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Summary. Let # be a centered Gaussian measure on a Hilbert space H and 
let BR~H be the centered ball of radius R > 0 .  For  a~H and lira R(t)/t< [la[[, 

we give the exact asymptotics of #(BR(t)+ t. a) as t ~ oo. Also, upper  and lower 
bounds are given when ~ is defined on an arbitrary separable Banach space. 
Our results range from small deviation estimates to large deviation estimates. 
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1 Introduction 

Let (E, I]'IY) be a separable Banach space and let ~ be a centered Gaussian 
measure on E. For  the closed ball BR={x~E: I lxi l<e} centered at zero, the 
function la(BR+b) from (0, c o ) x E  into R 1 is of special interest in the theory 
of Gaussian measures or processes, and has been investigated extensively in 
the literature. 

The aim of this paper  is to describe the exact asymptotic  behavior of 

(1.1) fl(BR(t)+t.a ) as t - , o o  

where a t e  is a fixed element and lira R(t)/t <]ra[r. The results range from small 
t --+ oO 

deviations to large deviations. We do so for E =  H (Hilbert space). Also, some 
related upper  and lower bounds are given for/~ defined on an arbi trary separable 
Banach space E. 

Now we turn to some of the basic questions and related references that 
connect with our  paper. There are three cases that  are covered in the study 
of (1.1) in this paper. 

The first case is when the radius is a constant, i.e. R(t)=R=constant. A 
general result of Borell [2] implies 

(1.2) tlim ~ log/~(B, + t - a ) =  i t] aH~ 
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where H'hL, is the norm in the reproducing kernel Hilbert space Huge  of # 
(with the convention ]IaH.--~ if aq~Hu). Thus, if aEHu, then #(Be+t.a ) is 
'a lmost '  exp(-Ilal]~ t2/2). We want to make this 'a lmost '  more precise, and, 
more important, if ar we try to see how fast t -2 log#(Bn+t.a ) tends to 
- - 0 0  a s  t --~ o0.  

The second case is when the radius is shrinking to zero, i.e. lim R( t )=  0. 
t ---~ CO 

The problems of this type are more delicate and useful in general. When 
a~H~,~E, de Acosta [1] gives the sharp estimates at the log level for Gaussian 
measure # on Banach space E. For  Wiener measure on C[O, 1] and a~H,, 
Grill [4] recently provides the estimates that gives the second order term (up 
to a constant) at the log level. Very recently, Kuelbs et al. [9] gives the exact 
estimates up to the second order term for an important  dense subset of H ,  
when # is Wiener measure on Hilbert space. This type of estimate is related 
to the problem of finding the convergence rate and constant in the functional 
form of Chung's law of the iterated logarithm. 

The third case is when the radius is growing to infinity but not too fast, 
i.e. l i m R ( t ) = o e  and lim R(t)/t<llalq. These estimates are in the domain of 

t - + c O  t ---> CO 

large deviation theory and differ from what has been done previously in that 
we are able to obtain results which study the asymptotics of the probabilities 
rather than the logarithm of the probabilities. Unfortunately, our results are 
applicable to only a limited number of sets, and are restricted to the Hilbert 
space setting, so they compete with large deviation theory in only a limited 
way. They do, however, suggest more general questions of interest, which are 
beyond what can be done now. 

The rest of this paper is arranged as follows. In Theorem 1 of Sect. 2, we 
give the exact asymptotics of (1.1) in the Hilbert space case. The main tool 
is to analyze the inversion formula of the characteristic function with a modified 
' Saddle point method '  for integrals of complex functions. This method has been 
used in 1-12] and [9] for special types of problems. In Sect. 3, we give some 
important  corollaries of Theorem 1. In particular, the results related to (1.2) 
and the improved large deviation estimates are discussed. We recall some basic 
results about general Gaussian random vectors in Sect. 4, and in Theorem 2 
we use them to give an upper and lower bound for (1.1) which are refinements 
of Grill [4]. The bounds are sharp at the log level (up to some constants). 
In Sect. 5, we briefly indicate an application of the results we have obtained. 
In particular, we discuss the convergence rate to a point outside Hu for Gaussian 
samples in Hilbert space. 

Throughout  we write a . ~ b .  when lim aJb.= 1 and a . ~ b .  if there is a 
constant C, 1 < C < 0% such that "~ ~ 

1/C < lim a./b. < lim a./b. < C. 
n -+  o o  

n - - +  o9  

We also use C to denote various positive constants whose values might change 
from line to line. 
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2 Exact behavior 

Let kt=t3(X), X =  ~ ~1/2 "~k ~k ek be a centered Gaussian measure on a separable 
k=>l 

Hilbert space H with ~ 2k< oe and 2k>0, non-increasing. Here {~k: n =  1} are 
k>l  

independent N(0, 1) and {ek: k>  1} is a orthonormal sequence in H. Then we 
have the following asymptotic estimates. 

Theorem 1 For any a = ~ ak ekeH (i.e. ~, a 2 < oe) and lim R(t)/t < ]la]l, we have 
as t ~ 0% 

(2.1) 

k > l  k>_l 

P ( H X - t . a l l  2 =< R2 (t)) 

( a~(2& ~)2 
~ " ~ "  ~2k_>~ 1 2k(1+22kT) 3 

t - ~ o o  

{ } t ak7 1 
�9 exp R2(t)7 - 1+22~7 2 ~ 1og(l+22k7) 

k=l  k > l  

where 7 > 0 is the unique solution of the following equation for t large 

(2.2) 
a2 & 

RZ(t) = +tZk~ 1 (1+22k7) 2 t-k~ 1 1+2)ok~/" 

Proof The Laplace transform of the random variable [ I X - t .  all 2 is given by 

ak S e-Sllx-t"rl21~(dx)=exp - s  ~ t 2 2 
H k->l 1 +2)~k S 

1 } 
2 ~ l~  " 

k>l  

Using the inversion formula (see, e.g. Theorem 27.1 in [3]), we have for every 
7>0  

l ~ + i ~  
( 2 . 3 )  P ( l l X - t a l l 2 < R 2 ( t ) ) = ~  ~ e*(S)da 

~-ioo 

where s = 7 + io- and 

2 2 
t a k 

q~(s)= --log s+R2(t )  s - - s  ~ 1 +2)~ k s 
k>l  

1 
2 ~ log(1 +22k s). 

k>_l 

Note that the function ~0'(s) has a zero at (7, 0) where 7=7(0 is given by 

a2 2 k 
(2.4) R2(t)= 1+2  7" 

Hence we take 7 > 0 in (2.3) to be the unique solution of (2.4) for t large. 
Now we rewrite (2.3) as a sum 

( 2 . 5 )  P( l IX- t . a [12<R2( t ) )=I i  + I 2 + I 3 + I 4  
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where 
1 

I1 = ~ ~ e*(S) d a 
~_> lal > ~,6- 2/5 

1 
12 = - -  ~ e~(~)da 

2re I,~1 >~ 
1 13-2  n ~ eRe@(s) x(eiIm~(s)--l)da 

Io'1 < ~fl-2/5 

I _ _ _  1 f eRe@(S) d ff  
4 - -  2 g  "J 

NI < ~'1~ - 2/5 

2 (2 2 k 7)2 
=l+t  2 k>=t 2k(l + 22k 7) 3 "~ 2 T  

T= ~ 1+22k7 k > l  

Note that fi ~ oo as t --, oo. We will show 14 is the dominating term. 
Let us rewrite Re~(s)=A(~)+B(?,~)  by using log(a+ib)=togl/-a-f-+b 2 

+ i arctan (b/a). Here 
2 2 

t a k 7  
A(y)=R2(t)y-- log7 - 1  ~ log(1 +22kg)--k~ a 1 +22k7 

k > l  
(2.6) 

and 

(2.7) 

Then 

(2.8) 

(2.9) 

\ \7! } ~>I 1+22k 

(~) 2 2 t 2  a 2 2k ~2 

- -  k~>=l (l+2.~kT)3+(22k~r)2(l+2~k2) " 

1 A(" 
]Ia[<_<2~e ~' ~ emT'~)der 

~,>__ M >,e,a- 2/5 

1121----<~ eaO) ~ e m ~ ' ~ ) d a .  

Since 2k is non-increasing, we have for 7 > [al > 7 fl- 2/5 

(2.10) exp'-- �88 2 log(1 / 22ker ~2\) 
- k > l  , 

= 

< exp { _  �88 log (1 + fl_4/s 22k7 2 + t1+224? )  ) 

=<exp~--�89 ( 1 , -  k>5= +22k 2k• 2)2} ' (1+(  1224a+224y/2z-* ) ]  

[ 224a \2\-1 
<C'exp{-- �89 1+tT+2~47 ) ) 
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where the second inequality is 
> ?fi-2/5, we also have 

by log(l+x)>x/2 for l > x > 0 .  For 

147 

~-->1< 

(2.11) exp -- k= (l+22kT)3+(22ka)2(l+22kT) 
I 2 2 2 

t a k 2k 7 
<exp _/~-4/s. E ( l+22k7)3j  

k > l  

<exp{-fl-4/5. �88 1 - 2  T)}. 

Therefore by combining (2.8), (2.7), (2.10) and (2.11), we obtain 

(2.12) [It[ <=C.em~).exp(-�89 T}-exp {--f1-4/5 -�88 1 -  2 T)} 

S (1 [ 224a ] ]  1 do 
y_>lr ~fl-a/5 

+~| / 224~r \2\-1 <=C.ea(~'I.exp{--�88188 k l q - ~ l ~ - ~ 7 ) )  do- 
--09 

< C'7" eA(~)" exp { _�88 

Turning to Iz and using similar estimates as in (2.10), we have for lot >7 

(2.13) exp - � 8 8  log 1+ 1+22k7 
v. k ~ l  

<exp ' - - � 88  ~ log( l+(-  1 22k7 '~2'~'~.(1+(12+22~7)2) -1 
- - k~_, , + 2 2 k T / ] J  

"k~s il +--22k TJ ( l ~ L  T] ] 

__<C-exp{-�89 1+ 1+2447 " 

For Io-I >7, we also have by noting that the third term in (2.7) is an increasing 
function of a (without the negative sign) 

(2.14) e x p  
7 ~ 1  (1 + 2& 7) 3 + (2& a)2 (1 + 2& ~) 

~] t2a~2kT2} 
<exp -- Z ( 1 + 2 2 k ~  3 

~,- k > l  

= exp { - �88 1 - 2 T)}. 
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Therefore by combining (2.9), (2.7), (2.13) and (2.14), we obtain 

(2.15) [ I z[<C.eA(~) .exp{- - �89  T}  

�9 e x p { - - � 8 8  .( 1 + ~ 1 + 2 2 4 7  

~~ 224-a ~2~-1do - <= C . eA(~) . exp { --�88 fi } 
_~ \ 1 + 2 & 7 ]  ] 

< C. 7" eA(~) "exp { - �88 fi}. 

Now turning to 13, we have [e ~me(s ) -  iI < IIm ~(s)] and 

a 1 
Im ~b (s) = R 2 (t) a -  arctan - - -  ~ ~ arctan - -  

7 k~l 

[o- a \  1 ~ ( 22kO- 
= [ - - - a r c t a n - - ] + 7  2., ~ 1 7 2 L 7  

\ 7  7 /  k > l  

. t 2 2 Z 
+crk= 1 (1+22.,,7) 2 

d~ 

2 2 t a k 
22k~ o- ~ (l+22kT)2+(2)~k~)2 1+22k7  k>_l 

arctan 1 + 22k 7] 

t 2a2 

(1 + 22,,)-~ + (22,, a) 2} 

by plugging in (2.4). Thus we have by using the inequality x - a r c t a n  x <x3/3, 
x > 0 and 1/x z - 1/(x 2 + y2) < yZ/x4 

1 a 3 + 1 -  a 3 ( 22k7 \3 3 aZ(22kT) 2 2k7 
I Im~(s ) l<3  7 6 7 k>~l 1Ul-~TkT) + ~  "t2k~>=l~k(1-k2)~k?)3 1+22k7  

a k (22k y) 2 <" 1 R -  6/5 _1_ _4R- 6/5 ")~k Y _~2 2 
e 3 e  - 3 e  Z 1+2)ok7] -}-fl-6/5"t2 ~ 2k(1+22kT)3 

k>=l k=>l 

= < C . ~  -~/5 

for I~1 ~7/~-2/5. Hence 

(2.16) l I3 l~C. f1 -1 /5  ~ eaea'(S)d~r. 
I~1 < y P -  2/5 

Next we turn to the dominating term 14. Using the inequality x - x a / 2 <  
log(1 + x)< x, we have from (2.7) that 

2 \ 7 ]  fl(Y)--<B(7'~)--< 2 \ 7 ]  1 -  fl(7). 

Hence by the change of variables, 

7 ~ e-U~/2du 
~ 1.1</~1/1o 

<= ~ eB ( ~" a ) d ff 
lat<~P 2/5 

= ]/@ I,,t <~ ~/~~ e - ~ / 2 d u  x exp {�89 3/5}. 
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Hence 

Thus 

(2.17) I 1 eA(, ) ~ e m~'~)da~ ~ e  Ac" 
r  ,,,-i <,fl-2/5 ~ / ~  

Combining (2.5), (2.12), (2.15), (2.16) and (2.17), we have as t ~ co 

P( l IX- t .a l l2  <=R2(t)) 

7 en(~) 

1/2 p 
_ 1 ~ t 2 2 ak 7 

2 ~  exp (R2 (t) 7 -- k_>-12 1+22k7 
1 
2 k>_~l log(1 +22k 7)}. 

This completes the proof of the theorem by substituting fl in. 

Remark. The asymptotic expression given in our theorem is still implicit in 
terms of t and there does not seem to be an immediate explicit form. However, 
with a little bit of extra work, we can obtain some useful information in many 
interesting cases. 

3 Corollaries 

The following corollary is Borell's result [2] on Hilbert space. 

ak/2k < o0), then as Corollary 1 I f  R( t )=R,  0 < R < o o  and a s H ,  (i.e. [rail2= ~ 2 
t ---> oO k >_ l 

log P(UX-t .aH <=R),,, - � 89  IraJI 2 -t 2. 

Proof. Note that from (2.2), 7 > 0 is given by 

2 1 t z a 2 2k 7 2k 
(3.1) R = - + -  

7 Y k->_l 21, ( l + 2 ) ~ k y )  2 = l + 2 2 k y "  

Hence it follows that ?=7(t)--* oo, 7=o( t  2) as t--* oo since the two summations 
on the right side of (3.1) tend to zero as t--* 0o by the D.C.T. Observing that 

a2(22k 7)2 12 2 
l < t  ~ ~ 2k(l+22kT) a t-2 2 [ 2k7 . < t  2 ak 

k>l 
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for t large, we have by substituting (3.1) into (2.1) 

log P ( l l X - t . a l l 2  < e 2) 
t 2 2 

~ R27_k>y ' ak 7 1 ~1 log(1 + 2,Zk 7) 
=1 1+22k7 2k= 

t 2 ak 2 (2)~k 7) 2 2k 7 
= l - -2-k>~ , 2k (1+22k7) 2 ~-k>~, = = 1+22k7 

t 2 2 

t2 2 t2 

~ - 5 - > 2 1  ~ - Nalt~ = )~k 2 

1 
k~ 1> log(1 +22k7 ) 2 = 

which proves Corollary 1. 
The next corollary gives the second order term for the above result when 

the point a comes from an important dense subset of H, .  This can be viewed 
as a refinement of Borell's result. 

Corollary2 I f  R ( t ) = R = c o n s t a n t  and a e S H *  (i.e. ] [S - l a l l2 ,  = 2 2 2 ak/& < co), 
then as t --+ oe k >= 1 

log(exp { l  jLa l l2 . t 2 } .p (Nx - t . a i l  < R ) ) ~  R .  ]LS-l alhH,.t. 

Proo f  From (2.2), 7 > 0 i s  given by 

(3.2) R2 1 t 2 a 2 (22k 7) 2 2k 
=7+-4~72k~1)2 (1+22k7)2 +-k~* 1+2)~k7" 

It is easy to see that 7 = ~ (t) ~ oo as t -+ 0% and 

Jim (2 k7)2 4 
k>=12k (l+22ky)2--k>~l= ~ and 

/~k 
lim ~ 1 + 22 k 7 

7 ~ ~  1 
N _ 0  

by the D.C.T. Hence we have as t ~ oe 

a k _ _ _  ]lS_lall2, or (3.3) R 2 ~  t2 " 2 t2 

472 k=l~k2--472" 7 
I L S - l a l t . ,  

2R 

Note that as t--+ oo 

(3.4) 
a2(22kT)2 + { 2ky ~2 

t2 Z .)~k(l+2~gT)3 2kZ1\ l+STT/>  "~k / 
k>l = 

=(t2/27)" ~ 2 2 (ak/)~k )" (22k 7/(1 + 22k 7)) 3 + O (7) 
k > l  

(t2/27) �9 ~ (a2/22) + 0(7) 
k > l  

= g l]S- * a[lH,, t + o(t ) 
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and 

~, 2k T/(l + Z2k T)=O(7), Z 1og(l+Z2kT)=O(~). 
k > l  k=>t 

Hence from Theorem 1, by substituting R in (3.2) into (2.1), we have 

log (exp {�89 I[all~" t2} "P(IIX-- t. all < R)) 
2 2 2 a 2 7 

~ t~ Z ak § t2 Z ak 7 t 2 .k O(7) 
2 k->t  )~k (1+2)~k7) 2 ~ 1+22k7 _ k>=l k>l 
t 2 2 t 2 = - - "  2 ~-2" (2~k7)2 V a2 
27 k>=a2k (1+22k7) 2 q-2-'k~l(l+22ky)22k 

~-o(7) 

~ ( t V 2 7 ) - Z  ~ 2 ak/2k + 0(7) 
k_>_l 

~ R . l l S - l a l l ~ , . t  

which proves the claim. 
The following corollary shows that under certain conditions, we do have 

an explicit asymptotic expression ?or P(IIX-tall  < R) as t ~ oo. 

Corollary 3 Let a = ~ a k e k be in H with ~, 2 3 ak/,~k < cO and suppose that 

(3.5) 

Then as t -~ oo 

k>_l k > l  

"~k ]~SS ~ 0. 
lina ~ l+22kS 

k_>_l 

where 

P ( l l X - t a l l  <R)  
1 1 

~>I~I (1 + 2 2 k p t )  -1/2 
R 2 ~  

( a~ + t R Uk 

k 1 �9 e x p  -2- >~ )~k k 1 •k 
= = 

R 2 [ a~] / a~\-a3 

p2=(4R2)-~ ~ a~/22=(4R2) -~ IIS-Xal]2,, 
k > l  

Proof  For 7 ~ ~ we have 

2 1 ak 2 
(3.6) Z (1+22k7)2--~-~72 k 1 2~ 

k_>--I = 

and 

2 
ak 7 _ 

(3.7) y' l+22ky  
k>=l 

1 2 
~> ak - 3 

5 ~ + o ( 7  ) 
4 ~ 3  k =  1 "~k 

2 1 2 1 2 l a k a k ak - 2 

2k=1 2k 47 ~ "~k k__>l "~k k = l  
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Let now 7 be defined as in (2.2) with R(t)=R. Then from (2.2) and (3.6) 

t 2{1 ~, a22 1 a~ - t ) / + _ + l  2k 
R 2 = ~ 4 - k > _ l  2k 47 k~>l 7x+~ E 

_ = Ak / 7 k=>l l+ 22ky"  
(3.8) 

Hence 

(3.9) 7 " t - 1  =(2R) -1 ( ~ "k/"k?O2/~2sx/2+o(1)=p+o(1) 
k>_l 

and it follows by (3.8) that 

(3.10) 
2 

( 1 _ P 2 t 2 ~ _ l  1 v~ ak+ r~ 2k ~-0(1). 
R 2 y \  y2 ] -  4p2 k~l  ~k k>l  ---- 2.. ~ Y 2_. 1+22k7 

Dividing (3.10) by 1 + p t 7-1 and using p t 7-1 .__+ 1 as t ~ oo, we have 

1 >~ a 2 1 7 2k t-o(1) 
(3.11) R2(7-pt)= 8p2k ~ + ~ - ~ l + P t T _  1 ~ 1+22k7 

=1 k=l  

as t --, oo. This implies 7 > P t for t large, and 

2 p 2 R 2 t 2 
(3.12) + 7 k W~_I 2k Y = 1+2"~k7 

=2pR2t 2P tR2(7_pt)+yk~ 1 2k 
Y = 1 +2)~k Y 

=2pR2t_i+ l _ ~  a~ ( 2pt )~> 2k 5 5 +  7-- : I- 0(1) ~P k>-_:2k l+ptT- k=l 1+22k7 

=2P R2t-l+ 177j2 ~, a2 7 (~> 2k ~2 1T5-[ +o(1) "~' k> 2k R2(I+ptT-1) 2 1+22k7]  = k=l  

I + o ( 1 )  = 2 P g 2 t - -  l q-~p2p2 k~> e ~ 
= 

where we use (3.11) in the second and third equality, and (3.5) in the forth 
equality. Using (3.11), log(1 +x)<x for x > 0  and (3.5), we have as t--+ oo (since 
7 > P t for t large) 

(3.13) 0=<�89 ~ 1og(l+22kT) - 1  ~ log(l+22kpt ) 
k>=l k>l 

2 k(7-pt)] 
= � 8 9  log lq 1+22kpt] 

k>l  

2k 
<(7-pt) Y. l+2&pt  

k>__l 

�9 �9 + o ( 1 )  
=2R2  k=l l + 2 2 k p t  k 1 1+22k7 

= o ( 1 ) .  
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Hence we have by (3.6), (3.7), (3.9), (3.12) and (3.13) 

t2a27 1 ~ log(l+22kT) 
R27- ~ 1+22k~ 2 

k > l  k= 

(>~ 7a 2 >~ a k 2 ) ,  
= l + t 2  (1 +22k 7)2 1+22k7 

k = l  k = l  

2k 1 
+ 7 ~  1+22k7 2 ~ log(l+22kT) 

k>=l k__>l 

t 2 2 ~ .  3 2 a k ~ F 2 . . 2  t 2 a k 

7 8 p 2  k = l  23 

2k 1 
+7 ~ 1+22k7 2 ~ log(l+Z2kpt)+o(1) 

k=>t k > l  

t 2 2 2 

= l _ ~ k V a a ~ + 2 p R 2  t ~> ~ >-1 1 ak '_l  43 X;' --~2~2k~ 2 /.., log(l+22kpt)+o(1)" 
Xk = k k > 1 

This provides the desired estimates for the exponential term in (2.1). The esti- 
mates for the other terms in (2.1) are given in (3.4). Thus the corollary is proved. 

By using Corollary 3, one can prove the following result for the finite dimen- 
sional setting. 

Corollary 4 If21 .... ,4 ,>0 are real, al, ..., an~R 1 and R(t)=R, 0 < R <  o% then 

"~(27C)-1/2"( 2 a2~,2) " 2k 
\ k =  1 k /  

{ t2 __~122 +ak t .R(_~ ~2)1/2ak 
�9 exp - 2 -  k k 2k 

.R(,- 1)/2. t - ( n +  1)/2 

R 2 ~ ak2 ( ~ ) ~ t - 1  ~ a k  
2 " ~ "  k=l  2k \ k = l  k /  ) 

Our next two corollaries are a refinement of some large deviation results 
on Hilbert space. The large deviation estimates state that as t--* oo 

logP( X - a  <R)'~--XeBR(a)inf I(x)'t  2 

where BR(a)= {x: IIx--all 5 R }  and I(x)= Iix112/2=(1/2) Z X2/2k �9 
k__>l 

Corollary 5 I f  R( t )=R. t  where R is a constant and 0<R<(  ~ '~kj'~2~1/2, then as 
t ....~ O 0 k > l 

1 
(3.14)  P ( l l X - t . a l l < R . t ) ~ K , , R . T . e x p { -  inf I(x).t 2} 

x e BR (a) 
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where 

1 ( a~.42k72 . 1--[(1+22k70)) -1/2 
K , , R = ~ -  Z (1 +22k70) 3 

k_->l k>l  

and 70 > 0 satisfies 

J. Kuelbs et al. 

a2.42k(1 +2k 70+2k 7) 1 
(3.19) t2(7--7o) k~  (1+22k 70)2 (1+22k 7)2 = 7 

Letting t ~  oo in (3.19) gives us 

(3.20) 

X ~ + 
k@l 1 + 22a 7 = 

a~- 42k 2k 
( l im&(7-yo) ) -2  (1722kTO)3=l+k~  1+22ky o" t~oo k>__ 1 =1 

2 
a k 

(3.15) R 2 =  ~ ( 1 + 2 & 7 o )  2 
k>__l 

Proof In the setting here, we have from Theorem 1, 

(3.16) P(llX-t.al12<R2.t 2) 

1 ( a2(22kT)2 4-2 ~ { 2k7 ~2~-1/2 
~ "  -t2k>=~l )~k(1-k2"~k 7) 3 k~l  \1J~2)~k 7) ] 

} 
k>__i =i 1 +22kT- 

where 7 > 0 is the unique solution of the following equation for t large 

!+ (3.17) R 2 t 2 =  t 2 
~1 (I + 2~ 7) 2 ~ 1+ 2~ 7 = 

Note that from (3.17), 7 = 7(0 is a decreasing function of t by implicit differentia- 
tion, and 7=~(t ) -~o as t-~ ~ where 70, given in (3.15), is independent of t. 
Hence by substituting R in (3.17) into (3.16), we have 

(3 .18)  P(llg-t.all2<R2.t 2) 

1 (t2k~ ~ 2k(l+22k7) 3a~(22kT)2 ))-~/2 ~ ~  I] (l+2X~Vo 
V z ~  _ k>=i 

{ a~'22kg 2 > l+2)~kTJ~k7 } �9 exp 1 - t  z Z ( 1 §  
k_>l = 

Observing that by substituting R in (3.15) into (3.17), we have 
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Now 

(3.21) 
a~.22k72 a2"2)~k72_~ 

t l im t2 k>~l (1 + 22k 7) 2 k>~l (1 + 22~ k 7o)2] 
= = 

2a22k(Y+7o+42kY07) ~ 
=tl im t 2 ( 7 - Y o ) •  (l+22kYO)2(l+22k7) 21 

k > l  

2 2 k  " 4 7 0  

E ak = lim (t2(7--7o)). k (1 +22k yo) 3 
t ~ ~  = 1  

J~k 7O 
= 1 +  ~' 1+22k7 o. k>_l 

From the results in [9], we have 

(3.22) 
2 22k 702 

inf I (x )=  ~, ak" 
~B~(.) (1 + 22 k 7 0 )  2 .  k>_l 

Combining (3.18), (3.21) and (3.22), we obtain (3.14) and hence finish the proof. 
Before we state the next corollary we need to establish the following lemma. 

It is well known from results in large deviation theory. 

Lemma 1 Let V be a convex open subset of H such that Vc~ I~, is non-empty 
and the zero vector is not in V. Then there is a unique point b on the boundary 
of V such that 

(3.23) I(b) = inf I(x) = in[ I(x) < oo. 
x ~ V  x ~ V  

Corollary 6 Let U be a convex open subset of the Hilbert space H such that 
Uc~_H~+O and Oq}V. Take xo~H u to be the unique point on the boundary of 
U such that 

(3.24) I (Xo) = inf I (x). 
x E U  

I f  I(xo)>0,  and for some R > 0  and a~U~lqu ,  the interior of the ball BR(a ) 
is a subset of U, and xo is on the boundary of Be(a), then, as t ~ co 

(3.25) P (X/t  e U) ~ t - 1. exp { - inf I (x)- t 2 }. 
x 6 U  

Proof Since the interior of the ball BR(a ) is a subset of U, we have 

(3.26) P ( X / t e U ) >  P(HX/t-aI[ <R). 

Also, since a t  U ca Hu, Proposition 5 in [5] implies 

(3.27) P(l lX/ t -a l l  <=R)= P(ILX/t-al] <R). 
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Furthermore, by the lemma inf I (x )=  inf I(x), 
I l x - a i l  < R  X~BR(a) 

with the interior of BR(a) in U and xo~BR(a ), we get 

and since (3.24) holds 

(3.28) I (xo)= inf I(x). 
x ~ B• (a) 

Thus for each 6 > 0 and t sufficiently large 

(3.29) P (X/t ~ U) > (1 - c~) K,, R" t -1. exp { - I (Xo). t 2 }. 

Now let C={xeH, :  Ilxll~<=(2I(xo))l/2}. Then C is compact and convex in H, 
and Cm {x: IIx-all <R} =0, or we would have a contradiction to (3.28). Hence 
by the Hahn-Banach theorem there exists a continuous linear functional fEH* 
such that {x: f(x)__<f(xo)} ~ C and V= {x: f(x)>f(xo)} ~ U. Thus 

(3.30) P (X/t ~ U) <= P (X/t ~ V) 

= P ( f ( X ) > t .  f(xo)) 
< (2 re) -1/2 o_ s f (Xo) -1./. - 1  exp { -- t z f  2 (Xo)/( 2 a})} 

where 

(3.31) a} = E(f2(X)). 

Now from [-7, Lemma 2.1], 

(3.32) a}=  sup f2(x),  
I l x l l ~ < l  

and hence 

(3.33) 2 @ I (xo) = sup f2  (x) > f z  (Xo) 
x~C 

as xoEC. On the other hand, since - C = C  and {x:f(x)<f(xo)}~_C we have 
C ~_ {x:[f(x)[ < f  (Xo) }. Thus sup f2  (x) < f 2  (Xo), so (3.33) implies 

x~C 

(3.34) f 2  (Xo)/( 2 @) = I (Xo). 

Combining (3.30) and (3.34) we thus have 

P (X/t~ U) < (4 nI (xo) )- 1/2. t-1 exp { -- I (xo). t2}. 

Hence the corollary is proved. 

Remark. If I (xo )=0  the conclusion of the corollary need not be true. For  exam- 
ple, if U =  {x:f(x)>O} where f is a continous linear functional with f=#0, then 
P(X/ teU)=P(X~U)=I /2 ,  for all t>0 .  If I (xo )>0  and U can be separated 
from C by finitely many half spaces with C in the interior of all but one of 
them which contains Xo as in the proof above, then (3.25) holds as t ~ oo. 
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4 Some upper and lower bounds in the Banach space setting 

If E is a separable Banach space, we have not been able to obtain the precision 
of the results given in Theorem 1. However, extending the approach of Grill 
in [4], we do obtain some upper and lower bounds for translated balls which 
have interesting applications to the functional form of Chung's LIL, see, for 
example, [-8] and [9]. We include these results in anticipation that they will 
have further uses as well. Now we need some additional notation. 

Let E denote a separable Banach space with norm ]l" II and topological 
dual E*. If X is a centered Gaussian random vector with values in E and 
# = s  then it is well known that there is a unique Hilbert space Hu~_E 
such that # is determined by considering the pair (E, H,)  as an abstract Wiener 
space (see [6]). The Hilbert space H ,  can be described as the completion of 
the range of the mapping S: E* ~ E defined by the Bochner integral 

(4.1) S f =  ~ xf(x) d#(x) feE*, 
E 

where the completion is in the inner product  norm 

(4.2) (S f Sg)~, = ~ f(x) g(x) d#(x) 
E 

fg6E*.  

Lemma 2.1 in [7] presents the details of this construction along with various 
properties of the relationship between H ,  and E. In particular, we will use 
the continuous linear maps 

d 

(4.3) / /d(x)= ~ ak(x) Sak and Qd(x)=x--I-ld(x ) d>l 
k = l  

taking E to E. In (4.3), {ak:k>l} is a sequence in E* orthonormal in L2(#) 
such that {Sek:k>l} is a CONS in HF,~_E, and when restricted to H , ,  H a 
and Qe are orthogonal projections onto their ranges. It is also well known 
that lim I] Qe(x)[[ = 0 with p-probability one when # is centered Gaussian mea- 

d ~ o o  

sure, and that for f~H,  we can define the stochastic inner product  for # almost 
all x in E by 

(4.4) 
d d 

(x, f )  ~ = a-*~~ Z C~k(X) ( f  Sak)u = Jimoo~ k:~ C~k(X) ak(f)" 

Then ( - , f ) -  is N(0, a 2) where a z = ( f f ) u ,  and i f f = S h  for some h~E*, we 
have 

(4.5) { x , f ) -  = h(x). 

Finally, i f fEH u the Cameron-Mart in formula for the centered Gaussian measure 
# takes the form 

(4.6) #(A + f )  = Sexp  { -- �89 II f [I 2 _ { x , f ) -  } d#(x) 
A 
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for Borel subsets E of B. This is well known, but a particularly nice proof 
is contained in Proposition 2.1 of [1]. 

In this setting, the / - funct ion of large deviations is 

, , ,  f l lxl?/2 xeH~ 
(4.7) I tx~ = ~( + oo otherwise. 

Furthermore, defining 

(4.8) I(f ,  6)= inf I(x), 
I[f-xll 5-0 

we see I ( f  6)<oc  for all f e / 4  u, the support of # in E. It is also the case that 
all of the properties established for the function I(x, 6) in Lemma 1 of [4], 
when # is Wiener measure on Co [0, 1], have analogues for # an arbitrary cen- 
tered Gaussian measure on E. In particular, if f e e  and 6>0 ,  then there is 
a unique element, call it hs,0, such that ]]hf.o-fL I <6 and 

(4.9) I ( f  6)= l (hi, o). 

We will use these properties freely, and now we establish a lemma which provides 
a slight refinement of (5) in [4]. 

Lemma 2 Let U( f  6)={xeE: ] lx-f[[-<6}.  I f  feHu, 6>0 ,  c~>0, and h=hf ,~,  
then for almost all xe U( f  6) 

(4.10) (x, hS~ __>(c~- 1) c~-' ( f ,  hS~ + ~-  ~ (h, hS~. 

In particular, if ~ = 1, then for almost all xe U( f  6) 

(4.11) (x,  h) ~ > ( h ,  h)u. 

Proof. Take g e U ( f  e) ~ H u . Then h e U (f, c~ 6) c~ Hu, c~ g - (c~ - 1) f e  U ( f, e 6) c~ H , ,  
and hence for 0 _< 2 < 1, 

(1 --2) h + 2(c~g-(c~-- I ) f ) e  U ( f  c~6). 

Thus for 0 -< 2 < 1 

I((1 --2) h + 2(c~g- (c~- 1)f))>=I(h), 

and recalling the definition of I(.), this implies 

22 J]c~g- (c~- 1) f -  hll 2 + 2 2  ( ~ g - ( ~ -  1) f -h ,  h)u>O. 

Since 0-<2< 1, this gives ( c ~ g - ( e - 1 ) f - h ,  h),>O, which implies 

(4.12) (g, h ) ,  > (c~ - 1) c~- 1 ( f h ) ,  + c~- a (h, h)u 

for all c~>0 and geHu~ U(f, 6). 
Recalling (4.3) and (4.4) we see for almost all xEE 

(4.13) lim Ilx-Haxll = 0  
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and 

(4.14) 
d 

(x, h>~ = lim ~ ak(X ) ~k(h) = lira (Ha x, h>~. 
d---* O~ k= 1 d ~ o~ 

Since the boundary of U(f ,  3) has/~ measure zero, (4.13) implies that for almost 
all x ~ U ( f ,  6), that l l ax~H,c~  U(f ,  6) for d sufficiently large. Hence (4.14) and 
(4.12) combine to imply for almost all x~ U(f ,  6) 

(x, h)  ~ = lim ( H  d x, h)~ > (~ - 1) ~-  i ( f, h)~ + c~- 1 (h, h)~. 
d --~ oo 

Hence (4.10) holds and the lemma is proved. 

Theorem 2 Let ~ be a centered Gaussian measure on E. For f ~ H , ,  3>0,  and 
h=hr 

(4.15) #(x: I I x - f l l < 3 )  

<exp  { - s u p ( ( a -  1) a - i  ( f ,  h > , - ( a - 2 )  cC i I(h))} #(x: Ilxll <3), 
a > 0  

and for O<_a<_ 1 

(4.16) #(x: Hx--fl] < 6) >exp  { -  I(h)} #(x: Uxll <(1 - c 0 6  ). 

Remark. If e = 1, then (4.15) implies 

(4.17) #(x: ] I x - f  I] <6)<exp{- I (h~ ,6)}  kt(x: Ilxll <6). 

Also it is easy to check that the sup in (4.15) is obtained at e = l  when 3<  ][f]l 
and E is a Hilbert space, since then I ( f ,  3) can be computed explicitly as given 
in (3.22). 

Proof. To proof (4.16), take A = {x:llx II _-< r}, apply the Cameron-Martin transla- 
tion formula in (4.6), Jensen's inequality, and the symmetry of { x , f >  ~ to obtain 

(4.18) # (A - f )  > exp { - I (f)}/~ (A). 

Now let h=hf,=6 and applying (4.18) we obtain 

~(x: I Ix-f l l  < 6 ) > # ( x :  Ilx-hll < ( 1 - ~ ) 6 )  

> e x p { - I ( h ) }  #(x: [Ixl[ < ( 1 - ~ ) &  

Hence (4.16) holds. 
To prove (4.15) apply the Cameron-Martin formula to obtain for c~ > 0 and 

h = hf, ~6 that 

#(x: Hx-f l]  < 6 ) = e x p { - I ( h ) }  I e x p { - ( x ,  h>-} dl~(x) 
U x - ( f  -h)l] <6 

= exp {I(h)} ~ exp { - ( x  + h, h>-} dl~(x) 
I I ( x+h) -  f[I <=6 
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since (x  + h, h)  ~ = (x, h) - + 2I(h). Applying (4.10) implies 

(4.20) ~ exp { - ( x  + h, h)  ~ } d#(x) 
I](x+h)- fl] <6 

<exp{ - ( c~ -  1) e-1 ( f ,  h ) u _  2 e -  l/(h) } #(x: ]lx-(f-h)l] <-_g)), 

and combining (4.19) and (4.20) yields 

(4.21) #(x: I lx-f l [  _-<~) 
<exp  { ((e-- 1) 0~ -1 (f~ h ) u - ( ~ -  2) c~ -11(h))} #(x: Ilxl[ < 6) 

since #(x: [[x-g]] N6)N#(x:  [[x[[ N6) for all g~E is well known. Since (4.21) holds 
for all e>0 ,  we thus have (4.15) and the theorem is proved. 

Remark. If c~> I]fll c5-1, then h r,~0=0. So the sup in (4.15) is really on 0<c~ 
--< ]If I] 6-1. 

Corollary 7 For anyf~aqu and R(t )<( t  --e) [[fll t, 1 >e>O,  we have 

#(x: [Ix-t . fH <=R(t))>exp{-t2I(gt)} #(x: Hx[[ <(1--e)  R(t)) (4.22) 

and 

(4.23) #(x: i[x--t" fl[ < R(t)) 
<exp{- -  t2I(gt, (1 +e) R(t)/t)} #(x: Ilxll <(1 +e) R(t)) 

where gt~SE* satisfies 

(4.24) II f -  gt II <= (t)/t. 

Remark. Since SE* is dense in H ,  and the E norm satisfies 

HXI[E<(EIIX][2) 1/2 ][Xl] u x~H u, 

we have SE* is dense in H, .  Thus gt satisfying (4.24) exists. 

Proof To prove (4.22) observe that 

#(x: I[x--t" f[[ < R(t))> #(x: ]]x--t'gt[] <(1--e)  R(t)) 
>exp { - t2I(gt)} #(x: ]lxil <(1 - e )  R(t)) 

by (4.16) with e=0 .  For (4.23) apply (4.15) with e =  i to obtain 

#(x: I Ix - t ' f ] l  <R(t))<#(x: ]Ix--t'gtll <(1 +e) R(t)) 
< exp { -- I (t gt, (1 + e) R (t))} # (x: H x ]1 < (1 + e) R (t)) 

< e x p { - t Z I ( g t ,  (1 +e) R(t)/t)} #(x: ]Ix[] <(1 +e)R(t)), 

Thus the corollary is proved. 

Remark. If f ~  H u and R (t) = R, 0 < R < ~ ,  then taking gt = Hint f where 

m~=min {m> l : [[f -- Hmf[[ <eR/t} 
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we have gteSE*, and (4.22) and (4.23) combine to give 

lira t -2 log #(x: [ [x- t . f [ [  < R ) =  -Ilf][2/2. 
t --+ oO 

Returning to the Hilbert space setting, we can say more since the function 
l(f ,  3) can be computed and gt takes a special form. Let (ek)k>= 1 be an orthonormal 
bases in H and 2k>0 with ~ Ak<OO such that # (B)=P(  ~ 2k ~kekaB). 

k = > l  k > l  

Theorem 3 Let a = ~ ak ekeH and 
k>l 

(4.25) mt=min{m> l" ~ a2~(1--e)(R(t)/t) z} 
k = m + l  

forO<e<l, Then 

(4.26) P(l[X-t.a[I =R(t ) )>exp  - t 2  ~ a2 { 2 k : , ~ }  "P(HXII<(1-OR(t)) 

and 

{ fs m@l 2 ~k x2 .'~ 
(4.27) P(lIX- t. all _-__ R(t)) <= exp - 2 -  k= ak. (1 + 2k xt)2.J 

-P(IIXII <(1 + ~) e(t)) 

where xt is defined by 

a~ =(1 +02 .  R2(t) 
(4.28) ~ (1 + 2k xt) 2 t 2 

k = l  

m t  

Proof Let gt = ~ ak ek in Corollary 7. Then the claim follows from Corollary 7, 
k = l  

(3.22) and (3.15). 

5 An application 

As mentioned in the introduction, the estimates we have in this paper can 
be used to give the convergence rate and constant in the functional form of 
Chung's LIL. These only depend on the shift being in H u. Since the estimates 
we have also work for the shift not in Hu, we can formalize the problem for 
points outside H, .  

Let X, X1,X2 . . . .  be iid H-valued centered Gaussian vectors where X is 
defined as in Theorem 1 with 2 k = k-2. If a k = k-1 and a = (ak), then 

(5.1) lira I]Xn-- 25/4TC-1/2 R 1~2"(lOg n)l/4.a[] = R a.s. 
n - c o o  
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where 0 < R  < oo is a constant .  This  follows from Borel-Cantel l i  L e m m a  a nd  
the est imate 

logP(lIX-t.all <R)~ - 2 -  57z2 R - 2 .  t4 

ob ta ined  by Theorem 1. 

Remark. Strassen's LIL asserts that  the l imit points  of {X,/[/21ogn} are 

K =  {a: I[all,< 1}. Results  s tudying how close { X , / ~ n }  can approximate  
a fixed poin t  inside K (see [-13) and  on the b o u n d a r y  of K (see [--93) have 
been obta ined.  In  part icular ,  in this s i tua t ion we have 

l im log n IIX,/~/2 log n II : 7(4 a.s. 
n ~ o 9  

which tells how close {X,/]/21og n} can be to zero. On  the other  hand,  (5.1) 
can be rewrit ten as 

l im 11/i~llXJ2]/21ogn-23/47z-l/ZRl/2(logn)-t/4.all=-R/]~ a.s. 

This tells us how closely {X,/21~ogn} can approx imate  a sequences of points  
that  are no t  in H ,  bu t  which converge to zero. Of course, (5.1) is just  for a 
par t icular  Gauss i an  measure  on  12 and  a special point ,  bu t  the general  case 
can be hand led  provided the asymptot ic  behavior  at the log level can be calcu- 
lated. 
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