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Abstract. A simple efficiency preorder for CCS processes is introduced in which 
p < q  means that q is at least as fast as p, or more generally, p uses at least 
as much resources as q. It is shown to be preserved by all CCS contexts except 
summation and it is used to analyse a non-trivial example: two different imple- 
mentations of a bounded buffer. Finally we give a sound and complete proof  
system for finite processes. 

1. Introduction 

A large number  of behavioural equivalences for process description languages 
have been studied in recent years [11, 9, 6]. If ~ is such an equivalence then 
p ~ q  means intuitively that p and q offer essentially the same behaviour to 
the environment. When comparing the behaviour of processes, many  of these 
equivalences, often called asynchronous equivalences, do not take timing consid- 
erations into account; internal actions are considered to be instantaneous. On 
the other hand there are many applications for which it would be reasonable 
to have the notion of behaviour include at least some aspects of time. The 
description of real-time systems is the most obvious candidate and the proper  
functioning of many  communicat ion protocols depend at least to some extent 
on the fine-tuning ot the relative timings of certain actions. This has led to 
the development of real-time versions of standard process description languages. 
Typical examples include "real-t ime L O T O S "  [-15] and timed CSP [14]. In 
these languages all actions have a specific time or duration associated with 
them and, roughly speaking, two processes are deemed to be equivalent if they 
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offer the same potential actions of the same duration at more or less the same 
time during a computation. Let us call this intuitive idea "real-time equivalence". 

For  many applications this treatment of time is much too detailed. One 
ends up being forced to carry out long and precise timing calculations, the 
details of which are often superfluous. Indeed, many descriptions which one 
feels should be equivalent are not so because the comparison is too fine-grained. 
We would like to develop methods of comparing processes which are finer 
than the asynchronous equivalences in that they take time into consideration 
but are not as restrictive as real-time equivalences. 

In this paper (which is a revised version of [1]) we develop one such method. 
The idea is very simple and although it will not be universally applicable, we 
feel that it will be useful in many applications. We develop a preorder on process 
descriptions which has approximately the following meaning: p<q if p and 
q are bisimulation equivalent and q is at least as fast as p. 

So in this approach there is no assignment of absolute values to the actions 
or constructs of a process. Instead it is purely comparative; the comparison 
is made by assuming that all external actions take the same time and that 
internal actions take some indefinite but non-zero time. Hence if ~ and fl are 
actions and 1 represents an internal move then it turns out that 

but 

~. 1./~.�9169 

~ . /~ . �9  1./3.0. 

One obvious advantage of such a treatment as opposed to the usual real-time 
equivalences such as [14] and [5] is that "1"  may be used not just as a unit 
or measure of time but to denote some more general quantities such as "energy 
consumed in a computation" or the "complexity of communication and synchro- 
nization" as well. 

We will show in this paper that a mathematically tractable behavioural 
theory of processes based on these ideas can be developed. It is applied to 
the standard version of CCS although in principle there is no reason why it 
should not be equally to more general languages with real-time features. 

In Sect. 2 we define the syntax and operational semantics of CCS. This 
is completely standard and may be omitted by readers familiar with CCS. In 
Sect. 3 we show how to modify the usual recursive definition of bisimulation 
equivalence [11], so as to obtain <.  Roughly speaking for p<q to hold, every 

"weak arrow", ::~, from p must be matched by a corresponding "weak arrow" 
from q which performs at most the same number of internal moves and converse- 
ly, every "weak arrow" from q must be matched by a "weak arrow" from 
p which uses at least as many internal moves. Alternative and more useful 
formulations of < are also given. We develop most of these concepts by confin- 
ing ourselves to "pure CCS", where no values are passed between processes. 
The extension to value-passing may be done in the usual fashion. We then 
investigate the algebraic properties of < .  For the same reasons as for observa- 
tional equivalence (see [11]) it is not preserved by the " + "  operation of CCS, 
but we can apply the usual method to overcome this problem. We show that 
the resulting relation is preserved by all the operators of CCS including recur- 



An efficiency preorder for processes 739 

sion. We also justify fixpoint induction. In Sect. 4, we consider an example 
which examines different methods of implementing a F IFO buffer. In Sect. 5 
we show how a complete proof  system may be obtained for finite processes. 
This involves modifying the equations in [7] but it appears that an extra proof 
rule is also necessary. The paper ends with a brief comparison with other related 
work in the literature. 

2. CCS and labelled transition systems 

2.1 Syntax and operational semantics of CCS 

Let A a n d / / ( t h e  complement of A) be infinite disjoint sets in bijection under 
the complementation operation . . . . .  . Then V=A u A is the set of ports and 
complementation is extended to the whole of V so that ~ = ~  for all asV. If 
D is any domain of values, Vx D denotes the set of visible actions with . . . . .  
extended to Vx D in the usual way. That is, for ae  Vand deD, a(d) will denote 
an element of Vx D and c~(d) its complement. Let "1 "  be a special action called 
the internal (silent or invisible) action, such that i = l .  Then A = ( V x D ) u { 1 }  
is the set of all actions. In particular, when D is a single-valued domain we 
shall identify Vwith Vx D. 

Unless otherwise mentioned, we use the following notational conventions. 
Typically ~, fl, 7 .... (suitably decorated) denote elements of Vand a, b, c .... (suita- 
bly decorated) stand for (visible or invisible) actions. Let X be a set of process 
variable symbols and U a set of value variable symbols. Then x, y, z .... (possibly 
decorated) represent process variable names and u, v, w .... (possibly decorated) 
stand for value variable symbols. The language of CCS expressions is then 
given by the following BNF. 

e ::= xlOI a(u).el~(d).el 1 . e l e+e l  ele I e \ L  le[h] I #i x:e ,  

where �9 is a constant (or O-ary operator), ue U, deD and Lc_ V, x and e denote 
vectors of process variables and process expressions respectively, and #x:  e 
denotes the solution of a system of recursive process equations, whose i-th com- 
ponent is #i x: e. In the relabelling operation e[h], h: A-o A is the relabelling 
function such that h(c0= h(~) and h(c 0 ~ 1 for all c~ Vand h(1)= 1. 

Since our results are quite general enough to apply to many-valued domains, 
we will not explicitly specify elements of the domain or value variable names 
unless required in the context. Hence "~(u) .e"  will often be written as "cce"  
if the value variable u is understood or unimportant.  Similarly where actual 
values are unimportant,  we shall use e, fl, 7, ... (suitably decorated) to range 
over the domain Vx D and a, b, c .... to range over the domain Vx D and a, b, c .... 
to range over A. 

Any term generated by the above BNF is called a process expression and 
E, ranged over by e,f, g .. . .  (possibly decorated), denotes the set of process expres- 
sions. For  any process expression e, FPV(e) is the set of free process variables 
in e. Processes are closed process expressions (i.e. expressions with no free process 
variables), p, q, r,. . .  (possibly decorated) range over the set P of all processes. 

We have defined a subset of CCS with value-passing that is sufficient for 
our purposes. A more complete language would have a conditional statement 
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and a "sublanguage" for value expressions. Since these extra features are not 
used in our examples we have excluded them for the sake of simplicity. 

The operational semantics of the language is defined in terms of labelled 

transition systems in the usual fashion. Let (E, A, { " , [ a ~ A } )  be a labelled 

transition system (LTS) where the transition relation ~ _ E x A x E is the small- 
est relation satisfying the following axioms and rules for inference. 

I. Prefix 

1.1 ~(u),e ,(d~ e{d/u}, 

1.2 ~(d). e ~ta), e 

1.3 1.e l , e  

2. Summation 

2.1 e i - - - %e ' l~ e l+e2  " ,e ' l  

t a } t 

2.2 e 2 a > e 2 ~ e  1 + e 2  e2 

3. Composition 

3.1 el a~e'l=e'eile2 ")e ' l le2 

3.2 e2 a~e~=e-exle2 " , e l l e ~  

t 

3.3 el ~)e ' l ,e2 ~ e 2 ~ e x l e 2  

4. Hiding 

e 

for all d e D  

! ! 
1 ) e l [ e 2  

" , e', a, 5~L=~ e \ L  ~ , e ' \ L  

5. Relabelling 

e " ,  e'=~e[h] h(,), e'[h] 

6. Recursion 

ei{~x:  e/x} " , e'=~pi x: e " , e' 

where " f{ r /x}"  denotes the syntactic substitution of all free occurrences of the 
variable x~(xiex ) in the expression f by ri(rjer) for each j in the indexing set 
of the vectors x and r. 

2.2 Derived labelled transition systems 

We may readily extend the notion of labelled transition systems to derived 
LTS (DLTS) and weak LTS (WLTS) such that a transition is over a sequence 
of actions. 
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Definition 2.1 A derived LTS is a structure (E,A*,{  s , IseA*}},  where ~ c_E 

x A* x E is the least relation satisfying the following conditions: 

(i) e ~, e, for all eeE, where e is the empty sequence, 

(ii) e , s  e ' i f f o r s o m e e l e E ,  e ~ > e l a n d e l  S,e ' .  

Definition 2.2 A weak LTS is a structure of the form (E, (Vx D)*, { ~ l s e ( V  

xD)*}) ,  where for s=cq. . .c~ ,e(VxD)*,  s , e ~ e  iff there exists t 

= l"~ 1 " '  ... 1 mn 1~ n 1 m" in A*, for mi>O, O<i<n, such that e t ,  e'. 

For  any teA*, let t" denote the sequence (of visible actions) obtained by 
deleting all occurrences of the internal action 1 from t. In the above definition 

i '= s. Following Milner we use the notat ion pop' to denote p 1 ~* p, and p 1 ~ p, 

to deno tep  1,+p, .  

Definition 2.3 Let < be the binary relation on A* generated by the inequations 
l s < s  and s<s, i.e. < is closed under reflexivity, transitivity, and substitution 
under catenation contexts. An extended action is an element of A* containing 
at most one visible action. The set EA of all extended actions is partially ordered 
by < 

Note  that the empty sequence and any finite sequence of internal actions 
belong to EA. In fact, A c_EA_cA*. It is also clear that < is antisymmetric 
and hence a partial order on A* and EA. 

In the next section we proceed with our analysis of the effect of this partial 
order on process behaviours. However  to enable the reader to look at our  
definitions and theorems in the proper perspective, we also intersperse in our 
theory some results (stated without proof) due to Milner. The reader may consult 
[11] for the relevant proofs. 

3. Weak bisimulations and efficiency prebisimulations 

Definition 3.1 If FPV(e)w FPV(f)_Cx and <3 is a binary relation on processes, 
then e<3fiff for every vector of processes p, e {p/x} <3f {p/x}. 

The above definition enables us to extend every behavioural relation on 
processes to process expressions. In the sequel we will assume that every behav- 
ioural relation that we define is thus extended. We now define the notion of 
weak bisimulations [ i0]  and state some of its properties. 

Definition 3.2 A binary relation R _ P  x P is a weak bisimulation (abbreviated 
to wb) if for every (p, q)eR and te(Vx D)* the following conditions are satisfied. 

! ! t 

WB1. p=~p~3q:q~q 'Ap 'Rq '  

WB2. q=~q'~p':p=~p'Ap'Rq' 
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Proposition 3.3 1. I f  RI and R2 are wbs then so is Ra o R  2. 

2. The union of a family ofwbs is a wb. 
3. ~ = U {RIR is a wb} is the largest wb. 
4. p ,~ q ifffor some wb R, pR q. 
5. ,~ is an equivalence relation on P. [] 

The relation ,~ is called observational equivalence. 

Definition 3.4 A binary relation R c P x P  is an efficiency prebisimulation (ep 
for short) if for every (p, q ) ~ R  and s, s 'EEA the following conditions are sat- 
isfied. 

EP1. p ~p'=*.3s':s<s':3q':q ~'~q'Ap'Rq'  

EP2. q s, ~ q'=*-3 s: s < s': 3 p': p s ~ p' A p' R q'. 

As in the case of weak bisimulation we may prove the following proposition. 
In addition, it is also easy to show that every efficiency prebisimulation is, 
in fact, a weak bisimulation. 

Proposition 3.5 1. Every efficiency prebisimulation is a weak bisimulation. 
2. I f  R1 and R2 are eps then so is R1 oR2. 
3. The union of a family ofeps is an ep. 
4. ,%< = U {RI is an ep} is the largest ep. 
5. p < q ifffor some ep R, pR q. 
6. <is a preorder on P. [] 

We give below a simpler formulation of efficiency prebisimulations. It is also 
more convenient to use than Definition 3.4. 

Proposition 3.6 A binary relation R GP x P is an ep iff for every ( p , q ) ~ R ,  a~ V 
x D, a~A, the following conditions are satisfied. 

EP'I.  p ~,p'~3q':q---~q'  Ap'Rq'  

EP'2. p l ~ p ' ~ p ' R q v ( 3 q ' : q  l~q 'Ap 'Rq ' )  

EP'3. q a~q'~qp' :p=~p'  Ap'Rq'  

Proof. (=*-) It is easy to see that EP1 implies EP'I because for s = a ,  s<s'  implies 
s '=a .  EP1 also implies EP'2 since for s =  i, s<s' implies either s'=e or s '=  1. 
Also it is obvious that EP2 implies EP'3 for s ' = ~ e V x  D. For  s '=  1, from EP2 

s ~ r we have p , p' for some s = s, that is, p ~ p'. Hence EP implies EP'. 
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(~ )  Suppose R is a relation satisfying the conditions EP'. Let <p,q)eR 

and for some seEA,  let p ~ ,p'. We proceed by induction on the length of 

s. If s=~ there is nothing to prove. Otherwise s=as~ for some aEA and sl tEA .  

s I ! There exists pl such that p , p~ , p.  Now we have two cases to consider. 

Case (i) a=e~VxD.  By EP'I there is a ql such that q ~ ' q l  and p l R q l  . By 

, sl q, the induction hypothesis there exists S'leEA and q' such that s l _-<s~, q a , 

and p'Rq'. Letting s'=c~s'~ it is easy to see that EP1 holds. 

Case (ii) a=l.  Then either ( p l , q ) e R  or there is a ql such that q ~-L-~ql and 

p l R q~. In the latter case the proof proceeds as in case (i). In the former instance, 
again by the induction hypothesis there must exist s'~, s~ __<s'~ and q' such that 

q s ,  q, and p'Rq'. Letting s'=s'~ we have s=  l s l  _-<s'l =s '  and EP1 follows. 

It is obvious that EP2 follows from EP'3. []  

As in the case of ,,~ [11] we may show that < is preserved by all operators 
except summation. As the following example shows, it is due to the preemptive 
power of the silent action that < and ~ are not preserved under summation. 

Example3.7 1 . ~ . � 9  whereas 1.c~.(D+fl.II)~.ID+/?.ID because 1.c~.�9 

+ f t . � 9  ~ '~ . �9  while c~.�9169 ~ , , . � 9 1 6 9  For  the same reasons 1.~. �9 

~c~.�9 holds but 1 . c ~ . � 9 1 6 9 1 6 9 1 6 9  does not. 

In order to obtain a precongruence we therefore follow the usual method of 
defining the largest precongruence contained in <.  In the following lemma 
we state without proof the result that all the operators, except summation and 
recursion, preserve the preorder. It is also preserved under recursion but we 
omit the proof. 

Lemma 3.8 Let <]~{ <,, ,~}. Then for all p, q~P, p<3q implies 
(a) a.p<]a.qfor all aeA, 
(b) plr <lqlr and rlp<~r[q for all reP, 
(c) p\L<1q\L for Lc_ V, 
(d) p[h]<3p[h]for any relabellingfunction h. [] 

It is also easy to verify that the l-laws (called "z-laws" in [11]) no longer 
hold symmetrically for the preorder ~<. We state these laws in the next lemma. 
In the sequel we always use <1 to denote either < or ~.  

Lemma 3.9 
1. I.p<~p 
2. l.p<lp+ l.p<~p 
3. a.l.p<1a.p 
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4. a.(p+ l.q)<~a.(p+ l .q)+a.q .  [] 

This lemma may be proved for both < and ~ by constructing appropriate  
eps (note that it is not enough to construct wbs for the purpose of < ,  though 
every ep is a wb by Proposit ion 3.5.1). 

Definition 3.10 For  ~ ~ { < ,  ~ }, p<l + q ifffor some visible action c~ not occurring 
in p or q, p+e.�9169 

Note that only a finite number  of distinct action symbols appear  in any process. 
Since A is infinite it is always possible to find a visible action that does not 
occur in a given process. 

For  reasons that will become clear in Theorem 3.15, the relations < + and 
+ defined above (Definition 3.10) are called efficiency precongruence and obser- 

vational congruence respectively. In the next proposit ion we give a useful behav- 
ioural characterization of < +. 

Proposition 3.11 
1. p ~ + q implies p <~ q. 

2. p ~ + q and p 1 ) p, implies 3 q': q 1 ) q,/x p' < q'. 

3. p < + q iff for every a~A, the following conditions hold. 

EP+I .  p a , p ' ~ 3 q ' : q  ")q '  ^p '<q '  

EP+2. q a~q'=~3q':p=Np' /xp'<q' 

Proof 1. Obvious. 

2. Let p<+q. Then by Definition 3.10 p + e . � 9  for some visible 

action c~ that does not occur in p or q. If pl-L-~p ' then p + ~ . � 9  1 ,p,. From 

condition EP'2 (Proposition 3.6) ' <  , q' and p ~ q + a . I D  or for some q', q + a . � 9  1 

p' < q'. But p' ~; q + e. �9 since q + e. �9 ~ , (I), whereas p' can never perform an 

action. Hence there must be a q' such that q 1 ) q, and p'< q'. 

3. (=~) Follows from parts 1 and 2. 
( ~ )  It suffices to show from EP § that p+a. tD<q+e. tD.  It is easy to show 

from EP § that EP ' I  and EP'3 are satisfied by the pair @+c~.tD, q+~ . tD) .  

Let p + ~. �9 1 ) p,, then since c~ ~ Vx D we have p ~ , p' and from EP + 1 it follows 

that for some q', q ~ , q' and p' ~< q'. Hence q + c~. �9 q ' and p' ~< q' which proves 

EP'2. [] 

A similar behavioural characterization exists for ~ + which we merely reproduce 
without proof  [11]. 
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Proposition 3.12 p ~ + q ifffor every a eA, the following conditions are satisfied. 

WB+I.  p ~,p'~3q"q=~q'Ap' ,~q'  

. , ~  ,. p=~p' p' ,~ q' WB+2. q , q sp A [] 

It is then a simple matter to prove the following proposition for <3 + e { < +, 
+ }. We leave the proof to the reader. 

Proposition 3.13 <3 + is preserved under prefix, summation, composition, hiding 
and relabelling. 

To show that <~ § is a precongruence it is now only necessary to prove 
that it is preserved under recursion. 

Lemma 3.14 Let e and f be process expressions such that e<3 +f and FPV(e)u 
FPV(f)C_x. Then #ix:e<3+#ix:  f. 

Proof outline. This was originally proved in [11] for ~ + and the same proof 
may be easily adapted for <~ +. We give an outline for the case of e and f 
having at most one free variable, say x. That is, we prove that e<3 +f implies 
p<3 +q where p=/2x:  e and q=-ltx:f  Now consider the relation 

R = {(g {p/x}, g {q/x})lgeE, FPV(g)C {x}}. 

By induction on the depth of the inferences g{p/x} a p, and g{q/x} ~-~ q' 

respectively, one may show that R satisfies the following conditions for all aeA. 

(i) g{p/x} a p'~3q':g{q/x} a,q' Ap'Ro<3q' 

(ii) g {q/x} ", q'=~3 p': g {p/x} ~, p' A p'<3o R q' 

From (i) and (ii) we may show that <3oR~.<3 is an ep if < 3 = <  and a wb 
if <3 = ~ ,  and since R _ <3 o R o <3 it follows that R _ <1. Letting g -  x it is clear 
that (p, q)ER and hence p<3q. But from (i) and (ii) above and the conditions 
EP + in Proposition 3.11.3, we obtain the stronger result p<3 +q. [] 

Theorem 3.15 <~ + is a precongruence on CCS process expressions. 

Proof Follows from Proposition 3.13 and Lemma 3.14. []  

Definition 3.16 The kernel of < +, defined by -~ + = < + c~ > +, where > + den- 
otes the converse of < +, is called efficiency congruence. 

We will also have occasion to refer to another relation which we briefly describe 

here. If Definition 3.2 were strengthened by letting teA* and replacing " ~ "  

everywhere by " t ,, in the conditions WB, then the relation obtained is a 
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strong bisimulation and ,-~, called strong bisimulation congruence, denotes the 
largest strong bisimulation (for details see [11]). It turns out that efficiency 
congruence strictly contains strong congruence, and is, in turn, strictly contained 
in observational congruence i.e., ~ c ,-~ § c ,~ § The following example makes 
clear the difference between the three relations. 

Example 3.17. 

\ 

1 ,~+ 

~+ �9 

~ +  

4. An example: The (N + 2)-buffer 

In this example we use the value-passing version to specify a bounded buffer 
of capacity N + 2 ,  N > 0 ,  and compare two different implementations of the 
specification. The problem may be stated informally as follows. Values are to 
be accepted from a process SOURCE and delivered in order to another process 
DEST independent of the speeds of execution of SOURCE and DEST. We 
give three different processes which carry out this task and which are strictly 
ordered with respect to ~<. 

Let D be a value domain and for n>0 ,  let D" denote the set of strings 
of length n and D , =  U {Dkl O<k<n} the set of strings of length at most n. 
The state of the buffer at any instant of its execution is determined by the 
string it contains. The state space of the buffer is given by DN+2. We may 
then formally specify the behaviour of the buffer by the CCS process FIFO(t), 



A n  e f f i c i e n c y  p r e o r d e r  f o r  p r o c e s s e s  7 4 7  

"1 F 

f E 

,~ ~ l  I '~ ~ 
D E S T  e." �9 F I F O  ( t ) . . "  �9 S O U R C E  

' I I ' 
I I 

J t. 
F i g .  i .  S p e c i f i c a t i o n  o f  b u f f e r  

I F I F 
I I PIPE(s) ; _ l 

I c3 ~ 1 ~ 1  I - -  I I'-- I cr ~ I 
DEST e -  �9 -r e-. e ' r  "r e( . . . .- e ' r  e.- e SOURCE 

.I . . . . . . . . . . . . . . . .  L 

F i g .  2,  F i r s t  i m p l e m e n t a t i o n  o f  b u f f e r  

where t~DN+2, a, d~D, ~ is the input port and 8 is the output port as shown 
in Fig. 1. 

c~(a).FIFO(a) if t=e (orltl =0) 

F IFO( t ) -  3(d).FIFO(tl)+c~(a).FIFO(ta) if t=d ta  and 0 < l t l < N + l  

S(d).FIFO(tl) if t = d t l  and I t l=N+2.  

Hence for any string t, FIFO(t) has the following transitions. 

FIFO(t) ,(a), FIFO(ta) if 0 ~ l t [ < N + 2  

FIFO(t) s(a),FIFO(tl) i f 0 < ] t [ < N + 2  and t=dt l .  

Throughout this section we shall use the word "implementation" to refer to 
any CCS process that is observationally congruent to FIFO(e). We shall also 
override some of the notational conventions specified in Sect. 2.1 as regards 
variables and values. 

The process PIPE. A simple implementation of this buffer is in terms of cells, 
where a cell is an elementary i - o  device that may be defined as C =-l(x).C'(x) 
and C'(x)-6(x).C. For the sake of uniformity we denote the state C as C(L) 
and C' (d) ad C (d). A buffer of capacity N + 2 may be created simply by connect- 
ing cells end to end and relabelling the ports appropriately (see Fig. 2.). Therefore 
we have 

Co ( X ) -- C (x) E~o/l, 6/0] 
Cj(x)=C(x)[z/1, zj_l/o] for O<j<N 

CN + 1 ( x ) -  C(x) [~/t, ~/o]  

for all x~D• where D l =D w {_1_}. Then 

PIPE(s)=(F{Cj(xj)IO<j<N+ 1})\{zkl 1 < k < U +  1}, 
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F 

I ~o B I o 

s 
I o 

I - - ' - -  

B| . . . 

- - O ; N - 1  O N - 1  

, T• T •  T• 
I . . -" ~ "- "- I 

z ~ ~ p o ~ o~ . . . ~ p~_~ -I 
I (~ o I N-I C~ cc 

DEST e< -- r -- 

I BC(a, d, i ,m) I 
I I 
./ L 

I BUFF(s, a, d, 1, m) I 
I I 
L J 

Fig. 3. Second implementation of buffer 

SOURCE 

where " F "  denotes the composition of a set of processes and S=Xo...xN+ 1, 
seD~ +2. The transitions of PIPE(s) are 

PIPE(s'J_) ~(a)>PIPE(s'a) where s 'eD~+l,aeD 

PIPE(ds') ~(d)> P I P E ( I s ' )  where , ~N+I S eu• ,d6D 

PIPE(s'_Lvs") 1 ,PIPE(s 'v l s" )  where s's"eD~,veD. 

To prove that PIPE is an implementation of FIFO, it is sufficient to display 
a weak bisimulation between their state spaces. However it is possible to prove 
the stronger result given in the following lemma, whose detailed proof we leave 
to the interested reader. 

P r o p o s i t i o n  4.1 Let f: DE + 2 __. DN + 2 be the function which strips off all occurrences 
of "_L "from any string in D~ +2 . Then 
I. R = {(PIPE(s), FIFO(f(s))>lseD~ +2} is an ep. 
2. PIPE(ZN+2)~< +FIFO(e). 

Proof Outline. 1. Clearly f is surjective, so every possible state of PIPE and 
FIFO is present in R. Then it is a simple matter to show from the transitions 
of PIPE and FIFO that R is indeed an ep. 
2. For  t=~: and s=_L N+2, it is clear that f ( s ) = e  and also PIPE(_L N+2) has 
no silent transitions. Then PIPE(s) and FIFO(t)  satisfy the conditions EP § 
of Proposition 3.11.3. Hence PIPE(LN+2)~< +FIFO(e). [] 

The process BUFF. Now consider a different implemetation of the buffer, in 
which N cells are used (numbered from 0 to N - 1 )  simply as storage and each 
cell interacts only with a centralized buffer controller which may store an addi- 
tional two values. We define the store as follows. 

Bj(x)-C(x)[coJl,  pJo], for O<=j<N 
MEM (s) - F{ Bj(xj)lO <=j < N}, 

where S=Xo ...XN-1 and xjeD• is the state of cell Bj for O<j<N.  
The buffer controller, BC, whose schematic design is shown in Fig. 3, may 

store at most two values at any instant. It performs the following functions. 



An efficiency preorder for processes 749 

m=O, n=2 
Fig. 4b e 

( ( 

! 
( p 

m=N, n=N 
Fig .  4c, 

Fig. 4a. Transition diagram of BC when MEM is neither full nor empty. 

(a) it accepts a value from SOURCE through the port e, and does not accept 
another till the first one is stored in one of the N cells. 
(b) it writes the most recently accepted value in the first available empty cell, 
say B j, through the port (5 i. 
(c) it retains the oldest undelivered value, (after reading from, say B i through 
port pi) and keeps it ready for delivery. 
(d) it delivers whatever value it has retained, whenever possible, to DEST, 
through the port  8. The next value is not delivered till it has been retrieved 
from the appropriate cell. 
(e) The N cells are treated as a circular queue of length N (with the indices 
of the cells ordered as follows: 0 < 1 < . . .  < N -  1 < 0). It is clear that the controller 
requires to maintain the following information: i, the index of the cell containing 
the oldest undelivered message and j, the index of the first available empty 
cell. Equivalently, since the values are stored in order in contiguous cells of 
the circular queue, instead of j, it may retain m the number of cells in MEM 
containing undelivered messages. 

The state of BC is therefore determined by four arguments - the value aeD 
at the port cq which it may accept from SOURCE, the value deD at the port 
8, which it may deliver to DEST, the index i and the number m. As before 
a =  _1_ if there is no value at c~ and similarly d =  _1_ if there is no value at 6. 
Further, if n denotes the total number of messages in the memory-buffer con- 
troller system, then m < n _< rn + 2 always holds. 

For  convenience and clarity, we classify the states of BC into eight different 
kinds, which reflect the choices of actions immediately available to BC in that 
state. In the sequel therefore, the states of BC are further decorated by subscripts 
which classify the state. In general, when MEM is neither full nor empty (i.e. 
0 < m  < N) the following are the four possible kinds of states that BC may be 
in. 

BC.:r : may accept (?) from SOURCE or read (r) from MEM (n = m) 

BCwr : may write (w) into MEM or read (r) from MEM (n = m + 1) 

BC.~t : may accept (?) from SOURCE or deliver (!) to DEST (n = m + 1) 

BCwt : may write (w) into MEM or deliver (!) to DEST (n = m + 2). 

Figure 4a shows the transitions that BC may go through between these four 
states provided MEM continues to be neither empty nor full. Otherwise, for 
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m=0 m=l m=l 
n=l n=l  n=2 

~ ig .  4a 

m=O m=O m=O m=l 
n=O n=l n=2 n=2 

Fig. 4b. Transition diagram o fBCwhen  M E M i s e m p t y  

Fig. 4a 

m=N m=N- 1 m=N- 1 
n=N+l n=N+l n=N 

.2_ 
Fig .  4a 

m=N rn=N m=N m=N- 1 
n=N+2 n=N+l n=N n=N 

Fig. 4c. Transition diagram of BC when MEM is full 

instance, when M E M  is empty (i.e. 0 = r e < n < 2 )  we have two more kinds of 
states 

BC~ : may only accept (?) from S O U R C E  (when n =0)  and 
BWw : may only write (w) into M E M  (when n = 1). 

When n =  1, depending upon the value of m (and where in the entire system 
the only message is), the possible kinds of states are BCw, BC?r,  BC?!.  When 
m = 0  and n = 2, clearly the only kind of state possible is BCw~. Similarly, when 
M E M  is full (i.e. N = m < n < N + 2), we get two more new kinds of states, viz. 

BCr : may only read (r) from M E M  (when n = N + 1) and 
BC~ : may only deliver (!) to DEST (when n = N + 2). 

When N = m = n, we have BC?r as the only possible kind of state. When n = N + 1, 
by a reasoning similar to the case when n =  ! (depending upon where the only 
"ho le"  or "empt iness"  is) the possible kinds of states that BC could be in 
are BCr, BCw~, BC?~. The state transition diagrams for these " b o u n d a r y "  condi- 
tions are shown in Figs. 4b  and c respectively. We may then define BC(a, d, i, m) 
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as follows, using " • "  and " O "  to denote addition and subtraction modulo 
N respectively. 

BC?(a, d, i, m) 

BCw (a, d, i, m) 

BC?!(a, d, i m) 

BC(a,d,i,m)= BCw!(a,d,i,m) 
BC?r(a, d, i, m) 

BCwr a, d, i, m) 

BC~(a, d, i, m) 

BC! (a, d, i, m) 
where 
BCT(• • i, 0) = ~(a). BCw(a, • i, 0) 
BCw(a, • i, 0)-cbi(a). BC?~(• • i, 1) 

[~(a).BCw!(a,d,i,m)+5(d).BCT(• L,i,m) if rn=0 

BCT~(L,d,i,m)=~o~(a).BCw~(a,d,i,m)+S(d).BC?r(Z,• if 0 < m < N  
/ 

[~(a).BC!(a, d, i, m) + ~-(d).BCT~(• • i, m) if m=N 

BCw! (a, d, i, m) 
=~ ~iq~m(a).BC?~(L,d,i,m+l)+8(d).BCw(a,Z,i,m) if m---0 
-(dgie,,,(a).BCT!(Z,d,i,m+ l)+8(d).BC,,,,.(a,Z,i,m if 0 < m < N  

BC?r(• • i, m) 
=~o~(a).BC,,,,(a,•174 if 0 < m < N  
- [  ~(a).BCr(a,Z,i,m)+pi(d).BCT~(• iOl, m-1)  if m=N 

BCw~(a, • i, m)==.&ie,.(a).BC?,~(• • i, m+ 1)+pi(d).BCw!(a, d, iO1, m -  1) 
BCr (a, • i, N) = pi(d)" BCw~ (a, d, iO 1, N -  1) 

BC~ (a, d, i, N) = ~-(d). BC~(a, • i, N). 

The reader may have realised from the above design of BC that the subscripts 
on the states of BC are unnecessary since its state (given by the values of the 
four arguments) completely determines is immediate choices. However we shall 
continue to use these subscripts wherever convenient, as they help in understand- 
ing the functioning of both the controller and the system as a whole. Before 
composing BC with MEM to obtain the complete system, we define a function 

if a= •  • 
if a~D,d=• 
if a=L, d6D, O<_m<N 
if aeD, d~D,O<m<N 
if a = Z , d = Z , O < m < N  
if a~D,d=Z,O<m<N 

if a~D,d=Z,m=N 
if aeD, dED, m=N 

such that 

g:DE x {0, ..., N - l }  x {0 . . . .  , N} ~ D u  

e if m = 0  

g(s, i, m)= xi if m = 1 

Xi X i o 1  ''" X i ~ m e  1 otherwise, 

where xj is the value stored in cell B~, for all i<j < iq~m. The function g abstracts 
away the details of where in MEM messages are located and yields merely 
the sequence, in the order of their arrivals, of undelivered messages stored in 
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MEM. That is, for any given r~D N and m= ]r], g(s, i, m)=r may hold for several 
different values of s, and i. Let 

B U F F .  (s, a, d, i, m) -- (MEM (s) I BC. (a, d, i, m))\{pk, (Ok 10 < k < N} 

where .6{?,  !, w, r, ? !, w !, ?r, wr} as appropriate to the states of MEM and BC. 
It is easy to show that for all s, a, d, i, m and appropriately chosen values of 
s', a', i', m' (which may be determined from the definition), BUFF may undergo 
the following transitions. 

BUFF(s,_l_,d,i,m) "~a), BUFF(s ,a ,d , i ,m)  if aeD, deD• 

BUFF(s ,a ,d , i ,m)  a~d), BUFF(s,a,  l , i , m )  if a e D •  

BUFF(s, a, d, i, m) 1 , BUFF(s', a', d', i', m') otherwise. 

The last transition given above holds because the ports Pk,Pk, COk,(hk, for all 
k, O < k < N ,  are hidden. The hiding operation (by internal• the various 
read and write operations between MEM and BC) too has the effect of abstract- 
ing away the details of storage of the undelivered messages in MEM. We now 
have the following lemma. 

Lemma 4.2 1. Let S=Xo. . .xN_ 1 and t = y o . . . y N - x ,  then g(s , i ,m)=g(t , j ,m) iff 
for all k, O<k <m, Xi@k=Yj~k . 
2. For s, s' ~D~, i, i' ~{O . . . . .  N -  1} and m~{0 . . . . .  N} if g(s, i, m)=g(s', i', m) then 
B U F F .  (s, a, d, i, m) ~ - + B U F F .  (s', a, d, i', m). In fact they are strong congruent. 

Proof outline. 1. Follows from the fact that g(s, i, m)=xi . . ,  x i . , ,ex  and g(t,j, m) 
= Yj... Yj .me 1. 

2. Since the hiding operation \{Pk, (Dk [0~_~ k ( N }  plays essentially the same 
role in the overall system as the function g (in abstracting away the details 
of storage), it is easy to show, using the transitions of BUFF and the result 
in part 1 above, that the relation R 

R = { (B U F F .  (s, a, d, i, m), B U F F .  (s', a, d, i', m)) Ig(s, i, m) = g(s', i', m)} 

is a strong bisimulation. [] 

As a consequence of Lemma 4.2 we may abbreviate the state of BUFF to 

B U F F .  (d r a) - B U F F .  (s, a, d, i, m), 

where r = g(s, i, rn)eDN. Further, since the value of "*"  determines whether the 
ports c~ and/or 6 are empty or not, we may extend the function f to f:  (D• 2 
---~DN+2, which removes all occurrences of "_k" from any string of length at 
most N + 2 .  This means for rEDN and a, deD• we have 

if 
if d~D,a= • 

f (dra)  = if d = • a~D 
t d r a  if d ,a~D. 
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Letting t =f(dra) it is easy to see that the values of * and t together completely 
specify the state of BUFF up to strong congruence. Hence we may further 
simplify our definition of BUFF to 

B U F F ,  (t) - B U F F ,  (d r a), 

where f (dra)  = teDN+ 2. 

Proposition 4.3 Let S= {{BUFF,(t),  FIFO(t)) lt~DN+ z}. 
1. S is an efficiency prebisimulation. 
2. B U F F ,  (e) < + FIFO(e). 

Proof outline. 1. Follows from the transitions of FIFO and BUFF. 
2. When t=e,  * = ?  BUFF,( t )  has no internal transitions. In fact, both 

BUFF(e) and FIFO(e) have only an a-transition, satisfying the conditions EP + 
of Proposition 3.11.3. [] 

Proposition 4.4 Let T= {(PIPE(dsa), BUFF(dra)) I f (s )= r, a, d~Dl} 
1. T is an efficiency prebisimulation for all N >= I. 
2. For N = I  and s, reD• such that f (s)=r,  PIPE(dsa)~- +BUFF(dra) for all 
a, deD I. 
3. For N >  1 and s, r~(D~_)N such that f (s)=r,  PIPE(dsa)<~ +BUFF(dra) for all 
a, deD l . In particular, PIPE (_1_ N + 2) < + BUFF? (e). 

Proof outline. 1. Similar to the proof of Proposition 4.3.1. The condition N__> 1 
is absolutely necessary because if N =0  then BUFF is not an implementation 
at all (there is no MEM)! 
2. It may be seen that when N = 1, the relation T defined in part 1 is actually 
a strong bisimulation. 
3. It suffices to consider only the internal transitions of the two implementations. 
Intuitively speaking, for every message that is accepted, PIPE has to perform 
N + I  internal actions (i.e. passing the message from cell CN+I to CN and so 
on till it reaches Co) before it can deliver it to DEST. On the other hand, 
BUFF needs to perform exactly two internal actions (one to store the message 
in MEM and the other to retrieve it) before delivering it to DEST. Consider 
any ordered pair {PIPE(dsa), BUFF(dra)) in the ep T given in part 1 and 
let N > 1. The following claims may then be proved easily. 

Claim 1 Let p be an integer such that 0 < p < N + l ,  and q=min(2,  p). Then 

for every (PIPE(dsa), BUFF(dra))  in T, PIPE(dsa) ~, PIPE(d' s' a') implies 

there exists r'eD N such that BUFF(dra) lq  BUFF(d' r' a') and ~PIPE(d's'  a'), 

BUFF(d'  r' a')) e T. 

Claim2 If BUFF(dra)~--2--~BUFF(d'r'a ') then there exists p__>l and s' such 

that PIPE(dsa) lp PIPE(d' s' a') and (PIPE(d' s' a'), BUFF(d'  r' a'))E T. 

PIPE(_I_N+2)< +BUFF(t) follows from the fact that both processes have no 
internal transitions and both may only perform c~-transitions. [] 
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K Proof system for finite processes 

In this section, we give a sound and complete (in)equational proof system for 
finite processes, that is, processes in which there is no occurrence of recursion. 

In any proof system for finite processes in CCS, it turns out that for a 
precongruence which is coarser than strong bisimulation congruence (~ )  it is 
enough to restrict attention to what are referred to by Milner as "finite serial 
processes", i.e. processes which are built up only from prefix and summation 
operations. This is because, any finite process containing one or more of the 
so called "static operators", viz. composition, hiding and relabelling, may be 
transformed into a finite serial process using equations which are sound for 
strong bisimulation congruence. The reader may verify from the following propo- 
sition (stated without proof) that this is indeed true. It is easy to show that 
"]" is both commutative and associative, hence we use the unary operation 
" F "  over a set of processes to denote their composition. For similar reasons 
"2;" is used for summation. 

Proposition 5.1 [10] 1. The Expansion Law. Let p - FP', where P' - { P i l  1 < i < n}. 

' ' " ' ~ ! ~  ' Then p~E{a i . p  Ipi a:, p~, p'=_F((P'-{p,})w{p'~})}+ s  p~, pj pj, 

i <j, p"=- I ' ( (P ' -  {pi, PJ})_w {p'~, p~})} 
L lID i fa~Lw L 

2. (a .p) \  ~ a .  
(p\L) otherwise 

3. (a. p) [hi ,-~ h (a). p [hi 
4. (p + q)\L,-~(p\L) + (q\L) 
5. (p + q) [hi ~ p [h] + q [h] []  

The five parts of the above proposition may be combined and generalized into 
a single monolithic expansion law. However, we have given it in the above 
form for the sake of clarity. 

A proof system for efficiency precongruence, strictly speaking, should also 
incorporate Proposition 5.1 as an infinitary equation (since A is an infinite 
set). However, it is enough for our purposes to know that such an equation 
exists. Our main concern therefore, will be to obtain a proof system for finite 
serial processes that characterizes efficiency precongruence. Our proof system, 
denoted ~r is shown below. 

A1. x + y = y + x  

A2. x + ( y + z ) = ( x + y ) + z  

A3. x + x = x  

A4. x + O = x  

A5. a.(x + 1 .x)m_a.x 

A6. 1 . x ~ x  + l . x  

A7. a.(x + 1 . y )~a . (x  + 1 .y )+a.y  

R0. x = _ x + y + z  
x~_x+z  
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As with any inequational axiom system, provability is assumed to be closed 
under the following rules. Further, each of the equations A I~I given above, 
actually denotes a pair of inequations which may be obtained by applying rule 
R 2 below. 

R1. x _ x  Reflexivity 

R 2. x _~ y, y ~_ x x = y x = y Equality 
x = y  ' x=_y,y=_x' y = x  

R 3. x E y, y _  z Transitivity 
x ~ z  

R4. xl =-Y~' ""' Xk ~--Yk 
O(Xl . . . .  , Xk)--= o(yl,  ..., Yk) Substitutivity 

for every k-ary operator o 

R5. x _ y  for every substitution p Instantiation 
x p ~ y p  

The proof system d consists of the axioms A 1-7 and rules R0-5. The axioms 
A1-4 and rules R1-5 are the usual ones an require no explanation. A5-7 
are asymmetric because of the differing numbers of silent actions on the two 
sides of the respective inequations, i.e. their converses do not hold. Note that 
using A 6 a slightly weaker version of A 5 may be derived, a. 1. x _ a. x. However, 
rule R0 may require some detailed intuitive explanation to justify its introduc- 
tion. Let d -  denote the proof system d without the rule R0. 

To explain the need for R0, it is necessary to be able to compare the proof 
system d -  with the system sO' for observational congruence, d '  consists of 
the equations A 1-4, and the following equations (A 5'-7') in lieu of A 5-7. 

A5'. a . l . x = a . x  

A6'. 1 . x = x + l . x  

A7'. a.(x+ 1 .y)=a. (x+ 1 . y )+a .y  

In place of A5' we could have used a.(x + 1 .x )=a .x ,  but in view of A6' our 
choice seems more straightforward. Moreover these are precisely the axioms 
used in [7]. Further we also have the rules R 1'-5', which are obtained by 
replacing all occurrences of " _ "  in R1-5 by " = " .  d '  has been shown to 
be complete for finite processes (see [7] or [11]). Now consider the following 
equation. 

TI ' .  z+ 1.(x + y )=z  + 1.(x + y)+ y 

It may be easily shown that T 1' is provable in ~ "  using the equation 

AS'. 1.(x + y ) =  1 . ( x+y)+y .  
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A 8' in turn may be derived from A 6' in the following manner. 

l.(x+y) 
=l . ( x+y)+(x+y)  byA6' 

=(1. (x+y)+(x+y))+y b y A 3 a n d A 2  

= 1 . (x+y)+y  byA6' 

However, to prove the analogue of T i', viz. 

T 1. z+ 1.(x+y)~_z+ 1 . (x+y)+y 

in d - ,  it would be necessary to introduce 

A8. 1.(x+y)~_ 1 .(x + y)+ y 

as an extra axiom, since A8 cannot be derived from A6 in a similar fashion. 
Even if A8 were added to the system ~', it is not possible to prove 

T2. 1 .(xx + 1.(x2 + y ) ) -  1 .(xa + 1 .(x2 +y))+y, 

whereas, the analogue of T2, viz. T2' is provable in d ' ,  without the addition 
of any more axioms or inference rules. 

Let X denote the sequence ( x i l l < i < m )  and for any y, let a >-XU]y 
denote a.(xl +a.(x2 +a.(... +a.(x,,+y)...))). In general, in the system sg-,  it 
does not seem possible to derive valid inequalities of the form, 

T3. 1 > - X m y ~ ( 1  >-X[Zy)+y  

without adding an infinite number of axioms starting with A 8. On the other 
hand, by using RO in conjunction with A6, we would be able to prove inequa- 
tions like T3. For instance, T2 may be derived in sr as follows: 

1.(xl + l.(x2 + y)) 
~_ 1.(xl + 1.(x2 + y))+ xi + 1.(x2 + y) by A6 

=_l.(xl +l . (x2+y))+xl  +(1.(x2+y)+x2+y) byA6 

==_l.(x~+l.(x2+y))+(x~ +l . (x2+y)+x2)+y byA2 

12Z 1 . (X  1 "q- 1 .(X2 +y))+y by R0 

A6 therefore enables us to extract y from an expression of the form given 
in T3, in which y may be nested at an arbitrary depth. However R0 enables 
us to discard certain other superfluous terms which also come up by the applica- 
tion of A 6. A similar phenomenon occurs with A 7. For example, 

a.(xl + 1.(x2 + 1.y))ga.(xl + 1.(x2 + 1. y)) + a. y 

cannot be derived in d although the corresponding identity is a theorem in 
d ~  r , 

We give below the proof of soundness of R0 and leave the other proofs 
of soundness to the reader. We then proceed to show that the proof system 
d is complete for finite processes. 
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Proposition 5.2 Rule R 0 is sound. 

Proof  Suppose p < + p + q + r .  Let p l - p + q + r  
tion 3.11.3 we have 

757 

and P2 = P +  r. By Proposi- 

L e m m a  5 . 4  p 

which was required. 

Hence 

By (3), (4) and Proposition 3.11.3 we get p <  +p+r .  []  

L e m m a  5.3 For all processes p, q, p 5,% p implies p 5% + q or p <,% + q + 1. q. 

Proof. Assume p<~q and p <  +q. We have to show p <  +q+ 1.q. By Proposi- 
tion 3.11 it is sufficient to show 

(1) p " , p ' ~ 3 q " q + l . q  " , q ' A p ' ~ q '  

(2) q + l . q  " , q ' ~ 3 p ' : p = g . p '  A p ' ~ q '  

(t) follows from the fact that p < q  using the characterization of ~< given in 

Proposition 3.6. The same characterization ensures (2) whenever q "~ q'. Hence 

it remains to prove 3 p': p =~ p'/x p' ~< q when q + 1. q i ,  q. Since p ~< q and p ~; + q, 

from EP'2 and the negation of EP+2 for a = 1, we obtain 

P 1 p, A p , < q ^ ( V q , : q  l , q , : p ,  ff~q,). 

q + l . q ~  , 1 q ~ p  : p ~ p '  A p ' G q  

[] 

a ~p' implies s JF-p=p+a .p ' .  

(1) p '~ , p'=~3p'~ ' p,  ~ P'I A p' ~p'a 

(2) Pl " ' P' =~ " ' =8" ' ' <  ' 1 ~ p : p  p A p ~ p l  

Letting p~ - p' we have 

(3) P a, p '~3p '2  "P2 & P'2 A p' <~,,p2' 

From (2) it follows that 

a ,=:~-, , p, , <  , 
(4) P2 ' P2 ~p :p=:~ Ap ,,~P2 
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Proof By induction on the depth of inference of p a ;, p , .  [] 

Lemma 5.5 p =~ p' implies sr t-p ~ p + a. p'. 

Proof By induction on the number of silent actions involved in the transition 

a t p ~ p. If p =~ p' then the result follows from Lemma 5.4. Otherwise we have 

two cases to consider. Either p 

by Lemma 5.4 we have 

(1) ~r l .q 
dt-q~_q+a.p' 

~r l.q=_ l .(q + a.p') 

(2) ~q-1 . q _  1 .(q+a.p')+q+a.p' 

(3) dt-p~_p+(1.(q+a.p')+q)+a.p' 

Applying rule R0  to (3) we obtain 

~r 

In the latter case by the induction hypothesis 

(4) stt-p~ p + a.q 

d t - q = q +  l.p' 

~r 1.p') 

(5) ~r 1.p')+a.q 

(6) st~-pEp+a.(q+ 1.p')+a.q 
~r 

1, q =g, p, or p =g, q ~ p'. In the former case 

by induction hypothesis 

by R 4  

b y A 6  

by (1), (2), R3 and A2 

by Lemma 5.4 

by R4  

by A7 

from (4), (5) and R 3 

from (6) and R0. []  

Theorem 5.6 (Completeness). p < + q implies ~t-p ~_ q 

Proof We prove this by induction on the sum of the depths of p and q, where 
the depth of p is the maximum number of nested prefixes in p. We may assume 
p and q have the standard forms Z {ai. P~l 1 < i__< m} and 27 {bj. qjl 1 __<j < n} respec- 
tively (and for all i,j, 1 < i < m, 1 <__j <__ n, Pi, qj are in standard form). If the sum 
of the depths is 0 (i.e. m = n = 0), there is nothing to prove since p -  � 9  q. Other- 
wise, by repeated applications of A4, all summands that are 11) may be eliminated 
leaving p and q in standard form (m, n > 0). We prove the following claim. 

Claim. (i) st~-ai.pi+q~_q for every i, 1 <_i<_m. 
(ii) df-p~_p+bj.qj for every j, 1 <j<n. 

a~ bj 
(i) If p<.+q then since p ~p~ there exists bj=al with q ,q~ and p~<qj. 

By Lemma 5.3 pi< +qj or p~< +q~+ 1.qj. By the induction hypothesis we have 
~t-p~=_qj or dt-p~c_q+1.qj. In the former case dt-a~.p~_bj.qj by R4, and 
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in the latter we get the same by applying R4 followed by A5. The result then 
follows. 

bj 
(ii) If q , q~ then by Proposition 3.11.3 there exists p' and some ai=bj such 

that p=Np' and p'<q~. By Lemma 5.3 and the induction hypothesis we get 

xd~-p'=_qj or d~p'~q~+l.qj. It then follows (possibly by applying A5) that 
,~-bj.p'm_bj.qj and by Lemma5.5 ~-p~p+bj.p' from which we obtain 
~r + bj.q3. 

Having proved the claim, we proceed as follows. By R4, we may sum up 
(i) for all i, reorder the terms (by A1 and A2) and repeatedly apply A3, to 
obtain d~-p+qEq. By performing similar operations with (ii) for all j, we get 
d~-p=_p+q. The result then follows by R3. [] 

6. Conclusion 

The efficiency preorder we have introduced, <, is based on the simple idea 
of, essentially, counting the number of internal moves made by a process. We 
have shown that this idea may be successfully incorporated within the general 
framework of bisimulations, [11], to obtain a mathematically tractable preorder, 
which, in common with the standard notions of bisimulation equivalence, is 
sensitive to the branching structure of processes yet supports abstraction. It 
is mathematically tractable in that it is preserved by all CCS contexts and 
we have given a complete proof system for finite terms, based on a modification 
of the standard z-laws for CCS. Moreover the usual algorithms for checking 
bisimulations or finding bisimulations, [3], may easily be adapted to <. It 
supports abstraction in that it is insensitive to many of the internal details 
of processes. For example, the usual laws associated with port restrictions are 
true as are variations on the r-laws. It differs from the abstraction supported 
by weak bisimulation only in that processes may be differentiated if their 
response times to external stimuli are different. This is also the basis of comparing 
and ordering processes: p < q  if the response time of q to external stimuli is 
uniformly faster than that of p. 

Although the basis of the preorder is very simple, we have demonstrated 
its usefulness by applying it to an example of the implementation of a FIFO 
queue. In future work we hope to apply it to more significant examples. We 
also intend to investigate the possibility of characterising < completely using 
a finite set of inequations. Recall that the proof rule R0 is essential to our 
proof system. 

There has been much recent work on introducing notions of time into process 
algebras. [-2] and [14] are typical examples of one approach, where real-time 
durations are associated with actions. [12] and ]-8] are examples of another 
approach where actions are still instantaneous but a special action is introduced 
to represent the passage of time. Neither of these approaches is directly compara- 
ble with the one presented here, which we believe to be the first "improvement" 
preorder based on time. 



760 S. Arun-Kumar and M. Hennessy 

References 

1. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Proc. International 
Conference on Theoretical Aspects of Computer Software. (Lect. Notes Comput. Sci., 
vol. 526, pp. 152-175) Berlin Heidelberg New York: Springer 1991 

2. Beaton, J., Bergstra, J.: Real time process algebra, Technical Report CWI Amsterdam, 
1989 

3. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: A semantics-based 
verification tool for finite-state systems, Technical Report ECS-LFCS-89-83, University 
of Edinburgh, 1989 

4. Davies, J., Schneider, S.: An introduction to timed CSP, Technical Report, PRG, Oxford, 
1989 

5. Gerth, R., Boucher, A.: A timed failures model for extended communicating sequential 
processes (Lect. Notes Comput. Sci., vol. 267, pp. 95 114) Berlin Heidelberg New York: 
Springer 1986 

6. Hennessy, M.: Algebraic theory of processes. Cambridge, MA: MIT Press 1988 
7. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 

32(1), 137-161 (1985) 
8. Hennessy, M., Regan, Y.: A temporal process algebra. Technical Report 2/90, University 

of Sussex, 1990 
9. C.A.R. Hoare: Communicating sequential processes. Englewood Cliffs, NJ: Prentice Hall 

1985 
10. Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25, 267-310 (1983) 
11. Milner, R.: Communicationa and concurrency. Englewood Cliffs, N J: Prentice Hall 1989 
12. NicoUin, X., Richier, J.L., Sifakis, J., Voiron, J.: ATP: An algebra for timed processes. 

Technical Report, Grenoble, 1989 
13. Park, D.: Concurrency and automata on infinite sequences. (Lect. Notes Comput. Sci., 

vol. 104, pp. 167-183) Berlin Heidelberg New York: Springer 1980 
14. Reed, G.M., Roscoe, A.: A timed model for communicating sequential processes (Lect. 

Notes Comput. Sci., vol. 226, pp. 314-323) Berlin Heidelberg New York: Springer 1986 
15. Rudkin, S., Smith, C.R.: A temporal enhancement for LOTOS. British Telecom, 1988 


