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Summary 

The science of stereology has undergone a revolution over the past decade with the introduction of design-based 
(assumption- or model-free) methods which are highly efficient and generally unbiased. No other morphometric approach 
currently offers these twin benefits. Stereology is ideal for extrapolating 3-D structural quantities (real volumes, surface areas, 
lengths and numbers) from simple counts made on 2-D slice images. The images may take various forms (e.g. physical or 
optical sections, MRI slices, CT scans) but they must be sampled so as to be random in orientation and/or position if valid 
estimates are to be made. 

All the recent developments in stereology are applicable to problems in neuromorphometry. This review provides an 
account of major developments and the state of the art, emphasizes the importance of properly randomized sampling and 
identifies some applications to neural structure at different levels of organization. These include the counting and sizing of 
synapses, neurites, cells and whole brains. 

Introduction 

Much of modern neuroscience is concerned with 
abstracting information about the spatial content, 
arrangement and connectivity of organs, tissues, cells 
and cellular components. Often this must be gleaned 
from essentially flat (2-D) images of real (3-D) objects. 
The 2-D images may be (a) physical slices cut using a 
knife or microtome, (b) optical slices generated by 
focusing at different depths within a thick physical 
slice using a conventional optical microscope or (if the 
objects exhibit reflectance or fluorescence) a confocal 
microscope, (c) slices obtained by medical imaging such as 
CT, MRI and PET or (d) projected images of 3-D objects 
observed on a plane (e. g. cells growing on a matrix in a 
culture dish or contained within a thick tissue slice). 

Regardless of their provenance and whether they 
are needed for qualitative or quantitative investi- 
gations, such images should always be collected by 
random sampling procedures, or their credentials will 
be suspect. This is particularly important given the 
wide range and accessibility of quantitative image 
analysis devices of the black-box variety. Only rigor- 
ously defined and executed random sampling, giving 
every item in the population the same chance of being 
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selected, will provide an unbiased sample. Any other 
sampling scheme (e.g. deliberately choosing 'typical' 
or 'interesting' sections) will introduce bias, a source 
of error which cannot be eliminated merely by sam- 
pling more items, and which will serve only to 
frustrate the successful interpretation of apparent 
changes in structure. 

In order to convert measurements made on 2-D 
slices into 3-D structural quantities, stereological 
methods must be exploited. Earlier methods relied 
heavily on the use of simplistic models of real objects 
and on assumptions about object shape, size and 
orientation. The 'new stereology" does not. Therefore, it is 
ideal for making unbiased estimates of 3-D structural 
quantities from counts performed on 2-D images 
(Weibel, 1979; Gundersen et aI., 1988a,b; Cruz-Orive & 
Weibel, 1990; Mayhew, 1991a). Its efficiency depends 
on generating chance encounters between randomly 
sampled sectional images and test probes superim- 
posed on them. The probes may be points, lines or 
areas arranged in regular arrays (e.g. on a transparent 
test overlay or on an eyepiece graticule) or volumes 
(represented by the space between parallel section 
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planes). Though developed in the context of physical 
slicing for histology and electron microscopy, stere- 
ology is applicable wherever random slices can be 
generated and ingredients within those slices can be 
recognized unequivocally. 

The great strength and value of stereology resides in 
the two properties of unbiasedness and efficiency 
(Gundersen et al., 1988b). A design-based approach to 
sampling satisfies the conditions necessary for main- 
taining the validity of relationships, giving the 
methods general applicability. By using systematic 
probes (see Gundersen & Jensen, 1987), sampling can 
also produce very efficient (i. e. high precision per unit 
cost) estimates of structural quantities. Moreover, the 
results of pilot analyses may be used to balance 
precision of estimation against the natural differences 
between animals (biological variation). By doing this, 
it is possible to optimize the overall efficiency of an 
experimental design (Shay, 1975; Cruz-Orive & 
Weibel, 1981; Gundersen & f~sterby, 1981; Gupta et 
al., 1983; McCance, 1989; Regeur & Pakkenberg, 1989; 
Mayhew & Olsen, 1991). 

This review is concerned exclusively with stereo- 
logical methods which could be employed to extrapo- 
late 3-D data from 2-D images of neural components. 
The topics of serial sectioning reconstruction and 
morphometry of projected images (e.g. the analysis of 
neurite branching patterns) are not covered. Emphasis 
is placed on the fact that good stereology depends 
crucially on proper sampling. The necessary sampling 
conditions are given explicitly. 

Elements and descriptors of neural structure 

Neural structure spans many levels of organization 
from the subcellular to the systemic. Attention here 
will focus on methods which are appropriate for 
quantifying the following elements: organelle, syn- 
apse, neurite, cell and organ. In most cases, un- 
ambiguous recognition of these elements presents no 
difficulty. However, alternative definitions of what 
constitutes a synapse mean that different counting 
units are available, viz. boutons, apposition zones and 
paramembranous dense regions (Mayhew, 1979). 
Strict comparability of results from different groups 
will be sensitive to the choice of counting unit. 

Alternative units for counting neurons are also 
permissible, viz. the cell, its nucleus and the nucleo- 
lus. If nuclei or nucleoli are the counting units, then an 
implicit assumption (that each cell contains one nu- 
cleus or nucleolus) must be satisfied before valid cell 
numbers can be obtained. Provided that unbiased 
number estimators are employed (see below), the 
nucleolus affords a very convenient and useful way of 
counting neurons (Nairn et al., 1989; Mayhew et al., 
1990b; Mayhew, 1991b). However, the one cell-one 
nucleolus assumption must be justified or bias may be 

introduced (see Braendgaard & Gundersen, 1986; 
Campbell et aI., 1988). The nucleolus also offers a very 
useful way of estimating neuron size (see Gundersen, 
1988; Mol!er et aI., 1990 and 'Particle size' below). 

Stereological methods can be applied at all levels of 
organization from the organelle to the whole organ 
and can be employed to estimate: 

(a) numbers of particles (whether organelles, nerve 
fibres, synapses, neurons or glial cells); 

(b) lengths (e.g. of neurites) - although this usually 
refers to the length of a fibre, filament or tubule, under 
this general heading may be grouped inter-particle 
spacings (e.g. glia-neuron distances) and layer thick- 
nesses (e.g. cortical depth); 

(c) surface areas (e.g. of neuronal plasma mem- 
brane or cerebral/cerebellar cortex); and 

(d) volumes (e.g. of mitochondria within neurons, 
of neurons themselves, of ventricles or subcortical 
grey matter or of whole brains). 

A major area of morphometric interest is the count- 
ing and sizing of myelinated and unmyelinated fibres 
in cross-sections of peripheral nerve trunks or central 
tracts. Methods of sampling, sizing and counting in 
this context have been reviewed recently (Mayhew, 
1988, 1990a) and are not covered here. 

The stereological tools 

Stereological estimators can be divided into two 
groups. The first comprises those (volume, number) 
for which it is necessary to randomize only the location 
of section planes. The second includes those (surface 
area, length, particle size, particle spacing, layer 
thickness) for which the orientation of sections must 
also be randomized. 

ESTIMATING VOLUME, V 

The volume of an object may be interesting in its own 
right or it may be required as an intermediate quantity 
for estimating a surface area, length or number. The 
latter quantities are often derived indirectly, by first 
estimating a component density. For instance, the 
packing density of cortical neurons might be ex- 
pressed as a number per volume of cortex, N/V.  In 
order to calculate absolute number, N, from N/V,  the 
cortical volume needs to be determined. It is strongly 
recommended that component densities be converted 
to absolute quantities before biological interpretations 
are made. A potent illustration of the dangers of 
ignoring this advice is given elsewhere (Braendgaard 
& Gundersen, 1986). 

If the object (say, the whole brain) is sufficiently big 
and can be isolated from surrounding structures, V 
can be obtained from mass and density or by fluid 
displacement (Scherle, 1970; Weibel, 1979; Regeur & 
Pakkenberg, 1989; Mayhew et al., 1990c; Mayhew & 
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Olsen, 1991). When these techniques are impracti- 
cable, alternative methods must be sought. Such is the 
case for determining the volume of the brain (or brain 
regions) in a living individual, the cortex in a fresh or 
fixed brain, motoneuronal cell bodies in spinal cord or 
endoplasmic reticulum within neurons. These prob- 
lems can be solved only by slicing and there are two 
basic approaches to estimating volumes from slices: 
direct and indirect methods. 

The direct approach is to use the Cavalieri principle 
(see Gundersen & Jensen, 1987; Michel & Cruz-Orive, 
1988) with which the volume of any arbitrary object 
can be estimated. The required sampling steps are (see 
Fig. 1): 

(a) The object is cut into parallel slices. The location 
of the first slice must be uniform random in the 
interval 0-d where d is the mean distance between 
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Fig. 1. The Cavalieri Principle. (A) A brain (frontal pole to 
left, occipital pole to right) is cut into a set of six systematic 
slices (hatched) separated by a distance d. The position of the 
first slice must be uniform random between 0 and d where 0 
represents the position of a tangent to, say, the frontal pole. 
(B) The occipital face of one slice on which is randomly 
superimposed a systematic pattern of test points. Al- 
together, 11 points (of which one is indicated at P) fall on the 
cut face. Each point has an associated area (hatched square 
labelled a). By summing the points falling on the occipital 
faces of all six slices, an unbiased estimate of brain volume is 
obtained if d and a are known (see text). 

designated slice faces. The unbiasedness of Cavalieri 
estimates does not depend on the orientation of the 
slices. However, orientation may well affect the preci- 
sion (and, hence, efficiency) of estimation. Thus, a 
brain may be cut into coronal slices. Only one face of 
each slice (say, the more occipital) is measured and 
any slice which lacks this face is excluded from 
measurement. 

(b) The areas of the designated slice faces are 
estimated by randomly superimposing a systematic 
array of test points on each face in turn. Given random 
positioning of the array on each slice, the sum of areas 
~A, is estimated unbiasedly by summing the points 
over all slices, ZP, and multiplying by the planar area 
associated with each test point, a. 

(c) Finally, the estimated volume (est V) of the 
object is calculated as 

est V = ~,P x a x d 

where the area, a, must be given on the scale of the 
object by taking account of the linear magnification. It 
is possible to select just a subset of slices by, for 
example, drawing a random sample of every third 
slice from a complete set. 

It is not permitted to start slicing the object at some 
arbitrary distance (e.g. always at a distance of I cm) 
from one end. Such a scheme is biased because the 
region of the object lying between 0 cm and I cm never 

has a chance of being sampled. Similarly, any sam- 
pling scheme which fails to specify randomness of 
slice location cannot be regarded as generally un- 
biased. 

A coefficient of error (CE) for volume estimates can 
be computed from the areas or point counts on the 
selected set of slices (see Gundersen & Jensen, 1987). It 
is known that efficient estimates (CE less than about 
5%) can be obtained using just 5-6 systematic slices 
through an object (Gundersen & Jensen, 1987). Know- 
ing this, the length of the object and the object~to- 
object variation, predictions about the best inter-slice 
distance and sample size can be made (for worked 
examples using human brains, see Regeur and 
Pakkenberg (1989) and Mayhew and Olsen (1991)). 

Cavalieri volume estimates may be influenced by 
projection effects. Over-projection of slice areas can 
occur in thick microscopic slices when densely-stained 
or electron-opaque ingredients lie in a transparent or 
translucent matrix. Under-projection occurs when 
transparent/translucent ingredients are contained 
within an opaque matrix. The biases can be handled 
simply. With over-projection, the points falling on the 
largest slice in the set are subtracted from the point 
total for all slices (Gundersen & Jensen, 1987). By 
analogy, points falling on the largest slice must be 
added to the point total for all slices when there is 
under-projection (Gundersen, 1986). However, these 
corrections may not work well on objects which do not 
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have a smooth boundary. Therefore, in situations 
where it is not possible to view only the cut surface of 
each slice, it is preferable to minimize the impact of 
projection effects simply by reducing the thickness of 
slices. 

The Cavalieri principle has provided estimates of 
ventricular, cortical and subcortical volumes in human 
and other mammalian brains. As well as macroscopic 
slices cut by brain-knife (Henery & Mayhew, 1989; 
Regeur & Pakkenberg, 1989; Mayhew, 1990b) or 
scalpel (Dantzer et aI., 1990; Mayhew et al., 1990c), 
microtome slices (Pakkenberg & Gundersen, 1988; 
Bedi, 1991), CT scans (Pakkenberg et al., 1989) and 
MRI slices (Mayhew & Olsen, 1991) have also been 
used. Provided the sampling rules are obeyed, the 
principle will also yield individual cell volumes from 
microscopic thin sections. 

Studies on human brains have shown that efficient 
estimates of volumes can be obtained using only 4-5 
slices (ventricles, Regeur & Pakkenberg, 1989), 5-6 
slices (forebrain, Mayhew & Olsen, 1991) and 13 slices 
(cerebral cortex, Regeur & Pakkenberg, 1989) per 
brain. 

Technical factors dictate that the Cavalieri principle 
would not provide direct estimates of, say, the volume 
of all mitochondria in thalamic neurons. For this 
purpose, an indirect approach based on multilevel 
sampling is necessary (Cruz-Orive & Weibel, 1981). 
The following protocol illustrates how this might be 
achieved. First, estimate the volume of the thalamus, 
V(t), by using the Cavalieri principle. Second, estimate 
the volume density of neurons within the thalamus, 
V(nJV(t), by taking systematic random samples of 
tissue blocks from the thalamus and then systematic 
samples of light microscopic fields of view from the 
blocks. This can be done simply by summing (over all 
fields of view and over all blocks) the test points which 
hit the neurons, EP(~), and those which hit the 
thalamus, ~P(t). The point ratio ~P(n)/~P(t) is an un- 
biased estimator of V(~)/V(t). 

Third, estimate the volume density of the mito- 
chondria within neurons, V(m)/V(~), from systematic 
samples of electron microscopic fields of view drawn 
from tissue blocks. Again, this volume density is 
calculated from a point fraction, "ZP(m)/EP~n), where 
EP(m) and EP(n) are summed over all fields and blocks. 

Finally, the volume of the chondriome, V(m), is esti- 
mated using the relation 

est V(m) = est V(t) x est V(nj/V(t) x est V(m)/V(~). 

For reasons of efficiency, it is sensible to restrict 
linear magnification at each sampling level to the 
minimum which allows recognition of the compart- 
ments concerned. It is also important to ensure the 
consistent definition of compartments in moving from 
one sampling level to the next (Cruz-Orive & Weibel, 
1981). If this definition is prejudiced by technical 
factors such as differences in fixation, image resol- 
ution or specimen contrast, then bias will arise. 

ESTIMATING NUMBER, N 

In the past, counting particles in 3-D was exclusively 
assumption-based. Neurons and synapses were 
counted by making assumptions about their shape 
and spatial orientation. Although often compromised 
by inadequacies of sampling as well, the methods 
were the best available at the time and their use 
acknowledged the fact that the probability of section- 
ing depends not only on the section thickness but also 
on the particles themselves. Larger neurons (e.g. 
Purkinje neurons in the cerebellum) have more chance 
of being cut than smaller neurons (e.g. granule cells). 
Similarly, fusiform cells have more chance of being cut 
if they are sectioned transversely rather than longi- 
tudinally. Finally, irregular particles (e.g. mito- 
chondria) may be hit by a plane more than once 
leading to difficulties in deciding whether or not the 
several profiles appearing on the section plane belong 
to only one particle. 

To overcome these problems, and obtain unbiased 
estimates of particle number, it is necessary to sample 
them with a volume probe (Gundersen, 1986; Cruz- 
Orive, 1987). The use of lower-dimensional probes 
introduces errors governed by size, shape and spatial 
orientation. Thus, single sections (2-D probes) will 
sample particles with probabilities determined by 
their largest linear dimension in a direction perpen- 
dicular to the section plane. 

A major methodological advance, independence of 
particle shape, size distribution or orientation, was 
made by using a volume probe which consisted of a 
stack of serial sections of arbitrary direction but 

Fig. 2. The disector and particle number. The pair of micrographs IX,Y] is sampled from layers II and III of rat visual cortex 
and represents a disector pair of two parallel section planes separated by a distance of 64 nm. Shown are some synaptic 
densities (s) and mitochondrial profiles (m). To count synaptic densities, we may use X as the reference and Y as the look-up 
section (and/or vice versa). In the unbiased counting frame on reference X there are two synaptic densities (indicated by 
asterisks (*) on X) which do not touch the forbidden lines (solid) and which do not appear on look-up Y. In the reverse 
direction, again, there are two (different) synapses which appear on reference Y which do not appear on look-up X (see 
asterisks on Y). For these two directions, the average number of synapses is two (= 4/2) and these synapses occur in a disector 
volume given by the product of frame area and the distance between section planes. 
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random position (Cruz-Orive, 1980; de Groot, 1988a). 
However, this method has been succeeded by the 
'disector' (Sterio, 1984) and the 'fractionator' (Gunder- 
sen, 1986), methods of superior efficiency which 
require but pairs of parallel sections. 

The disector 

This device (Fig. 2) counts particle~ between randomly 
positioned pairs of parallel slice planes separated by a 
known distance. If it is not possible to view between 
these slice planes (e.g. by tracking through optical 
section planes), the distance should be less than the 
minimum linear dimension of the particles and, for 
reasons of efficiency, preferably about 1/3 to 1/4 of 
particle size. Using an unbiased 3-D rule, particles are 
counted if they appear in an unbiased counting frame 
on one slice plane (the 'reference') but not on its 
partner (the 'look-up', see Fig. 2). In effect, the 
number of particles so counted, by convention desig- 
nated Q-, is contained within a volume equal to the 
area of the counting frame, A, multiplied by the 
distance between the upper (or lower) faces of the 
slices, d. In short, 

est N / V  = Q - / ( A  xd). 

Since section orientation is not critical for achieving 
unbiasedness, convenient directions of sectioning can 
be selected so as to further improve efficiency. In 
addition, the same pair of sections may be used in 
forward (reference to look-up) and reverse (look-up to 
reference) directions and the average of the two counts 
can be taken (see Fig. 2). Notice that the disector is 
unaffected by sectioning artefacts (image over- 
projection and truncation). However, implemented in 
its basic form, the disector demands an accurate 
knowledge of slice separation. If this corresponds to 
section thickness, t, or to some multiple thereof, then 
it can be determined by using Small's fold method, 
microinterferometry, re-sectioning or some other 
technique (see Small, 1968; Goldstein & Hartmann- 
Goldstein, 1974; Bedi, 1987; de Groot, 1988b; Evans & 
Howard, 1989). 

An alternative to cutting physical disectors is optical 
sectioning. Two possibilities exist but both require the 
z-distance of the microscope to be measured accu- 
rately, e.g. with a microcator (Braendgaard et al., 
1990). For transmitted light microscopy, thick sections 
can be cut and focused at different planes (Gundersen, 
1986). Particles are counted in optical disectors when 
they (or some part of them, such as the nucleus of a 
neuron) first come into focus within the counting 
frame. It is essential to use high numerical aperture, 
oil-immersion objectives so that movements in the 
z-direction reflect true movements of the focal plane 
through the thick section. The use of glycol methacry- 
late as an embedding medium permits optical section- 

ing in thick (ca25 ~m or greater) sections to be 
performed with minimal shrinkage effects. If the 
particles exhibit fluorescence or reflectance, they can 
be optically sectioned by confocal microscopy and 
counted with an unbiased counting brick (Howard et 
al., 1985). 

To avoid the estimation of slice separation entirely, a 
design-based approach can be adopted. In the sam- 
pling regime used by Pakkenberg and Gundersen 
(1988), which is tantamount to a fractionator scheme 
(see below and Geiser et al., 1990), estimates of the 
reference volume (determined using the Cavalieri 
principle) and numerical density (determined using 
the disector) were made on sections from the same set 
so that section thickness, t, was common to both 
estimations. A similar trick (the 'double disector') can 
be employed to count small objects (e.g. synapses) in 
ultrathin sections. The idea is to determine N / V  of both 
synapses and neurons in the same sets of sections to 
obtain a synapse-to-neuronratio. By estimating the 
number of neurons from semithin sections, the absol- 
ute number of synapses can be found (see 
Braendgaard & Gundersen, 1986; Gundersen et al., 
1988a). 

Notice that the disector yields numerical density, 
N/V,  rather than N itself. In consequence, estimates 
are sensitive to preparation artefacts such as fixation 
shrinkage. However, when combined with Cavalieri 
estimates of volume, these difficulties can also be 
circumvented (Gundersen, 1986; Pakkenberg & Gun- 
dersen, 1988). 

Various modifications of the disector have been 
used to count neurons and other neural cells 
(Braendgaard & Gundersen, 1986; Gundersen et al., 
1988a; Pakkenberg & Gundersen, 1988, 1989; West et 
al., 1988; Bjugn et al., 1989; Korbo et al., 1990; Pakken- 
berg, 1990; West & Gundersen, 1990; Bedi, 1991; 
Bjugn, 1991; Fukui & Bedi, 1991; Pakkenberg et al., 
1991; Tandrup, unpublished). The disector has also 
been used to count perforated and non-perforated 
synapses (Braendgaard & Gundersen, 1986; de Groot 
& Bierman, 1986, 1987; Calverley et al., 1988; Gunder- 
sen et al., 1988a; Hunter & Stewart, 1989; Braendgaard 
et al., 1990; Calverley & Jones, 1990; Siklos et al., 1990; 
Fukui & Bedi, 1991). It use with a novel definition of 
what constitutes a capillary allows the estimation of 
capillary number (for an application to renal glomer- 
uli, see Nyengaard and colleagues (1988)). 

The fractionator 

The fractionator principle side-steps the residual prob- 
lems of processing distortion and section thickness by 
yielding direct, unbiased and highly efficient esti- 
mates of N. It is not necessary to know the final linear 
magnification, the area of the sampling/counting 
frame, section separation or the volume (fixed, fresh 
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Fig. 3. Fractionator sampling. (A) A cerebellum is cut into a 
set of systematic slices of which a fraction, I in 4, is selected 
(hatched slices) with a uniform random start. (B) The chosen 
slices form naturally a 'dome' distribution (smaller slices are 
peripheral, bigger slices are central) and are cut into strips 
from which a systematic sample of I in 2 is drawn. (C) The 
chosen strips have been arranged in an artificial 'dome' 
pattern and cut into pieces from which a further fraction, I in 
10, is drawn. (D) The pieces are embedded together in a 
block which is exhaustively serially sectioned. A systematic 
selection of 1 in 3 tissue sections is taken in which particles 
(cells, nuclei or nucleoli) are counted using either single 
sections (hatched) or disector pairs of sections (hatched plus 
look-up sections identified by solid squares). In this ex- 
ample, the number so counted would be multiplied by 240 
(= 4 x 2 x 10 x 3) to obtain an unbiased estimate of total 
particle number in the cerebellum (see text for further 
details). 

or otherwise) of the reference space. All that is 
required is random sampling in 3-D space with known 
sampling fractions. 

The volume in which the particles are contained can 
be cut into uniform random slices of arbitrary size, 
shape and number but the slice planes should not 
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intersect inside the object if the slices are used directly 
to make disector pairs (e.g. see Pakkenberg & Gunder- 
sen, 1988). The fraction, 1/f, of slices sampled in this 
way will contain n x f particles where n indicates the 
number counted in the sample. Often, the sample will 
comprise sets of disector pairs (when n is equivalent to 
Q-) but, for certain neurons, it is possible to use the 
nucleolus as a point-like inclusion for counting in sets 
of single sections (Braendgaard & Gundersen, 1986; 
Nairn et al.,  1989; Mayhew, 1991b). 

In many cases, the fractionator will be applied as a 
multi-stage sampling scheme with systematic random 
sampling at each stage (see Fig. 3). The estimate of 
number N is then obtained using 

est N =  n x fl x f2 x f3 . . . • f~ 

where fk is the reciprocal of the sampling fraction at the 
lowest sampling stage. The number of stages and the 
fraction chosen in each can be adjusted to suit the 
demands of a particular experiment so that, eventu- 
ally, a reasonable number (say, less than 200 neurons 
(Mayhew et al.,  1990b)) is counted. The object may be 
fragmented quite arbitrarily at any stage but the last 
one in which parallel slices are adviseable for technical 
reasons. 

Efficiency may be improved by cutting so that pieces 
contain roughly equal numbers of particles. For an 
organ which is homogeneous in terms of the 3-D 
spatial distribution of particles, this is tantamount to 
cutting into pieces of roughly equal size. In general, 
however, it is preferable to arrange the tissue frag- 
ments obtained at a given sampling stage into a series 
with a 'dome' pattern (Fig. 3). On this pattern, the 
fragments at the ends of the series would be the 
smallest and successive fragments would gradually 
increase in size in passing from each end and towards 
the middle (Ogbuihi & Cruz-Orive, 1990). Often, this 
pattern will be approximated in practice, at least at the 
first sampling stage, e.g. if the organ is convex and its 
slices are preserved in their natural order after cutting. 
To further improve efficiency, without: introducing 
bias, portions of the organ which do not contain the 
particles (e.g. white matter does not contain cortical 
neurons) can be regarded as superfluous and they can 
be trimmed and discarded. 

As an example, Nairn and colleagues (1989) em- 
ployed a four-stage scheme to count the nucleoli of 
Purkinje neurons in human cerebella. In this case, N is 
an unbiased estimate of Purkinje nucleoli and yields 
an unbiased estimate of neuron number on ly  if the 
underlying assumption, viz. that each neuron con- 
tains a single nucleolus, is correct (see Braendgaard & 
Gundersen, 1986; Campbell et al.,  1988 for instances 
where this assumption is invalid). The cerebellum was 
first divided into uniform random slices which were 
cut, in turn, into strips. Superfluous white matter 
(which does not contain any Purkinje neurons) was 
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identified, excised and discarded. A systematic selec- 
tion of 1/fl of these strips was then taken. At stage 2, 
the chosen strips were cut into smaller pieces and a 
fraction, l/f2, of these pieces was drawn. At stage 3, 
chosen pieces were cut into blocks from which a 
systematic selection of 1/fs was drawn. Finally, the 
blocks were cut into a complete set of serial sections 
from which a systematic sample of 1/f4 was chosen. 
These sections were stained and the number of 
nucleoli seen within them (n) was counted. 

Recently, a method for predicting the variance of a 
fractionator estimate of number has appeared (Cruz- 
Orive, 1990). The method is an improvement on that 
proposed by Gundersen (1986). At the first sampling 
stage, the specimen is divided into two systematic 
samples. The empirical variance of the pooled esti- 
mate of N is then calculated using the pair of obser- 
vations made on these two stage I samples. 

Illustrations of the use of the fractionator to count 
neurons in physical and in optical sections can be 
found elsewhere (Braendgaard & Gundersen, 1986; 
Pakkenberg & Gundersen, 1988; Nairn et al., 1989; 
Mayhew et aI., 1990b; Mayhew, 1991b; West et al., 
1991). For counts of particles in other tissues, see 
Geiser and colleagues (1990) and Ogbuihi & Cruz- 
Orive (1990). 

ESTIMATING SURFACE AREA, S 
Unbiased estimates of the surface area of arbitrary 
objects can be obtained only by stereological analysis of 
slice images. Surface area is calculated as the product 
of a surface density, s/V,  and the reference volume. 
Earlier methods for estimating the cortical surface area 
of the cerebrum from parallel slices were biased 
because they depended on assumptions or did not 
randomize orientation sufficiently. At least some were 
also inefficient because very many thin sections were 
required in order to reduce the biases (see Henery & 
Mayhew, 1989). 

Imagine an object (or collection of objects) em- 
bedded in a reference volume which is sliced. When 
test lines of total length L are superimposed on the 
slices, the boundary traces of the object surface(s) 
make chance intersections, I, with the lines. In fact, 
the density IlL is directly proportional to the surface 
density of the object in its containing volume (Weibel, 
1979). The relation is 

est S/V -- 2 x "2I/'s 

(where ~I and s are summed over all slices) and its 
validity requires isotropy of the chance encounters 
between the overall surface and the test lines. The test 
lines must be isotropic uniform random (IUR) in 3-D 
space. Isotropic means that all directions in space are 
equally likely whilst uniform signifies that all positions 
are equally likely. Thus, IUR implieS that intersections 
must cover all possible directions in 3-D space with 

equal probability density (imagine them being distrib- 
uted uniformly as points on the surface of a sphere). 

By associating each line element, l, with a test point 
P, an unbiased estimate of ~L is derived from ~P x l. 
Again, l must be corrected by the final linear magni- 
fication factor. The estimation of S/V now reduces to 
counting two types of chance event, viz..test intersec- 
tions hitting the surface and test points  hitting the 
volume. The absolute surface area (in cm 2) is derived 
by multiplying the estimated S/V (in cm2/cm 3) by the 
volume of the reference space (in cm3). 

Isotropic uniform random lines in 3-D space may be 
generated in different ways (see Baddeley et al., 1986; 
Gundersen et al., 1988b; Mattfeldt et al., 1990; Nyen- 
gaard & Gundersen, 1992). One possibility is to aim for 
IUR sectioning by physically randomizing tissues 
within blocks prior to sectioning (Stringer et al., 1982). 
However, this approach is not rigorous enough and 
design-based solutions which guarantee isotropy of 
sectioning are preferable. 
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Fig. 4. Cutting IUR planes in 3-D space. (A) An orientator is 
used to choose two angles at random. A specimen is placed 
on an arbitrary surface near the centre of a compass rose, an 
angle is chosen from a table of random numbers and the 
specimen is cut normal to the rose in this direction (here 
70-250 axis). The face just exposed is placed on a second 
(cosine-weighted) rose so that it lies parallel to the 0-0 axis. 
Now a second direction is chosen (here the 90-90 axis) and 
another orthogonal slice made along it. The newly created 
plane is IUR. (B) An isector is used to cut a sphere in which 
the specimen has been embedded. The sphere is rolled 
around a lattice of lines and cut normal to the lattice. Cutting 
along a given line produces an isotropic plane and cutting 
along them all produces a uniform random sample of planes. 
The planes must be independent of the specimen within the 
sphere. 
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The isector 

The 'isector' (see Fig. 4) is the most recent solution to 
the problem of generating section planes which are 
IUR in 3-D and involves embedding samples of tissue 
in spherical moulds (Nyengaard & Gundersen, 1992). 
It relies on the simple fact that, once the embedding 
medium has hardened, rolling the resulting sphere 
randomizes orientation in 3-D space and guarantees 
isotropy of a section plane cut through it. If this plane 
is independent of the specimen contained within the 
sphere, then IUR planes through the tissue will be 
produced. This can be achieved easily by mounting 
the rolled sphere on fresh embedding medium so that 
it can be cut on the microtome in the chosen direction 
or by cutting the sphere directly on a substrate of 
systematic guide lines (Fig. 4). This simple and direct 
method is suitable for small specimens such as those 
required for transmission electron microscopy. 
Amongst other purposes (see below), the IUR section 
planes may be used to estimate S/V, in which case test 
lines are applied to the planes and intersections 
between the test lines and surface boundary traces are 
counted. 

The orientator 

Another solution is to cut directionally-independent 
isotropic sections using pairs of random numbers. To 
improve efficiency, the use of 'ortrips' (sets of three 
mutually perpendicular slices) has been devised. 
Lately, this approach has been refined as the 'orienta- 
tot' (Mattfeldt et al., 1990). 

The orientator (Fig. 4) is a device for generating slice 
planes which are IUR in 3-D space (for some appli- 
cations, see Mattfeldt et al., 1990 and Gundersen et al., 
1988a). Briefly, uniform random samples of tissue are 
taken from within the object and an IUR slice plane is 
cut from each sample. Again, these planes can be used 
in order to estimate S/V as indicated above. Since a pair 
of angular coordinates is needed in order to specify the 
location of any given point on the surface of a sphere, 
IUR planes are generated with the orientator in two 
steps using a pair of compass roses (see Fig. 4): 

(a) Cut the object by an arbitrary plane and place 
this plane on the first compass rose. Next, choose a 
random angle of longitude and cut the object perpen- 
dicular to the original arbitrary plane. 

(b) Place the new plane on the second rose and 
choose a cosine-weighted random angle. The angle 
must be cosine-weighted because it is the normal to 
the section plane which must be sine-weighted. This 
compensates for the fact that angles nearer the equator 
delimit areas on a sphere's surface which are greater 
(and therefore include more points) than those de- 
limited by angles nearer the poles. Cutting the object 
at this angle provides the final isotropic plane. 

Vertical sectioning 

Vertical sectioning is more efficient than the orientator 
when the surfaces of interest invest the object (e.g. the 
cortex investing the cerebrum) or are highly ordered 
(e. g. layered). Here, vertical signifies perpendicular to 
some convenient and recogniseable 'horizontal' refer- 
ence which may be a natural feature of the object (e.g. 
the medial aspect of a cerebral hemisphere, see Fig. 5) 
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Fig. 5. Vertical sectioning. (A) A single cerebral hemisphere 
is placed on its medial aspect on a 'horizontal' worksurface. 
Any section orthogonal to this reference surface is, by 
definition, a 'vertical' section. The hemisphere is divided 
into four slabs (labelled 1M). (B) Each slab (here slab 2) is cut 
at a random angle into parallel vertical sections. Only one 
face of each section (say, the more frontal, open arrowheads) 
is analyzed and one end-fragment (hatched) must therefore 
be discarded. (C) Each vertical section, with its defined 
vertical axis, has an overlay of test lines superimposed at a 
random angle which must be sine-weighted with respect to 
the vertical axis. The test lines form intersections (solid 
arrowheads) with the outer aspect of the cortex and sum- 
ming them over all slabs and all sections provides a basis for 
unbiasedly estimating cortical surface area. An overlay of 
cycloid test lines would substitute equally well for the lines 
shown here (see text). 
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or a creation of the experimenter. A detailed descrip- 
tion of the method, with some examples, is given by 
Baddeley and colleagues (1986). It has been used to 
study surfaces on and within different cells and organs 
(Michel & Cruz Orive, 1988; Griffiths et al., 1989; 
Henery & Mayhew, 1989; Mayhew, 1990b; Mayhew et 
al., 1990a). 

Any straight line in 3-D space can be contained 
within a unique vertical plane. The practical impli- 
cation of this is that S/V  can be estimated by cutting 
objects vertically and applying test lines to the vertical 
planes. If the vertical sections are positioned uniform 
randomly within the reference space, the test lines will 
be IUR in 3-D. In fact, the lines must have lengths 
which are sine-weighted with respect to the vertical 
direction. A particular geometric curve, the cycloid arc 
(see Baddeley et al., 1986) possesses this characteristic 
but sets of sine-weighted straight lines are also appro- 
priate (see Fig. 5 and Cruz-Orive & Hunziker, 1986; 
Gundersen et al., 1988a). 

The basic sampling protocol (Fig. 5) is as follows: 

(a) The object must possess a 'horizontal' or one 
must be invented for it. 

(b) Vertical sections must be cut perpendicular to 
the horizontal and the vertical direction must be 
recognizable on each of those sections. 

(c) Vertical sections must be randomly positioned 
and IUR on the horizontal. 

(d) Intersections between the surface boundary 
traces and the test lines are counted using a systematic 
array of cycloid arcs whose minor axes are aligned 
with respect to the vertical direction on each section. 

Note well that whilst the lines are IUR in 3-D, the 
vertical section planes are isotropic only in 2-D. In 
consequence, vertical sections cannot be used to 
estimate the length of a curved filament from counts of 
its profiles or the thickness of a sheet from measure- 
ments of orthogonal intercept lengths. For these 
purposes, IUR sections (produced by the orientator or 
the isector) must be cut. 

A bias associated with estimating the surface area of 
cellular membranes by transmission electron micro- 
scopy is membrane image loss. This occurs when 
membranes are tilted beyond about 20-25 degrees 
from the electron beam axis. An impression of the 
magnitude of this bias is given in Mayhew and Reith 
(1988). 

ESTIMATING LENGTH, L 

Length here refers to connected or separate filaments, 
fibres, or tubules. These may be capillaries, axons, 
dendrites, neurofilaments, neurotubules, etc. Let 
these filaments (overall length, L) be embedded in a 
reference volume. Sections through the latter will 
transect the filaments to produce a number of profiles, 

Q. In fact, the areal packing density of profiles on the 
section, Q/A, is directly proportional to the length 
density, L/V. The relationship is 

est L /V = 2 x ~ Q / E A  

where ~Q and ~A are summed over the section set 
(e.g. Weibel, 1979). The factor 2 is valid given IUR 
encounters between the linear structures and the 
planes and the relation yields practically unbiased 
estimates provided that the filaments are negligibly 
thick in comparison to their length (Gundersen, 1979). 
In practice, of course, total sectional area would be 
estimated most efficiently by point counting, as de- 
scribed under the Cavalieri principle. Estimating L/V 
then reduces to counting chance events (points and 
profiles). Absolute L (in cm) can be calculated from L/V 
(in cm/cm 3) if V (in cm 3) is known. 

To obtain slice planes which are IUR in 3-D, the 
isector and the orientator (but not vertical sectioning) 
can be used. A practical problem arises in counting 
profiles for which purpose an unbiased counting 
frame and counting rule should be adopted (see Fig. 2 
and Gundersen (1977), Jensen and Sundberg (1986) 
and Mayhew (1990a) for examples). If these are not 
used, profiles may be counted incorrectly, especially 
those which obtrude into the slice area at its edges and 
corners. 

Although it cannot be estimated from vertical sec- 
tions, it has been shown (Gokhale, 1990) that L/V can 
be calculated from the orthogonal projections of 
filaments within uniform vertical slices of known 
thickness, t. The rationale behind this approach is that 
a cycloid test arc on a vertical plane can be treated as 
the 2-D projection of a cycloid test surface which is 
perpendicular to that plane. Therefore, the projection 
of a curved filament on to the vertical plane can be 
used to generate and count test intersections between 
the projected filaments and the cycloid arc image of 
the cycloid surface. In contrast to the situation for 
estimating S with cycloid arcs, the minor axis of the 
cycloid arcs must  be aligned with respect to the 
horizontal direction on the vertical slices. 

The sampling rutes are: 

(a) Slices through the specimen must be vertical 
and uniform random in location. 

(b) All vertical slices must have the same thickness. 
(c) The projected images of the filaments are ob- 

served through the section thickness (e.g. by trans- 
mitted light microscopy where the beam is orthogonal 
to the vertical slice). 

(d) Count intersections with cycloid arc test arrays. 
length density, L/V, is then estimated by the relation 

est L/V = 2 x (Ill)It 

(Gokhale, 1990) where t is slice thickness and (/-'fi) is the 
number of intersections between the projected images 
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of the filaments and cycloid arcs expressed per unit  
test arc length. An inconsequential  degree of bias is 
introduced because l is r andom in general. 

A practical nuisance is the need to measure t. To 
circumvent this, Cruz-Orive and  Howard  (1991) have 
proposed a simple solution which avoids having to 
physically slice the  specimen. The trick is to rotate the 
curved filament about a fixed vertical axis and project 
it on to a fixed vertical plane. By using these total 
vertical projections and counting intersections at dif- 
ferent angles of rotation, the Gokhale formula can be 
re-arranged to 

est L = 2 x ZI/n x (a/I) 

where a/l represents the area per test length for the 
cycloid arc test system, ZI/n is the mean  number  of 
intersections averaged over the n different rotation 
angles. This modification is illustrated with a synthetic 
filament in Cruz-Orive and Howard  (1991). It has great 
potential for estimating the lengths of neurites, neuro- 
filaments and neurotubules  in situations where  the 
containing matrix is sufficiently t ransparent  and 
where  filament length density is not  so high that 
overlap effects become problematic. The use of con- 
focal microscopy is an obvious possibility. 

ESTIMATING PARTICLE VOLUME, ~v AND ~N 

Several direct estimators of mean  particle volume are 
available and they are more efficient than  the indirect 
ones (e. g. dividing total V by total N or dividing WV by 
N/V). 

Volume-weighted mean volume 

This volume, Ov (in, say, cm 3) is the mean  value of 
particle size obtained from the volume distribution of 
particle volumes. It is different to the more familiar 
number-weighted  mean  volume, ON (also in cm3), 
which is determined from the numerical  frequency 
distribution of particle volumes. However,  the two 
quantities are related as follows: 

�9 = ON (1 + C ~ )  

where  CVN is the coefficient of variation of the number 
distribution of particle volumes (Gundersen & Jensen, 
1985; Cruz-Orive & Hunziker,  1986). 

Consider a populat ion of arbitrary particles (e.g., 
neuronal  perikarya). Individual perikarya can be 
selected for volume estimation in a volume-weighted 
manner  by allowing them to be hit by uniform random 
test points (see Fig. 6). For each point hit t ing a 
perikaryal profile, an independent  isotropic direction 
in 3-D is chosen. This direction is used  to draw a line 
which passes through the point. The part of the line 
which intercepts the perikaryon constitutes an isotro- 
pic point-sampled intercept and its length provides 
the basis of the method  for estimating volume- 
weighted mean  volume (Fig. 6). 

I k n  l l I I i i i l I ~dl 

I I~ ,  1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9  , '~ I  

Fig. 6. Volume estimation from point-sampled intercept 
lengths. A group of nerve cell profiles appears on a single 
section on which is represented a frame with a surrounding 
guard area. An overlay of randomly oriented lines bearing a 
systematic pattern of marked test points is superimposed. 
Some of these points (the six open circles) fall on cell profiles. 
The lengths of intercepts which cross cell profiles through 
these points are measured using a graduated scale as a 
classifier. The point-sampled intercept shown falls in class 7 
of the scale. The guard area allows profiles hit by points but 
outside the flame to be classified. If the directions of lines are 
IUR in 3-D space, the random intercept lengths through all 
six points can be used to provide an unbiased estimate of the 
volume-weighted mean volume of the neurons. If neurons 
are selected using disector pairs, the same procedure can be 
used to determine the number-weighted mean volume (see 
also text and Fig. 7). 

In fact, the third power  of the point-sampled 
intercept lengths is averaged over all intercepts and 
multiplied by ~r/3. For convex particles (which are hit 
only once by a section plane), point-sampled inter- 
cepts are unbroken straight lines. In contrast, non- 
convex particles (which may  be hit more than once by 
the section plane), can produce intercepts which are 
split into two or more separate elements of length. 
Despite this, an unbiased volume estimate can still be 
computed if every particle profile can be ascribed 
unequivocally to the same parent  particle (Gundersen 
& Jensen, 1985; Gundersen ,  1986). 

To apply the method,  a test lattice of points is placed 
on an IUR section. Wherever a test point hits a 
perikaryal profile, a line is d rawn through this point 
across the entire profile and at a randomly  selected 
angle. This procedure is repeated for all those test 
points which hit perikaryal profiles (Fig. 6). If the 
tissue is sampled by vertical sectioning, the angles are 
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defined with reference to the vertical direction. In this 
case, the test lattice should bear sine-weighted lines. 

For applications to the sizing of neurons, see 
Braendgaard and Gundersen (1986) and Mayhew 
(1989). A consequence of the sensitivity to both 
number-weighted volume and CVN is that estimates of 
volume-weighted mean volume are useful for analys- 
ing certain structural manifestations of pathological 
processes, viz. alterations in the size and/or size 
distributions of cells and their nuclei (Nielsen et al., 
1986). 

Recently, Gittes (1990) has modified the point- 
sampled intercept approach to obtain a boundary- 
sampled intercept volume. In this method, random 
intersections between test lines and profile boundaries 
are used as a basis for measuring intercept lengths. 
This procedure samples particles with probabilities 
proportional to their surface and the resulting volume 
is a surface-weighted mean volume. The method may 
be used to size (and count) particles that show little 
variation in surface area. 

The selector 

Whilst the selector arose out of the disector, it does not 
provide an estimator of particle number. Instead, it is a 
device for selecting particles in an unbiased way for 
estimating directly number-weighted mean volume 
(Cruz-Orive, 1987). 

Stacks of serial sections (which must be IUR in 3-D 
or vertical sections) are cut and a disector pair from 
each set is drawn to select particles according to their 
presence and not their size. The number-weighted 
mean volume of the chosen particles is obtained from 
their point-sampled intercept lengths. Note that this is 
achieved without needing to know the distance be- 
tween the disector planes. Again, the lines must be 
IUR in 3-D space, hence the necessity of  cutting IUR 
sections in 3-D or cutting vertical sections and ap- 
plying sine-weighted test lines (Baddeley et al., 1986; 
Cruz-Orive & Hunziker, 1986; Gundersen et al., 
1988a,b). For an application to ependymal cells in 
spinal medulla, see Bjugn and colleagues (1989). 

The nucleator 

The nucleator (Gundersen, 1988) is similar to the 
selector but is a more efficient way of estimating the 
number-weighted mean volume for particles which 
possess a single identifiable point-like inclusion (for 
convenience referred to as the 'nucleus', see Fig. 7). 
An ideal candidate in many types of neuron is the 
nucleolus. 

The nucleator requires a stack of sections which is as 
high as the largest diameter 'nucleus'. Having 
sampled the 'nucleus' with a disector pair from the 
stack, test points are applied and, for each point, an 
isotropic direction is chosen. Then a line is drawn in 
the chosen direction from the point to the boundary of 
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Fig. 7. The nucleator and cell volume estimation. The 
sequence A-E represents a set of serial sections through 
three neurons, each of which contains a single nucleus. The 
pair C and A is used as a nucleator, i.e. as a disector pair (C is 
the reference and A is the look-up section) for selecting 
nuclei within cells according to their number alone. On this 
basis, two nuclei (1,2) are cut on section C and disappear by 
section A (see 1',2'). The profiles of these two nuclei 
(stippled) are sampled on all sections to estimate number- 
weighted cell volume. An overlay of lines (which must be 
IUR in 3-D) bearing test points is rotated systematically on 
each section in turn and some test points hit the identified 
nuclei (see 4 open circles). Distances from these points to the 
cell boundary form the basis for unbiasedly estimating the 
number-weighted mean volume of each cell and, hence, the 
mean for the two cells. The intercepts in just one direction 
may be used (see text) or volumes can be estimated using 
intercepts passing in both directions from the point (see 
intercepts. 1+, solid arrowheads, and 1-, open arrow- 
heads, on section C). 

the particle. An unbiased estimate of number- 
weighted mean volume is derived by averaging, over 
all intercepts, the third powers of intercept lengths 
and multiplying by 47r/3 (Gundersen, 1988). If lines are 
drawn across the particle profiles passing through the 
chosen points then two possible intercepts may be 
measured, each passing from the point to the particle 
boundary, as illustrated in Fig. 7. Estimates of volume 
can also be made using both of these intercepts (for a 
practical example, see Jacks et al., 1990). 

It is useful to note that if a single, small nucleolus of 
approximately constant size is adopted as the 'nu- 
cleus', the number-weighted mean volume can be 
estimated from just one section or from several 
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independent  sections (Gundersen, 1988). Several dif- 
ferent illustrations of the use of the nucleator are 
available (Gundersen et al., 1988a; Moller et al., 1990; 
Tandrup, unpublished). Moller and colleagues (1990) 
have justified some modifications which improve 
efficiency and are aimed specifically at neurons. 

PARTICLE SPACING 

The 3-D spatial relationships between different par- 
ticles may be of experimental interest. For instance, 
the clustering of glial cells around neurons seems to be 
particularly prominent in aged human brains. How- 
ever, the apparent distances between particles visible 
on 2-D sections can be very misleading (see, for 
example, Braendgaard & Gundersen, 1986). For- 
tunately, the nucleator method, using just one thick 
section, will yield information about the way in which 
particle number (and size) varies with 3~D location. 

The method (Evans & Gundersen, 1989) requires 
the use of vertical sections or of sections which are IUR 
in 3-D. Recently, it has been applied to quantify 
peri-neuronal clustering of glial cells in human neo- 
cortex. Using vertical sections combined with optical 
disectors, neuronal nucleoli were selected. Estimates 
of distances were then made with reference to the 
centre of each selected nucleolus and to the glial cells 
whose clearest nuclear profiles occurred within the 
same disector pair of optical sections. On this sampling 
scheme, estimates of the numerical density, N/V, of 
glial cells occurring at specific distances from the 
neuronal nucleolus were obtained by measuring two 
distances from the centre of each glial cell nuclear 
profile: (a) to the centre of the neuronal nucleolus and 
(b) to the vertical axis which passes through the 
nucleolus. Further details and results will be found in 
Evans (1990) and Evans and Gundersen (1989). 

ESTIMATING THICKNESS AND SHAPE 

These terms refer to cortical thickness or depth and to 
a useful descriptor of brain 'shape'. The former is of 
interest because it is known that the depth of cerebral 
cortex within a brain varies widely with location. If a 
global quantity (e.g. arithmetic mean cortical thick- 
ness) is required, then all these locations must be 
sampled with equal probability. Shape provides a 
useful basis for drawing comparisons within brains 
(e.g. for studying lateral asymmetries) and between 
brains (e.g. changes due to ontogenetic, phylogenetic 
and gender differences). 

Cortical thickness 

On random sections, apparent cortical thicknesses 
tend to over-estimate true thicknesses because the 
cortex will be cut obliquely as well as perpendicularly. 
Indirect and direct solutions to this problem are 
possible. 

An indirect approach for computing the average of 
all local thicknesses through the cortex (known as the 
arithmetic mean thickness, T~) was used by Henery 
and Mayhew (1989). The method exploits information 
obtained already for cortical volume (estimated by the 
Cavalieri principle) and cortical surface area (esti- 
mated by vertical sectioning). In fact, two surfaces are 
determined, viz. those of the outer (pial) and inner 
(white matter) aspects of the cortex. A sampling 
scheme is devised which satisfies the sampling re- 
quirements for valid estimates of volume and surface. 
An estimate of Ta is calculated by dividing cortical 
volume by the mean of the two surface areas. 

The direct approach uses test lines which are IUR in 
3-D space. These test lines provide the basis for 
randomly sampling sites on the cortical surface (e.g. 
its outer aspect) from which intercepts can be drawn 
across the cortex (i.e. to its inner aspect) and their 
lengths estimated. Two sorts of intercept may be 
drawn. If the intercept follows the direction of the test 
lines, it is referred to as a random intercept. If each 
intercept is drawn to cross the cortex in a direction 
which is perpendicular to the outer aspect, these are 
referred to as orthogonal intercepts. Vertical sectioning 
with sine-weighted test lines provides a convenient 
way of generating random intercepts but is not per- 
missible for producing orthogonal intercepts. For this, 
IUR planes generated by the orientator or by the 
isector will be necessary. 

The arithmetic mean of random intercept lengths, 
divided by 2, yields an estimate of T~ (Gundersen 
et al., 1978). For orthogonal intercepts, the arith- 
metic mean length, multiplied by ~r/4, provides a mini- 
mally biased and efficient estimate of Ta (Jensen et aI., 
1979). 

A 'shape' descriptor 

A shape descriptor must be size-independent. A 
convenient way of achieving a dimensionless co- 
efficient for monitoring brain shape (for cerebrum or 
cerebellum) is to exploit volume and surface area 
estimates, e.g. to raise the cortical (pial) surface area of 
the cerebellum to the power 3/2 and divide by cerebel- 
lar volume. This coefficient is constant for objects of 
the same shape and, provided that fixation distortions 
are uniform and concentric, is identical for fixed and 
fresh specimens. Again, these estimates can be made 
by designing a sampling scheme which combines 
Cavalieri sectioning with vertical sectioning (Henery 
& Mayhew, 1989; Mayhew et al., 1990c). 

This type of dimensionless coefficient is really a 
device for testing for isomorphic change rather than 
being a true shape descriptor. Objects of different 
shapes may share the same coefficient. However, 
mammalian brains are sufficiently similar in shape for 
the descriptor to be of real comparative worth. 
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Conclusions 

Recent advances  in s tereology have made  the efficient 
and unbiased est imation of structural quantit ies a 
practical reality. The me thods  are based on rigorous 
sampling which frees them from the constraints and 
dangers  of making assumpt ions  about  object shape,  
size and spatial orientation. Their  ability to provide  
3-D spatial informat ion makes  them the only sensible 
opt ion for analysing 2-D flat images, howeve r  these 
are generated.  Their  applicability to arbitrary objects 
makes them especially attractive for use in neuromor-  
phomet ry .  Indeed,  in future studies on neurons ,  
synapses  and other  neural  e lements  there can be no 

excuses for adopt ing the assumpt ion-dependen t ,  in- 
efficient and biased me thods  which our  predecessors  
were  obliged to employ.  
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