
Acta Informatica 29, 737-760 (1992)

�9 Springer-Verlag 1992

An efficiency preorder for processes

S. Arun-Kumar 1 and M. Hennessy 2

1 Department of Computer Science and Engineering, Indian Institute of Technology,
Hauz Khas, New Delhi 110 016, India
2 School of Cognitive and Computing Sciences, University of Sussex, Falmer,
Brighton BN1 9QH, England

Received January 14, 199l July 14, 1992

Abstract. A simple efficiency preorder for CCS processes is introduced in which
p < q means that q is at least as fast as p, or more generally, p uses at least
as much resources as q. It is shown to be preserved by all CCS contexts except
summation and it is used to analyse a non-trivial example: two different imple-
mentations of a bounded buffer. Finally we give a sound and complete proof
system for finite processes.

1. Introduction

A large number of behavioural equivalences for process description languages
have been studied in recent years [11, 9, 6]. If ~ is such an equivalence then
p ~ q means intuitively that p and q offer essentially the same behaviour to
the environment. When comparing the behaviour of processes, many of these
equivalences, often called asynchronous equivalences, do not take timing consid-
erations into account; internal actions are considered to be instantaneous. On
the other hand there are many applications for which it would be reasonable
to have the notion of behaviour include at least some aspects of time. The
description of real-time systems is the most obvious candidate and the proper
functioning of many communicat ion protocols depend at least to some extent
on the fine-tuning ot the relative timings of certain actions. This has led to
the development of real-time versions of standard process description languages.
Typical examples include "real-t ime L O T O S " [-15] and timed CSP [14]. In
these languages all actions have a specific time or duration associated with
them and, roughly speaking, two processes are deemed to be equivalent if they

* Most of this work was done while the first author was at the University of Sussex and
supported by SERC grant GR/D 97368 of the Science and Engineering Research Council
of Great Britain.
** The second author would like to acknowledge the support of the ESPRIT II Basic Research
Action Concur.

738 S. Arun-Kumar and M. Hennessy

offer the same potential actions of the same duration at more or less the same
time during a computation. Let us call this intuitive idea "real-time equivalence".

For many applications this treatment of time is much too detailed. One
ends up being forced to carry out long and precise timing calculations, the
details of which are often superfluous. Indeed, many descriptions which one
feels should be equivalent are not so because the comparison is too fine-grained.
We would like to develop methods of comparing processes which are finer
than the asynchronous equivalences in that they take time into consideration
but are not as restrictive as real-time equivalences.

In this paper (which is a revised version of [1]) we develop one such method.
The idea is very simple and although it will not be universally applicable, we
feel that it will be useful in many applications. We develop a preorder on process
descriptions which has approximately the following meaning: p<q if p and
q are bisimulation equivalent and q is at least as fast as p.

So in this approach there is no assignment of absolute values to the actions
or constructs of a process. Instead it is purely comparative; the comparison
is made by assuming that all external actions take the same time and that
internal actions take some indefinite but non-zero time. Hence if ~ and fl are
actions and 1 represents an internal move then it turns out that

but

~. 1./~.�9169

~ . /~ . �9 1./3.0.

One obvious advantage of such a treatment as opposed to the usual real-time
equivalences such as [14] and [5] is that "1" may be used not just as a unit
or measure of time but to denote some more general quantities such as "energy
consumed in a computation" or the "complexity of communication and synchro-
nization" as well.

We will show in this paper that a mathematically tractable behavioural
theory of processes based on these ideas can be developed. It is applied to
the standard version of CCS although in principle there is no reason why it
should not be equally to more general languages with real-time features.

In Sect. 2 we define the syntax and operational semantics of CCS. This
is completely standard and may be omitted by readers familiar with CCS. In
Sect. 3 we show how to modify the usual recursive definition of bisimulation
equivalence [11], so as to obtain <. Roughly speaking for p<q to hold, every

"weak arrow", ::~, from p must be matched by a corresponding "weak arrow"
from q which performs at most the same number of internal moves and converse-
ly, every "weak arrow" from q must be matched by a "weak arrow" from
p which uses at least as many internal moves. Alternative and more useful
formulations of < are also given. We develop most of these concepts by confin-
ing ourselves to "pure CCS", where no values are passed between processes.
The extension to value-passing may be done in the usual fashion. We then
investigate the algebraic properties of < . For the same reasons as for observa-
tional equivalence (see [11]) it is not preserved by the " + " operation of CCS,
but we can apply the usual method to overcome this problem. We show that
the resulting relation is preserved by all the operators of CCS including recur-

An efficiency preorder for processes 739

sion. We also justify fixpoint induction. In Sect. 4, we consider an example
which examines different methods of implementing a F IFO buffer. In Sect. 5
we show how a complete proof system may be obtained for finite processes.
This involves modifying the equations in [7] but it appears that an extra proof
rule is also necessary. The paper ends with a brief comparison with other related
work in the literature.

2. CCS and labelled transition systems

2.1 Syntax and operational semantics of CCS

Let A a n d / / (t h e complement of A) be infinite disjoint sets in bijection under
the complementation operation Then V=A u A is the set of ports and
complementation is extended to the whole of V so that ~ = ~ for all asV. If
D is any domain of values, Vx D denotes the set of visible actions with
extended to Vx D in the usual way. That is, for ae Vand deD, a(d) will denote
an element of Vx D and c~(d) its complement. Let "1 " be a special action called
the internal (silent or invisible) action, such that i = l . Then A = (V x D) u { 1 }
is the set of all actions. In particular, when D is a single-valued domain we
shall identify Vwith Vx D.

Unless otherwise mentioned, we use the following notational conventions.
Typically ~, fl, 7 (suitably decorated) denote elements of Vand a, b, c (suita-
bly decorated) stand for (visible or invisible) actions. Let X be a set of process
variable symbols and U a set of value variable symbols. Then x, y, z (possibly
decorated) represent process variable names and u, v, w (possibly decorated)
stand for value variable symbols. The language of CCS expressions is then
given by the following BNF.

e ::= xlOI a(u).el~(d).el 1 . e l e+e l ele I e \ L le[h] I #i x:e ,

where �9 is a constant (or O-ary operator), ue U, deD and Lc_ V, x and e denote
vectors of process variables and process expressions respectively, and #x: e
denotes the solution of a system of recursive process equations, whose i-th com-
ponent is #i x: e. In the relabelling operation e[h], h: A-o A is the relabelling
function such that h(c0= h(~) and h(c 0 ~ 1 for all c~ Vand h(1)= 1.

Since our results are quite general enough to apply to many-valued domains,
we will not explicitly specify elements of the domain or value variable names
unless required in the context. Hence "~(u) .e" will often be written as "cce"
if the value variable u is understood or unimportant. Similarly where actual
values are unimportant, we shall use e, fl, 7, ... (suitably decorated) to range
over the domain Vx D and a, b, c to range over the domain Vx D and a, b, c
to range over A.

Any term generated by the above BNF is called a process expression and
E, ranged over by e,f, g (possibly decorated), denotes the set of process expres-
sions. For any process expression e, FPV(e) is the set of free process variables
in e. Processes are closed process expressions (i.e. expressions with no free process
variables), p, q, r,. . . (possibly decorated) range over the set P of all processes.

We have defined a subset of CCS with value-passing that is sufficient for
our purposes. A more complete language would have a conditional statement

740 S. Arun-Kumar and M. Hennessy

and a "sublanguage" for value expressions. Since these extra features are not
used in our examples we have excluded them for the sake of simplicity.

The operational semantics of the language is defined in terms of labelled

transition systems in the usual fashion. Let (E, A, { " , [a ~ A }) be a labelled

transition system (LTS) where the transition relation ~ _ E x A x E is the small-
est relation satisfying the following axioms and rules for inference.

I. Prefix

1.1 ~(u),e ,(d~ e{d/u},

1.2 ~(d). e ~ta), e

1.3 1.e l , e

2. Summation

2.1 e i - - - %e ' l~ e l+e2 " ,e ' l

t a } t

2.2 e 2 a > e 2 ~ e 1 + e 2 e2

3. Composition

3.1 el a~e'l=e'eile2 ")e ' l le2

3.2 e2 a~e~=e-exle2 " , e l l e ~

t

3.3 el ~)e ' l ,e2 ~ e 2 ~ e x l e 2

4. Hiding

e

for all d e D

! !
1) e l [e 2

" , e', a, 5~L=~ e \ L ~ , e ' \ L

5. Relabelling

e " , e'=~e[h] h(,), e'[h]

6. Recursion

ei{~x: e/x} " , e'=~pi x: e " , e'

where " f{ r /x}" denotes the syntactic substitution of all free occurrences of the
variable x~(xiex) in the expression f by ri(rjer) for each j in the indexing set
of the vectors x and r.

2.2 Derived labelled transition systems

We may readily extend the notion of labelled transition systems to derived
LTS (DLTS) and weak LTS (WLTS) such that a transition is over a sequence
of actions.

An efficiency preorder for processes 741

Definition 2.1 A derived LTS is a structure (E,A*,{ s , IseA*}}, where ~ c_E

x A* x E is the least relation satisfying the following conditions:

(i) e ~, e, for all eeE, where e is the empty sequence,

(ii) e , s e ' i f f o r s o m e e l e E , e ~ > e l a n d e l S,e ' .

Definition 2.2 A weak LTS is a structure of the form (E, (Vx D)*, { ~ l s e (V

xD)*}) , where for s=cq. . .c~ ,e(VxD)*, s , e ~ e iff there exists t

= l"~ 1 " ' ... 1 mn 1~ n 1 m" in A*, for mi>O, O<i<n, such that e t , e'.

For any teA*, let t" denote the sequence (of visible actions) obtained by
deleting all occurrences of the internal action 1 from t. In the above definition

i '= s. Following Milner we use the notat ion pop' to denote p 1 ~* p, and p 1 ~ p,

to deno tep 1,+p, .

Definition 2.3 Let < be the binary relation on A* generated by the inequations
l s < s and s<s, i.e. < is closed under reflexivity, transitivity, and substitution
under catenation contexts. An extended action is an element of A* containing
at most one visible action. The set EA of all extended actions is partially ordered
by <

Note that the empty sequence and any finite sequence of internal actions
belong to EA. In fact, A c_EA_cA*. It is also clear that < is antisymmetric
and hence a partial order on A* and EA.

In the next section we proceed with our analysis of the effect of this partial
order on process behaviours. However to enable the reader to look at our
definitions and theorems in the proper perspective, we also intersperse in our
theory some results (stated without proof) due to Milner. The reader may consult
[11] for the relevant proofs.

3. Weak bisimulations and efficiency prebisimulations

Definition 3.1 If FPV(e)w FPV(f)_Cx and <3 is a binary relation on processes,
then e<3fiff for every vector of processes p, e {p/x} <3f {p/x}.

The above definition enables us to extend every behavioural relation on
processes to process expressions. In the sequel we will assume that every behav-
ioural relation that we define is thus extended. We now define the notion of
weak bisimulations [i0] and state some of its properties.

Definition 3.2 A binary relation R _ P x P is a weak bisimulation (abbreviated
to wb) if for every (p, q)eR and te(Vx D)* the following conditions are satisfied.

! ! t

WB1. p=~p~3q:q~q 'Ap 'Rq '

WB2. q=~q'~p':p=~p'Ap'Rq'

742 S. Arun-Kumar and M. Hennessy

Proposition 3.3 1. I f RI and R2 are wbs then so is Ra o R 2.

2. The union of a family ofwbs is a wb.
3. ~ = U {RIR is a wb} is the largest wb.
4. p ,~ q ifffor some wb R, pR q.
5. ,~ is an equivalence relation on P. []

The relation ,~ is called observational equivalence.

Definition 3.4 A binary relation R c P x P is an efficiency prebisimulation (ep
for short) if for every (p, q) ~ R and s, s 'EEA the following conditions are sat-
isfied.

EP1. p ~p'=*.3s':s<s':3q':q ~'~q'Ap'Rq'

EP2. q s, ~ q'=*-3 s: s < s': 3 p': p s ~ p' A p' R q'.

As in the case of weak bisimulation we may prove the following proposition.
In addition, it is also easy to show that every efficiency prebisimulation is,
in fact, a weak bisimulation.

Proposition 3.5 1. Every efficiency prebisimulation is a weak bisimulation.
2. I f R1 and R2 are eps then so is R1 oR2.
3. The union of a family ofeps is an ep.
4. ,%< = U {RI is an ep} is the largest ep.
5. p < q ifffor some ep R, pR q.
6. <is a preorder on P. []

We give below a simpler formulation of efficiency prebisimulations. It is also
more convenient to use than Definition 3.4.

Proposition 3.6 A binary relation R GP x P is an ep iff for every (p , q) ~ R , a~ V
x D, a~A, the following conditions are satisfied.

EP'I. p ~,p'~3q':q---~q' Ap'Rq'

EP'2. p l ~ p ' ~ p ' R q v (3 q ' : q l~q 'Ap 'Rq ')

EP'3. q a~q'~qp' :p=~p' Ap'Rq'

Proof. (=*-) It is easy to see that EP1 implies EP'I because for s = a , s<s' implies
s '=a . EP1 also implies EP'2 since for s = i, s<s' implies either s'=e or s '= 1.
Also it is obvious that EP2 implies EP'3 for s ' = ~ e V x D. For s '= 1, from EP2

s ~ r we have p , p' for some s = s, that is, p ~ p'. Hence EP implies EP'.

An efficiency preorder for processes 743

(~) Suppose R is a relation satisfying the conditions EP'. Let <p,q)eR

and for some seEA, let p ~ ,p'. We proceed by induction on the length of

s. If s=~ there is nothing to prove. Otherwise s=as~ for some aEA and sl tEA .

s I ! There exists pl such that p , p~ , p. Now we have two cases to consider.

Case (i) a=e~VxD. By EP'I there is a ql such that q ~ ' q l and p l R q l . By

, sl q, the induction hypothesis there exists S'leEA and q' such that s l _-<s~, q a ,

and p'Rq'. Letting s'=c~s'~ it is easy to see that EP1 holds.

Case (ii) a=l. Then either (p l , q) e R or there is a ql such that q ~-L-~ql and

p l R q~. In the latter case the proof proceeds as in case (i). In the former instance,
again by the induction hypothesis there must exist s'~, s~ __<s'~ and q' such that

q s , q, and p'Rq'. Letting s'=s'~ we have s= l s l _-<s'l =s ' and EP1 follows.

It is obvious that EP2 follows from EP'3. []

As in the case of ,,~ [11] we may show that < is preserved by all operators
except summation. As the following example shows, it is due to the preemptive
power of the silent action that < and ~ are not preserved under summation.

Example3.7 1 . ~ . � 9 whereas 1.c~.(D+fl.II)~.ID+/?.ID because 1.c~.�9

+ f t . � 9 ~ '~ . �9 while c~.�9169 ~ , , . � 9 1 6 9 For the same reasons 1.~. �9

~c~.�9 holds but 1 . c ~ . � 9 1 6 9 1 6 9 1 6 9 does not.

In order to obtain a precongruence we therefore follow the usual method of
defining the largest precongruence contained in <. In the following lemma
we state without proof the result that all the operators, except summation and
recursion, preserve the preorder. It is also preserved under recursion but we
omit the proof.

Lemma 3.8 Let <]~{ <,, ,~}. Then for all p, q~P, p<3q implies
(a) a.p<]a.qfor all aeA,
(b) plr <lqlr and rlp<~r[q for all reP,
(c) p\L<1q\L for Lc_ V,
(d) p[h]<3p[h]for any relabellingfunction h. []

It is also easy to verify that the l-laws (called "z-laws" in [11]) no longer
hold symmetrically for the preorder ~<. We state these laws in the next lemma.
In the sequel we always use <1 to denote either < or ~.

Lemma 3.9
1. I.p<~p
2. l.p<lp+ l.p<~p
3. a.l.p<1a.p

744 s. Arun-Kumar and M. Hennessy

4. a.(p+ l.q)<~a.(p+ l .q)+a.q . []

This lemma may be proved for both < and ~ by constructing appropriate
eps (note that it is not enough to construct wbs for the purpose of < , though
every ep is a wb by Proposit ion 3.5.1).

Definition 3.10 For ~ ~ { < , ~ }, p<l + q ifffor some visible action c~ not occurring
in p or q, p+e.�9169

Note that only a finite number of distinct action symbols appear in any process.
Since A is infinite it is always possible to find a visible action that does not
occur in a given process.

For reasons that will become clear in Theorem 3.15, the relations < + and
+ defined above (Definition 3.10) are called efficiency precongruence and obser-

vational congruence respectively. In the next proposit ion we give a useful behav-
ioural characterization of < +.

Proposition 3.11
1. p ~ + q implies p <~ q.

2. p ~ + q and p 1) p, implies 3 q': q 1) q,/x p' < q'.

3. p < + q iff for every a~A, the following conditions hold.

EP+I . p a , p ' ~ 3 q ' : q ")q ' ^p '<q '

EP+2. q a~q'=~3q':p=Np' /xp'<q'

Proof 1. Obvious.

2. Let p<+q. Then by Definition 3.10 p + e . � 9 for some visible

action c~ that does not occur in p or q. If pl-L-~p ' then p + ~ . � 9 1 ,p,. From

condition EP'2 (Proposition 3.6) ' < , q' and p ~ q + a . I D or for some q', q + a . � 9 1

p' < q'. But p' ~; q + e. �9 since q + e. �9 ~ , (I), whereas p' can never perform an

action. Hence there must be a q' such that q 1) q, and p'< q'.

3. (=~) Follows from parts 1 and 2.
(~) It suffices to show from EP § that p+a. tD<q+e. tD. It is easy to show

from EP § that EP ' I and EP'3 are satisfied by the pair @+c~.tD, q+~ . tD) .

Let p + ~. �9 1) p,, then since c~ ~ Vx D we have p ~ , p' and from EP + 1 it follows

that for some q', q ~ , q' and p' ~< q'. Hence q + c~. �9 q ' and p' ~< q' which proves

EP'2. []

A similar behavioural characterization exists for ~ + which we merely reproduce
without proof [11].

An efficiency preorder for processes 745

Proposition 3.12 p ~ + q ifffor every a eA, the following conditions are satisfied.

WB+I. p ~,p'~3q"q=~q'Ap' ,~q'

. , ~ ,. p=~p' p' ,~ q' WB+2. q , q sp A []

It is then a simple matter to prove the following proposition for <3 + e { < +,
+ }. We leave the proof to the reader.

Proposition 3.13 <3 + is preserved under prefix, summation, composition, hiding
and relabelling.

To show that <~ § is a precongruence it is now only necessary to prove
that it is preserved under recursion.

Lemma 3.14 Let e and f be process expressions such that e<3 +f and FPV(e)u
FPV(f)C_x. Then #ix:e<3+#ix: f.

Proof outline. This was originally proved in [11] for ~ + and the same proof
may be easily adapted for <~ +. We give an outline for the case of e and f
having at most one free variable, say x. That is, we prove that e<3 +f implies
p<3 +q where p=/2x: e and q=-ltx:f Now consider the relation

R = {(g {p/x}, g {q/x})lgeE, FPV(g)C {x}}.

By induction on the depth of the inferences g{p/x} a p, and g{q/x} ~-~ q'

respectively, one may show that R satisfies the following conditions for all aeA.

(i) g{p/x} a p'~3q':g{q/x} a,q' Ap'Ro<3q'

(ii) g {q/x} ", q'=~3 p': g {p/x} ~, p' A p'<3o R q'

From (i) and (ii) we may show that <3oR~.<3 is an ep if < 3 = < and a wb
if <3 = ~ , and since R _ <3 o R o <3 it follows that R _ <1. Letting g - x it is clear
that (p, q)ER and hence p<3q. But from (i) and (ii) above and the conditions
EP + in Proposition 3.11.3, we obtain the stronger result p<3 +q. []

Theorem 3.15 <~ + is a precongruence on CCS process expressions.

Proof Follows from Proposition 3.13 and Lemma 3.14. []

Definition 3.16 The kernel of < +, defined by -~ + = < + c~ > +, where > + den-
otes the converse of < +, is called efficiency congruence.

We will also have occasion to refer to another relation which we briefly describe

here. If Definition 3.2 were strengthened by letting teA* and replacing " ~ "

everywhere by " t ,, in the conditions WB, then the relation obtained is a

746 S. Arun-Kumar and M. Hennessy

strong bisimulation and ,-~, called strong bisimulation congruence, denotes the
largest strong bisimulation (for details see [11]). It turns out that efficiency
congruence strictly contains strong congruence, and is, in turn, strictly contained
in observational congruence i.e., ~ c ,-~ § c ,~ § The following example makes
clear the difference between the three relations.

Example 3.17.

\

1 ,~+

~+ �9

~ +

4. An example: The (N + 2)-buffer

In this example we use the value-passing version to specify a bounded buffer
of capacity N + 2 , N > 0 , and compare two different implementations of the
specification. The problem may be stated informally as follows. Values are to
be accepted from a process SOURCE and delivered in order to another process
DEST independent of the speeds of execution of SOURCE and DEST. We
give three different processes which carry out this task and which are strictly
ordered with respect to ~<.

Let D be a value domain and for n>0 , let D" denote the set of strings
of length n and D , = U {Dkl O<k<n} the set of strings of length at most n.
The state of the buffer at any instant of its execution is determined by the
string it contains. The state space of the buffer is given by DN+2. We may
then formally specify the behaviour of the buffer by the CCS process FIFO(t),

A n e f f i c i e n c y p r e o r d e r f o r p r o c e s s e s 7 4 7

"1 F

f E

,~ ~ l I '~ ~
D E S T e." �9 F I F O (t) . . " �9 S O U R C E

' I I '
I I

J t.
F i g . i . S p e c i f i c a t i o n o f b u f f e r

I F I F
I I PIPE(s) ; _ l

I c3 ~ 1 ~ 1 I - - I I'-- I cr ~ I
DEST e - �9 -r e-. e ' r "r e(. . . .- e ' r e.- e SOURCE

.I L

F i g . 2, F i r s t i m p l e m e n t a t i o n o f b u f f e r

where t~DN+2, a, d~D, ~ is the input port and 8 is the output port as shown
in Fig. 1.

c~(a).FIFO(a) if t=e (orltl =0)

F IFO(t) - 3(d).FIFO(tl)+c~(a).FIFO(ta) if t=d ta and 0 < l t l < N + l

S(d).FIFO(tl) if t = d t l and I t l=N+2.

Hence for any string t, FIFO(t) has the following transitions.

FIFO(t) ,(a), FIFO(ta) if 0 ~ l t [< N + 2

FIFO(t) s(a),FIFO(tl) i f 0 <] t [< N + 2 and t=dt l .

Throughout this section we shall use the word "implementation" to refer to
any CCS process that is observationally congruent to FIFO(e). We shall also
override some of the notational conventions specified in Sect. 2.1 as regards
variables and values.

The process PIPE. A simple implementation of this buffer is in terms of cells,
where a cell is an elementary i - o device that may be defined as C =-l(x).C'(x)
and C'(x)-6(x).C. For the sake of uniformity we denote the state C as C(L)
and C' (d) ad C (d). A buffer of capacity N + 2 may be created simply by connect-
ing cells end to end and relabelling the ports appropriately (see Fig. 2.). Therefore
we have

Co (X) -- C (x) E~o/l, 6/0]
Cj(x)=C(x)[z/1, zj_l/o] for O<j<N

CN + 1 (x) - C(x) [~/t, ~/o]

for all x~D• where D l =D w {_1_}. Then

PIPE(s)=(F{Cj(xj)IO<j<N+ 1})\{zkl 1 < k < U + 1},

748 S. Arun-Kumar and M. Hennessy

F

I ~o B I o

s
I o

I - - ' - -

B| . . .

- - O ; N - 1 O N - 1

, T• T • T•
I . . -" ~ "- "- I

z ~ ~ p o ~ o~ . . . ~ p~_~ -I
I (~ o I N-I C~ cc

DEST e< -- r --

I BC(a, d, i ,m) I
I I
./ L

I BUFF(s, a, d, 1, m) I
I I
L J

Fig. 3. Second implementation of buffer

SOURCE

where " F " denotes the composition of a set of processes and S=Xo...xN+ 1,
seD~ +2. The transitions of PIPE(s) are

PIPE(s'J_) ~(a)>PIPE(s'a) where s 'eD~+l,aeD

PIPE(ds') ~(d)> P I P E (I s ') where , ~N+I S eu• ,d6D

PIPE(s'_Lvs") 1 ,PIPE(s 'v l s") where s's"eD~,veD.

To prove that PIPE is an implementation of FIFO, it is sufficient to display
a weak bisimulation between their state spaces. However it is possible to prove
the stronger result given in the following lemma, whose detailed proof we leave
to the interested reader.

P r o p o s i t i o n 4.1 Let f: DE + 2 __. DN + 2 be the function which strips off all occurrences
of "_L "from any string in D~ +2 . Then
I. R = {(PIPE(s), FIFO(f(s))>lseD~ +2} is an ep.
2. PIPE(ZN+2)~< +FIFO(e).

Proof Outline. 1. Clearly f is surjective, so every possible state of PIPE and
FIFO is present in R. Then it is a simple matter to show from the transitions
of PIPE and FIFO that R is indeed an ep.
2. For t=~: and s=_L N+2, it is clear that f (s) = e and also PIPE(_L N+2) has
no silent transitions. Then PIPE(s) and FIFO(t) satisfy the conditions EP §
of Proposition 3.11.3. Hence PIPE(LN+2)~< +FIFO(e). []

The process BUFF. Now consider a different implemetation of the buffer, in
which N cells are used (numbered from 0 to N - 1) simply as storage and each
cell interacts only with a centralized buffer controller which may store an addi-
tional two values. We define the store as follows.

Bj(x)-C(x)[coJl, pJo], for O<=j<N
MEM (s) - F{ Bj(xj)lO <=j < N},

where S=Xo ...XN-1 and xjeD• is the state of cell Bj for O<j<N.
The buffer controller, BC, whose schematic design is shown in Fig. 3, may

store at most two values at any instant. It performs the following functions.

An efficiency preorder for processes 749

m=O, n=2
Fig. 4b e

((

!
(p

m=N, n=N
Fig . 4c,

Fig. 4a. Transition diagram of BC when MEM is neither full nor empty.

(a) it accepts a value from SOURCE through the port e, and does not accept
another till the first one is stored in one of the N cells.
(b) it writes the most recently accepted value in the first available empty cell,
say B j, through the port (5 i.
(c) it retains the oldest undelivered value, (after reading from, say B i through
port pi) and keeps it ready for delivery.
(d) it delivers whatever value it has retained, whenever possible, to DEST,
through the port 8. The next value is not delivered till it has been retrieved
from the appropriate cell.
(e) The N cells are treated as a circular queue of length N (with the indices
of the cells ordered as follows: 0 < 1 < . . . < N - 1 < 0). It is clear that the controller
requires to maintain the following information: i, the index of the cell containing
the oldest undelivered message and j, the index of the first available empty
cell. Equivalently, since the values are stored in order in contiguous cells of
the circular queue, instead of j, it may retain m the number of cells in MEM
containing undelivered messages.

The state of BC is therefore determined by four arguments - the value aeD
at the port cq which it may accept from SOURCE, the value deD at the port
8, which it may deliver to DEST, the index i and the number m. As before
a = _1_ if there is no value at c~ and similarly d = _1_ if there is no value at 6.
Further, if n denotes the total number of messages in the memory-buffer con-
troller system, then m < n _< rn + 2 always holds.

For convenience and clarity, we classify the states of BC into eight different
kinds, which reflect the choices of actions immediately available to BC in that
state. In the sequel therefore, the states of BC are further decorated by subscripts
which classify the state. In general, when MEM is neither full nor empty (i.e.
0 < m < N) the following are the four possible kinds of states that BC may be
in.

BC.:r : may accept (?) from SOURCE or read (r) from MEM (n = m)

BCwr : may write (w) into MEM or read (r) from MEM (n = m + 1)

BC.~t : may accept (?) from SOURCE or deliver (!) to DEST (n = m + 1)

BCwt : may write (w) into MEM or deliver (!) to DEST (n = m + 2).

Figure 4a shows the transitions that BC may go through between these four
states provided MEM continues to be neither empty nor full. Otherwise, for

750 S. Arun-Kumar and M. Hennessy

m=0 m=l m=l
n=l n=l n=2

~ ig . 4a

m=O m=O m=O m=l
n=O n=l n=2 n=2

Fig. 4b. Transition diagram o fBCwhen M E M i s e m p t y

Fig. 4a

m=N m=N- 1 m=N- 1
n=N+l n=N+l n=N

.2_
Fig . 4a

m=N rn=N m=N m=N- 1
n=N+2 n=N+l n=N n=N

Fig. 4c. Transition diagram of BC when MEM is full

instance, when M E M is empty (i.e. 0 = r e < n < 2) we have two more kinds of
states

BC~ : may only accept (?) from S O U R C E (when n =0) and
BWw : may only write (w) into M E M (when n = 1).

When n = 1, depending upon the value of m (and where in the entire system
the only message is), the possible kinds of states are BCw, BC?r, BC?!. When
m = 0 and n = 2, clearly the only kind of state possible is BCw~. Similarly, when
M E M is full (i.e. N = m < n < N + 2), we get two more new kinds of states, viz.

BCr : may only read (r) from M E M (when n = N + 1) and
BC~ : may only deliver (!) to DEST (when n = N + 2).

When N = m = n, we have BC?r as the only possible kind of state. When n = N + 1,
by a reasoning similar to the case when n = ! (depending upon where the only
"ho le" or "empt iness" is) the possible kinds of states that BC could be in
are BCr, BCw~, BC?~. The state transition diagrams for these " b o u n d a r y " condi-
tions are shown in Figs. 4b and c respectively. We may then define BC(a, d, i, m)

An efficiency preorderfor processes 751

as follows, using " • " and " O " to denote addition and subtraction modulo
N respectively.

BC?(a, d, i, m)

BCw (a, d, i, m)

BC?!(a, d, i m)

BC(a,d,i,m)= BCw!(a,d,i,m)
BC?r(a, d, i, m)

BCwr a, d, i, m)

BC~(a, d, i, m)

BC! (a, d, i, m)
where
BCT(• • i, 0) = ~(a). BCw(a, • i, 0)
BCw(a, • i, 0)-cbi(a). BC?~(• • i, 1)

[~(a).BCw!(a,d,i,m)+5(d).BCT(• L,i,m) if rn=0

BCT~(L,d,i,m)=~o~(a).BCw~(a,d,i,m)+S(d).BC?r(Z,• if 0 < m < N
/

[~(a).BC!(a, d, i, m) + ~-(d).BCT~(• • i, m) if m=N

BCw! (a, d, i, m)
=~ ~iq~m(a).BC?~(L,d,i,m+l)+8(d).BCw(a,Z,i,m) if m---0
-(dgie,,,(a).BCT!(Z,d,i,m+ l)+8(d).BC,,,,.(a,Z,i,m if 0 < m < N

BC?r(• • i, m)
=~o~(a).BC,,,,(a,•174 if 0 < m < N
- [~(a).BCr(a,Z,i,m)+pi(d).BCT~(• iOl, m-1) if m=N

BCw~(a, • i, m)==.&ie,.(a).BC?,~(• • i, m+ 1)+pi(d).BCw!(a, d, iO1, m - 1)
BCr (a, • i, N) = pi(d)" BCw~ (a, d, iO 1, N - 1)

BC~ (a, d, i, N) = ~-(d). BC~(a, • i, N).

The reader may have realised from the above design of BC that the subscripts
on the states of BC are unnecessary since its state (given by the values of the
four arguments) completely determines is immediate choices. However we shall
continue to use these subscripts wherever convenient, as they help in understand-
ing the functioning of both the controller and the system as a whole. Before
composing BC with MEM to obtain the complete system, we define a function

if a= • •
if a~D,d=•
if a=L, d6D, O<_m<N
if aeD, d~D,O<m<N
if a = Z , d = Z , O < m < N
if a~D,d=Z,O<m<N

if a~D,d=Z,m=N
if aeD, dED, m=N

such that

g:DE x {0, ..., N - l } x {0 , N} ~ D u

e if m = 0

g(s, i, m)= xi if m = 1

Xi X i o 1 ''" X i ~ m e 1 otherwise,

where xj is the value stored in cell B~, for all i<j < iq~m. The function g abstracts
away the details of where in MEM messages are located and yields merely
the sequence, in the order of their arrivals, of undelivered messages stored in

752 S. Arun-Kumar and M. Hennessy

MEM. That is, for any given r~D N and m=]r], g(s, i, m)=r may hold for several
different values of s, and i. Let

B U F F . (s, a, d, i, m) -- (MEM (s) I BC. (a, d, i, m))\{pk, (Ok 10 < k < N}

where .6{?, !, w, r, ? !, w !, ?r, wr} as appropriate to the states of MEM and BC.
It is easy to show that for all s, a, d, i, m and appropriately chosen values of
s', a', i', m' (which may be determined from the definition), BUFF may undergo
the following transitions.

BUFF(s,_l_,d,i,m) "~a), BUFF(s ,a ,d , i ,m) if aeD, deD•

BUFF(s ,a ,d , i ,m) a~d), BUFF(s,a, l , i , m) if a e D •

BUFF(s, a, d, i, m) 1 , BUFF(s', a', d', i', m') otherwise.

The last transition given above holds because the ports Pk,Pk, COk,(hk, for all
k, O < k < N , are hidden. The hiding operation (by internal• the various
read and write operations between MEM and BC) too has the effect of abstract-
ing away the details of storage of the undelivered messages in MEM. We now
have the following lemma.

Lemma 4.2 1. Let S=Xo. . .xN_ 1 and t = y o . . . y N - x , then g(s , i ,m)=g(t , j ,m) iff
for all k, O<k <m, Xi@k=Yj~k .
2. For s, s' ~D~, i, i' ~{O N - 1} and m~{0 N} if g(s, i, m)=g(s', i', m) then
B U F F . (s, a, d, i, m) ~ - + B U F F . (s', a, d, i', m). In fact they are strong congruent.

Proof outline. 1. Follows from the fact that g(s, i, m)=xi . . , x i . , ,ex and g(t,j, m)
= Yj... Yj .me 1.

2. Since the hiding operation \{Pk, (Dk [0~_~ k (N } plays essentially the same
role in the overall system as the function g (in abstracting away the details
of storage), it is easy to show, using the transitions of BUFF and the result
in part 1 above, that the relation R

R = { (B U F F . (s, a, d, i, m), B U F F . (s', a, d, i', m)) Ig(s, i, m) = g(s', i', m)}

is a strong bisimulation. []

As a consequence of Lemma 4.2 we may abbreviate the state of BUFF to

B U F F . (d r a) - B U F F . (s, a, d, i, m),

where r = g(s, i, rn)eDN. Further, since the value of "*" determines whether the
ports c~ and/or 6 are empty or not, we may extend the function f to f: (D• 2
---~DN+2, which removes all occurrences of "_k" from any string of length at
most N + 2 . This means for rEDN and a, deD• we have

if
if d~D,a= •

f (dra) = if d = • a~D
t d r a if d ,a~D.

An efficiency preorder for processes 753

Letting t =f(dra) it is easy to see that the values of * and t together completely
specify the state of BUFF up to strong congruence. Hence we may further
simplify our definition of BUFF to

B U F F , (t) - B U F F , (d r a),

where f (dra) = teDN+ 2.

Proposition 4.3 Let S= {{BUFF,(t), FIFO(t)) lt~DN+ z}.
1. S is an efficiency prebisimulation.
2. B U F F , (e) < + FIFO(e).

Proof outline. 1. Follows from the transitions of FIFO and BUFF.
2. When t=e, * = ? BUFF,(t) has no internal transitions. In fact, both

BUFF(e) and FIFO(e) have only an a-transition, satisfying the conditions EP +
of Proposition 3.11.3. []

Proposition 4.4 Let T= {(PIPE(dsa), BUFF(dra)) I f (s)= r, a, d~Dl}
1. T is an efficiency prebisimulation for all N >= I.
2. For N = I and s, reD• such that f (s)=r, PIPE(dsa)~- +BUFF(dra) for all
a, deD I.
3. For N > 1 and s, r~(D~_)N such that f (s)=r, PIPE(dsa)<~ +BUFF(dra) for all
a, deD l . In particular, PIPE (_1_ N + 2) < + BUFF? (e).

Proof outline. 1. Similar to the proof of Proposition 4.3.1. The condition N__> 1
is absolutely necessary because if N =0 then BUFF is not an implementation
at all (there is no MEM)!
2. It may be seen that when N = 1, the relation T defined in part 1 is actually
a strong bisimulation.
3. It suffices to consider only the internal transitions of the two implementations.
Intuitively speaking, for every message that is accepted, PIPE has to perform
N + I internal actions (i.e. passing the message from cell CN+I to CN and so
on till it reaches Co) before it can deliver it to DEST. On the other hand,
BUFF needs to perform exactly two internal actions (one to store the message
in MEM and the other to retrieve it) before delivering it to DEST. Consider
any ordered pair {PIPE(dsa), BUFF(dra)) in the ep T given in part 1 and
let N > 1. The following claims may then be proved easily.

Claim 1 Let p be an integer such that 0 < p < N + l , and q=min(2, p). Then

for every (PIPE(dsa), BUFF(dra)) in T, PIPE(dsa) ~, PIPE(d' s' a') implies

there exists r'eD N such that BUFF(dra) lq BUFF(d' r' a') and ~PIPE(d's' a'),

BUFF(d' r' a')) e T.

Claim2 If BUFF(dra)~--2--~BUFF(d'r'a ') then there exists p__>l and s' such

that PIPE(dsa) lp PIPE(d' s' a') and (PIPE(d' s' a'), BUFF(d' r' a'))E T.

PIPE(_I_N+2)< +BUFF(t) follows from the fact that both processes have no
internal transitions and both may only perform c~-transitions. []

754 S. Arun-Kumar and M. Hennessy

K Proof system for finite processes

In this section, we give a sound and complete (in)equational proof system for
finite processes, that is, processes in which there is no occurrence of recursion.

In any proof system for finite processes in CCS, it turns out that for a
precongruence which is coarser than strong bisimulation congruence (~) it is
enough to restrict attention to what are referred to by Milner as "finite serial
processes", i.e. processes which are built up only from prefix and summation
operations. This is because, any finite process containing one or more of the
so called "static operators", viz. composition, hiding and relabelling, may be
transformed into a finite serial process using equations which are sound for
strong bisimulation congruence. The reader may verify from the following propo-
sition (stated without proof) that this is indeed true. It is easy to show that
"]" is both commutative and associative, hence we use the unary operation
" F " over a set of processes to denote their composition. For similar reasons
"2;" is used for summation.

Proposition 5.1 [10] 1. The Expansion Law. Let p - FP', where P' - { P i l 1 < i < n}.

' ' " ' ~ ! ~ ' Then p~E{a i . p Ipi a:, p~, p'=_F((P'-{p,})w{p'~})}+ s p~, pj pj,

i <j, p"=- I ' ((P ' - {pi, PJ})_w {p'~, p~})}
L lID i fa~Lw L

2. (a .p) \ ~ a .
(p\L) otherwise

3. (a. p) [hi ,-~ h (a). p [hi
4. (p + q)\L,-~(p\L) + (q\L)
5. (p + q) [hi ~ p [h] + q [h] []

The five parts of the above proposition may be combined and generalized into
a single monolithic expansion law. However, we have given it in the above
form for the sake of clarity.

A proof system for efficiency precongruence, strictly speaking, should also
incorporate Proposition 5.1 as an infinitary equation (since A is an infinite
set). However, it is enough for our purposes to know that such an equation
exists. Our main concern therefore, will be to obtain a proof system for finite
serial processes that characterizes efficiency precongruence. Our proof system,
denoted ~r is shown below.

A1. x + y = y + x

A2. x + (y + z) = (x + y) + z

A3. x + x = x

A4. x + O = x

A5. a.(x + 1 .x)m_a.x

A6. 1 . x ~ x + l . x

A7. a.(x + 1 . y)~a . (x + 1 .y)+a.y

R0. x = _ x + y + z
x~_x+z

An efficiency preorder for processes 755

As with any inequational axiom system, provability is assumed to be closed
under the following rules. Further, each of the equations A I~I given above,
actually denotes a pair of inequations which may be obtained by applying rule
R 2 below.

R1. x _ x Reflexivity

R 2. x _~ y, y ~_ x x = y x = y Equality
x = y ' x=_y,y=_x' y = x

R 3. x E y, y _ z Transitivity
x ~ z

R4. xl =-Y~' ""' Xk ~--Yk
O(Xl , Xk)--= o(yl, ..., Yk) Substitutivity

for every k-ary operator o

R5. x _ y for every substitution p Instantiation
x p ~ y p

The proof system d consists of the axioms A 1-7 and rules R0-5. The axioms
A1-4 and rules R1-5 are the usual ones an require no explanation. A5-7
are asymmetric because of the differing numbers of silent actions on the two
sides of the respective inequations, i.e. their converses do not hold. Note that
using A 6 a slightly weaker version of A 5 may be derived, a. 1. x _ a. x. However,
rule R0 may require some detailed intuitive explanation to justify its introduc-
tion. Let d - denote the proof system d without the rule R0.

To explain the need for R0, it is necessary to be able to compare the proof
system d - with the system sO' for observational congruence, d ' consists of
the equations A 1-4, and the following equations (A 5'-7') in lieu of A 5-7.

A5'. a . l . x = a . x

A6'. 1 . x = x + l . x

A7'. a.(x+ 1 .y)=a. (x+ 1 . y)+a .y

In place of A5' we could have used a.(x + 1 .x)=a .x , but in view of A6' our
choice seems more straightforward. Moreover these are precisely the axioms
used in [7]. Further we also have the rules R 1'-5', which are obtained by
replacing all occurrences of " _ " in R1-5 by " = " . d ' has been shown to
be complete for finite processes (see [7] or [11]). Now consider the following
equation.

TI ' . z+ 1.(x + y)=z + 1.(x + y)+ y

It may be easily shown that T 1' is provable in ~ " using the equation

AS'. 1.(x + y) = 1 . (x+y)+y .

756 S. Arun-Kumar and M. Hennessy

A 8' in turn may be derived from A 6' in the following manner.

l.(x+y)
=l . (x+y)+(x+y) byA6'

=(1. (x+y)+(x+y))+y b y A 3 a n d A 2

= 1 . (x+y)+y byA6'

However, to prove the analogue of T i', viz.

T 1. z+ 1.(x+y)~_z+ 1 . (x+y)+y

in d - , it would be necessary to introduce

A8. 1.(x+y)~_ 1 .(x + y)+ y

as an extra axiom, since A8 cannot be derived from A6 in a similar fashion.
Even if A8 were added to the system ~', it is not possible to prove

T2. 1 .(xx + 1.(x2 + y)) - 1 .(xa + 1 .(x2 +y))+y,

whereas, the analogue of T2, viz. T2' is provable in d ' , without the addition
of any more axioms or inference rules.

Let X denote the sequence (x i l l < i < m) and for any y, let a >-XU]y
denote a.(xl +a.(x2 +a.(... +a.(x,,+y)...))). In general, in the system sg-, it
does not seem possible to derive valid inequalities of the form,

T3. 1 > - X m y ~ (1 >-X[Zy)+y

without adding an infinite number of axioms starting with A 8. On the other
hand, by using RO in conjunction with A6, we would be able to prove inequa-
tions like T3. For instance, T2 may be derived in sr as follows:

1.(xl + l.(x2 + y))
~_ 1.(xl + 1.(x2 + y))+ xi + 1.(x2 + y) by A6

=_l.(xl +l . (x2+y))+xl +(1.(x2+y)+x2+y) byA6

==_l.(x~+l.(x2+y))+(x~ +l . (x2+y)+x2)+y byA2

12Z 1 . (X 1 "q- 1 .(X2 +y))+y by R0

A6 therefore enables us to extract y from an expression of the form given
in T3, in which y may be nested at an arbitrary depth. However R0 enables
us to discard certain other superfluous terms which also come up by the applica-
tion of A 6. A similar phenomenon occurs with A 7. For example,

a.(xl + 1.(x2 + 1.y))ga.(xl + 1.(x2 + 1. y)) + a. y

cannot be derived in d although the corresponding identity is a theorem in
d ~ r ,

We give below the proof of soundness of R0 and leave the other proofs
of soundness to the reader. We then proceed to show that the proof system
d is complete for finite processes.

An efficiency preorder for processes

Proposition 5.2 Rule R 0 is sound.

Proof Suppose p < + p + q + r . Let p l - p + q + r
tion 3.11.3 we have

757

and P2 = P + r. By Proposi-

L e m m a 5 . 4 p

which was required.

Hence

By (3), (4) and Proposition 3.11.3 we get p < +p+r . []

L e m m a 5.3 For all processes p, q, p 5,% p implies p 5% + q or p <,% + q + 1. q.

Proof. Assume p<~q and p < +q. We have to show p < +q+ 1.q. By Proposi-
tion 3.11 it is sufficient to show

(1) p " , p ' ~ 3 q " q + l . q " , q ' A p ' ~ q '

(2) q + l . q " , q ' ~ 3 p ' : p = g . p ' A p ' ~ q '

(t) follows from the fact that p < q using the characterization of ~< given in

Proposition 3.6. The same characterization ensures (2) whenever q "~ q'. Hence

it remains to prove 3 p': p =~ p'/x p' ~< q when q + 1. q i , q. Since p ~< q and p ~; + q,

from EP'2 and the negation of EP+2 for a = 1, we obtain

P 1 p, A p , < q ^ (V q , : q l , q , : p , ff~q,).

q + l . q ~ , 1 q ~ p : p ~ p ' A p ' G q

[]

a ~p' implies s JF-p=p+a .p ' .

(1) p '~ , p'=~3p'~ ' p, ~ P'I A p' ~p'a

(2) Pl " ' P' =~ " ' =8" ' ' < ' 1 ~ p : p p A p ~ p l

Letting p~ - p' we have

(3) P a, p '~3p '2 "P2 & P'2 A p' <~,,p2'

From (2) it follows that

a ,=:~-, , p, , < ,
(4) P2 ' P2 ~p :p=:~ Ap ,,~P2

758 S. Arun-Kumar and M. Hennessy

Proof By induction on the depth of inference of p a ;, p , . []

Lemma 5.5 p =~ p' implies sr t-p ~ p + a. p'.

Proof By induction on the number of silent actions involved in the transition

a t p ~ p. If p =~ p' then the result follows from Lemma 5.4. Otherwise we have

two cases to consider. Either p

by Lemma 5.4 we have

(1) ~r l .q
dt-q~_q+a.p'

~r l.q=_ l .(q + a.p')

(2) ~q-1 . q _ 1 .(q+a.p')+q+a.p'

(3) dt-p~_p+(1.(q+a.p')+q)+a.p'

Applying rule R0 to (3) we obtain

~r

In the latter case by the induction hypothesis

(4) stt-p~ p + a.q

d t - q = q + l.p'

~r 1.p')

(5) ~r 1.p')+a.q

(6) st~-pEp+a.(q+ 1.p')+a.q
~r

1, q =g, p, or p =g, q ~ p'. In the former case

by induction hypothesis

by R 4

b y A 6

by (1), (2), R3 and A2

by Lemma 5.4

by R4

by A7

from (4), (5) and R 3

from (6) and R0. []

Theorem 5.6 (Completeness). p < + q implies ~t-p ~_ q

Proof We prove this by induction on the sum of the depths of p and q, where
the depth of p is the maximum number of nested prefixes in p. We may assume
p and q have the standard forms Z {ai. P~l 1 < i__< m} and 27 {bj. qjl 1 __<j < n} respec-
tively (and for all i,j, 1 < i < m, 1 <__j <__ n, Pi, qj are in standard form). If the sum
of the depths is 0 (i.e. m = n = 0), there is nothing to prove since p - � 9 q. Other-
wise, by repeated applications of A4, all summands that are 11) may be eliminated
leaving p and q in standard form (m, n > 0). We prove the following claim.

Claim. (i) st~-ai.pi+q~_q for every i, 1 <_i<_m.
(ii) df-p~_p+bj.qj for every j, 1 <j<n.

a~ bj
(i) If p<.+q then since p ~p~ there exists bj=al with q ,q~ and p~<qj.

By Lemma 5.3 pi< +qj or p~< +q~+ 1.qj. By the induction hypothesis we have
~t-p~=_qj or dt-p~c_q+1.qj. In the former case dt-a~.p~_bj.qj by R4, and

An efficiency preorder for processes 759

in the latter we get the same by applying R4 followed by A5. The result then
follows.

bj
(ii) If q , q~ then by Proposition 3.11.3 there exists p' and some ai=bj such

that p=Np' and p'<q~. By Lemma 5.3 and the induction hypothesis we get

xd~-p'=_qj or d~p'~q~+l.qj. It then follows (possibly by applying A5) that
,~-bj.p'm_bj.qj and by Lemma5.5 ~-p~p+bj.p' from which we obtain
~r + bj.q3.

Having proved the claim, we proceed as follows. By R4, we may sum up
(i) for all i, reorder the terms (by A1 and A2) and repeatedly apply A3, to
obtain d~-p+qEq. By performing similar operations with (ii) for all j, we get
d~-p=_p+q. The result then follows by R3. []

6. Conclusion

The efficiency preorder we have introduced, <, is based on the simple idea
of, essentially, counting the number of internal moves made by a process. We
have shown that this idea may be successfully incorporated within the general
framework of bisimulations, [11], to obtain a mathematically tractable preorder,
which, in common with the standard notions of bisimulation equivalence, is
sensitive to the branching structure of processes yet supports abstraction. It
is mathematically tractable in that it is preserved by all CCS contexts and
we have given a complete proof system for finite terms, based on a modification
of the standard z-laws for CCS. Moreover the usual algorithms for checking
bisimulations or finding bisimulations, [3], may easily be adapted to <. It
supports abstraction in that it is insensitive to many of the internal details
of processes. For example, the usual laws associated with port restrictions are
true as are variations on the r-laws. It differs from the abstraction supported
by weak bisimulation only in that processes may be differentiated if their
response times to external stimuli are different. This is also the basis of comparing
and ordering processes: p < q if the response time of q to external stimuli is
uniformly faster than that of p.

Although the basis of the preorder is very simple, we have demonstrated
its usefulness by applying it to an example of the implementation of a FIFO
queue. In future work we hope to apply it to more significant examples. We
also intend to investigate the possibility of characterising < completely using
a finite set of inequations. Recall that the proof rule R0 is essential to our
proof system.

There has been much recent work on introducing notions of time into process
algebras. [-2] and [14] are typical examples of one approach, where real-time
durations are associated with actions. [12] and]-8] are examples of another
approach where actions are still instantaneous but a special action is introduced
to represent the passage of time. Neither of these approaches is directly compara-
ble with the one presented here, which we believe to be the first "improvement"
preorder based on time.

760 S. Arun-Kumar and M. Hennessy

References

1. Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Proc. International
Conference on Theoretical Aspects of Computer Software. (Lect. Notes Comput. Sci.,
vol. 526, pp. 152-175) Berlin Heidelberg New York: Springer 1991

2. Beaton, J., Bergstra, J.: Real time process algebra, Technical Report CWI Amsterdam,
1989

3. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: A semantics-based
verification tool for finite-state systems, Technical Report ECS-LFCS-89-83, University
of Edinburgh, 1989

4. Davies, J., Schneider, S.: An introduction to timed CSP, Technical Report, PRG, Oxford,
1989

5. Gerth, R., Boucher, A.: A timed failures model for extended communicating sequential
processes (Lect. Notes Comput. Sci., vol. 267, pp. 95 114) Berlin Heidelberg New York:
Springer 1986

6. Hennessy, M.: Algebraic theory of processes. Cambridge, MA: MIT Press 1988
7. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM

32(1), 137-161 (1985)
8. Hennessy, M., Regan, Y.: A temporal process algebra. Technical Report 2/90, University

of Sussex, 1990
9. C.A.R. Hoare: Communicating sequential processes. Englewood Cliffs, NJ: Prentice Hall

1985
10. Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25, 267-310 (1983)
11. Milner, R.: Communicationa and concurrency. Englewood Cliffs, N J: Prentice Hall 1989
12. NicoUin, X., Richier, J.L., Sifakis, J., Voiron, J.: ATP: An algebra for timed processes.

Technical Report, Grenoble, 1989
13. Park, D.: Concurrency and automata on infinite sequences. (Lect. Notes Comput. Sci.,

vol. 104, pp. 167-183) Berlin Heidelberg New York: Springer 1980
14. Reed, G.M., Roscoe, A.: A timed model for communicating sequential processes (Lect.

Notes Comput. Sci., vol. 226, pp. 314-323) Berlin Heidelberg New York: Springer 1986
15. Rudkin, S., Smith, C.R.: A temporal enhancement for LOTOS. British Telecom, 1988

