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Minimal relation algebras 

P. JIPSEN a n d  E. L u K A c s  

Dedicated to Bjarni J6nsson on his 70th birthday 

Abstract. This paper is concerned with the covers of the atoms in the lattice of varieties of relation 
algebras. A minimal relation algebra is one that is simple and generates such a subvariety. The main 
result we prove is that there are exactly three finite minimal relation algebras that are totally symmetric 
(i.e., satisfy the identities x = x ~ and x -< x ; x). We also give an example of an infinite minimal totally 
symmetric relation algebra, and some results about other subvarieties. 

1. Preliminaries 

F o r  a very  r eadab l e  i n t r o d u c t i o n  to r e l a t ion  a lgebras  ( a n d  the n o t a t i o n  used 

here) we refer the  reader  to [4]. Here  we recall  some  s t a n d a r d  results.  The  var ie ty  

o f  all  r e l a t ion  a lgebras  will be  d e n o t e d  by  N~r  a n d  the lat t ice o f  its subvar ie t ies  by  

A. ~ d  is a d i s c r i m i n a t o r  variety,  whence  the  n o t i o n s  o f  s imple,  subdi rec t ly  

i r reduc ib le  a n d  direct ly  i n d e c o m p o s a b l e  coincide.  F u r t h e r m o r e ,  the s impl ic i ty  o f  a 

r e l a t ion  a lgebra  c an  be charac te r ized  by  the p r o p e r t y  tha t  1 ; x  ; 1 = 1 ho lds  for 

every n o n z e r o  e l emen t  x. 

A r e l a t ion  a lgebra  is said to be  

(i) integral i f  x ; y r 0 for  all  n o n z e r o  e lements  x a n d  y, 

(ii) commutative i f  it satisfies the iden t i ty  x ; y = y ; x, 

(iii) symmetric i f  it satisfies the  iden t i ty  x ~ = x, a n d  

(iv) totally symmetric i f  it satisfies the ident i t ies  x ~ = x a n d  x < x ; x. 
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Recall that a relation algebra is integral if and only if any of the following 
conditions holds: 

(il) 1' is an atom; 
02) x ; 1 = 1 for any nonzero element x; 
(i3) for any elements x, y, the inclusion 1' < x ; y holds if and only if xy  ~ ~ O. 

The variety generated by all integral relation algebras is denoted by r i n d  and 
the varieties of all commutative, all symmetric and all totally symmetric rela- 
tion algebras are denoted by c g ~ d ,  5 e N d  and ~ ' - ~ '  respectively. Clearly 
~ ' - Nd  _ 5 e N d  _ c g ~ d ,  and cgN~r __g_ t i n s /  follows from 02) and from the fact 
that 1 ; x ; 1 = 1 holds for any nonzero element of a subdirectly irreducible relation 
algebra. 

We use the notation Re(X)  for the full relation algebra over the set X and the 
notation R(G) for the relation algebra over the group G. 

Finally, let (9 be the variety of one-element relation algebras and let ~U(A) 
denote the variety generated by A. The following results of B. J6nsson and A. 
Tarski describe the atoms and the covers of two of the atoms in A. 

THEOR EM [6] [8]. 
(i) There are exactly three varieties d e  = "U(Ai) (i = 1, 2, 3, see Table 1) in the 

lattice o f  varieties of  relation algebras that cover the variety (9 and in every 

simple relation algebra the smallest subalgebra is isomorphic to one o f  A l, A 2  

o r  A 3 . 

(ii) d l  has no join irreducible covers, while d 2  has exactly one join ireducible 

cover, ~(Re(2)).  

Since relation algebras have Boolean algebras as reducts, ~ d  is congruence 
distributive and hence A is a distributive lattice. So, in order to complete the 
description of the covers of the atoms of A, we only have to find the join irreducible 

Table 1. Simple relation algebras generated by the constants  

Name  Representat ion 0' ; 0' 

A l = R(2~1) = Re( l )  0 
A 2 = R(~2) < Re(2) I '  
A 3 < R(~_3) < Re(3) 1 
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covers of  d 3 .  At present even the question whether the number of  these is finite 
or infinite is unsolved. However we show (Theorem 7) that in the lattice of  tot- 
ally symmetric subvarieties there are only three finitely generated join irreducible 
covers. 

Clearly a join irreducible cover of d l  (i = 2 or 3) can be generated by one 
subdirectly irreducible (hence simple) algebra, containing Ai as a subalgebra. We 
call such an algebra A minimal. Since relation algebras are discriminator algebras, 
the subdirectly irreducible elements of  ~ (A)  are subalgebras of  an ultrapower of  A. 
In case A is finite it follows that A is minimal if and only if Ai is the only proper 
subalgebra. Thus, for example, all simple 8 element relation algebras are minimal. 
However, we will give an example of an infinite simple relation algebra whose 
subalgebras are all isomorphic to the algebra itself or to A 3 yet it does not generate 
a cover of  d 3 (see Theorem 11). 

In order to list all the known minimal relation algebras together with a nice 
representation (where possible), we introduce the following notation. Let 
x ' = x + x  ~ for an element x of  a relation algebra. For  a group G define 
S(G) = {x': x ~ R(G)}. It is easy to see that if G is abelian then S(G) is in fact a 
subalgebra of  R(G). In this notation we have that Ai - S(Z~) (i = 1, 2, 3) where Z~ 
denotes the cyclic group of  order i. We also introduce the notation x" which is 
defined as 

x ~  ' and for n > 0  x n = x " - l ; x .  

In Table 2 we list the known symmetric relation algebras that are minimal. In [2] 
it is shown that the finite representations given here are the smallest possible, except 
in the case of  B7, which has a smallest representation as the subalgebra of  
S(Z3 • Z3) with atoms {(1, 0), (0, t)}', {(1, 1), (1, - 1 ) }  s and {(0, 0)}. 

We also need the notion of  an equivalence element, i.e., an element e of  a 
relation algebra such that e ; e = e and e ~ = e. An equivalence element is nontrivial 
if 0 < e0' < 0'. Note  that the first four algebras in Table 2 each contain a nontriviat 
equivalence element b + 1'. The following theorem of  J6nsson [4] implies that no 
other minimal integral algebras contain nontrivial equivalence elements. 

T H E O R E M  1 ([4]). I f  A is a relation algebra and e & an equivalence element in 
A then e generates a finite subalgebra of A. I f  A is integral and e is a nontrivial 
equivalence element then e generates a subalgebra isomorphic to B1, B2, B3 or B 4. 

For the sake of  completeness we also include a list of  the 5 known integral 
nonsymmetric minimal relation algebras C1, �9 � 9  C5 in Table 3 and all nonintegral 
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Table  2. Min ima l  symmetr ic  re la t ion  a lgebras  ( x  s = x + x ~)  

ALGEBRA UNIV. 

N a m e  - Repr.  a b a ; a b ; b a ; b 

B~ = S(Z4) {1} s {2} b + 1' 1' a 

02 (S(Z6) {1, 3}" {2}" b + 1' b + 1' a 
B 3 < S(Z6) {1, 2} s {3} 1 I '  a 

B 4 < S(Y9) {1, 2, 4} ~ {3}" 1 b + I '  a 

B 5 = S ( Z s )  {1} s {2}" b + 1' a + 1' 0' 

B 6 < S ( Z s )  {2, 3} ~ {1, 4}" 1 a + 1' 0' 
B 7 < S (Z 12  ) {1, 2, 5} s {3, 4, 6} s 1 1 0' 

N a m e  Repr .  a ; a  b ; b  c ; c  a ; b  a ; e  b ; c  

B s < S(Z)  1 c - a + I '  0' 0' a 

B9 = S(Z7) b + 1' e + 1' a + 1' a + c  b + e  a + b  

Blo Nonrepr .  e - c + 1' a + 1' a + c b + e a + b 
B 1~ Nonrepr .  e -  a -  a + l '  a + e  b + c  a + b  

Bl2 Nonrepr .  e - a - b - a + e b + c a + b 

N a m e  - Repr .  genera to r  x a toms  a n a n ; a m 

n + m  a B ~  < S (Z  x ~)  ({(1, 0), (0, l)}S) z x n ( x  . -  1 ) -  ~ i =  [, ml i 

Table  3. Min ima l  nonsymmet r i c  integral  re la t ion  a lgebras  

N a m e  Repr .  a a ; a  a ; a U  a ~ ; a  

C I < g(•7)  {I, 2, --3} 0' 1 1 
C 2 < R(Q)  {q e Q: q > 0} a 1 1 

C 3 = R(Z3) {1} a ~ 1' 1' 

N a m e  a ; a  a ; a  ~ a ~ ; a  b ; b  a ; b  a ~ ; b  

C4 a 1 b -  l b a ~ + b  

N a m e  a ; a  a ; a  U a ' ~ ; a  b ; b  a ; b  a ' ; b  c ; c  a ; c  a ' ; c  b ; e  

C s O' 1 1 (b + e) - O' e - 0 '  b - b - 0 '  O' a 

b = b  ~' and  e = e  '~ 
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Table 4. Minimal  nonintegral relation algebras. 

N a m e  - Repr. e~ e 2 

Ni l  = Re(2)  {(0, 0)} {(1, I)} 
N,2 < Re(3)  {(0,  0)} {(1,  1), (2, 2)} 
Uj3 < Re(4  ) { (0 ,0 ) }  {(1,  1), (2, 2), (3, 3)} 
N23 < Re(5 ) {(0, 0), (i, 1)} {(2, 2), (3, 3), (4, 4)} 

el, ez, c, c ~, d~ and d 2 are atoms or zero, where 
I' = e  1 + e 2 ,  c = e  I ; 1 ;e  2 and di =(e i  ; 1 ; ei)0'  
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Figure I, Join irreducibles on the bottom levels o f  A. 

minimal relation algebras in Table 4. In fact, Maddux [7] proves that every 
nonintegral simple (semiassociative) relation algebra has a subalgebra isomorphic 
to Nil , N12 , NI3 , N23 , B2 or B4. 

2. Totally symmetric minimal relation algebras 

We will show in Theorem 7 that all the totally symmetric finite minimal relation 
algebras occur in Table 2. We begin with a few lemmas that will be useful when 
looking for minimal algebras. 
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L E M M A  2. For any x,  (x ~ ; x - ) - ( x  '~ ; x - ) - ~  is an equivalence element con- 

taining 1'. 

P r o o f  Note  tha t  the condi t ions  

z < - ( x ' ~ ; x  ) z ( x ~ ; x - ) = O  x ( x ; z ) = 0  x ; z < - x  ( , )  

are equivalent ,  hence for y = ( x  ~ ; x  ) -  we have x ; y  < x  and  therefore  

x ; y  ; y  < x ; y  < x. App ly ing  ( , )  in the reverse d i rec t ion  for  z = y  ;y ,  we ob ta in  

y ; y  < y .  Also ( . )  with z = 1' shows that  l ' _ < y .  Tak ing  converses,  we get 

y,~ ; yU < y ~  and 1' <_ y ~ hence y y  ~ is an equivalence e lement  conta in ing  the 

identi ty.  [] 

In  the subsequent  results we f requent ly  make  use o f  the fact tha t  every simple 

symmetr ic  re la t ion a lgebra  is integral .  

L E M M A  3. Let  A be a simple symmetr ic  relation algebra. Then the fo l low&g are 

equivalent: 

(i) A has no nontrivial equivalence elements; 

(ii) f o r  any x ~ A, 0 < x < O' implies x ; x - 0 '  = 0'. 

Proof. Assume  (i) and  let x e A satisfy 0 < x < 0'. Let  us define y = x - 0 ' .  By 

symmet ry  and  L e m m a  2, (x ; x - )  - is an equivalence e lement  inc luding 1'. Since A 

is integral ,  x ; x - v ~ O ,  i.e. ( x ; x - )  r 1, so by  (i) we have ( x ; x - ) =  1', thus 

x ; x - = 0 ' .  N o w  0 ' = x ; x - = x ; ( y + l ' ) = x ; y + x  implies tha t  x ; y > y .  By 

exchanging the role o f  x and y in the above  a rgument ,  we also get tha t  x ; y > x. 

Therefore  x ; y > 0' and,  since x y  = 0, we have (x ; y) 1' = 0 whence x ; y - 0'. 

Conversely ,  suppose  e is a nontr iv ia l  equivalence element.  Since A is integral ,  

e >  1'. Then 0 < e 0 ' < 0 ' ,  and  ( e 0 ' ; e ) e  < e e - = 0  implies ( e 0 ' ; e ) e = 0 ,  hence 

e 0 ; e  < e -  < 0 ' .  [] 

L E M M A  4. I f  A is a simple symmetr ic  relation algebra that has no nontrivial 

equivalence elements then x ; x + x ; x -  = 1 f o r  every element 0 < x < 0'. 

P r o o f  Let  u = (x ; x + x ; x - )  Since (x ; x)u = 0, it  fol lows tha t  (x ; u)x = 

0 and hence x ; u < x -  N o w  ( x - ; x ; u ) u < ( x - ; x ) u = 0 ,  which implies tha t  

(u ; u)(x ; x - )  = O. By L e m m a  3 we get O' < x ; x - ,  so u ; u < l'. Therefore  u + l '  

is an equivalence element.  By as sumpt ion  u + 1' --- 1 or  u § 1' = 1'. Since u < 0', the 

, 0  u , u <  But t h e n x , l = x ,  + x  < first case implies u = 0'. Hence  0' " ' = �9 1'. " �9 0 '  ; 1 '  

0' ; 0' + x -< 1' + x < 1 con t rad ic t s  the in tegral i ty  o f  A. Therefore  u + 1' = 1', which 

implies u = 0 a n d  h e n c e x ; x + x  ; x - = l .  [] 
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L E M M A  5. For any x in a simple symmetric relation algebra, x ; x + x -  ; x -  = 

1 i m p l i e s x ; x = l  o r x - ; x - = l .  

Proo f  S u p p o s e x - ; x - r  ; x - = l t h e n  

we have z < x ; x,  hence (x ; x)z  ~ 0 and  therefore  (z ; z)x  ~ O. It  fol lows tha t  

1 = ( z  ;x)x ; 1 = ( z  ;x)x ; x + ( z  ;x)x ; x -  <-x ; x + z  ;x ; x - .  

N o w  z ( x - ; x - ) = O  implies  ( z ; x - ) x - - = 0  whence z ; x - < x ,  so l < x ; x +  

z ; x ; x - < - x ; x .  

T H E O R E M  6. Let  A be a simple symmetric relation algebra. I f  x ; x < 1 and 

x -0 '  ; x - O '  < 1 for  some 0 < x < O' then A ~- B 5 or A contains a nontrivial equiva- 

lence element. 

Proo f  Let 0 < x < 0',  y = x - 0 '  and  suppose  A does  not  con ta in  any nont r iv ia l  

equivalence elements.  W e  will show tha t  i f  x ; x < 1 and  y ; y < 1 then x and  y are  

in fact  a toms.  The  resul t  then  fol lows since B 5 is the only  8 e lement  re la t ion a lgebra  

tha t  satisfies the preceding  condi t ions .  

By L e m m a s  4 and  5, we have tha t  1 = x - ; x - - = ( y +  1 ' ) ; ( y +  1 ' ) =  

y ; y + y + l ' = y ; y + y ,  and  s imilar ly  l = x ; x + x .  The  p r o d u c t  o f  the  two 

equa t ions  gives tha t  x ; x + y ; y = I and  we also ob ta in  tha t  0 ~ (x ; x) - < x and  

0 ~a ( y  ; y)  - < y. Let  us assume tha t  one o f x  and  y, say, x is not  an a tom.  Then there 

exist d is joint  nonzero  elements  x l ,  x2 such tha t  x = xl + x 2 and x~ -< (x ; x) - .  This  

implies  tha t  x~ (x ; x) = 0, i.e. (x ; x~)x = 0, consequent ly  x ; x I -< y + 1'. In  par t icu-  

lar, x 2 ; x ~ < O ' ( y + l ' ) = y  and  thus X l ; X I < - - X ~ ; I ' ; x ~ < - - X l ; X 2 ; X 2 ; X ~ <  

y ; y and  s imilar ly  x2 ; x2 < y ; y. So ( y  ; y)  - -< x ; x = xl ; xl + x2 ; x2 + xl ; x2 im- 

plies tha t  ( y  ; y) < xl ; x2. Hence  (x~ ; x2) (y  ; y) - r 0 and  then x~((y  ; y) - ; x2) 

0. Let  u = x~ ( (y  ; y) - ; x2). W e  will show tha t  u + 1' gives a nont r iv ia l  equivalence 

element,  thus reaching  a con t rad ic t ion ,  

( u ; u ) x < ( x ~ ; x ~ ) x = O  by  the choice o f x ~ ,  so u ; u _ < l ' + y .  But ( u ; u ) y <  

( ( (y  ; y)  - ; x2) ; u)y ~ ( (y  ; y)  - ; x2 ; x~ )y < ( (y  ; y)  - ; y )y  = 0, since 

( y  ; y ) ( y  ; y)  = 0. This  shows tha t  u ; u = 1' thus  (u + 1') 2 = u + 1', so by  symme-  

try, u + 1' is indeed an  equivalence element.  []  

N o w  we have all the necessary tools  to p rove  that  Table  2 conta ins  every finite 

min ima l  to ta l ly  symmetr ic  re la t ion algebra.  

T H E O R E M  7. Let  A be a finite nontrivial simple totally symmetric relation 

algebra. Then A ~ B12 o r  A contains a subalgebra isomorphic to Ba or BT. 
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Proof .  Suppose A does no t  conta in  a subalgebra isomorphic to B 4 o r  BT. Then  

Theorem 1 implies that  A does not  conta in  any nontr ivial  equivalence elements (B~, 

B2 and  B3 are no t  totally symmetric). Since the algebra B5 is no t  totally symmetric,  

Lemma 3 and  Theorem 6 imply that  for any disjoint nonzero x, y that  satisfy 

x + y  = 0' we have 

x ; y  = 0 '  ( , )  

and 

either x ; x  = 1 or y ; y  = 1, bu t  not  both. (**) 

The 'or '  in (**) is exclusive since otherwise B 7 would be a subalgebra.  

We will call a triple (u, v, w) of disjoint nonzero elements in A a principal  triple 

if u + v + w = 0', the element z = u + v is min imal  with respect to the condi t ion  

z ; z = 1 and for u and v we have u = z (w  ; w) - and v = z (w  ; w). Such a triple exists 

since, first of  all, the finiteness of A and  (**) imply that  we can find 0 < z < 0' such 

that z is min imal  with respect to z ; z = 1. Then  we define w = z - 0 ' ,  and  u, v as 

described in the condi t ions  for principal  triples. I f  u = 0 then z < w ; w, thus by 

total  symmetry w ; w = 1, contradict ing (**). I f  v -- 0 then w ; w = 1' + w, so 1' + w 

would be a nontr ivial  equivalence element. 

C L A I M  1. w < u ; v for any principal  triple (u, v, w). By ( , ) ,  w < u ; (v + w) = 

u ; v + u ; w and w(u ; w) = 0 follows from the condi t ion  on u in the definition of a 

principal  triple. 

C L A I M  2. w < u ; u for any principal  triple (u, v, w). Suppose w2 = w(u ; u) - ~ 0 

and let w l = w ( u ; u ) .  Then  ( u ; u ) w  2 = 0  implies ( u ; w 2 ) u = 0 ,  and  ( w ; w ) u = 0  

implies ( u ; w ) w = 0 ,  therefore u ; w : < v .  Now u ; u = u ; l ' ; u < u ; W z ; W 2 ; U <  

v ; v and similarly w2 ; w2 < v ; v. Since u + w~ < u ; u and w2 -< w2 ; w2, we get that  

v ; v > 1' + v + u + w~ + w2 = 1. But this contradicts  the minimal i ty  of z = u + v. 

C L A I M  3. v~ (u + v2) 2 = 0 if(u,  v, w) is a principal  triple and v~ and  v2 are disjoint  

elements such that v = v 1 + vs. Suppose that  v'~ = v~(u + v2) 2 ~ 0 and let v2 = v] - v .  
Then v'~ < (u + U2) 2 ~-~ (U + I)2) 2. Now 1' + u +/)2 <-- (u +/)2)  2 follows from the total  

symmetry. Final ly  w -< u 2 < (u + v2) 2 by Claim 2, thus (u + v2) 2 = 1 contrary  to the 

assumpt ion  on the minimal i ty  of z = u + v. 

C L A I M  4. For  any principal  triple (u,/), w), the element v is an atom. Suppose 

that  v~, v2 are disjoint elements such that  v =v~ +/)2 and  assume v l - r  Then  

v~ = VVl < (w ; W)Vl < ((u ; u) ; w)/)~ by Claim 2. Fur thermore ,  since u(w ; w) = O, 

(u ; (u ; w))vl  <- (u ; (u + v))vl = (u ; vl)v~ + (u ; (u + v2))v~ = (u ; v~)v~ <- u ; Vl 
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where the second equality follows f rom (u ; (u +/)2))vl -</)l(u +/)2) 2 = 0 by Claim 3. 

Therefore vl -< u ; vi. By ( . )  we have 

/)2 = V20' = /)2(Vl ; (U "-}- /)2 3t- W)) = /)2(/) 1 ; W) q- V2(/) 1 ; (/.,/ "-~ /)2)) = /)2(/)1 ; W) '< V 1 ; W 

because V l ( V 2 ; ( U " } - / ) 2 )  ) ~ U l ( U - ' } - / ) 2 ) 2 = 0  by Claim 3 and this implies that  

Vz(V 1 ; (u + re)) = 0. Thus  v2 = (vl ; w)v2 < ((vl ; u) ; w)v2 = 0 since (vt ; v2)(u ; w) <- 

(Vl ; v2)(u + v) = (vl ; v2)(u + v~) + (vl ; v2)v2 = 0 again follows f rom Claim 3. 
C L A I M  5. I f  (u, v, w) is a principal triple then (v, w, u) and (w, u, v) are also 

principal triples. Obviously,  it is enough to prove that  (v, w, u) is a principal triple. 

Let z = u + v and ~ = v + w. First we show that  ~ is minimal with respect to 5 ; Z = 1. 

No te  that  u ; u < 1 follows f rom the minimality o f  z, so (**) gives that  z7 ; ~ = 1. Also 

by (**), z ; z = 1 implies that  w ; w < 1. Since v is an a tom by Claim 4, in order  to 

prove the minimality o f  ~, it is now enough to show that  (v + w ' ) 2 <  1, or 

equivalently according to (**), (u + w ' - w )  2 = 1 for every w'  < w. By total symmetry  

and Claim 2, u ; u  > - l ' + u + w .  On the other hand,  Claim 1 implies that  
w'  w ( u ; v ) r  so for  the a tom v we get v < - u ; w ' - w .  Thus (u + w ' - w )  2 >  - 

u ; u + u ; w ' -  w -> 1. To  prove the principality o f  (v, w, u), we still need to show that  

v = ,~(u ; u) - and w = zT(u ; u). We have ~(u ; u) = (v + w)(u ; u) > w by Claim 2, on  

the other  hand,  s ; u ) <  s = v + w because otherwise we would get u ; u  = 1, 

contradict ing the minimality o f  z. Since ~ is an a tom, the only possibility is that  
Z(u ; u) = w. Finally, i (u  ; u) - = (if-  + Y(u ; u)) - = ( 1' + u + w) - = v. 

C L A I M  6. I f  (u, v, w) is a principal triple then u, v and w are all atoms. By 

Claim 4, the second componen t  o f  any principal triple must  be an atom, so using 

Claim 5 we obtain that  v, w and u are each atoms. 

C L A I M  7. A = B12. Total  symmetry  and the condit ions on u and v in the 
definition o f  the principal triple (u, v, w) clearly imply that  w ; w = 1' + w + v, and 

similarly the principal triples (v, w, u) and (w, u, v) give u ; u = 1' + u + w and 

v ; v = 1' + v + u. In  particular, v(u ; u) = 0 and u -< v ; v hold for  the a toms u, v. 

These, together  with w -< u ; v f rom Claim 1, will yield that  u ;/) = v + w for  any 

principal triple (u, v, w), thus Claim 5 ensures that  we also have v ; w = w + u and 

w ; u = u + v as required in the definition o f  B12. D 

3. Infinite minimal relation algebras 

In this section we show that  the finiteness condit ion in Theorem 7 cannot  be 
removed.  The first lemma implies that the collection o f  all finite and cofinite 

elements o f  S(2~) is a subalgebra o f ' S ( Z )  that  has no finite nontrivial  subalgebras. 
This example was constructed independently by B. J6nsson and S. Givant.  A simple 
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infinite relation algebra that  has no finite nontrivial subalgebras generates a variety 
that has no finite nontrivial members.  In [1] it is shown that there are uncountably  

many  such varieties. 

B. J6nsson also constructed the totally symmetric algebra Boo. In Theorem 10 
we prove that  this algebra is minimal, and in Theorem 11 we show that the first 
example is not  minimal. 

L E M M A  8. Let  A be an integral relation algebra and suppose that B ~_ A is 

closed for  the operations: 1', �9 +,  ; ,  ~ and for  all x,  y ~ B we have x y  - E B. I f  B has 

no largest element then the subalgebra generated by B consists o f  the elements o f  B 

and their complements only and, in case B has no nontrivial equivalence elements, this 
subalgebra has no nontrivial f inite subalgebra. 

Furthermore, i f  B '  is a subset o f  an integral relation algebra A '  satisfying the 
above conditions and ~o : B --* B '  is a lattice isomorphism preserving the operations ; 
and ~ then (p can be extended to an isomorphism between the generated subalgebras. 

Proo f  Let B* = B w { a - :  a ~ B}. 
C L A I M .  I f  a 6 B then there is a non-zero element al o f  B such that  al < a -  

Since a - > - a  b e B  for any b e B ,  the claim holds unless a b = 0  for all b, in 
which case b <- a for every b e B. But then a is the largest element o f  B, contrary  to 

the assumptions about  B. 
Clearly, B* is a Boolean subalgebra, and it is just as easy to see that  B* is closed 

for ~. So it remains to show that a ; b - e B *  and a ; b - 6 B *  for any a, b E B .  
Since this is certainly true if a = 0 or b -- 0, we may  assume that  both  are nonzero.  

a ; b  e B * :  Consider the e l e m e n t s x = a ; b , y = ( a  ~ ; x ) b  a n d z = ( a ; y ) - x ,  
which by assumption are in B. We show that a ; b - = z - ,  which is in B*. Firstly 

( a ; b ) z = 0  since 

(a ~ ; z ) b -  = (a ~ ; z)(a ~ ; x)b = (a ~ ; z)y = O, 

where the last equality follows because ( a ; y ) z  = 0. Secondly, y -<  b -  implies 

a ;y  <_a ; b - ,  so 

a ; b  + z = a ; b - + ( a ; y ) x + ( a ; y ) - x = a ; b - + x = a ; b  + a ; b = a ; l = l  

and this time the last equality follows from the assumption of  integrality. 
a ; b - 6 B * :  L e t O • x < a  w h e r e x e B ,  y = x ; b a n d O v ~ z < ( y ; b ~ + a )  

where z e B (the existence o f  x and z follows f rom the claim above). Then 
z ( y  ; b '~) = 0 implies that  y(z  ; b) = 0 and this together with z ; b + z ; b - = z ; 1 = 1 
gives that y < z ; b  , so x ; b = y < z ; b -  < a - ; b - .  Since x < a -  implies that  

x ; b - < - a  ;b  , w e g e t  l = x ; l = x ; b + x ; b - < a - ; b - .  
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Assume that  B* has no nontrivial  equivalence elements. Let C be a finite 

subalgebra  of  B*. Then defining e to be the sum o f  the elements o f  B c~ C, we get 
that  e ; e  ~ B n C ,  so e ; e - <  e, and similarly, e ~ <  e and 1'-< e. Thus  e is an 
equivalence element in B, consequent ly  e = 1' and C is the trivial subalgebra.  

Finally, i f  for  the bijection qJ:B--.B" we define q3 so that  q S ( a - ) =  ~ ( a ) -  
for  any element  a of  B then the formulas  a -  ~ = a  ~ - ,  a ; b - =  

((a ; ((a ~ ; a ; b)b - ) ) -  (a ; b)) - and a -  ; b - = 1 derived in the p r o o f  immediate ly  
imply tha t  ~ is a relat ion a lgebra  i somorphism.  D 

C O R O L L A R Y  9. Let C be a set of  infinitely many pairwise disjoint elements in 
an integral relation algebra A, and suppose that the set B of  all finite sums of  elements 
of  C is closed under conversion, relative products and contains 1'. Then the subalgebra 
generated by C consists of the elements of  B and the complements of  these, and, in 
case B contains no nontrivial equivalence elements, this subalgebra has no nontrivial 
finite subalgebras. 

Furthermore, i f  rp : C ~ C' is a bijeetion onto a set C" of pairwise disjoint elements 
of  an integral relation algebra A" so that the natural extension of tp to B preserves the 
operations ; and '~ for the elements of  C then (p can be extended to an isomorphism 
between the subalgebras generated by C and C', respectively. 

T H E O R E M  10. B~ defined in Table 2 is a totally, symmetric minimal relation 
algebra. 

Proof Define a n o r m  on Z • Z by II(k, l)ll = l k l +  Ill, Then  for  the disjoint 
elements ai = {x e Z x Z: IIx I1 = 2i} for  i = o, 1, 2 , . . .  in S (Z  x Z), the relative 
mult ipl icat ion rule ai ;as. = ~+__ It-A a, can be p roved  in the following way. Since 

llx + ylt - llxll + llyfl and since Ilx + y l l -  l lxlj-  lly]l is always divisible by 2, the 
inclusion ae ; ai < ~ + { ; - J l  a, obviously  holds. 

On  the other  hand,  let w = (k, l ) ~  a, for  some t such tha t  l i - J t  -< t _< i + j .  
Wi thou t  loss o f  generality, we m a y  assume tha t  i > j  and k->  I >-0. Then  

u = ((k - t) + (i - j ) ,  l + ((i + j )  - t)) and v = (t - (i - j ) ,  - ( ( i  + j )  - t)) shows 
that  w = u + v e ai ; aj. Using Corol la ry  9 and the fact that  a y  = ai for  every i, we 
get tha t  the algebra generated by {at: i = 0, 1, 2 , . . . }  consists o f  the finite sums o f  
these elements and of  their complements .  Since the a toms o f  this a lgebra satisfy the 
identities x = x ~ and x < x ; x and for  the complements  o f  finite sums o f  a toms  
x ; x  = 1, the a lgebra  is total ly symmetric.  

Not ice  also that  for  x = ({(1, 0), (0, 1)}2) 2 we have al = x and  then the relative 
mult ipl icat ion rule gives tha t  an = x " ( x " - 1 ) - .  Hence  the a lgebra  defined above  is 
indeed the same as B~  defined in Table  2. 
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For any y s Boo, the following statements are true: if y ; y = 1 then y -  ; y -  < 1 

and if y r {0, 1'} and y ; y < 1 then y ; y generates a subalgebra isomorphic to Boo. 
Since these statements must hold in any subalgebra of  any ultrapower of  Boo, we 
obtain that every nontrivial subalgebra of  an ultrapower of  B~ contains a subalge- 
bra isomorphic to Boo, so Bo~ is minimal. [] 

We now give an example of  a relation algebra N in which every nontrivial 
subalgebra is isomorphic to N, yet this algebra is not minimal. Let N be the 
subalgebra of  S(7/) generated by the element {1}q Note that this is the subalgebra 

of all finite and cofinite elements of  S(Z) mentioned at the beginning of this section. 

T H E O R E M  11. For the relation algebra N defined above 
(i) every nontrivial subalgebra of N is isomorphic to A3 or N, but 

(ii) ~ ( N )  is strictly greater than ~(Boo). 

Proof. (i) Observe first that every a tom {n} s of N generates a subalgebra Nn 
isomorphic to N. By Corollary 9 the generated subalgebra consists of  the finite 
unions of  {kn}" (k = 0, 1 , . . . )  and the complements of  those, and ~o: {k}" ~--~ {kn} s 
induces an isomorphism between N and Nn. We are going to prove that every 
subalgebra is isomorphic to one of these Am. 

Let A be a proper subalgebra of  N different from A3, and let G c_ 7/be the set 
of  those group elements that occur in a finite element of  N. Then G is nonempty 
since A is nontrivial, furthermore G is a subgroup of 7/, since the relative products 
and converses of  finite elements are finite. Thus there is a positive integer n such 
that G = nT/and  every cofinite element of  A contains 7/\n7/. This shows that A is 

a subalgebra of  Nn -- N. Changing N to N,  allows us to assume that G = 7/. 
Let us denote by x* the greatest number in a finite element x ~ A and for an 

integer k let /?=  {0, 1 . . . . .  k} s. Take an element x > 1' in A that satisfies the 
following three conditions: 

(1) I-x*/2 7 <-x (where I-x*/2 7 is the least integer ->x*/2); 

(2) Ix*x I is minimal (where II denotes the cardinality of  the element as a 
subset of  7/); 

(3) among those satisfying the above conditions, x* is minimal. 
We will show that x = {0, 1 }~, whence A = N and we are done. First we need to 

prove that such an x exists, i.e. there is an element above 1' satisfying condition 
(1). Take a finite element y of  A such that 0, 1 e y, which exists since we as- 
sumed G = 7 / .  Notice that for k > y * ,  the inclusions y k > y ,  and y k >  
{0, y*, 2y* . . . . .  ky*} s hold, consequently y2k > ky* = (y2k)*/2, so yZk satisfies 

condition (1). 
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Let n = x*. Then clearly, x 2 -> 1/+ {n + It[: 0 :~ t e x}" (wh__ere the latter two sets 
are disjoint), so ]x2[-> 2n + 1 + Ixt- 1. This gives that Ix*x-  I = 2n + 1 - I x  I = 
( 4 n + l ) - ( 2 n  +Ix])-> I(x2)*(x2)-I, hence condition (2) gives that x 2 = r i +  
{n + Itl: o t x }  s 

Now consider y = x ( x 2 x - )  z. We can see that t ~ ( x 2 x - )  2 holds for 
0 - < t ~ n - 1 ,  since for t < n / 2 ,  we have t = ( n + [ - n / 2 - ] ) - ( n + ( r n / 2 - ] - t ) )  
(xZx -)2 and for t >- n/2, we have t = (2n) - (n + (n - t)) ~ (xZx-)Z. On the other 
hand, n q~ (x2x-)2,  because (x2x-)[-n/27 = 0 implies that n cannot be obtained as 
the sum of two nonnegative elements of  xZx -  and, in order to be the difference of 
two positive elements, n should be of the form (n + Itl) - I t  I but It[ r xZx - .  

Thus we__obtained__that y = x(n - 1). This y clearly satisfies condition (1) and we 
also have ]y*y [< Ix*x - land  y* < x*. Because of  the choice of x, this means that 
y = 1', consequently x = {0, n}L On the other hand, x > I-n~2] holds, so n = 1. 
Thus x = {0, 1}s generates N. 

(ii) We will show that Boo is a subalgebra of an ultrapower of N. This implies 
that V(Boo) c_ ~ (N) ,  and the two varieties are obviously not equal since N is not 
totally symmetric. It is easy to check that the map q~" Z x Z-oZ'~ (where F 
is the congruence defined by a nonprincipal ultrafilter on co) defined by 
cp((1, 0)) = (1, 1, 1 . . . .  ) /F  and ~0((0, 1)) = ( t ,  2, 3 . . . .  ) /F is an embedding and it 
defines a one-to-one map ~, from the atoms of R(Z x Z) into R(Z)'~/F in a natural 
way: ~({(k,/)}) = ({k + l}, {k + 2l}, {k + 3 l} , . . . ) /F .  In this way we obtain a map 
satisfying the conditions of Corollary 9, and thus ~k has an extension q7 to the 
subalgebra generated by the atoms of R(7/x Y). The only thing we have to check 
is that the image of B~ is in the subalgebra N'~ and this follows from 
the fact that Boo is generated by the element x=({(1,0) , (0 ,1)}s)  z and 
~({(1, O),(O, 1 ) } ' ) = ( { 1 } s + { 1 } " , { I } ' + { 2 } ' , { 1 } ~ + { 3 } ~ , . . . ) / F e N ~  [] 

4. Further results about symmetric minimal relation algebras 

The first result is a generalization of Theorem 7. It has a similar though longer 
proof which can be found in [3]. 

THEOREM 12. Let A be a finite simple symmetric relation algebra. I f  for all 
x ~ A either x < x ; x or x ( x ,  x) = 0 then A has a subalgebra isomorphic to one of  
Bl . . . . .  By, B 9 ,  �9 . �9 , Bl2. 

B8 is the only finite minimal relation algebra in Table 2 that does not satisfy the 
universal sentence x < x ; x or x(x ; x) = O. 
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L E M M A  13. L e t  A be a s imple  s y m m e t r i c  relation algebra, and f o r  u < 0' define 

a = u - O ' ,  b = u(u ; u) and e = u(u ; u) . I f  a ; a = l and a < (b ; b)(c ; c)(b ; e) then 

a generates  a subalgebra isomorphic to B 8. 

P r o o f  F r o m  the defini t ion o f  b and e it  fol lows tha t  u = b + c and  c(u ; u) = O, 

hence 0 = e(b ; b) = c(b ; c) = c(c ; c) and  consequent ly  0 = b(b ; c) = b(c ; c). Also 

b < u ; u = b ; b + b ; c + c ; c and  therefore  b < b ; b. By as sumpt ion  a is be low each 

o f  b ; b, c ; c and  b ; c, so we ob ta in  b ; b = a + b  + 1', e ; c = a  + 1' and  b ; e = a. 

I t  remains  to show tha t  a ; b = 0 ' = a ; c .  By in tegral i ty  we have 

b = b ; l ' < b ; ( c ; c ) = ( b ; c ) ; c - < a ; c a n d s i m i l a r l y c < a ; b .  N o w  

a = c  ; b  -< e ; (b  ;b)  = ( c  ;b )  ; b  = a  ; b  

b < - c ; a < - < - c ; ( b ; b ) = ( c ; b ) ; b = a ; b  

and 

a + c  < a  ; b  < ( c  ;c)  ; b = c  ; ( c  ;b )  = c  ; a  

hence a ; b = 0 '  = a  ; c. [] 

T H E O R E M  14. L e t  A be a s imple  s y m m e t r i c  relation algebra, and suppose a is 

an a tom o f  A such that a < O' and a satisf ies a ; a = 1. Then ei ther A ~- A3 or A has 

a subalgebra isomorphic to B3, B4, 96,  B7 or Bs.  

P r o o f  I f  A has a nont r iv ia l  equivalence element,  then T he o re m 1 implies tha t  A 

has a suba lgebra  i somorph ic  to B3 o r  B 4. On the o ther  hand,  if  A has no nont r iv ia l  

equivalence element,  then it fol lows f rom L e m m a  3 tha t  x ; x  0 ' =  0' for  all 

0 < x < 0 ' .  So if  we let u = a  0' then either u = 0 ,  in which case A - A 3 ,  or  

u < 0 ' =  a ; u .  In  the la t ter  case, since a is an a tom,  it follows tha t  a < u ; u .  I f  

u ; u  = a + 1' or u ; u  = 1 then we have a suba lgebra  i somorph ic  to B 6 o r  B 7 

respectively.  Hence we m a y  assume that  u = b + c, where b, c ~ 0, b < u ; u and  

c ( u ; u )  = 0. No te  tha t  0 ' = a  + b + c, and  a , b ,  c are dis joint  and  nonzero ,  so 

0' = b ; (a + c) = b ; a + b ; c by L e m m a  3. Then u(b ; c) < u(u ; c) = 0 implies tha t  

b + c = u < b ; a .  Since a is an a t o m  we have a < b ; b  and  a < b ; c .  Similar ly  

e < 0 ' = c ; ( a + b ) = e ; a + e ; b  and  c ( c ; b )  < - c ( u ; u ) = O ,  hence c < r  and 

therefore  a <- c ; c. N o w  we have satisfied all the assumpt ions  o f  L e m m a  13, so a 

generates  a suba lgebra  i somorph ic  to B~. []  

By a similar,  though  much  longer  a rgument ,  we can show tha t  if  a simple 

symmetr ic  re la t ion a lgebra  has two a toms  a, b such tha t  (a + b) ; (a + b) = 1 then it 
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has a subalgebra isomorphic to one of  Bi (i = 1, 2 , . . . ,  12). Note that stating this 
result for the sum of  any finite number of atoms in the assumption instead of two 
would yield a full classification of the finite minimal symmetric relation algebras. 
However no generalization along these lines has emerged so far. Thus we conclude 
this paper with the following two open problems: 

(i) Are there other infinite minimal simple relation algebras? How many? 
(ii) Is the list of  finite minimal relation algebras complete? 

Finally, we would like to thank Bjarni J6nsson for raising the problem of 
finding all covers of  the atoms of A and for many helpful discussions. 
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