generalizes
the classical Feynman-Kac formula for linear parabolic PDEs.

On the other hand, the classical Feynman-Kac formula has been generalized
by the first author in [4, 5] to provide a probabilistic representation for solutions
of linear parabolic stochastic partial differential equations; see also Krylov and
Rozovskii [1], Rozovskii [11] and Ocone and Pardoux [3] for further exten-
sions. The aim of this paper is to combine the two above types of results,
and relate a new class of backward stochastic differential equations, which we
call “doubly stochastic” for reasons which will become clear below, to a class
of systems of quasilinear parabolic SPDEs. Hence we shall give a probabilistic
representation of solutions of such systems of quasilinear SPDEs, and use it
to prove an existence and uniqueness result of such SPDEs.

* The research of this author was partially supported by DRET under contract 901636/A000/
DRET/DS/SR

** The research of this author was supported by a grant from the French “Minjstére de
la Recherche et de la Technologie”, which is gratefully acknowledged
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Let us be more specific. Let {W,, t=0} and {B,, =0} be two mutually inde-
pendent standard Brownian motions, with values respectively in R? and R’
For each (¢, x)eR , xR, let {X%*; t<s< T} be the solution of the SDE:

Xy =x+ [ b(Xt"dr+ [ o(X:)dW,, ¢<s<T
13 t

We next want to find a pair of processes {(¥;"*, ZL*);t<s<T} with values
in R*xR**! such that for each se[t, T](Y?*, Z%%) is o(W,;t<r<s)vo(B,
—B,; sZr < T) measurable and

T
Y =h(X59+ | f(XP X%, Zy) dr
T T
+ [ g(Xb~ Y0, ZbX)dB,— [ Zt*dW,, t<s<T

where the d W integral is a forward 1t integral and the d B integral is a backward
[t6 integral. We shall show that, under appropriate conditions on f and g,
the above “backward doubly stochastic differential equation” has a unique solu-
tion.

We finally will show that under rather strong smoothness conditions on
b, o, f and g, {Y"~; (¢, x)e[0, T] xR} is the unique solution of the following
system of backward stochastic partial differential equations:

u(t, x)y="h(x)+ j"T[ui”s u(s, x)+f(x, u(s, x), Vuo)(s, x))]ds

T
+ [ g0x u(s, x), (Vuo)(s, x))dB,, O0=tsT

where u takes values in IR¥,

(Lu)t, x)=(Lu)(t,x), 1=isk
and
52

L—l i(o—o*) ——+ d
—2’i,j=1 Y ox;0x;

Yox;

b

M~

i=1

The paper is organised as follows. In Sect. 1, we study existence and uniqueness
of the solution to a backward doubly stochastic differential equation, and esti-
mate the moments of the solution. In Sect. 2, we consider both a forward and
a backward SDE, as introduced above, and study the regularity of the solution
of the latter with respect to x, the initial condition of the former. Finally in
Sect. 3 we relate our BSDE to a system of quasilinear stochastic partial differen-
tial equations.

Notation. The Euclidean norm of a vector xelR* will be denoted by |x|, and
for a d x d matrix 4, we define |4 =]/Tr AA*.
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1 Backward doubly stochastic differential equations

Let (@, %, P) be a probability space, and T >0 be fixed throughout this paper.
Let {W,0=t<T} and {B,,0=t<T} be two mutually independent standard
Brownian motion processes, with values respectively in R? and in R/, defined
on (2, %, P). Let A denote the class of P-null sets of % For each te[0, T,
we define

FLFY v FE

where for any process {n,}, Zo\=0{n,—ns sSrtv N, FH=F,.

Note that the collection {Z, t€[0, T]} is neither increasing nor decreasing,
and it does not constitute a filtration.

For any neN, let M2(0, T: R") denote the set of (classes of dP xdt ae.
equal) n dimensional jointly measurable random processes {¢,; t€[0, T]} which
satisfy:

T
() Efle|*dt<oo
4]

(i) @, 1s & measurable, for a.e. te[0, T].

We denote similarly by S*([0, T]; R") the set of continuous n dimensional ran-
dom processes which satisfy:

) E( sup lo*)<co
0=t=sT
(i) @, is & measurable, for any te[0, T1.

Let
fr Qx[0, T]xRFxRF*? - R¥

g: Qx[0, T]xRF x R¥*4 5 RF*!
be jointly measurable and such that for any (y, z)eR* x R¥*4,
£,y 2eM*0, T, RY
g(-, y, 2)eM*(0, T, R*™Y),

We assume moreover that there exist constants ¢>0 and O<a<1 such that
fOI' any (CO, t)E.Q X [07 T]a (y1> Zl): (y2: ZZ)EIRk XIRle:

(H.1) |f(t 1> 20—f(t y2, 22) P Sy —y2 P +lzi —2,]%)

lg(t, 1, 20 =8t yao, 2> S |y —ya P+ allz, — 2,1
Given £el?(Q, Zr, P; RY), we consider the following backward doubly stochas-
tic differential equation:

T T T
(L1)  %=C+ ][5 Y, Z)ds+ [ g(s, X, Z)dBo— | Z,dW,, O0=i<T
t 1 t

We note that the integral with respect to {B,} is a “backward It6 integral”
and the integral with respect to {W;} is a standard forward Itd integral. These
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two types of integrals are particular cases of the It6-Skorohod integral, see
Nualart and Pardoux [2].
The main objective of this section is to prove the:

Theorem 1.1 Under the above conditions, in particular (H.1), Eq. (1.1) has unique
solution

(Y, 2)eS2([0, T]; R¥) x M2(0, T: R**9)

Before we start proving the theorem, let us establish the same result in case
fand g do not depend on Y and Z. Given fe M*(0, T: R¥) and ge M2 (0, T; R**})
and ¢ as above, consider the SDE:

T T T
(1.2) Y=+ [ f(s)ds+ | g(s)dB,— | Z,dW,, O0=<t<T

Proposition 1.2 There exists a unique pair
(Y, Z)eS3([0, T]; R¥) x M2(0, T, R*4)
which solves Eq. (1.2).
Proof. Uniquencss is immediate, since if (Y, Z) is the difference of two solutions,

'+ Z,dW,=0, 0<t<T

|
S e—

Hence by orthogonality

T
E(LP)+E | L[Z,Z¥] ds=0,
t

and ¥,=0Pas., Z,=0dtdP ae.
We now prove existence. We define the filtration (%)<, <1 by

G4=7" v I

and the 4-square integrable martingale
T T
M,=E? [54— [ flods+ | g(s)st] , 0=i<T
0 0

An obvious extension of It6’s martingale representation theorem yields the
existence of %-progressively measurable process {Z,} with values in R**? such
that

T
E(|Z]Pdi<oo
0

t
Mt=M0—|-jZSdWs, 0ZtsT
0
Hence

T
Mpr=M,+ | Z,dW,.
(0]
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t
Replacing M, and M, by their defining formulas and subtracting | f(s)ds
t 0

+ [ g(s) dB, from both sides of the equality yields
0

T T T
Yt=é+§f(s)ds+ j- g(s)st_ 5 stVVs’
t t t
where
T T
Y, & E% (E—I— [ fsyds+ | g(s)st) .
t t
It remains to show that {Y;} and {Z,} are in fact #-adapted. For Y, this is

obvious since for each t,
Y,=E(6/% v F7)
where @ is 7 v #E measurable. Hence #” is independent of %, v ¢(0), and
Y,=E(0/%).

Now

T T T

[ Z,dW,=¢+ [ f(9)ds+ | g(s)dB,—Y,,

T t t

and the right side is # v %5 measurable.

Hence, from Itd’s martingale representation theorem, {Z,, r<s<T} is
FY v #E adapted. Consequently Z; is #,” v #% measurable, for any t<s,
so it is £¥ v #5; measurable. []

We shall need the following extension of the well-known It formula.

Lemma 1.3  Let aeS*([0,T];RY, BeM?(0,T:RY, yeM?(0, T:R**H,
5eM?(0, T: R**%) be such that:

t t t
t=ag+ | Bsds+ [ ysdBs+ [ 6,dW,, O0=t<T.
0 0 0
Then
t t
la112:|“0|2+2 jl(asa ﬂs)ds+2f(asa ysst)
¢ 0

T r t
+2 [ (o, 0 dW)— [ llysl> ds+ [ 167 ds
0 0 0

t 3 t
Elo|*=Eloo?+2E [ (%, B)ds—E [ ly|> ds+E [ ||* ds.
0 0 0
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More generally, if peC*(R¥),

Do) = (% +I(¢ (o), ﬂs)d8+§ (), 75 dBY+ [ (¢ (o), 0, d W)

-1 jI Trl¢" (o) v pElds+4 f Tr[¢" (o) 6,0%] ds.
0 0

Proof. The first identity is a combination of 1td’s forward and backward formu-
lae, applied to the process {a,} and the function x —|x|%. We only sketch the
proof. '

Let O=t <t <...<t,=t.

|ati+1|2_|ati|2=2(at“1_“ti: ati)+|ati+1_at,~12

tit1 tigq Eivx
=2( i ﬁsds,ati)u( { ysst,oc,,.+,)+2( | (xdWs,a,,.)

t; t; t;

Livi
2
_2< j ’ysst: OCti+1—OCti)+|OCtH1—OC[i|

L

Lisy Lt Livy
=2 { (o, B)ds+2 | (a,.,, 7sdB)+2 | (%, 5, dW)

t; t; 1y

2
-+

2
+pi7

Livy
[ 8,dw,

L

tit1
§ vsdBs

43

n—1
where Y p;—0 in probability, as sup t;+1—t;— 0. The rest of the proof is stan-
dard. i=0
The second identity follows from the first, provided the stochastic integrals
have zero expectation. This will follow from
)< ,

which is a consequence of Burkholder-Davis-Gundy’s inequality and the
assumptions made on «, y and J. Indeed, considering ¢.g. the forward integral,

we have:
T
)ch]/ [ 1l 16,12 dt
0

T
g( ( sup |oct|2)+E§ |5tn2dt).
2 0<t<T o

§ (o, 3, W)

o]

j (05, ys 4 By)

t

+ sup
0=t=T

E( sup

0=t=T

t
| (5, 0,d W)

0

E( sup
0=t=T

The last identity is proved in a way very similar to the first one. [

We can now turn to the
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Proof of Theorem 1.1 Uniqueness. Let {(¥;, Z})} and {(Y;?, Z})} be two solutions.
Define

}_,t y; Yt ’ Z_IZZtI_ZtZ: OétéT
Then

T T
= j" Lf(s, Y Z5)—f (s, Y2, Z] ds+ [ [g(s, X', Z3) —g(s, ¥, Z2)] d B,

Z,dw,.

NL_}N!

Applying Lemma 1.3 to Y yields:

T T
E(YP)+E [ |Z)?ds=2E [ (f(5, Y}, Z)—f (s, X, Z2), Y) d s

T
+E [ lgs ¥ Z)—gls, Y2, Z2))* ds.
t

1 az+1—-oc
2(1—a) 2

Hence from (H.1) and the inequality ab < b,

- ro_ T —a T ro_
E(L)+E[IZ|*ds<c@)E [T E[|Z\?ds+aE [ |Z,*ds,

where O <a <[ is the constant appearing in (H.1). Consequently

_ 1—o r T
E(IYIIZ)-FTEI 1ZJ?ds<c@)E | | Y| ds.
t t

T
From Gronwall’s lemma, E(| ¥;|*)=0,0<¢t<T, and hence E | ||Z,]|* ds=0.
0

Existence. We define recursively a sequence {(¥, Z})};—o,,,... as follows. Let ¥;°
=0, Z?=0. Given {(¥.,Z)}, {(Y;*, ZI"")} is the unique solution, constructed
as in Proposition 1.2, of the following equation:

T T
PSS €+§f(s, Y., Z)ds+ [ g(s, Y/, Z)dB~ [ Z* ' dW,.
t 1

Let Y *tayitl -yl Zi*12zi*1 7! 0<t<T The same computations as
in the proof of uniqueness yield:

T T
E(L " P +E [IZ 2 ds=2E [ (f(s, X, Z)—f (s, ¥/, 2571, T ) ds
t t

T
+E | llgls, ¥, Z)—g(s, YW1, Zi7 N2 ds.
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Let feR. By integration by parts, we deduce
—t T u— T —
EQY; ) el BE [ 1T b ds+E [ |Z0 2 5 ds
4 t

T
=2E [(f(s, Y, Z)—f (s, Y, ZE 1), ity P ds
t

T

+E | llg(s, ¥, Z)—g(s, YW1, Zi7Yli? efods.
t
There exists ¢, y>0 such that
— T —_— T .
E(Y ' P e+ (B E IV 2P ds+E [ |Z71]? e ds
t T

T
<E| <C|T’;i|2 Lo —5—I1Zl )eﬁsds.
t
Now choose ﬁ:y_i_T%_:_a, and define £— 12_:06-

- ro_ _. 14 T _
E(Y )l +E @Y+ i\Z;“HZ)eﬁsdngE NGy
t t

+(|ZL||?) ef* d s.

It follows immediately that

1+« H
Ef(CIY‘“I“rHZ”IH e dss(F3 ) E I F Iz e ds
t

and, since ;a<1, {(Y}, Z)}iz0.1,2.... 18 a Cauchy sequence in M?*(0, T; IR¥)

x M?(0, T: R**9). It is then easy to conclude that {¥};_, { , . is also Cauchy
in S2([0, T]; R¥), and that
(%, 2)) = tim (. Z)}

solves Eq. (1.1). [

We next establish higher order moment estimates for the solution of Eq. (1.1).
For that sake, we need an additional assumption on g.

(H2) {There exists ¢ such that for all (¢, y, z)e[0, T] x R* x R**4, g g*(t, y, 2)
<zz¥+c(lg 0, 0>+ |y ) 1.
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Theorem 1.4  Assume, in addition to the conditions of Theorem 1.1, that (H.2)
holds and for some p>2, €I (Q, F1, P;R¥) and

T
Ef (1f(0,0)P+1g(,0,0)?)dt < oo.
0
Then

T p/2
E( sup |Yt|P—|—(j 1Z,11? dt) )< 0.
DZtET 0
Proof. We apply Lemma 1.3 with ¢(x)=]|x|?, yielding

T T
%P+ 2 PGP 2 Z,02 ds+ 5 (=2 [ NP 4(Z, 28 Y., Y ds
t t
T T
=1EP+p 1N % Z), X ds+p [ ILP 2 (Yo g6 Y, Z)dB)
€ S
p T
+ 5 [I%2 gl %, Z)) ds

T T
+ 2 =2 [ 1%P*(gg* (5 Yo Z) X, Y ds—p [ | K7 2(Y,, Z,d W),
T T

Also we do not know a priori that the above stochastic integrals have zero
expectation, arguing as in the proof of Lemma 2.1 in Pardoux and Peng [7],
we obtain that

T T
B+ B ET1%P~21Z,2 ds+ L =D E [ 1XP*(Z, 2 Y. V) ds
t t
T T
p p—2 14 p—2 2
SE(EP)+PE [ YT f(s X, Zy), Ys)ds+§E§|Ys| Ig(s, X, Zyl* ds

T
+5p-DE [ 1% (eg* (s ¥, Z) Y, K ds
t

Note that we can conclude from (H.1) that for any a <o’ <1, there exists c(&)
such that

g, y, D2 <c@)(y P +1g( 0, 0%+ lIz)1*

From the last two inequalities, (H.1} and (H.2), and using Holder’s and Young’s
inequalities, we deduce that there exists §>0 and ¢ such that for 0 < T,

T
E(I%I)+0E f Y72 Z)1* ds

<E(I§I")+cEj P)+1f (s, 0,0P+lig(s, 0, 0)|") d s
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It then follows, using Gronwall’s lemma, that

sup E(|Y,[P)+E f [Y,P72 || Z,)I* dt< 0.

0=t=T

Applying the same inequalities we have already used to the first identity of
this proof, we deduce that

LIPS IEP+c J (%I +]£(5.0, 0[P+ lg(s, 0,0)[?) d s

t
T T
+p J 1Y P72 (Y, 8(s Yoo Z)dB)—p [ |XIP72(Y,, Z, A W),
t t
Hence, from Burkholder-Davis-Gundy’s inequality,

E(Os<up ILPSE(ED)+CE J(LP+[£( 0,07+ g, 0,0)|7) dt
St<T 0

T
+eE]/ [N (gg* (1 Y, Z) Y, Y) di
0

T
+cE l/ JIGPP=*(Z,2F Y, Y)dt.
0

We estimate the last term as follows:

]/MYIZP Y2, ZF Y, Y)dt<E Y”’Z]/HYI" ZHledt>

<$E( sup IYI")+1E§|YI" 2lz)*de.

o=st=

The next to last term of the above inequality can be treated analogously, and
we deduce that

E( sup |Y)P)<co

0St<T
Now we have

T T T
FlZilPde=EP P +2 [ (f(t Y, Z), Y)di+2 [ (Y, g(t, %, Z) dB)
0 0 0

T T
+ [ gt %, Z)|*dt—=2 [ (Y,, Z,dW).
0 0
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Hence for any 6>0,

p/2

T pl2 T
(f nzluzczt) §(1+6><§ 9t Yt,zmzdr)
0 (4]

p/2

ol 2]

) V) dt

ERal 81

T
+¢(6, p) [Ié|"+|Yo|”+
(8]

p/2

» Y, Z)dB)

£

T
+| (%, Z,dW)
0

wf(freaf]

, .
<(1+5)2aE[(6[ iZ,H%it)p ]+c’(5, »)
E[(JIYI 1z dt)m]w(é, p)E[(jw |Zt|2dt)p/4]

T p/2
§<1+5)2ocE[(j |z,12dz) }+c'(5,p)
Q

te(s, ) E {(OS;ETIY"MZ) [(OIT 1Z, dt)"/2+(j 1z dt)%]}

T

<[(1+87 a-+(1+ )] E [(j {Z,|2dt)p/z]+c”(5, »).

0

The second part of the result now follows, if we choose >0 small enough
such that

(140 a+(1+0)<!
(recall that x<1). [

2 Regularity of the solution of the BDSDE

Let us first repeat some notations from Pardoux and Peng [7].

CHR?; RY), Cf,(R?; IR, C*(IR?; R? will denote respectively the set of func-
tions of class C* from R? into ]Rq the set of those functions of class C* whose
partial derivatives of order less than or equal to k are bounded (and hence
the function itself grows at most linearly at infinity), and the set of those functions
of class C* which, together with all their partial derivatives of order less than
or equal to k, grow at most like a polynomial function of the variable x at
infinity.
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We are given beC;,(R% RY) and ¢eC},(R% R**9), and for each te[0, T),
xeR?, we denote by {X4%, t <s< T} the unique strong solution of the following
SDE:

2.1) dX5*=b(X)ds+o(XpYdW,, t=s=<T
Xor=x.

It is well known that the random field {X%*; 0<r<s<T, xeR?%} has a version
which is a.s. of class C? in x, the function and its derivatives being a.s. continuous
with respect to (t, s, x).

Moreover, for each (z, x),

sup (|X0¥[+|VXe*[+|D? Xg*])e () (),
T

1SS pz1

where V X* denotes the matrix of first order derivatives of X%* with respect
to x and D? X%* the tensor of second order derivatives.

Now the coefficients of the BDSDE will be of the form (with an obvious
abuse of notations):

S, 3, 2)=1 s, Xi7, 9, 2)

g(s, y, 2)=g(s, Xy%, . 2)
where
f: [0, T] x R4 x R¥ x R¥*4 - R¥

g: [0, T]x R x R*¥ x R**¢ - R**/,

We assume that for any se[0, T], (x, y, 2) = (f (5, x, ¥, 2), g(s, X, ¥, z)) is of class
C3, and all derivatives are bounded on [0, T] x R? x R¥ x R¥*4,
We assume again that (H.1) and (H.2) hold, together with

(H.3)
gu(t, x, y,2) 00% gi(t, x, y, 2)* £06%,  Vte[0,T], xeR’, yeR¥, z, 6cR***.

Let he CJ(R?; R¥). For any te[0, T], xeR, let {(Y}*, Zt);t<s< T} denote
the unique solution of the BDSDE:

T
2-2) YEX=h(X3)+ [ f(r, X2, X% Zp7) dr

T T
+ | glr, X%, Y5, 209 dB,— [ Z¥d W, (<s<T.
s 8

We shall define X,~, Y* and ZL~ for all (s, t)e[0, T}? by letting X5™=X%7,,
Y =Y\, and ZE*=0for s<t.

Swvir
Theorem 2.1 {Y'*; (s, t)e[0, T]?, xeIR?} has a version whose trajectories belong
to CO2([0, TT? x RY.

Before proceeding to the proof of this theorem, let us state an immediate corol-
lary:
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Corollary 2.2 There exists a continuous version of the random field
{Y;"*; te[0, T, xeR?} such that for any te[0, T, x— Y5%, is of class C* as.,
the derivatives being a.s. continuous in (t, x).

Proof of Theorem 2.1 We first note that we can deduce from Theorem 1.4 applied
to the present situation that, for each p =2, there exist ¢, and g such that

T p/2
E( sup | eer+([126717a5) )<y 110
<s

r

I/\

Next fortvit Zs

II

=T
1
o] Do a0 =Xy - )
4]
T
+ [ (@t x; ¢, XN X = XX T+, x5 0, X) [P — Y]
N
T
+x.t, x5 0, XV [ 20— Z0¥ N dr+ [ (@,(t, x; ¢, x)[Xp*—X*]
S
e, xs t, XV = YT+ 7.0 x5t X)) [Z0*—ZEF ]) d B,
T
— [ @ =Z0*)d W,
s

where

I

1
@t x;t, x)= | fLZLF)d A
0

Yot x5 1, X) = ffy rEr)da

1L x; x)—j"fz (ZE5""Yd A

@,, ¥, and j, are defined analogously, with f replaced by g, and
t,xst, X’ (7‘ Xl . +A(Xt x X;’,x’)’ Y;t’,x'_l_/‘{(y;t,x_ Y;t',x’)’ Z,t-’.x’_l_/l(zi,x_zi',x’))‘

7, 7
Combining the argument of Theorem 1.4 with the estimate:
E( sup |X¢*—XT¥P)Scp(L+|x[P+]x P)(x—x" [P+t~ P12),

O0=s=T

we deduyce that for all p=2, there exists ¢, and g such that

P2
E(sup|Y”‘ th|p+(“]Z“‘ ZU|2 ds) )

O0=s=T

Scp(TH]x X 19 x =X [P+t = [P2).
Note that (H.3) is used in the proof; it plays the same role as (H.2) in the
proof of Theorem 1.4. Note also that (H.1) implies that ||,/ £a< 1. We conclude
from the last estimate, using Kolmogorov’s lemma, that {Y/*; s, te[0, T], xe R?}
has an a.s. continuous version.

Next we define
A} X8> B (X% hes— X7,
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where helR\ {0}, {ey, ..., ¢,} is an orthonormal basis of R?. A} ¥>* and 4}, Z%>
are defined analogously. We have

t
= [ W(X$ 4+ Ah AL X5) A, X5 d )
0
T 1

+ JIAGEEN A X+ G 4L Y+ (503 4, Zp T d A dr

s 0

+ I f [gu(En3") A X7 ™ gy (B3 " AL Y™ + gL (EL ") 4, 271 d A d B,

~u;;z:’xdwr,

where Z0 5" =(r, X0+ L h AL X0, Y54+ AR AL Y1, Z6*+ A h AL Z0%).
We note that for each p=2, there exists ¢, such that

E( sup |4, X¢™")<c,.

O=s=T

The same estimates as above yields

r pi2
(sup |4 Y P (j HAZZ?"Hst) )gcp(1+1x|q+|h|q).
i

=s=

Finally, we consider

1
ALY Al Y = [ B (X5 Ak 4, X5 4, X5 d 2
0
1 . -
— [ B X AW A, X5 Ay XY d 2

+ [ §LRESD A X —fUE ) A, X< 1 d A dr

Oy

+

LA (&3 4, Y0 = (BN 4, Yr 1 d A dr

+
Oty

~ o:v_,)__] VA:.;,_} Ot.—,’d M!-_}q M""’*E me“*ﬂ =)

LB A4 2"~ f1 (B0 ) 4, 787 ] d v

Qs

(8 G3") 45 X7 — g5 ") 4}, X, "1 d A dB,

v oe— oy

+

1
[l EN A, Y — gy (B ") A1 X" 1 d L d B,
0

+§ JLeeESN A Z0 " — gL (B M) A4, 27" 1 d 2. d B,

© ey

— [, 2> = A, 27X d W,
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We note that

E( sup |4, X0*— 4, X% D)< cp(L+|xP)(Ix —x' P+ h— R P+ |t —1'[P2)

0<s<T

and
|3t B S X0 = X || X e XL |
+ I y;t,x_ er’,x' I + I y;t,x+hei _ Y;t',x’ +h;i|

N ZET = 2 2 e 2 ),

Using similar arguments as those in Theorem 1.4, combined with those of Theo-
rem 2.9 in Pardoux and Peng [7], we show that

) S r S /2
B( sup 1430 — a ¥ p | [ 14z ze 2 as) )
0<sZT N

Scp(LH x4+ X [T+ R+ 1) X (X=X [P+ [h— R [P+t —1'P72).

The existence of a continuous derivative of Y5* with respect to x follows easily
from the above estimate, as well as the existence of a mean-square derivative
of Zu* with respect to x, which is mean square continuous in (s, t, x). The
existence of a continuous second derivative of Y>* with respect to x is proved
in a similar fashion. []

It is easy to deduce, as in Pardoux and Peng [7], that {(V Y5

t,X 1, X
=66L5x, VZi = 6623“2 )} is the unique solution of the BDSDE:

T
VYO =K (X)) VX + [ L6 X051, 2 VX
5 X XN, ZEY Y X [, Xy Y, Zp) V 25T dr

T
+ [ Tgln X% X% ZE) VX 4y, K55 Y%, 289 V Y
T
+ gl X%, Y7, ZE)V 227 dB,— [V ZE W,

We shall need below a formula relating Z with the gradients of Y and X:

Proposition 2.3 The random field {Z5*;0<t<s<T, xcR?} has an a.s. continuous
version which is given by:

Zy* =V YPX(VX5Y) " o (XE)
and in particular
2=V Y} o(x).

Proof. We only indicate the main ideas, the details being obvious adaptations
of those leading to Lemma 2.5 in Pardoux and Peng [7].
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For any random variable F of the form F = f (W (h,), ..., W(h,); B(ky), ..., B(k},))
with feC(R"*?), hy, ..., h,e *([0, T], R?), ky, ..., k,eI*([0, T], RY), where

T T
Wh)2 | (h(r), dW), B(k)2 | (k;(t), dB)),
[4] 0
we let

D .F& if/(W(hl)’ coos W(hy); Bky), ..., Bkp)) (),  0=t=T

i=1

For such an F, we define its 1, 2-norm as:
T 1/2
FWL2=(E[F2+§|DJw2dﬁ) .

0]

S denoting the set of random variables of the above form, we define the Sobolev
space:

DlsZéSH'Hx.z_

The “derivation operator” D. extends as an operator from D'? into
I2(Q; I2([0, T], RY). It turns out that under the assumptions of Theorem 2.1,
the components of X¢*, ¥* and Z%* take values in ID"?, and the pair {(D, ¥;"%,
Dy Zv™; t<6<s<T} satisfies for each fixed 6 the same ecquation as
{(VY}*, VZ¥)}, but where V X,* has been replaced by Dy X%*. Now since for
t<0<s,

Dy Xg*=V X¢*(VX5%) ™" o(X57)
and moreover the mapping
Dy Xb* > (Dy Y5¥, Dy Z57)
is the same linear mapping as

VXS5 (V Y%,V Z0%),
it follows that
Dy Vi =V Y5V XY 0 (X,

Now D, Y>*=0 for §>s, and
0
sll@

=7%% 0ae.

This gives the first part of the proposition. The second part follows. []
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3 BDSDEs and systems of quasilinear SPDEs

We now relate our BDSDE to the following system of quasilinear backward
stochastic partial differential equations:

3.1 u(t, x)=h(x)+ IT[,,S/’ u(s, x)+£(s, x, u(s, x), Vua)(s, x))] ds

T

+ [ gs, x, uls, x), (Vuo)(s, x)dB,, 0=t<T;

Lu1
Lu=| : |,
Luk

2 d

. e d 0
with L——E };‘ (GO' )U(t X m+i§1bi(t’ _XZ)E_—

i

where u: R x R 5> R¥,

Theorem 3.1 Let f and g satisfy the assumptions of Sect. 1 and h be of class
C?. Let {u(t,x); 05t<T, xeR? be a random field such that u(t, x) is
F.B-measurable for each (t,x), ueC%2([0, T]xR%R¥ as., and u satisfies
Eq.(3.1).

Then u(t, x)=Y"*, where {(Y'*, Zt™); t SS< T}, 0, xera IS the unigue solution
of the BDSDE (2.2).

Proof. Tt suffices to show that {(u(t, Xy%), (Vuo)(s, Xy*); 0<s<t} solves the
BDSDE (2.2).
Lett=ty<t,<t,<...<t,=T

n—1
z Lult;, X35 —ult;yy, X377 )]
i=0

—Z[u(tn X)) —ult, X37)] +Z[u(t,, Xt )—ultivg, Xi7)]

tiy1 Tt
—— [ Lul, XY ds~ | (Vuo), X9 dW,
ti t;

Lit1

+ [ [ s, X5 )+ (s, X575, uls, X7, (Vuo)(s, X2 )] ds

ti+1 tir1 ti+1)e
t

Lit1

+ | gls, X577, uls, X027 ), (Vuo)(s, X7 ) dB,,

tiv1/> i1
t;

where we have used the 1td formula and the equation satisfied by u. It finally
suffices to let the mesh size go to zero in order to conclude. []

We have also a converse to Theorem 3.1:
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Theorem 3.2 Let f, g and h satisfy the assumptions of Sects. 1 and 2. Then
{ut, x)2 Y, 0<t<T, xeR?} is the unique classical solution of the system of
backward SPDEs (3.1).

Proof. We prove that {¥*} is a solution. Uniqueness will then follow from
Theorem 3.2. We first note that ¥%% = Y./ *8% Hence

u(t +h, X)—u(t, x)=u(t+h, x)—ut+h Xpd)+ul+h Xph)—ult, x)
t+h t+h

=— [ Pult+h Xt ds— | (Vuo)(t+h, Xt dW,
t t

t+h f+h

— [ fls XPN YN 20N ds— | gls, Xo, Y%, Z¢") d B,
t t

t+h

+ | Zbraw,.
1

We can then finish the proof exactly as in Theorem 3.2 of Pardoux and Peng
(7. O

Remark 3.3 Condition (H.1), with <1, is a very natural condition for (3.1)
to be well posed. Indeed, in the case where g is linear with respect to its last
argument, and does not depend on y, g is of the form:

g(s, x,z)=c(s, x)z
i.e. the stochastic integral term in (3.1) reads:

ch(s, x)(Vuo)(s, x) dBy.

t

Condition (H.1) for g, in this case, reduces to [c(s, x)|<a<1. This is a well
known condition (see e.g. Pardoux [5]) for the SPDE (3.1) to be a well-posed
stochastic parabolic equation. []

Remark 3.4 Our result generalizes the stochastic Feynman-Kac formula of Par-
doux [4] for linear SPDEs. Indeed, if k=1, f and g are linear in y and do
not depend on z, the BDSDE becomes

T T T
YeF (X + [ afr, X0%) Yimdr+ bl Xe) Yo" dB,— | Ze*dW,

and it has an explicit solution given by:

T T T
Y/ =exp (5 ar, X dr+ § bir, X dB,—3  |b(r, X2 dr) h(X5)

S

T r r ¥
— j" exp (j" a0, X% d 6+ j" b, X5)dBy—% f |28, X512 d@) Z*dW,

s
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and because Y,"* is Z" measurable,

T T
Y/*=E [h(XtT”‘) exp (j a(r, Xe¥)dr+ | b(r, Xv*)dB,
t

t

T
—3{1b0, X&X)Pdr)/%?r],
t

which is the formula in Pardoux [4] (where only the case a=0 is considered).
Note however that in [4] B and W are allowed to be correlated. This does
not seem possible here, unless we allow the stochastic integrals in the BDSDE
to be of a non adapted nature. []
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