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Minimal relation algebras
P. JipseN and E. LUKACS

Dedicated to Bjarni Jonsson on his 70th birthday

Abstract. This paper is concerned with the covers of the atoms in the lattice of varieties of relation
algebras. A minimal relation algebra is one that is simple and generates such a subvariety. The main
result we prove is that there are exactly three finite minimal relation algebras that are totally symmetric
(i.e., satisfy the identities x = x“ and x < x ; x). We also give an example of an infinite minimal totally
symmetric relation algebra, and some results about other subvarieties.

1. Preliminaries

For a very readable introduction to relation algebras (and the notation used
here) we refer the reader to [4]. Here we recall some standard results. The variety
of all relation algebras will be denoted by £/ and the lattice of its subvarieties by
A. A< is a discriminator variety, whence the notions of simple, subdirectly
irreducible and directly indecomposable coincide. Furthermore, the simplicity of a
relation algebra can be characterized by the property that 1;x;1=1 holds for
every nonzero element x.

A relation algebra is said to be

(1) integral if x ; y #0 for all nonzero elements x and y,
(i1) commutative if it satisfies the identity x ; y =y ; x,
(iil) symmetric if it satisfies the identity x“ = x, and
(iv) totally symmetric if it satisfies the identities x¥ =x and x < x ; x.
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Recall that a relation algebra is integral if and only if any of the following
conditions holds:

(i;) 1’ is an atom;
(i;) x; 1 =1 for any nonzero element x;
(i;) for any elements x, y, the inclusion 1’ < x ; y holds if and only if xy*“ #0.

The variety generated by all integral relation algebras is denoted by ##.o/ and
the varieties of all commutative, all symmetric and all totally symmetric rela-
tion algebras are denoted by ¥R/, A/ and T R respectively. Clearly
TRA €S RA CCRA, and €RA = IR follows from (i,) and from the fact
that 1; x; 1 =1 holds for any nonzero element of a subdirectly irreducible relation
algebra.

We use the notation Re(X) for the full relation algebra over the set X and the
notation R(G) for the relation algebra over the group G.

Finally, let @ be the variety of one-clement relation algebras and let ¥7(A)
denote the variety generated by A. The following results of B. Jonsson and A.
Tarski describe the atoms and the covers of two of the atoms in A.

THEOREM (6] [8].

(i) There are exactly three varieties of ; = ¥ (A;) (i =1, 2,3, see Table 1) in the
lattice of varieties of relation algebras that cover the variety O and in every
simple relation algebra the smallest subalgebra is isomorphic to one of A, A,
or A;.

(i) 7, has no join irreducible covers, while <, has exactly one join ireducible
cover, ¥ (Re(2)).

Since relation algebras have Boolean algebras as reducts, #.o/ is congruence
distributive and hence A is a distributive lattice. So, in order to complete the
description of the covers of the atoms of A, we only have to find the join irreducible

Table 1. Simple relation algebras generated by the constants

Name — Representation 0;0

A, =R(Z,) = Re(1) 0
Ay =R(Z,) < Re(2) r
A; < R(Z3) < Re(3) i
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covers of «7,. At present even the question whether the number of these is finite
or infinite is unsolved. However we show (Theorem 7) that in the lattice of tot-
ally symmetric subvarieties there are only three finitely generated join irreducible
covers.

Clearly a join irreducible cover of &/, (i =2 or 3) can be generated by one
subdirectly irreducible (hence simple) algebra, containing 4, as a subalgebra. We
call such an algebra 4 minimal. Since relation algebras are discriminator algebras,
the subdirectly irreducible elements of ¥7(4) are subalgebras of an ultrapower of 4.
In case 4 is finite it follows that 4 is minimal if and only if 4, is the only proper
subalgebra. Thus, for example, all simple 8 element relation algebras are minimal.
However, we will give an example of an infinite simple relation algebra whose
subalgebras are all isomorphic to the algebra itself or to 4; vet it does not generate
a cover of </, (see Theorem 11).

In order to list all the known minimal relation algebras together with a nice
representation (where possible), we introduce the following notation. Let
x*=x+x" for an element x of a relation algebra. For a group G define
S(G) = {x* x e R(G)}. It is easy to see that if G is abelian then S(G) is in fact a
subalgebra of R(G). In this notation we have that 4, >~ S(Z,) (i = 1, 2, 3) where Z,
denotes the cyclic group of order i. We also introduce the notation x™ which is
defined as

x°=1 andforn>0 x"=x"""';x

In Table 2 we list the known symmetric relation algebras that are minimal. In [2]
it is shown that the finite representations given here are the smallest possible, except
in the case of B;, which has a smallest representation as the subalgebra of
8(Z; x Z5) with atoms {(1,0), (0, )}*, {(1, 1), (1, —=1)}* and {(0,0)}.

We also need the notion of an equivalence element, i.e., an element e of a
relation algebra such that ¢ ;¢ = ¢ and e = e. An equivalence element is nontrivial
if 0 <e0’ <. Note that the first four algebras in Table 2 each contain a nontrivial
equivalence element b + 1’. The following theorem of Jonsson [4] implies that no
other minimal integral algebras contain nontrivial equivalence elements.

THEOREM 1 ([4]). If A is a relation algebra and e is an equivalence element in
A then e generates a finite subalgebra of A. If A is integral and e is a nontrivial
equivalence element then e generates a subalgebra isomorphic to B, B,, B; or B,.

For the sake of completeness we also include a list of the 5 known integral
nonsymmetric minimal relation algebras C,, ..., Cs in Table 3 and all nonintegral
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Table 2. Minimal symmetric relation algebras (x*=x + x“)

ALGEBRA UNIV.

Name — Repr. a b a;a b;b a;h

B, =S(Z,) {1} {2} b+ 1 1 a

B, < 8(Zg) {1,3) {2} b+1’ b+ 1 a

B, < S(Zy) {1,2} {3} 1 r a

B, < S(Zy) {1,2,4) {3} 1 b+ 1 a

B = S(Zs) {1y {2y b+ T a+l’ o

B, < S(Zg) {2,3F {1,4} 1 a+ Tl 0’

B, < S8(Z,,) {1,2,5) {3, 4,6} 1 1 0

Name — Repr. aa b;b c;c a;b a;e b;c

B, < S(Z) ¢~ a+ 1’ o o a

By =S8(Z,) b+ 1 c+ 1 a+? a+tec b+ec a+b

B, Nonrepr. - c+ 1 a+1 a+c b+ec a+b

B,; Nonrepr. - a~ a+?0 a+c b+e a+b

B,, Nonrepr. - a~ b~ a+c b+e a+b

Name — Repr. generator x atoms q, a,;a,

B, <S(Zx17) ({(1,0), (0, H}H)? xM(x" )T Xy
Table 3. Minimal nonsymmetric integral relation algebras

Name — Repr. a a,a a;a® av;a

C,<R(Z;) {1,2, =3} o 1 1

C, < R(Q) {geQ:q>0} a 1

C;=R(Z5) {1} a* I’ I

Name a;a“ a“;a b;b a;b a“ ;b

C, 1 b~ 1 b a“+b

Name aa e a-;a b;b a;b a“; b c;c ac av;c b;c

Cs o 1 b+~ o e b~ b—0 o a

b=bh" and c¢c=cV
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Table 4. Minimal nonintegral relation algebras.

Name — Repr. e, e,

Ny =Re(2) {(0,0)} {(1, D}

N, < Re(3) {(0,0)} {(1, D, (2,2)}

Ny <Re(4) {(0,0)} {(LD,(2,2, (3,3

e, e, ¢ cY,dy and d, are atoms or zero, where
I’=e +e,, c=e;1l;e,and d,=(e;;1;¢,)0

. Cs ?) Bo By - Bis

7

\i/

Figure 1. Join 1rreducxbles on the bottom levels of A.
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minimal relation algebras in Table 4. In fact, Maddux [7] proves that every
nonintegral simple (semiassociative) relation algebra has a subalgebra isomorphic
to Nyy, Nip, N3, Nos, B, or B,

2. Totally symmetric minimal relation algebras

We will show in Theorem 7 that all the totally symmetric finite minimal relation
algebras occur in Table 2. We begin with a few lemmas that will be useful when
looking for minimal algebras.
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LEMMA 2. For any x, (x¥ ;x7) " (x¥;x7) Y is an equivalence element con;
taining 1°.

Proof. Note that the conditions
z<(xY;x7)" zZ(xY;x7)=0 x (x;2)=0 X;z<x (%)

are equivalent, hence for y=(x";x~)~ we have x;y <x and therefore
x;y;y<x;y<Xx Applying () in the reverse direction for z =y ; y, we obtain
y;y <y Also (%) with z=1" shows that 1’ <y. Taking converses, we get
yY,yY<yY and I’<y“ hence yy“ is an equivalence clement containing the
identity. |

In the subsequent results we frequently make use of the fact that every simple
symmetric relation algebra is integral.

LEMMA 3. Let A be a simple symmetric relation algebra. Then the following are
equivalent:

(i) A has no nontrivial equivalence elements;

(i) for any x € A, 0 <x <O implies x ; x~ 0 =0,

Proof. Assume (i) and let x € A4 satisfy 0 <x <. Let us define y = x~0". By
symmetry and Lemma 2, (x ; x )~ is an equivalence element including 1°. Since 4
is integral, x ; x~ #0, l.e. (x;x7)” #1, so by (i) we have (x;x~)=1", thus
x;x”=0. Now O=x;x =x;(y+1)=x;y+x implies that x;y > y. By
exchanging the role of x and y in the above argument, we also get that x ; y = x.
Therefore x ; y = 0" and, since xy =0, we have (x;y)1’=0 whence x;y =0".

Conversely, suppose e is a nontrivial equivalence element. Since A4 is integral,
e=1". Then 0 <e0’ <, and (€0’ ;e)e < ee” =0 implies (¢0’; e )e =0, hence
el;e " <e <0, O

LEMMA 4. If A is a simple symmetric relation algebra that has no nontrivial
equivalence elements then x ; x +x~ ;x~ =1 for every element 0 < x <0’.

Proof. Letu=(x;x+x" ;x7) . Since (x ; x)u =0, it follows that (x ; u)x =
0 and hence x ;u <x~. Now (x~;x;uu <(x~ ;x )u=0, which implies that
(u;u)(x;x")=0. By Lemma 3 we get ’ < x;x~,s0 u;u <1 Therefore u + 1’
is an equivalence element. By assumption u + I’=1oru + 1’ =1". Since u < 0’, the
first case implies u =0’. Hence 0’ ; 0 =u;u <1’ Butthen x ;1 =x;04+x; 1" <
0;0 4+ x <1+ x <1 contradicts the integrality of A. Therefore u + 1’ =1, which
implies # =0 and hence x ; x +x ;x~ =1. O
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LEMMA 5. For any x in a simple symmetric relation algebra, x ; x +x~ ;x~ =

I implies x ;x =1o0r x™ ;x~ = 1.

Proof. Suppose x " ;x " #landletz=(x";x7) . Ifx;x+x";x" =1 then
we have z < x ; x, hence (x ; x)z # 0 and therefore (z ; z)x # 0. It follows that

l=:;x)x;1=0E;X)x;x+Z;x)x;x " <x;x+z;x;x" .

Now z(x~;x )=0 implies (z;x " )x =0 whence z;x~ <x, so 1<x;x+
Z;x;x"<x;x i

THEOREM 6. Let A be a simple symmetric relation algebra. If x ; x <1 and
x70;x70 <1 for some 0 <x <O then A = Bs or A contains a nontrivial equiva-
lence element.

Proof. Let 0 <x <0, y =x~0" and suppose 4 does not contain any nontrivial
equivalence elements. We will show that if x ; x <1 and y;y <1 then x and y are
in fact atoms. The result then follows since B; is the only 8 element relation algebra
that satisfies the preceding conditions.

By Lemmas 4 and 5, we have that I=x";x "=+ 1);{(y+ 1) =
y;y+y+U=y;y+y and similarly 1 =x;x+x. The product of the two
equations gives that x ; x +y;y = 1 and we also obtain that 0+ (x ; x)~ < x and
0% (y;y)~ <y Letusassume that one of x and y, say, x is not an atom. Then there
exist disjoint nonzero elements x;, x, such that x = x; + x, and x; < (x ; x) ~. This
implies that x,(x ; x) =0, i.e. (x ; x;)x =0, consequently x ; x, £ y + 1. In particu-
lar, x:x; £0(y+1) =y and thus x;x <x ;1 ;% Sx ;X% ;%<
y;yand similarly 3, 5, < p;p. So (¥ p) 7 S x3x =X ;X + X ; X3+ X ; X, im-
plies that (¥ ;¥) ~ < x; ; x,. Hence (x; ; x, Xy ;)™ #0and then x,((y ; ¥) ™ 5 x,) #
0. Let u =x,((¥ ; ») ™ ; x,). We will show that u + 1" gives a nontrivial equivalence
element, thus reaching a contradiction.

(u;u)x <(x;;x,)x =0 by the choice of x;, so u;u<1U"+y But (u;u)y <

(Y57 5x) 5wy S35 x5 x)y <((y;32) 750y =0, since
(¥ ;y(y;y)~ =0. This shows that u ;u = 1" thus (¥ + 1"))? =u + 1, so by symme-
try, # + 1’ is indeed an equivalence element. 0

Now we have all the necessary tools to prove that Table 2 contains every finite
minimal totally symmetric relation algebra.

THEOREM 7. Let A be a finite nontrivial simple totally symmetric relation
algebra. Then A = By, or A contains a subalgebra isomorphic to B, or B..
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Proof. Suppose A does not contain a subalgebra isomorphic to B, or B;. Then
Theorem 1 implies that 4 does not contain any nontrivial equivalence elements (B,
B, and Bj; are not totally symmetric). Since the algebra Bs is not totally symmetric,
Lemma 3 and Theorem 6 imply that for any disjoint nonzero x, y that satisfy
x +y =0 we have

x;y=0 (%)
and
either x ; x =1 or y; y =1, but not both. (%)

The ‘or’ in (#x) is exclusive since otherwise B; would be a subalgebra.

We will call a triple (u, v, w) of disjoint nonzero elements in A a principal triple
if u+v+w=0, the element z = u + v is minimal with respect to the condition
z ;z =1 and for 4 and v we have u = z(w ; w) ~ and v = z(w ; w). Such a triple exists
since, first of all, the finiteness of 4 and (x*) imply that we can find 0 < z <0’ such
that z is minimal with respect to z ; z = 1. Then we define w =z-0’, and u, v as
described in the conditions for principal triples. If ¥ =0 then z <w ; w, thus by
total symmetry w ; w = 1, contradicting (s%). f v =0 thenw;w=1+w,s80 '+ w
would be a nontrivial equivalence element.

CLAIM 1. w <u ;v for any principal triple (u, v, w). By (), w Su ;v +w) =
u;v+u;wand wu ; w) =0 follows from the condition on u in the definition of a
principal triple.

CLAIM 2. w < u ; ufor any principal triple (u, v, w). Suppose w, = w(u ; u) ~ #0
and let w, =w(u ;u). Then (u;u)w,=0 implies (u;w)u=0, and (W ;wu =0
implies (u ; w)w =0, therefore u ;w,<v. Now u,u=u;l;u<u;w,;w,;u<
v ;v and similarly w, ; w, < v ;v. Since u +w; < u ; u and w, < w, ; w,, we get that
v;v=21"4+v+u-+w +w,=1. But this contradicts the minimality of z = u + v.

CLAIM 3. v,(u + v,)? = 0if (4, v, w) is a principal triple and », and v, are disjoint
elements such that v = v, + v,. Suppose that v =v,(u +v,)> # 0 and let v5 =0v{ 0.
Then v} < (U +0,)? < (u +v5)% Now 1" +u +v5 < (u +v3)? follows from the total
symmetry. Finally w < 4% < (4 + v5)? by Claim 2, thus (z + v5)? = 1 contrary to the
assumption on the minimality of z =u +v.

CLAIM 4. For any principal triple (u, v, w), the element v is an atom. Suppose
that v, v, are disjoint elements such that v =v, + v, and assume v, # 0. Then
vy =ov; £ (w; W, < ((u; u) ; wip, by Claim 2. Furthermore, since u(w ; w) =0,

(5 (s whoy < (w5 (u+0)oy = (u 000+ (U5 (U + )0y = (U ;0o <u ;0



Vol. 32, 1994 Minimal relation algebras 197

where the second equality follows from (u ; (u + v,)v, < v, (¥ + v,)* = 0 by Claim 3.
Therefore v, < u ; v;. By () we have

0, =00 =0,(v; 5 (U + v+ W) =050, ;W) +0,(0 5 (U +0y)) =050 5 W) Sop W

because v,(v,;(# +v,)) <v{u+v,)>=0 by Claim 3 and this implies that
vy(y 5 (u +v,)) = 0. Thus vy = (v; ; W, < ((v; ; W) ; Wv, =0 since (v, ; v, )(u ; w) <
(v 501 +0) = (v, ; 0. ) +v,) + (v ; )0, =0 again follows from Claim 3.

CLAIM 5. If (u,v, w) is a principal triple then (v, w, ) and {(w, u, v} are also
principal triples. Obviously, it is enough to prove that (v, w, u) is a principal triple.
Let z =u 4+ v and £ = v + w. First we show that £ is minimal with respectto £ ; ¥ = 1.
Note that u ; u < 1 follows from the minimality of z, so (»*) gives that Z ; Z = 1. Also
by (*x), z ; z =1 implies that w ; w < 1. Since v is an atom by Claim 4, in order to
prove the minimality of Z, it is now enough to show that (v +w’)%< 1, or
equivalently according to (), (4 + w'~w)? = 1 for every w’ < w. By total symmetry
and Claim 2, w;u21"4u+w. On the other hand, Claim 1 implies that
w ™w(u;v) #0, so for the atom v we get v Su;w ~w. Thus (u+w "w)?=
uu+u;w w21 To prove the principality of (v, w, u), we still need to show that
v==2(u;u)” and w = Z(u ; u). We have Z(u ; 1) = (v + w)(u ; u) = w by Claim 2, on
the other hand, Z(u;u) <Z =v +w because otherwise we would get u;u=1,
contradicting the minimality of z. Since v is an atom, the only possibility is that
Zusu)=w. Finally, Zu ;)" =E +%u;w) " =('4+u+w)" =o

CLAIM 6. If (u, v, w) is a principal triple then u, v and w are all atoms. By
Claim 4, the second component of any principal triple must be an atom, so using
Claim 5 we obtain that v, w and u are each atoms.

CLAIM 7. 4 = B),. Total symmetry and the conditions on # and » in the
definition of the principal triple (u, v, w) clearly imply that w ; w =1+ w + v, and
similarly the principal triples (v, w,u) and (w,u,v) give u;u=1"+u+w and
vi;v="1+v+u In particular, v(u ; u) =0 and « <v ;v hold for the atoms u, v.
These, together with w < u ;v from Claim 1, will yield that u ;v =v +w for any
principal triple (i, v, w), thus Claim 5 ensures that we also have v ; w = w + u and
w;u =u-+v as required in the definition of By,. O

3. Infinite minimal relation algebras

In this section we show that the finiteness condition in Theorem 7 cannot be
removed. The first lemma implies that the collection of all finite and cofinite
elements of S(Z) is a subalgebra of S(Z) that has no finite nontrivial subalgebras.
This example was constructed independently by B. Jonsson and S. Givant. A simple



198 P. JIPSEN AND E. LUKACS ALGEBRA UNIV.

infinite relation algebra that has no finite nontrivial subalgebras generates a variety
that has no finite nontrivial members. In [1] it is shown that there are uncountably
many such varieties.

B. Jonsson also constructed the totally symmetric algebra B,,. In Theorem 10
we prove that this algebra is minimal, and in Theorem 11 we show that the first
example is not minimal.

LEMMA 8. Let A be an integral relation algebra and suppose that B = A is
closed for the operations: 1", -, +,;, " and for all x,y € B we have xy~ € B. If B has
no largest element then the subalgebra generated by B consists of the elements of B
and their complements only and, in case B has no nontrivial equivalence elements, this
subalgebra has no nontrivial finite subalgebra.

Furthermore, if B’ is a subset of an integral relation algebra A’ satisfying the
above conditions and ¢ : B — B’ is a lattice isomorphism preserving the operations ;
and ¥ then ¢ can be extended to an isomorphism between the generated subalgebras.

Proof. Let B¥=Bu{a :a€ B}.

CLAIM. If a € B then there is a non-zero element @, of B such that a, <a™.
Since ¢~ 2 a b e B for any b € B, the claim holds unless ¢ b =0 for all b, in
which case b < a for every b € B. But then a is the largest element of B, contrary to
the assumptions about B.

Clearly, B* is a Boolean subalgebra, and it is just as easy to see that B* is closed
for ¥. So it remains to show that a ;5= € B* and a~ ; b~ € B* for any a, b € B.
Since this is certainly true if @ =0 or b = 0, we may assume that both are nonzero.

a ; b~ € B*: Consider the elements x =a ; b, y=(a";x)b~ and z =(a;y) x,
which by assumption are in B. We show that a ; b~ =z~, which is in B*. Firstly
(a ;b7 )z =0 since

(@ ;2)b~ =(a";z)0(a% ; x)b~ =(av;z)y =0,

where the last equality follows because (@ ;y)z =0. Secondly, y < b~ implies
a;y<a;b,so

a;b - +z=a;b " +(a;y)x+(@;y) x=a;b"+x=a;b"+a;b=a;1=1

and this time the last equality follows from the assumption of integrality.

a ;b eB* Let0#x<qag wherexeB, y=x;band 0#z<(y;b"+a)”
where z € B (the existence of x and z follows from the claim above). Then
z(y ; b*) = 0 implies that y(z ; b) =0 and this together withz ;b +z ;b =2z ;1=1
gives that y <z;b ", s0o x;b=y<z;b  <a ;b . Since x £a~ implies that
x;b"<a ;b ,wegetl=x;l=x;b+x:;b"<a ;b
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Assume that B* has no nontrivial equivalence elements. Let C be a finite
subalgebra of B*. Then defining e to be the sum of the elements of BN C, we get
that e;e e BNC, so e;e <e, and similarly, e¥ <e and 1"<e. Thus ¢ is an
equivalence element in B, consequently e = 1" and C is the trivial subalgebra.

Finally, if for the bijection ¢ : B— B’ we define ¢ so that ¢(a ) = @(a)~
for any eclement a of B then the formulas o Y =a%", a;b =
{(a;({a";a;0b7)) (a;b))” and a~ ;b =1 derived in the proof immediately
imply that ¢ is a relation algebra isomorphism. O

COROLLARY 9. Let C be a set of infinitely many pairwise disjoint elements in
an integral relation algebra A, and suppose that the set B of all finite sums of elements
of C is closed under conversion, relative products and contains 1. Then the subalgebra
generated by C consists of the elements of B and the complements of these, and, in
case B contains no nontrivial equivalence elements, this subalgebra has no nontrivial
finite subalgebras.

Furthermore, if ¢ : C — C’ is a bijection onto a set C’ of pairwise disjoint elements
of an integral relation algebra A’ so that the natural extension of ¢ to B preserves the
operations ; and ~ for the elements of C then ¢ can be extended to an isomorphism
between the subalgebras generated by C and C', respectively.

THEOREM 10. B, defined in Table 2 is a totally symmetric minimal relation
algebra.

Proof. Define a norm on Z x Z by |(k, )| = |k|+]/|. Then for the disjoint
elements @, ={x e Zx Z: |x||=2i} for i=0,1,2,... in S(Z x Z), the relative
multiplication rule g, ; a;, = Z;'T__(‘,- ;| 4, can be proved in the following way. Since
[x+y| < |x||+ |yl and since |x +y| —||x]| — |y] is always divisible by 2, the
inclusion a; ; a; < }7t), _; a, obviously holds.

On the other hand, let w = (k, /) € q, for some ¢ such that [i —j| <7 <i+}].
Without loss of generality, we may assume that i >; and k=720. Then
u={k—-0+@—7, I+{(F+)—0) and v = — (G —J), —({(i+))—1) shows
that w = u + v € 4, ; a;. Using Corollary 9 and the fact that ay’ = g, for every i, we
get that the algebra generated by {q;:i=0,1,2,...} consists of the finite sums of
these elements and of their complements. Since the atoms of this algebra satisfy the
identities x = x* and x < x ; x and for the complements of finite sums of atoms
x ;x =1, the algebra is totally symmetric.

Notice also that for x = ({(1, 0), (0, 1)}*)* we have a; = x and then the relative
multiplication rule gives that g, = x*(x"~!) ~. Hence the algebra defined above is
indeed the same as B, defined in Table 2.
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For any y € B, the following statements are true: if y;y=1theny—;y~ <1
and if y ¢ {0, 1’} and y ; y <1 then y ; y generates a subalgebra isomorphic to B,.
Since these statements must hold in any subalgebra of any ultrapower of B, we
obtain that every nontrivial subalgebra of an ultrapower of B, contains a subalge-
bra isomorphic to B, so B, is minimal. O

We now give an example of a relation algebra N in which every nontrivial
subalgebra is isomorphic to N, yet this algebra is not minimal. Let N be the
subalgebra of S(Z) generated by the element {1}*. Note that this is the subalgebra
of all finite and cofinite elements of S(Z) mentioned at the beginning of this section.

THEOREM 11. For the relation algebra N defined above
(1) every nontrivial subalgebra of N is isomorphic to A5 or N, but
(it) ¥ (N) is strictly greater than ¥ (B,,).

Proof. (i) Observe first that every atom {n}* of N generates a subalgebra N,
isomorphic to N. By Corollary 9 the generated subalgebra consists of the finite
unions of {kn}* (k =0, 1,...) and the complements of those, and ¢ : {k} > {kn}’
induces an isomorphism between N and N,. We are going to prove that every
subalgebra is isomorphic to one of these N,.

Let 4 be a proper subalgebra of N different from A4, and let G = Z be the set
of those group elements that occur in a finite element of N. Then G is nonempty
since A4 is nontrivial, furthermore G is a subgroup of Z, since the relative products
and converses of finite elements are finite. Thus there is a positive integer n such
that G = nZ and every cofinite element of A contains Z\nZ. This shows that A is
a subalgebra of N, @ N. Changing N to N, allows us to assume that G = Z.

Let us denote by x* the greatest number in a finite element x € 4 and for an
integer k let k={0,1,...,k}*. Take an element x >1" in 4 that satisfies the
following three conditions:

(1) [x*/27 < x (where [ x*/27] is the least integer = x*/2);

(2) |Fx*| is minimal (where || denotes the cardinality of the element as a

subset of Z);

(3) among those satisfying the above conditions, x* is minimal.

We will show that x = {0, 1}*, whence 4 = N and we are done. First we need to
prove that such an x exists, i.e. there is an element above 1’ satistfying condition
(1). Take a finite element y of 4 such that 0,1¢€y, which exists since we as-
sumed G =Z. Notice that for k > y* the inclusions y*=y* and y*2
{0, y*,2y*, ..., ky*}* hold, consequently y** >ky*=(y*)*/2, so p* satisfies
condition (1).
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Let n = x*. Then clearly, x*> 2 7 + {n + |t]: 0 # 1 € x}* (where the latter two sets
are disjoint), so |x?|>2n+ 1+ |x|— 1. This gives that |[x*x~|=2n+1—|x|=
(4n+1) —(2n +|x|) 2 |(x»)*(x?) ~|, hence condition (2) gives that x*=7 +
{n+]t:0#1ex}

Now consider y =x(x?>x7)%. We can see that 7e(x*x7)? holds for
0<t<n—1, since for t<n/2, we have t=@®+n2N—-w+((n2]-)e
(x*x~)? and for 1 = n/2, we have 1 =(2n) — (n + (n — 1)) € (x>x 7). On the other
hand, n ¢ (x%x )%, because (x*x ") n/27 =10 implies that » cannot be obtained as
the sum of two nonnegative elements of x2x~ and, in order to be the difference of
two positive elements, n should be of the form (n + [t]) — |¢] but |¢| ¢ x*x~.

Thus we obtained that y = x(n - 1). This y clearly satisfies condition (1) and we
also have [y y | < 'x *x~| and y* < x*. Because of the choice of x, this means that
= 1", consequently x = {0, n}*. On the other hand, x >[n/27 holds, so n=1.

Thus x = {0, 1}* generates N.

(ii) We will show that B, is a subalgebra of an ultrapower of N. This implies
that ¥ (B, ) < ¥"(N), and the two varieties are obviously not equal since N is not
totally symmetric. It is easy to check that the map ¢ :Z x Z—Z%/F (where F
is the congruence defined by a nonprincipal ultrafilter on w) defined by
e((1,0) =(1,1,1,...)/F and {((0, 1)) =(1,2,3,...)/F is an embedding and it
defines a one-to-one map ¢ from the atoms of R(Z x Z) into R(Z)*/F in a natural
way: Y({(k, D} =k +1}, {k + 21}, {k + 31},.. )/F. In this way we obtain a map
satisfying the conditions of Corollary 9, and thus ¥ has an extension ¥ to the
subalgebra generated by the atoms of R(Z x 7). The only thing we have to check
is that the image of B, is in the subalgebra N®/F, and this follows from
the fact that B, is generated by the element x=({(1,0),(0,1)})> and

Y({(1,0), (0, D} = ({1 + {17, {1 + {2}, {1}’ + {3}, .. .)/F € N¢/F. O

4. Further results about symmetric minimal relation algebras

The first result is a generalization of Theorem 7. It has a similar though longer
proof which can be found in [3].

THEOREM 12. Let A be a finite simple symmetric relation algebra. If for all
x €A either x <x ;x or x(x ; x) =0 then A has a subalgebra isomorphic to one of
BIS"'SB'/BBQ?"'!B]Z'

By is the only finite minimal relation algebra in Table 2 that does not satisfy the
universal sentence x < x;x or x(x;x) =0
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LEMMA 13. Let A be a simple symmetric relation algebra, and for u < 0 define
a=u"0,b=uu;wyandc=u(u;u)". Ifa;a=1and a <(b;b)c;c)b;c) then
a generates a subalgebra isomorphic to Bg.

Proof. From the definition of » and c it follows that u = b + ¢ and ¢(u ; u) =0,
hence 0=c(b ;b) =c(b ; c) = c(c ; c) and consequently 0 =5b(b ; ¢) = b(c ; ¢). Also
b<u;u=>b;b+b;c+c;candtherefore b <b ;b. By assumption a is below each
ofb;b,c;cand b;c,soweobtainb;b=a+b+1,c;c=a+1"and b;c=a.

It remains to show that a;b=0=a;c. By integrality we have
b=b;1"<b;(c;¢)=(;c);c<a;cand similarly ¢ < a ; b. Now

a=c;b<c;(b;b)=(c;b);b=a;b
bSc;aSC;(b;b)=(c;b);b:a;b

and
at+c<a;b=(c;0);b=c;(c;b)=c;a
hence a ;b =0"=a;c. 4

THEOREM 14. Let A be a simple symmetric relation algebra, and suppose a is
an atom of A such that a <0’ and a satisfies a ;a = 1. Then either A = A, or A has
a subalgebra isomorphic to By, B,, B¢, B, or By.

Proof. If A has a nontrivial equivalence element, then Theorem 1 implies that 4
has a subalgebra isomorphic to B; or B,. On the other hand, if 4 has no nontrivial
equivalence element, then it follows from Lemma 3 that x;x 0°=0" for all
0<x<0. So if we let u=a"0" then either ¥ =0, in which case 4 = 4, or
u <0’ =a;u In the latter case, since a4 is an atom, it follows that a <wu ;u. If
u;u=a+1 or u;u=1 then we have a subalgebra isomorphic to B¢ or B,
respectively. Hence we may assume that u =b + ¢, where b, ¢ #0, b <u ;u and
c(u;u) =0. Note that ' =a+b+c¢, and q, b, ¢ are disjoint and nonzero, so
O=b;(a+c)=b;a+b;cby Lemma 3. Then u(b ; ¢) < u(u ; ¢) =0 implies that
b+c=u<b;a Since a is an atom we have a <b ;b and a < b ;c. Similarly
c<0O=c;@a+b)y=c;a+c;b and c(c;b) <c(u;u)=0, hence ¢ <c;a and
therefore a < ¢ ; ¢. Now we have satisfied all the assumptions of Lemma 13, so a
generates a subalgebra isomorphic to Bs. [

By a similar, though much longer argument, we can show that if a simple
symmetric relation algebra has two atoms a, b such that (a + ) ; (@ + b) =1 then it
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has a subalgebra isomorphic to one of B, (i =1, 2, ..., 12). Note that stating this
result for the sum of any finite number of atoms in the assumption instead of two
would yield a full classification of the finite minimal symmetric relation algebras.
However no generalization along these lines has emerged so far. Thus we conclude
this paper with the following two open problems:

(i) Are there other infinite minimal simi)le relation algebras? How many?
(i) Is the list of finite minimal relation algebras complete?

Finally, we would like to thank Bjarni Jonsson for raising the problem of
finding all covers of the atoms of A and for many helpful discussions.
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