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Summary. This paper establishes asymptotic lower bounds which specify, in a var- 
iety of contexts, how well (in terms of relative rate of convergence) one may select 
the bandwidth of a kernel density estimator. These results provide important new 
insights concerning how the bandwidth selection problem should be considered. In 
particular it is shown that if the error criterion is Integrated Squared Error (ISE) 
then, even under very strong assumptions on the underlying density, relative error 
of the selected bandwidth cannot be reduced below order n -1/lo (as the sample size 
grows). This very large error indicates that any technique which aims specifically to 
minimize ISE will be subject to serious practical difficulties arising from sampling 
fluctuations. Cross-validation exhibits this very slow convergence rate, and does 
suffer from unacceptably large sampling variation. On the other hand, if the error 
criterion is Mean Integrated Squared Error (MISE) then relative error of band- 
width selection can be reduced to order n -1/2, when enough smoothness is 
assumed. Therefore bandwidth selection techniques which aim to minimize MISE 
can be much more stable, and less sensitive to small sampling fluctuations, than 
those which try to minimize ISE. We feel this indicates that performance in 
minimizing MISE, rather than ISE, should become the benchmark for measuring 
performance of bandwidth selection methods. 

1. Introduction 

Nonparametric density estimation provides a very useful tool for investigating the 
distribution structure of unknown populations. See Silverman (1986) for a large 
collection of interesting real data examples, where this method provides inference 
essentially unavailable from other approaches. 

A useful mathematical formulation of the density estimation problem is to 
think of estimating a probability density f using a random sample, Xi . . . . .  X., 
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from f .  Given a bandwidth h, and a kernel function K, the kernel density 
estimator is 

~(X)  ~-- ~1-1 ~ gh(X -- Xi ) , 
i = 1  

where Kh( ' )=  K(./h)/h. Kernel estimators have been at the center of density 
estimation because their simplicity and easily understood intuition makes them 
very attractive to those whose main concern is seeing distributional structure in 
data sets. 

The bandwidth h of the kernel estimator controls the smoothness of the 
resulting curve estimate, with the result that bandwidth choice is crucial to 
performance of the estimator. See for example Devroye and Gy6rfi (1984) or 
Silverman (1986). The most effective method for bandwidth selection currently in 
use is subjective choice by the data analyst. While much insight has been gained by 
this approach, it is clear that a more objective method would greatly enhance the 
usefulness of density estimation, so considerable research effort has been invested 
in finding data based methods of choosing the bandwidth h, see the survey by 
Marron (1988). 

The usual approach to formalizing this problem is to first decide on a method of 
assessing the performance offh. Widely considered means of doing this include the 
Integrated Squared Error (ISE) 

A(h,f) = ~ ( ~ - f 2 ) ,  

and the Mean Integrated Squared Error (MISE) 

M(h,f) = EA(h,f).  

(See Devroye and G y6rfi (1984) for another viewpoint.) The minimizers of these 
criteria, denoted by h I and h s respectively, are both intuitively reasonable choices 
of "optimal bandwidth". Which of these has been called optimal has in the past 
been determined by the researcher, and there appears to have been little concern 
(with some exceptions as noted below) over differences between these. The main 
thrust of this paper is development of asymptotic arguments that we feel demon- 
strate clearly that: 

(1) there is an important difference between these two methods of assessing 
accuracy, and 

(2) h~ and M(h,f) should play the more prominent rote in future developments, 
from both analytical and simulation viewpoints. 

The basis for this last conclusion is that, under the common assumption that f has 
two or more derivatives, the goal of hy cannot be attained without serious sampling 
fluctuations which can cause grave practical problemsa In fact, there do not exist 
bandwidth selection methods which come closer to h s than n-t/10 in terms of 
relative rate of convergence, no matter how many more than two derivatives are 
assumed. Analogous results hold for attempts to estimate A. However, when f has 
only slightly more than four derivatives, there are bandwidth selection methods 
which come within n-  1/2 of h I. This relatively low error makes such bandwidth 
selection methods less sensitive to sampling fluctuations than those which aim to 
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estimate/~f. Essentially, the sample variability of/~I makes this quantity extraordi- 
narily difficult to estimate, even under very strong smoothness assumptions, while 
the stability of h z makes it a reasonable goal. 

Many of the famous early theoretical papers in density estimation, such as 
Rosenblatt (1956), Watson and Leadbetter (1963) and Rosenblatt (1972), all chose 
M(f,  h) as their criterion, because it is far simpler to work with analytically. Three 
early simulation studies, Anderson (1969), Wegman (1972) and Fryer (1977), ex- 
pressed a desire to use M ( f  h) as a criterion but pointed to numerical difficulties 
and instead approximated M ( f  h) by an average (over the simulations) of a quan- 
tity closely related to A ( f  h). The first researcher to express concern over the 
difference between M and A was Steele (1978). But Steele's arguments were based 
on a pathological type of estimator, and in fact it is usually the case that pointwise 
in h (or in deterministic sequences of h's), M ( f  h) and A (h,f) are asymptotically 
equivalent in the sense that their ratio converges to 1 as n ~oe.  See Hall (1982), 
Marron (1986); Marron and H/irdle (1986). 

However when considering data-based bandwidth selection, the above results 
need cautious interpretation because then the bandwidth is really considered to be 

a random variable/~. The first indication that random bandwidths make a substan- 
tial difference was provided by Hall and Marron (1987a), who showed that the 
relative difference between h I and/~I is of the extremely large order of magnitude 
n -1/1~ as n - ~ .  

Earlier workers paid very little attention to this issue. It is interesting to note 
that in two fundamental papers on modern data-based bandwidth selection, 
Rudemo (1982) and Bowman (1984) (who independently proposed the influential 
idea of Least Squares cross-validation), different viewpoints are taken. Rudemo 
drew his motivation from thinking in terms of estimating M(f,  h), while Bowman 
arrived at essentially the same bandwidth selector by striving to approximate 
A (f, h). The ensuing development has been divided as well. More complete litera- 
ture on this available in an earlier version of this paper available from the authors. 
See H~irdle et al. (.1988) and Marron (1988, 1989) for further discussion concerning 
which of h I and h I should be called the "optimal" bandwidth. 

As noted above, the present paper addresses the issue of h I versus /~I by 
exploring the best possible rates of convergence of any automatically selected 
bandwidth to these targets. For h I this rate is a very slow n -  1/lo while for h e it is 
the far faster n - 1/2. We argue from these results that hi, not hi, should be the goal 
in bandwidth selection problems. The reason is that relative errors of the order 
n - l / l ~  in estimation of h I indicate extreme susceptibility to sampling fluctu- 
a t ions -no te  for example the notorious difficulties which have been experienced 
with cross-validation (Scott and Terrell 1987). On the other hand, the availability 
of n - ~/2 convergence (under strong enough assumptions), and much better sample 
stability, make h I much more appealing. 

We acknowledge that there are some strong philosophical arguments against 
this viewpoint. For example, Mammen (1988) has pointed out that h I and M(f,  h) 
have no interpretation in a classical decision-theoretic sense. Note that for band- 
width selection, the usual notion of"loss" would be A (f, h). It might appear at first 

glance that the corresponding "risk" would be M(f ,  h), but more careful thought 

shows that it is in fact EA (f, h), which is different because of the randomness of/~. 
The reason that there is room for notions besides the usual loss and risk is due 

to the fact that there is a richer structure in the present problem than in the classical 
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decision-theoretic setup. For this reason we must be careful not to dogmatically 
apply the rules of classical decision theory, and instead consider possible new 
viewpoints, such as h I and M(f, h), in their own right. 

There is an entirely different angle from which the above theoretical results also 
provide a great deal of insight. That viewpoint concerns how one should assess the 
performance of bandwidth selectors in simulation studies. When one considers the 
problem in this setting, a strong argument can be made for/~I and A (f, h) along the 
lines of"I  want to estimate f well for my set of data, not in an average sense over all 
possible sets of data (as done by consideration of h I and M(f,  h))". While this 
argument is sensible, our results show that it is not realistic, because h I has too 
much variability to be accurately estimated. Furthermore, the high level of noise 
that is now seen to be inherent to h I and A (f, h) render them less effective than h I 
and M ( f  h), because the noise tends to obscure important differences between 
various bandwidth selectors. If the Monte Carlo variability of a bandwidth selec- 
tion method is assessed by confidence intervals, they will be far wider for h I or A, 
because of the excess noise). See Marron (1989) for an actual demonstration of this 
phenomenon. In our opinion, the greater resolution possible from the use of h I and 
M(f, h) outweighs the intuitive disadvantages mentioned above. 

To study how close any bandwidth selector h (thought of now as being any 
measurable function of the data, so as to take into account any future methods, as 
well as those known now) may be to either notion of optimum, it is necessary to 
consider more than one underlying density. A convenient means of doing this is 
through a minimax structure. A point of similarity of the results in Sect. 2 is that, 
for each n, only two alternative densities need be considered. Donoho and Liu 
(1987) have termed such settings "problems whose difficulty is determined by the 
hardest one dimensional subproblem." 

From this viewpoint, Theorem 2.2 is a major improvement over the results of 
Hall and Marron (1987b). The improvement is not just technical in character, but is 
very important from a statistical point of view. This is because the previous result 
essentially assumed that f "has no more than two derivatives," and left open the 
problem of what happens when f is smoother. Theorem 2.2 shows conclusively 
that smoothness is simply an artifact of the method of proof used there, and in fact 
the n - 1/lo bound holds even in the presence of parametric knowledge about the 
underlying density f 

Theorem 2.3 provides a lower bound of n - 1/a to the relative error in estimating 
h I. It is based on a two point discrimination problem, which is essentially paramet- 
ric in nature. Theorem 3.2 shows that in a nonparametric setting, when the 
underlying density is not sufficiently smooth, the bound of n - 1/2 can be sharpened. 
In Sect. 4, it is shown that the combined bounds on the rate of convergence of Sects. 
2 and 3 are sharp, by exhibiting bandwidth selectors which attain the same rates of 
convergence, for the various amounts of smoothness assumed on the underlying 
density. The arguments which give the latter results involve an improvement of 
a result in Hall and Marron (1987c), given in Theorem 4.1. 

A very different application of larger alternative classes will be given in Sect. 3.3, 
where this technique will be applied to gain some improvements of the results in 
Sect. 2. 

All proofs are postponed to Sect. 5. 
Observe that for our main results we assume the kernel K is a probability 

density, which entails that for estimation of f the rate of convergence can not 
exceed n-#/s, which is achieved with only two bounded derivatives. When more 
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smoothness is assumed (as done in this paper) faster rates are possible, but these 
require the use of higher order kernels as defined in Remark 2.2.4. However we feel 
it is most relevant to study nonnegative kernels (even when their asymptotic rate of 
convergence is slightly less than optimal) because these are what are used in 
practice. The reason for this is that higher order kernels lose the most attractive 
feature of the kernel density estimator: its beautifully simple and compelling 
intuitive content. Even beginners immediately understand what the nonnegative 
kernel is doing to the data, but this becomes far harder when the kernel takes on 
negative values. We feel this consideration outweighs the rather minimal (at least 
for reasonable sample sizes) gains that we have observed for higher order kernels. 
Extensions of our results to higher order kernels are briefly discussed in Remarks 
2.2.4, 2.3.4, 3.2.5 and 4.5, although there also more smoothness is typically assumed 
than the kernel can use. 

2. Bounds involving two alternatives 

2.1. Introduction and summary 

To obtain the lower bounds in the current section, it is enough to consider (for each 
n) only two alternative densities. A means of constructing these (in a way which 
yields useful lower bounds) is to start with a fixed densityfo(x), and a function ~(x), 
and consider the alternative density 

f l (x)  - {1 + n-1/2a(x)}fo(x). 

The fact that fo and f ,  are distant only n - ,/2 apart means that our bounds will 
apply even in a parametric setting, not solely to nonparametric classes of densities. 
It also means that most of the usual norms will be of order n-1/2 when e is 
a reasonable function. This will emerge particularly clearly in Sect. 2.4, where the 
cases of shifts and rescalings of a fixed f will be dicussed. 

To ensure that f ,  is a proper density (for n large enough), assume 

(2.1.1) ~efo=O and f , > 0 .  

Also assume 

(2.1.2) fo and I~l/o are bounded, 

(2.1.3) fo and c~fo have five bounded derivatives, 

(2.1.4) 0 < ~r2 --- IeZfo < oe. 

Convenient technical assumptions concerning the estimator are: 

(2.1.5) K is nonnegative and symmetric, with SK = 1, 

(2.1.6) K is compactly supported with a H61der-continuous second derivative. 

Assumption (2.1.5) is important to the effective behavior of the kernel estimator. It 
implies that K is a "second order kernel". Versions of our results for higher order 
kernels will be presented in Remark 2.2.4. Assumption (2.1.6) is made more for 
convenience. It is straightforward to weaken this assumption through the use of 
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various truncation arguments, but this is not done explicitly because the increased 
complexity of proof would detract from the main points. 

Further useful notation is, 

p - 1 - q0(a/2), 

where �9 denotes the standard normal cumulative distribution function. 
Sections 2.2 and 2.3 will provide lower bounds to convergence rates of general 

estimators of h s and h s, respectively. Section 2.4 will illustrate the main features of 
these results by considering density estimation in parametric problems where either 
scale or location is unknown. In particular, the fact that the bounds obtained in 
Sects. 2.2 and 2.3 apply even in the presence of parametric knowledge is under- 
scored. 

2.2. Bounds in the case of ISE 

In addition to the technical assumptions made in Sect. 2.1, also assume that the 
alternative densities, fo and f l ,  are distinct in the sense that 

(2.2.1) ~ {(d/dx) 2 c~(x)fo (x) } fo(x) dx + O, 

where here and below (d/dx) 2 denotes two applications of the usual derivative 
operator, applied to the product function e . f in  this case. The implications of this 
condition will be made clear in Sect. 2.4. The following theorem shows that it is 
impossible to find a data-based bandwidth which is closer to hz, the minimizer of 
the Integrated Squared Error A (h,f), than n -  1/lo in a relative error sense. 

Theorem 2.2. Under the Assumptions (2.1.1)-(2.1.6) and (2.2.1),for h any measurable 
function of the data, 

(2.2.2) l imliminf  max Ps( Ih - l~s l / f~ s>en-1 / l~  
e-~O ~ f e l f o , f l )  

(2.2.3) l imliminf  max P : { I A ( h , f ) -  A ( h : , f ) t / A ( h : , f ) >  en -1/s} > p .  
e ~ 0  n--+~176 f ~ { f o ,  fl} 

The proof of Theorem 2.2 will be given in Sect. 5.1. 

Remark 2.2.1. If/~ is taken to be the bandwidth chosen by cross-validation then 
the convergence rates in (2.2.2) and (2.2.3) are achievable; see Hall and Marron 
(1987a). Therefore the convergence rates described by Theorem 2.2 are best pos- 
sible. Theorem 2.2 is a substantial strengthening of Theorems 2.1 and 4.1 of Hall 
and Marron (1987b). Although the bound is the same, the class of alternatives is 
much smaller and simpler here, with resulting benefits as discussed in Sect. 1. 

Remark 2.2.2. The probability p may be increased to 1 if more than just the two 
alternatives fo and f~ are considered. A method of doing this will be described in 
Sect. 3.3. 

Remark 2.2.3. If there were really only two densities fo and f l  under considera- 
tion, then " >  p" would become " = p "  if one took h to be the "likelihood ratio 
bandwidth", which chooses between h~o and @1 depending on whether the likeli- 
hood ratio is bigger or smaller than one. The proof of the theorem is based on the 
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fact that no discrimination rule can distinguish between fo and f i  more effectively 
than the likelihood ratio rule. 

Remark 2.2.4. If the kernel function K is allowed to take on negative values, then 
the rate of convergence of J~ to f may be improved (see, for example, Sect. 3.6 of 
Silverman 1986). In particular the kernel function K is said to be of order r when 

1 if j = 0  

~xJK(x)dx  = 0 if 1 < j  < r -  1 

x + 0  if j = r  

Assumption (2.1.5) ensures that K is of order 2. The advantage of K being of order 
r is that, when f is assumed to have r continuous derivatives and h ,,~ n -  1/(2r+ l) 
both A(h,f)  and M(h, f )  are of size n -2r/(2r+l). Theorem 2.2 continues to hold 
under this type of assumption, with the rates of n -~/1~ and n -1/5 replaced by 
n -  1/2(2r+ t) and n -  a/(2r+ 1), respectively. The differential operator (d/dx)2 in con- 
dition (2.2.1) should be replaced by (d/dx)  r. 

2.3. Bounds in the case of MISE 

In this case, the Assumption (2.2.1) concerning the difference between the alternat- 
ive densities, fo and f l ,  should be replaced by 

(2.3.1) f {(d/dx) 4 c~(x)fo(x)}fo(x) d x ,  O. 

See Sect. 2.4 for an investigation of the implications of this condition. Our next 
result shows that it is impossible to use a data-based bandwidth which is closer to 
h s, the minimizer of the Mean Integrated Squared Error M(h,f),  than n -i/2 in 
a relative error sense. 

Theorem 2.3. Under the Assumptions (2.1.1)-(2.1.6) and (2.3.1),for h any measurable 
function of the data, 

(2.3.2) l imliminf  max P y ( I h -  hyl/hy > en -i/2) > p,  
~---~0 n--*oo f e { f o , f l }  

(2.3.3) l imliminf  max P y { I M ( h , f ) -  M(hs , f ) l /M(hy , f )  > en -1} > p.  
e~O n~oo  f e { f o ,  f i }  

The proof of Theorem 2.3 will be given in Sect. 5.2. 

Remark 2.3.1. Section 4 will discuss bandwidth selectors /~ which achieve the 
convergence rates described in Theorem 2.3. In fact, the convergence rates are 
achievable uniformly over classes of densities having 4.25 derivatives. In this sense 
the convergence rates described by Theorem 2.3 are the best possible. 

Remark 2.3.2. As in Sect. 2.2, the probability p may be increased to 1 if more than 
just the two alternatives fo and f i  are considered. A method of doing this will be 
given in Sect. 3.3. 

Remark 2.3.3. Also as in Sect. 2.2, the likelihood ratio bandwidth (adapted for 
M instead of A) gives equality in (2.3.2) and (2.3.3). 
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Remark 2.3.4. There is a version of Theorem 2.3, with exactly the same rates n -1/2 
and n - 1 in (2.3.2) and (2.3.3) respectively, for higher order kernels, The only change 
required is suitable modification of (2.3.1). 

2.4. Example. Scale and location changes 

Additional insight into the structure of the minimax bounds of Theorems 2.2 and 
2.3 can be gained by consideration of some specific choices of the alternative 
densities fo and f l .  Particularly interesting features are emphasized if e is chosen to 
make f l  approximately a scale or location change offo. Of course in such a context, 
one should never consider estimating a density with a kernel estimator, but it is 
never the less worth studying because of the interesting implications for the 
bandwidth selection problem. In the scale-change case, f l  (x) may be represented as 

(2.4.1) (1 + n-1/e/fo{(1 + n-la)x} 

=/o(x) + n-1/~ {fo(x) + xfd(x)} + O ( n - 1 ) .  

Thus define a ( x ) =  1 + x{ f~(x) / fo(x)} .  Straightforward calculations show that 
for anyfo satisfying (2.1.1)-(2.1.4), conditions (2.2.1) and (2.3.1) hold for this f l ,  and 
so this "scale alternative" may be used in Theorems 2.2 and 2.3. In the terminology 
of Donoho and Liu, this is a "hard direction" in which to estimate either h I or h s. 

In this context, Theorems 2.2 and 2.3 are perhaps most vividly illustrated by 
considering the problem of estimating a normal N(#, o 2) density using a non- 
parametric density estimator, as follows. Suppose # isknown, but 0 .2 is unknown. 
Estimate o 2 using the sample variance ~2, and t a k e f t o  be the N(#, &2) density. 
Note that n -  1/2 is the order of magnitude of the distance between #2 and a 2, so we 
are essentially in the context of the previous paragraph. Take/~i  (the bandwidth 
which minimizes A(h, f ) )  as our estimate of hj~ (the bandwidth^ ^ which^ minimizes 
A(h,f)) .  Likewise, take h 7 as an estimate of hz. Then (h i - hs)/h s is of precise 
order n-1/lo, as indicated by Theorem 2.2, and (h i - hj.)/h s is of precise order 
n - 1/2, as indicated by Theorem 2.3. This simple example brings home strikingly the 
fact that, fven in the presence of parametric knowledge about f we cannot hope to 
estimate h~ with a relative error of less than n -  1/lo. The goal of estimating h~ is 
clearly very different, because in the presence of such parametric knowledge we can 
achieve the usual parametric rate of n - 1/2 

However, the situation changes markedly if the unknown parameter is one of 
location rather than scale. In the location-change case, f l  (x) may be represented as 

fo (x  + n -1/2) =Yo(x) + n-1/2fd(x) + o ( n - 1 )  . 

Hence, define c~(x)=fd(x)/fo(x).  Again it is simple to check that, for any fo 
allowed by (2.1 1) - (2.1.4), the conditions (2.2.1) and (2.3.1) are not satisfied by this 
choice of ~. Indeed, not only are these assumptions not valid, but the conclusions of 
Theorems 2.2 and 2.3 fail. i.e. this subproblem is not as hard as that for the scale 
change, in the terminology of Donoho and Liu (1987). 

Again, these features are perhaps best brought out by considering the problem 
of estimating a normal N(#, a 2) density. On this occasion, suppose # is unknown 
and a 2 is known. Estimate # using the sample mean fi, and take f t o  be the N(/~, cr 2) 
density. Then n - 1/2 is the order of magnitude of the distance between ~ and #, and 
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so we are in the context of the previous paragraph. Let/~7, h7 be our parametric 
estimates of h:, h: respectively. Then h 7 = h:, so that our estimate of h: is 
error-free. However, it may be shown that (h 7 - h:)/h: is of precise order n-3/5, 
which is considerably better than the error of the order n - 1/lo encountered in the 
scale-change problem, and even better than the error n - 1/2 which might have been 
expected, but not quite error-free. It turns out that a relative error of n-3/5 is 
intrinsic to bandwidth selection for the ISE problem in this setting. In an earlier 
version of this paper, available from the authors, this fact is formulated as a the- 
orem along the lines of Theorem 2.2. 

3. Bounds involving multiple alternatives 

3.1. Introduction and summary 

There are two points at which deeper insight can be gained by modifying the above 
two-alternative minimax results to make use of multiple alternatives. The first 
point is in establishing a better bound on how well a bandwidth selector h may 
approximate h:, the minimizer of the Mean Integrated Squared Error M(h,f), in 
situations where the underlying density is not too smooth. The second point is in 
strengthening Theorems 2.2 and 2.3 by replacing p by 1 on the right hand sides of 
(2.2.2), (2.2.3), (2.3.2), and (2.3.3). 

When the underlying density is not too smooth, the lower bounds of Theorem 
2.3 may be sharpened. In such cases, the rates of convergence depend on the 
amount of smoothness assumed about the underlying density. To quantify this in 
a form convenient for minimax lower bound results, consider smoothness classes 
indexed by a parameter v > 0. In particular, given B > 0 let I be the largest integer 
strictly less than 2 + v, and define Gv(B) to be the set of all probability densities 
which vanish outside ( - B ,  B), have/derivat ives,  and satisfy 

(3.1.1) sup If(~ - f ( l ) ( y ) l / [ x  - y l  z + v - I  <: B .  
X, y 

A minimax lower bound for the relative rate of convergence of/~ to h:, in terms of 
the smoothness index v, will be stated in Sect. 3.2. The issue of increasing p to 1 will 
be treated in Sect. 3.3. 

3.2. Bounds in the case of MISE 

The minimax lower bound of Theorem 2.3 may be sharpened, when the underlying 
density is not too smooth, to: 

Theorem 3.2. Under the Assumptions (2.1.5) and (2.1.6), for v, B > 0 and h any 
measurable function of the data, 

(3.2.1) lim liminf sup Ps ( I /~ -  hsl/h: > en -p) = 1, 
~ 0  n~c~  f E G v ( B  ) 

(3.2.2) lim liminf sup P : { l M ( h , f ) -  M ( h : , f ) l / M ( h : , f )  > en -20} = 1 , 
e--*O n ~  f ~Gv(B ) 
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where 

(3.2.3) p = max{i/10, 4v/(4v + 9)) . 

The proof of Theorem 3.2 will be given in Sect. 5.2. 

Remark 3.2.1. It is important to note that Theorems 2.3 and 3.2 each provide 
useful information for different values of v, with v = 2.25 being the boundary point. 
In particular, for v > 2.25 we have p > 1/2, and then the lower bound of Theorem 
2.3 is more informative. On the other hand, for v < 2.25 we have p < 1/2, so the 
present bound is more useful. Thus the overall lower bound is n-P', where 

p' = min(p, 1/2) = min[max { 1/10, 4v/(4v + 9)}, 1/2] . 

Remark 3.2.2. Observe that p = 1/10 for 0 _< v _< 0.25, and p^= 4v/(4v + 9) for 
0.25 < v < 2.25. The relative error convergence rate of n p for h is best possible in 
both these cases, in the sense that there exist bandwidth selectors which achieve the 
bound of Theorem 3.2. The convergence rate of n -1/2 given by Theorem 2.3 is also 
optimal, when v > 2.25. If 0 < v < 0.25, the optimal rate of n - m ~  is achieved by 
cross-validation, see Hall and Matron (1987a). For  v > 0.25 the optimal rate is 
achieved by a plug-in estimator, as will be shown in Sect. 4. 

Remark 3.2.3. The optimal convergence rate for the closely related problem of 
estimating S (f,,)2, is n -P" where 

p" = min{4v/(4v + 9), 1/2} , 

see Bickei and Ritov (1988) (the relationship between these two problems will be 
discussed in some detail in Sect. 4). Since p' = p" for v > 0.25, but p'  > p" for 
0 =< v < 0.25, it follows that the problem of estimating ~ (f,,)2 is of equivalent 
difficulty to that of estimating h I when v > 0.25, but is harder otherwise. 

Remark 3.2.4. The class of densities G~(B) is actually far bigger than is required to 
obtain the bound stated in the theorem. In particular, in the proof a much smaller 
class (finite for each n) of alternatives is constructed, and this is all that is necessary. 
The more general result is not stated here because it involves the introduction of 
considerably more notation, which has a tendency to obscure the main point of this 
section. 

Remark 3.2.5. If the kernel K is of order r, then G~(B) should denote a class of 
densities with r + v "derivatives", instead of 2 + v as above. Then the only change 
to Theorem 3.2 is that p should be changed to 

p = max[-1/{2(2r + 1)}, 4v/(4v + 4r + 1)] . 

If this p is used in the formula p' = rain(p, 1/2), then optimal convergence rate 
(both bound and achievable, is still n-P');  compare Remark 3.2.2. 

Remark 3.2.6. A referee has pointed out an interesting heuristic, to the effect that 
if f is smooth everywhere, except for a single jump discontinuity, the cross- 
validated bandwidth will have a faster relative rate of convergence than n - 1/1 o. The 
generalization of this idea to the case of f everywhere smooth, except for finitely 
many jumps or kinks (where f is continuous, but f '  has a jump), has been 
independently established by van Es (1991). This might be considered surprising, in 
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view of our results, since it seems that with "less smoothness" one can obtain 
a faster rate of convergence. The problem lies with the fact that such underlying 
densities are not really "less smooth", in the sense of being "representative mem- 
bers" of Gv(B),  for v < 0.25. In particular when there are only finitely many jumps 
and kinks, the locations and sizes of these can be estimated very well, so the only 
unknown part of f is the smooth part, which can be estimated with a faster rate. 
We feel it is to the credit of cross-validation that it "automatically adapts" to such 
functions, with no apriori knowledge of the jumps or kinks required. 

3.3. Probabi l i t y  one bounds 

In Theorems 2.2 and 2.3 the probabilities p may all be sharpened to 1 if a larger 
class of alternatives is used. A simple way of constructing such a larger class is to 
consider all convex combinations of the fo and f~ described above. In particular, 
define 

C ( f o , f l )  = {cofo + (1 - co)f1 :co~[0, 1]} . 

Then, if the set of alternatives {fo,f l  } is replaced by C ( f o , f l ) ,  the values of p in 
Theorems 2.2 and 2.3 may all be taken to be 1. 

This is intuitively clear, because the minimax bounds calculated in these 
theorems come from the difficulty in using X~ . . . . .  X,  to choose among the 
various possible density functions. If the class {fo,f l}  is enlarged by including 
some convex combinations offo and f l  (say for co in some equally spaced grid in 
[-0, 1]), then the probability p of misclassifying the underlying density gets larger. 
The limit of this process is the class C ( f o , f ~ ) ,  and p = 1. We do not include 
a specific proof of this fact, because the idea is the same as that used to verify (1.2) in 
Stone (1980). 

4. Achievability 

The plug-in method is a simple way of demonstrating the existence of bandwidths 
which achieve fast rates of convergence. This makes use of the fact that 

h I ~" hf,  A - Cs~{ f ( f " )  2 } - i l S n - l l S ,  

where Cg is a constant depending only on the kernel K. The idea is to plug in an 
estimate of 5 (f,,)2. Hall and Marron (1987c) discuss the slightly more general 
problem of estimating 0,, = 5 (f(m))2. One of the estimators considered there is 

Orn ~- ( - -  1)ran- l(n -- 1)-1 Z Z  K(h2m)( x i  - -  X j )  . 
i , j  

Bickel and Ritov (1988) have shown that rates of convergence calculated in Hall 
and Marron (1987c) are not the best possible in all cases, by presenting a more 
complicated estimator which attains a faster rate of convergence. This motivated us 
to look more carefully at our results, and we found that in certain instances the 
upper bound given in Hall and Marron (1987c) can be improved upon. In 
particular, part (d) of Lemma 3.1 in that paper can be sharpened to: 



160 P. Hall and J.S. Marron 

Theorem 4.1. Under the assumption that feG~(B)  for some B > O, and that K is of 
even order k, 

= ~ O(h 2(2+v-m)) if k > 2(2 + v - m) 

E,~,,,(L~-O,~ {Ckh  k + o ( h  k) if k < 2 ( 2 + v - - m ) '  

where i l k  < 2(2 + v - m), 

Ck = ( - -  1) k/2{ ~(f(,"+k/2))2} (~u kK) / k ! .  

Recall the definition of a kernel of order  k f rom Remark  2.2.4. 

Remark 4.1. To appreciate  the implicat ions of Theorem 4.1, let us assume that  
k > 2(2 + v -  m). Then 

~ ( o , " )  - or .  = 0 ( h 2 ( 2 + ~ - , " ) )  , 

and by L e m m a  3.2 of Hall  and M a r r o n  (1987c), 

var(0m) 2 = Din-2h-(4,"+1) + D2n -1 + o(n-Zh  -(4,"+1) + n -1) 

for positive constants  D1 and D2 = S(f(2m))zf  - S(f(,"))2 (note there is a typo-  
graphical  error  where this is stated in Hall  and M a r r o n  (1987c)). It  follows that  

E(Om - 0,,) 2 = D l n - Z h  -(4,"+1) + D2 n-~ + O(h 4(2+v-m)) 

+ o(n-2h-(4,"+l)+n -1) . 

Hence we get the following. 

Corollary 4.1. I f  v > 2 ( m -  1 ) +  (1/4), and h =  h(n) is chosen so that 
h = o(n-X/g(2+~-m) but n -1/(4"+1) = o(h), then Om is n 1/2 consistent for 0," and 

E(O,"-- 0,") z = D2n -z  + o ( n - 1 ) .  

Remark 4.2. If  we take m = 2 in R e m a r k  4.1 we see that, provided v > 2.25 (i.e. 

f has more  than  4.25 derivatives), we m a y  construct  a n 1/2 consistent es t imator  02 
of 0z. F o r  example  if we assume f has 5 derivatives then this m a y  be done with 
K a sixth order kernel and h = h(n) chosen to be of order between n - 1/9 and n - 1/12. 
Re mark  4.1 also shows that  if v > 2.25 then it is possible to construct  an es t imator  

0a of Oa having the p roper ty  03 = 03 = op(n- 1/1o), We use these versions of 02 and 

0a below. Define ko = S K2, k2 = ~z2K(z)dz ,  k4 = ~z4K(z)dz ,  A1 = ko/(k20~), 
A2 = k4Oa/(2Okz 02) and 

h) = n 1/SA~/S + n-3/SA~/SA2 . 

Then  it m a y  be shown by Taylor  expansion of M ( h , f )  abou t  M ( h s , f )  that  

(h'r -- hs)/hf  = o(n-1/2) . 

F r o m  this it follows that  

(4.1) (f~ - hf ) /hf  = Op(n- 1/2), 
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where 

: n-1/s i /5 + n-3/5/i /s/i2, 

~il = ko/(k202), ,42 = k4d3/(20k2021. 
^ ^ 

The condition v > 2.25 is sufficient to grant the existence of 02 and 03 such that (4.1) 
holds. For  a version of the plug-in bandwidth which takes constant coefficients, as 
well as rates of convergence into account, see Park and Mat ron  (1990). 

Remark 4.3. For 0.25 _< v < 2.25, straightforward modification of the plug-in 
bandwidth selector and the above calculations, shows that 

( h -  hI)/h I = Ov(n-4~/~4~+9)) . 

Hence in this case also the bound obtained in Theorem 3.2 is sharp, in the sense 
that there are bandwidth selectors which achieve the bound on the relative rate of 
convergence. 

Remark 4.4. Note that when v < 0.25, the performance of the plug-in bandwidth 
is actually worse than least squares cross-validation (whose rate of convergence is 
n -  too). F rom this perspective, it is a strength of least squares cross-validation that 
it maintains the rate n -  ~/~o for v all the way down to 0. 

Remark 4.5. In the case of an r ' th  order kernel, (4.1) is the same. The only change 
is that the assumption v > 2.25 is replaced by v > (4r + 1)/4. 

Remark 4.6. It  is straightforward to extend Theorem 4.1 to the case of noncom- 
pactly supported f satisfying a tail condition, by a truncation argument. This is not 
done explicitly here because the statistical insight gained does not seem worth the 
added length of proof. 

Remark 4.7. A referee has pointed out the h} representation in Remark 4.2 can be 
extended to given an explanation of why the rate summarized in Remark 3.2.1 has 
an abrupt  change at v = 0.25. In particular, for general v, 

h' I = n-1/sCKOf2/5(1 + 0(n-2~/5)) , 

where/~ = min(1, v). When v < 1, 02 can be estimated at the r a t e  O(?z-gv/(gv+9)). 
Note that the O term is negligible, i.e. n -2v/5-= o(n-4v/(4v+9)), exactly when 
v > 0.25. The argument can be easily extended to v > 1, using the additional 03 
term in Remark 4.2. 

5. Proofs 

5.1. Proof of Theorem 2.2 

We prove only (2.2.2), since the extension to (2.2.3) may be accomplished as in Hall 
and Marron  (1987b, p. 171). Recall that hi^is the minimizer of A(h,f^) and /~ is 
a generic data driven bandwidth. Let h = h 7 be an element of {hlo, hi1 } which 
minimizes [/~ - hi over those elements. If f is either fo or f l  then 

Iff-hil_-< Iff-hl + Ih-hII--< 2nh-hII. 
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Therefore result (2.2.2) will follow if we prove that 

(5.1.1) lim liminf max Ps ( lh - /~ I I  > en-3/l~ > p . 
~ 0  n--*co f e { f o f l }  

Define L(z) =- - zK'(z) and 

Oh(X) -- (nh) -1 ~, L{(x  - X~)/h}. 
i 

Arguing as in Hall and Marron (1987b, p. 169) we may deduce that 

(5.1.2) /~I - / 7 =  2~(h,f)/hA (2)(h*,f),  

where ~(h,f) - S (fh -- Oh) ( f - - f ) ,  where A (Z)(h,f) denotes the second derivative of 
A (h,f) with respect to h, and where h* lies between h and/~I. It is relatively easy to 
prove, as in Lemmas 5.2, 6.1 and 6.2 of Hall and Marron (1987b), that 

lim liminf min Py(an -1Is < hfo, hf~ < bn -1/5) = 1 , 
a ~ O , b ~ c e  n ~  f ~ { f o ,  f l }  

and for a l l 0 < a < b <  oe, 

l iml imsup max P I t  rain I A ( 2 ' ( h , f ) l > 2 n - 2 / s } = 0 .  
,~"*co n ~ c o  f ~ { f o , f l }  I h e ( a n - l / 5 ,  bn its) 

Therefore result (5.1.1) will follow if we show that 

(5.1.3) l imliminf max P s i  min Ir > en -9 / i~  > p .  
e--+O n - ~  f e { f o , f l }  [ . he (an - l i S ,  bn - t / 5 )  ) 

If f + f  then 

I ~ (h , f ) l  = II ( A  - O h ) ( f -  f )  = n -  ~'al j" (f~ - Oh)~ fo l .  

And by the Neyman-Pearson lemma, 

max P y ( f + f )  > (1/2){Peo(f=f~) + P n ( f = f o ) }  
f ~ { f o , f l }  

__> (1/2) {P~o(f=A) + e ~ , ( f = f o ) } ,  

where f i s  the likelihood ratio rule for deciding between f0 and f l .  Now, 

Pfo( f  = fl  ) = Pyo I ~ log{ l + n-i/2 7(Xi) ) > O 1 

-+ 1 - ~ ( o - t 2 )  = p ,  

and similarly PI~ ( f =  fo ) ~ P- Therefore 

(5.1.4) liminf max P y ( f  #: f )  > p ,  
n~oo f e { f o , f i }  
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and so (5.1.3) wilt follow if we prove that 

(5.1.5) l iml iminf  max P ~ I  rain 
e.-+O n---r~ f ~ { f o , f l }  [ .h~(an-J/5,  bn -US)  

Put A - K - L. Then 

(5.1.6) S = S(h) = I (fh -- Ohlccfo 

= (nh) -1 E Y A { (x - X , l /h}  a(x)fo (x) dx 
i 

= n - 1 } "  ~ A(y)c~(Xi + hy) fo(Xi  + h y ) d y .  
i 

Now, 

(5.1.7) 

^ - 2 / 5  } 

Ey(S) = S A ( y ) d y  ~ ~(x + hy) fo (x  + h y ) f ( x ) d x  

= h z { ~y2A(y)  dy/2} [ ~ { (d/dx) 2 e (x ) fo (x ) } fo (x )  dx] 

+ O(h 3 + hZn -1/2) 

= h2c + O(h a + h2n -1/~) , 

say, where c + 0. (Here we have used (2.2.1) and the fact that S y i A ( y ) d y  = 0 for 
j = 0, 1,) By Rosenthal's inequality for sums of independent random variables 
(Burkholder 1973, p. 40), 

max max Es{IS(h  ) - ES(h)I 2r} <= C(a,b ,r )n  -r 
he(an  - l/s, bn - J./5 ) f e { f o ,  f l } 

for all r > 1. Therefore i fH ,  is any set of elements of(an - 1/5 bn - 1/5) containing no 
more than n d elements for any fixed d > 0, we have for large n, 

rain Py ( ra in  IS(h)] > (1/3)a 2 Ic[n-2/5) 
f ~ { f o , f l }  [.hEHn 

> 1 -- ~ max P s { I S ( h ) -  ES(h)I > (1/3)a 2lcln -2/5} 
h~Hn f ~ { f o , f  l} 

> 1 - O{n'~(n2/Sn-1/2) 2r} --,, 1 

as n -+Go, provided we choose r > 5d. Result (5.1.5) now follows via the continuity 
argument of Hall and Marron  (1987b, p. 175). This completes the proof  of 
Theorem 2.2. 

5.2. Proof  o f  Theorem 3.2 

The proof  of Theorem 3.2 appears before that of Theorem 2.3 because the proof  of 
Theorem 2.3 is greatly reduced in length by using related parts of Theorem 3.2. As 
for Theorem 2.2, we prove only (3.2.1). The circumstance 0 < v < 0.25 follows from 
v > 0.25 (because of the nesting of the Gv(B) as discussed in Remark 3.2.6) so we 
assume v > 0.25. We may further suppose that v < 2.25, for otherwise p > 1/2 and 
then Theorem 3.2 follows from Theorem 2.3. 

The first step is to construct a class of densities which are "hard to distinguish", 
yet at the same time are "far apart". Following ideas of Stone (1982) and Bickel and 



164 P. Hall and J.S. Matron 

Ritov (1988), let ~'o be a symmetric, six times differentiable function on ( -  c~, co), 
vanishing outside ( - 1 / 4 ,  1/4), and having sup l @U)I < B for 0 < j  < 6. Put  
m -= r/n 2/(~+9~ where t / >  0, let ~ = 6~o where 0 < 3 < 1, let go be a density which 
is constant  at a nonzero value on ( - 1 / 2 ,  3/2) and vanishes outside ( - 1 ,  2), let 
r = (~1, �9 . . ,  rm) be a vector, and define 

( 5 . 2 . 1 )  

and 

~ - m - { ~ + ~ 1  ~ ( , i ( x  - v/m)), 

f ( x ) = f ( x [ z ) ~ g o ( X ) +  ~ %7~(x),  
V = I  

= { f ( x l r ) :  ~ is a sequence of O's, l ' s  and - l 's} . 

No te  that  for large n, ~ is a set of densities vanishing outside ( - 1 ,  2) and 
essentially having uniformly continuous,  bounded  (2 + v)'th derivatives. Fur ther-  
more, ~-  c G,,(B). Note  that  there are many  related constructions possible here. 
This one has been selected because it seems to require minimal overhead in terms of 
nota t ion and length of proof. 

Let h" = h7 minimize I h - h71 over all f e  ~,~. Then I k~ - hy I _-< 21/~ - h I I for all 
f e  ~-, and so it suffices to prove that 

(5.2.2) lim l i m i n f m a x P c ( l l ~ ' -  h f ]  > 8FI - ( 1 / 5 ) - 4 v / ( 4 v + 9 ) )  = 1 . 
~ 0 0 ~ 0  n ~ c o  f e ~  

The first step in establishing (5.2.2) is to develop an analogue of (5.1.2). 

Let f g be densities, and observe that 

M ( h ,  g) = ~ Eo(fh -- g)2 

= ~ Eg(J~ _f )2  + 2~ (Efl~ - f )  ( f -  g) + ~ ( f -  g) 2 

= U ( h , f )  + ~(E o - E l )  (L _ f ) 2  + 2~ (Eofh - - f )  ( f - -  g) + ~ ( f - -  9) 2 . 

Differentiating with respect to h we obtain 

M(t ) (h ,  g) = M ( l ) ( h , f )  + 2h -~ ~(Ey - E . ) ( f h  -- Oh)(fh -- f )  

+ 2h -~ ~E~(fh -- Oh)((I - - f ) ,  

where M(J}(h,  g) denotes t h e j t h  derivative of M ( h ,  g) with respect to h and where 
gh is as defined in Sect. 5.1. Therefore with 

~l(h, f  g) - ~ {(Er - Eo) (fh - Oh) (fh -- f )  + Eo (fh -- gh) (g - - f ) }  

we have 

M(1)(h,  g) = M ( 1 ) ( h , f )  + 2 h - t r l ( h , f ,  g) �9 

Taking (h,f, g) = (hf l , f ,  f t )  f o r f t  e g ,  we find that 

0 = M ( t ) ( h f l , f l )  = M ( 1 ) ( h I l , f )  + 2 h i ~ r l ( h i ~ , f , f ~ )  

= M ( 1 ) ( h f , f )  = M O ) ( h r ~ , f )  + (h f  - h y l ) M { a ) ( h * , f ) ,  
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where h* lies between hf and h:l. In consequence, 

hf - h fl = 2tl(hf l , f  f l  ) /hf  l m  (2)(ht , f ) ,  

whence 

(5.2.3) hf - ff = 2~l(h, f f ) / h M  (z)(~t,f) , 

where h "? lies between/~ and hz. This is the desired analogue of (5.1.2). 
Arguing as in the proofs of Lemmas 5.2, 6.1 and 6.2 of Hall and Marron (1987b) 

we may show that given ~ > 0 we may choose 5, in the definition of ~, so small and 
no > 1 so large that if a > 0 is the constant such that hoo ,,~ n - 1/5a then 

a - i <  inf nl/Shf<= sup n l / S h f < a + ~ ,  
n>=no ,  f e 5  n > n o ,  f ~ .,.~ 

and for any 0 < b < c < oo and some 2 = 2(b, c) > O, 

sup IM(2)(h,f)[ <= 2n -2/5 
h ~ ( b n  - 1/5, cn  - 1:5 ), f ~ . ~  

In view of these results and (5.2.3) we see that (5.2.2) will follow if we prove that for 
each sufficiently small ~, q > 0 (not depending on 5), and any nonparametric rule 
ffor selecting an element of ~ ,  

(5.2.4) =-,olim~-,o liminfmaxP:tminlq(h'ff)l>,--,o~ :~:  ~ h ~ = .  en-(4/5)-4v/(4v+9)} = 1, 

where H, - ((a - ~)n -i/s, (a + ~)n-1/5). 

The next step is to simplify ~1(h, f f a  ). Write 

f = g o + Z % Y ~  and f l=go+Z 'C lvTv ,  
v o 

and let A = K - L. Define 

Jt - ~ O ( y ) [ ~ A ( w ) K ( x ) O { y  + hm(w + x )}dwdx  - ~A(w)O(y + hrnw)dw]dy, 

Jz =- ~ ~ ~ tp(y)A(w)K(x)O { y + hrn(w + x)} dwdxdy  , 

not depending on v. Then: 

Lemma 5.2.1. 

rl(h, f f t )  = m-(2v+5)J1 ~, (1~.1- I~lol) - m-(2~+S)n-i  J2 ~ (1%1- "eyrir). 
u 

Proof of Lemma 5.2.1. Observe that 

Eo{ fa(fh -- Oh)} = (nh2) - 1 E g [ K { ( x  - X) /h}  A{ (x  - X) /h}]  

+ (a - ~ -  1 ) ( E o f ~ ) E o ( j ~  - 0~). 
Therefore 

(5.2.5) q(h,f,f~ ) = ~ { ( E :  - EI1 ) ( fh  --  Oh)( fh  - - f )  + E : I  ( fh  --  Oh)( f~  - - f )}  
= y [ ( n h  2 ) - 1 ( E r  - EI1 ) K  { ( x  --  X ) / h } A { ( x  -- X ) / h }  

+ (1 - n - l ) { ( E f d ~ ) E f ( f h  --  Oh) - -  ( E f l f h ) E f l ( f h  - -  gh)} 

- ( E :  --  E : l ) ( f h  --  O h ) f +  ( f l  - - f ) E : l  ( fh  --  gh)] 
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where 

(5.2.6) 

P. Hall  and  J.S. M a r r o n  

= S[(I - n I){(E: - EfJfhEf(fh - Oh) 

+ (E:  - E : , ) ( f h  Oh)E:,(J~)} -- (E:  -- E : , ) ( f h  -- Oh)f 

+ (fl -f) E:~(fh -- Oh)-] 

= Y~ (% - ~i~) m-~'+~)l,, 
v 

I v -  m ~+3 ~ %(y)(~[(1  - n - 1 ) { K ( ( x -  y ) /h )Ey(  ~ -  0h)(x) 
Cv 

+ A ( ( x  - y ) / h ) E : l ( ~ ) ( x ) }  - h - l A { ( x  - y ) / h } f ( x ) ] d x  

- Ey~ (~  - gh)(y)) dy 

= f 0(Y -- v) (f  [(1 - n - 1) { K ( x ) E : ( f h  -- 0,~) (m - l y  + hx) 

+ A ( x ) E : I  ( J~ ) (m- ly  + hx)}  - A ( x ) f ( m - l y  + h x ) ] d x  

- -  E l l ( ~  - -  ~h)(m - l y ) ) d y  �9 

If y e v + ( -  1/4, 1/4), if K vanishes outside ( -  1/4, 1/4), and if x is in the support of 
K, then for n so large that hm < 1/4, 

E : ( f h - -  O h ) ( m - l y  + hx)  = h - l ~  A { ( m - l y  + h x -  w ) / h } f ( w ) d w  

= h -1 ~ z ,  ~ A { ( m - ~ y  + hx - w ) / h } ~ , ( w ) d w  
U Cu 

= h - i %  ~ A { ( m - l y  + h x -  w ) / h } 7 ~ ( w ) d w  
Cv 

= m - ( ~ + 2 l r ~ I A ( w ) ~ b { y -  v + h m ( x -  w)}dw.  

Similarly, 

E y ~ ( f h ( m - l y  + hx))  = m-(~+~)~l~ f K ( w ) O { y  - v + h m ( x  - w)} dw, 

f ( m - l y  + hx)  = m - ( ~ + 2 ) % 0 ( y -  v + hmx)  , 

E : ~ ( f h - - O h ) ( m - l y ) =  m (~+2)~l~ ~ A ( w ) O ( y -  v -  h m w ) d w  . 

Substituting into (5.2.6) we obtain 

I~ = m - (~+2)~0 (y ) ( [ f (  1 - n - ~ ) { r ~ K ( x ) I A ( w ) ~ b ( y  + h m ( x -  w))dw 

+ z l v A ( x ) I K ( w ) ~ b ( y  + h m ( x  - w))dw} 

- % A ( x ) O ( y  + hmx)]  dx  - zl~ ~ A(w)~b(y - h m w ) d w ) d y  

=m-~+2)(% + zlv)d 1 - m  t~+2)n - l z vJ2 ,  
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where J1 and Jz are as defined prior to the statement of the lemma. We may now 
deduce from (5.2.5) that 

t ] ( h , f ~ f l )  = m - ( 2 v +  5 ) J 1  2 ( ~7v2 - "f2v) - 1 7 / - ( 2 v + 5 ) n - 1 , ]  2 2 ('fv - 771v)'fv 
v 

= m - ( 2 ~ + 5 ) J 1  ~ (1~ol - I~lvl)  - m - (2~§ 5) n - 1  • (ITol - ~ v ~ l o ) ,  
v /) 

completing the proof of the lemma. 

Next the size of J1 and J2 are described. Put 

t = (1/4)1 { f w 2 A ( w ) d w }  { ~ x Z K ( x ) d x } [  * O. 

Lemma 5.2.2. (i) I f  v > 0.25 then I d 2 [ =  O{(hm) z} as n ~ oo. (iia) I f  v > 0.25 
and h < cn-1/s, anyfixed c > O, then I J1 [ ~ t(hm) 4 as n ~ oo, (iib) I fv  = 0.25 and 
a > 0 then ~ and tl (the latter in the definition of m) may be chosen so small that 

liminf inf [ J l l > O .  
n - -  ~ h ~ H n  

Proof of  Lemma 5.2.2. We shall prove only (iia) and (iib), since the derivation of(i) 
is simpler. Note that J1 depends on h and m only through the product, hm. In case 
(iia) we have hm ~ 0  (since hm < const n -(1/5)+2/(4v+9) and v > 0.25). In case (iib) 
the product hm may be made arbitrarily small by choosing ~ small (note that 
m = ~n 1/5 in this circumstance). Therefore if suffices to prove that with hm replaced 
by ~ in the formula for J1, we have I Jl[ ~ t~ 4 as ~ ~ O. 

Observe that 

J~ = S~b(Y)I~A(w)K(x){(1/2)~2( w + x) 20"(Y) + (1/24)~*(w + x)40(4)(y)} dwdx 

- ~ A(w) {(1/2) (2 w 2 O,(y)  + (1/24)(4w4 ~(4) (y)} dw] dy + 0 ( ( ' )  

= (1 /2) t2(~r  2 + (1/24)t4(~ ~0(4))( 4 + 0( (  s + n - 1 ( 2 ) .  

where 

t2 = S~A(w)K(x ) (w  + x ) 2 d w d x  - ~A(w)w2dw = O, 

t4 ==- S ~ A ( w ) K ( x ) ( w  + x)4 dwdx  - ~ A(w)w4 dw 

= 6{Iw2A(w)dw} { [x2K(x)dx}  4= O. 

In consequence, 

J1 = (1/24)t4~ (O,,)z (4 + o((4) .  

Since t = [t41/24 then we have established the desired result, completing the proof 
of Lemma 5.2.2. 

Finally we establish (5.2.4). Since f ~ ,  f admi t s  a representation of the form 
(5.2.1), 

f=go+ Z ~o% 
v = l  
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say. Hence by Lemma 5.2.1, 

v 

In view of Lemma 5.2, the absolute value of the second term on the right-hand side 
is dominated by 

Cl m-(2v+ 5)n- l (hrn)2m <= C z n -  7/Sm- 2(~+ l) 

<= C3 n - ( 7 / 5 ) - 4 ( v +  1 ) / ( 4 v + 9 )  = O ( n  - ( 4 / 5 ) - 4 v / ( 4 v + 9 ) )  , 

where C1, C2 and C3 are constants. Furthermore, n (4/5) +4v/~4v + 9) m -(2~+ s) j l  is of 
size 

n(~tl~)+,,vl(4~+9)m -(2v+ t)h 4 >= Cm - 1. 

Therefore (5.2.4) will follow if we prove that 

(5.2.6) lim l i m i n f m a x P ~ {  ~ ( ] T v l - l ~ v ] ) > e m } = l .  
e--+0, ~ 0  n--* co f ~  

Conditional on the data, let -c*, ~* . . . . .  ~* be a sequence of independent, symmet- 
ric variables taking only the values 1 and - 1, and put I = (1 - z*) /2  (so that I = 0 
or 1, each with probability 1/2). Define 

f *  = go + ~ r*7, , f ?  = Igo + ( 1 -  I ) f *  . 
v = l  

Both f *  a n d f  ? are random elements o f ~ .  Write E t for expectation with respect to 
the distribution of the random quan t i ty f  ?. Consider the problem of discriminating 
between f = f *  (a random density) and f =  go, in a context where either density 
may arise with probability 1/2. Note that 

[ 
if f = f *  

if f = 9o �9 

Therefore if m is an odd integer (which we may assume is the case) then the event 

A(f,f) = {I Z(t  l- 17ol)1 > m/2} 

holds for one but not both o f f = f *  and f =  go. It maybe  interpreted as a decision 
rule which decides in favor of f *  whenever A ( f * , f )  fails, and in favor of go 
otherwise. Call this rule Rt,  let R2 be the likelihood ratio rule, and write =z for the 
average probability of misclassification under rule Ri. Then =1 > ~2, and it follows 
as in Bickel and Ritov (1988) that 

(5.2.7) lira lim inf =2 = 1 . 
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Now, 

f e n  

Result (5.2.6) follows from these inequalities and (5.2.7). 

5.3. Proof of Theorem 2.3 

The context here is related to that in Theorem 3.2, if we think of m = 1, v = oo, 
m - v =  n - i ,  0 = ~fo, and the two densities as being fo and f i  = fo  + n-1/zO 
instead of 9o and 90 + m-(2 +~)h. With these changes, the argument is a hybrid of 
those for Theorems 2.2 and 3.2. In particular, it suffices to prove, instead of (5.1.3) 
or (5.2.4), that 

(5.3.1) l imliminf  max P f {  min Itl(h, f f ) [ > e n  - i3/1~ > p ,  
e~O n~oo f ~ { f o ,  f l }  he(an-1/5, bn -I/5) 

where, by an analogue of (5.2.5) 

0 if f=f 
(5.3.2) I~/(h,f ,f)[= n 1/2111 if f f 

and where I is given by 

I = I 0(Y) (~ [( 1 - n - 1) { K ( x ) E f  ~ (fh - 9h) (Y + hx) 

+ A(x)Eyl( fa  ) (y + hx)} - A ( x ) f o ( y  + hx)] dx - EI~ (fh - 9h)(Y)) dy .  

Note that 

Eyo (fh - 9h)(Y + hx) = h - 1 S A { ( y  + hx - w ) / h } f o ( w ) d w  

= ~A(w) fo  {y + h ( x -  w)} dw,  

Ezl( fh)(y  + hx) = I K ( w ) f l  {y + h(x - w)} dw,  

Ef~(fh -- Oh)(Y) = h - l  S A(w)  f l ( Y  - hw)dw . 

It  follows that 

I = 1O(y) [(1 - n - 1 ) I f A ( w ) K ( x ) { f o ( y  + h(w + x)) +f l (Y  + h(w + x ) ) } d w d x  

- I A ( w ) { f o ( y  + hw) +f i (Y  + h w ) } d w ] d y  

= 2{(1/2)t2(IOf[~')h 2 + (1/24)t,(IOfo(*))h 4 + O(h s + n - l h Z ) } ,  

following the arguments in the proof of Lemma 5.2.2. 

Since t2 = O, 

I = (1/12)t4 (~ 0fo(4)) h 4 + o(h4). 
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The desired result (5.3.1) follows from this formula, (5.3.2), and the facts ~ ~Ofo (4) 
=~ ff(4)fo and 

liminf max P s ( f * f ) > = P .  
n-~m f~{fo,fl} 

This last is established in manner identical to (5.1.4). 

5.4. Proof  o f  Theorem 4.1 

Write # =f(m).  We must show that with 

J(h) = ~ ~ K(u)g(z )  {g(z - hu) - g(z)} dudz  

we have J(h) = Ck hk --}- o(h k) + O(h2r), where r = 2 + v - m. 

Let I denote the largest integer strictly less than 2 + v - m. By assumption, g (~ 
exists and is bounded. Assume initially that g (2~ exists and is bounded. From 
a Taylor expansion with an integral remainder, 

2 1 - 1  1 

g(z + e) - g(z) = ~ (~'/i!)g(')(z) + {e2 ' / ( 2 l -  1)!} j'(1 - t)21-1g(Zt)(z -k- t e )d t .  
i = 1  0 

It follows from this fact, and the identities 

(, g(z)g (2~ (z + 6) dz = ( -  1)i~ g(i)(z)g(i)(z + ~) dz , 

~g(z)g(21+l)(z)dz = O, 

that 

1 - 1  1 

J(h) = 2 ~i h21+ fith2' ~ (1 - t) 2~-1 ~u2 tK(u l l  o ( ~ 1 7 6  h u t ) d z d u d t ,  
i = 1  0 

where 

~i = ( -  1)i{ ~(g(~ 2} {~u2iK(u)du} / (2 i )  ! , 

~, = ( - l y / ( 2 i  - 1) ! .  

This formula only involves derivatives of g up to the l'th, and so must hold under 
the assumption that g(O (not g(20) is bounded. (Approximate g arbitrarily closely 
by a function with 21 derivatives.) Under this assumption, 

l 1 

( 5 . 4 . 1 )  J(h)  = 2 ~ -'}- fl lh2l ~ (1  - t )  2 / - 1  Iu21K(u) 
i = 1  0 

x ~ g(Z)(z) {gm(z -- hut) - g(~ dz du d r .  

Now given B > 0, define H~(B) to be the set of all functions which vanish outside 
( - B ,  B) and satisfy (3.1.1) in the special case l = 0, v = q - 2. A useful lemma at 
this stage (whose proof is deferred to the end of this section) is 

Lemma 5.4. I f  a~Hq(B) , for  0 < q < 1 and for some B > O, then 

I ( 0  =- ~ a(z ){a(z  + e ) -  a(z)} dz = 0(1~12q) 

a s c ~ O .  
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An application of  L e m m a  5.4, with q = 2 + v - m - I and a = g (~ shows that  

S g(O(z){9(')( z + ~) -- g(0(z)} dz = 0(1~129 

as e -* 0. Hence by (5.4.1), 

l 

J(h)  = E ai h 2 i +  O(h2t+2q) �9 
i = 1  

Since K is a k ' th order  kernel, it follows that  el = 0 for 2 i <  k, and so 
d(h)  = Ckh k + O(h2r), where r = l + q = 2 + v - m. 

Proof  o f  Lemma 5.4. 
Without  loss of generality, suppose that  a vanishes outside (1/3, 2/3) and that  e => 0. 
Observe that  

(5.4.2) 2I(e) = S a ( z ) { a ( z  + e) - 2a(z) + a(z - e)} d z .  

( i+  1)~ 

Put  ci = e -1  ~ a(z) dz.  In  view of the definition of Gq(B), 
ie 

(5.4.3) sup Ici+l - cil = O ( d )  , 
l<_i<_e-i 

(5.4.4) sup sup la(z) - c~l = o (~q) ,  
l<_i<_e - I  i e < z < _ ( i + l ) e  

(5.4.5) sup la(z + e) - 2a(z) + a(z - e)l = O(eq) ,  
-oo <z<oo 

as e ~ 0. F r o m  (5.4.4) and (5.4.5) it follows that  

( i +  1)e 

a ( z ) { a ( z  + 5 ) -  2a(z) + a ( z - -  e)}dz 
ie 

( i+  1)e 

= e l  [~ { a ( ~ + e ) - 2 a ( z ) + a ( z - e ) } d z + O ( e z q + l ) ,  
i8 

uniformly in 1 < i < e -1. The first term on the right side is identically 
ec~(ci+l - 2e~ + c,_~). Adding over 1 < i _< e - l ,  and not ing (5.4.2), observe that  

(5.4.6) 2I(e) = e ~ ci(ci+l - 2ei + ci-1) + O(eZq), 
l<i<~-i 

where Co = 0. 

Abel's method  of summat ion  provides the formula 

N N - 1  

(5.4~7) ~ a~b~ = ~ A d b ~ -  b~+~) + ANbN,  
i = 1  i = 1  

i 

where A i =  ~, aj. Take a i = c i + l - 2 c i + c i _ l  and b i = c l ,  and use (5.4.7) to 
j = l  

simplify the series on the right hand  side of  (5.4.6). No te  that  since a vanishes 
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ou t s ide  (1/3, 2/3), it fol lows tha t  for sufficiently smal l  e, c~ = 0 for i < 1/(6~) or  
i > 5/(6e). Th i s  enta i ls  AN = 0 if N > 5/(6e), a n d  A i  = c i + t  - ci .  H e n c e  

2I(e)  = ~ ~ (Ci+ 1 - -  C i ) ( C  i - -  C i + I )  ~- O ( ~ 2 q )  . 
l<_i<_~-i 

I t  is n o w  a c o n s e q u e n c e  of  (5.4.3) tha t  I (~)  = O(~2q), as required.  
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