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Abstract .  Global existence and uniqueness is established for the Yang-Mills heat 
flow in a vector bundle over a compact Riemannian four-manifold for given initial 
connection of  finite energy. Our results are analogous to those valid for the evolution 
of harmonic maps of  Riemannian surfaces. 
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1. Introduct ion 

Let M be a compact connected Riemannian 4-manifold, 7r: ~7 --+ M a smooth vector 
bundle with fibre 7r-l(x) ~ R ~ and structure group G c SO(n) .  ~7 carries a natural 
metric induced by the Riemannian metric on M and the scalar product in R ~. We 
consider the evolution of  connections D on 7/to Yang-Mills connections by the L 2- 
gradient flow. Introducing this flow requires some terminology. The initiated reader 
may wish to skip the remainder of this section and go directly to the statement of our 
main result Theorem 2.3. 

1.1. Associated bundles 

There exists a cover (Us) of  M and diffeomorphisms, called local trivializations, 
o-~:r/lu ~ -+ Us x R ~ with transition functions SO,~(x) = o-~ (x, c~(x,  -) -1)  E G at 
any point x c Uc~ N U~ and such that 

S~/~ e SZ.~ o $7c ~ = id 

on Us n U;3 n U.,  for all values a , /3 ,  % 
The collection (Sap) defines the bundle structure in the large. 
On ~/ we have the group ~ = Aut r/ of gauge transformations S, where 

Aut rl = Ux~M Aut z is the automorphism bundle associated to r/. If  we agree that 
the structure group G acts on the fibres of  ~/by multiplication from the right, then any 
S E .~ s~ locally may be represented by a map S: Uc~ --+ G, acting on ~7 by fibre-wise 
multiplication from the left. Moreover, G naturally acts on , ~  by conjugation. Sim- 
ilarly, if we denote by ad ~7 the adjoint bundle, whose sections s c Y2~ vT) locally 
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may be represented by maps s: U~ -+ g, the Lie algebra of G, then G acts on ad r/ 
via the adjoint action, that is, the differential of conjugation. We regard ad ~/as the 
Lie algebra of ~ .  

By taking tensor products with T ' M ,  etc., from f2~ ~) we obtain the spaces 
f21( ad ~7), whose sections are locally represented as ~-valued one-forms, ~'fi(ad ~/), 
represented by g-valued 2-forms, etc., and the exterior product and Hodge star- 
operation extend to these spaces. 

1.2. Connections 

There are various equivalent ways of introducing a connection on a principal or vector 
bundle 7/; see for instance Donaldson-Kronheimer [6] or Jost [10] for a very readable 
exposition. 

In particular, a connection is related to a covariant derivative V and gives rise to an 
exterior differential operator D on forms taking their values in z/. D is the completely 
anti-symmetric part of V. V extends the Levi-Civit~ connection on M while D 
extends the exterior derivative d acting on standard differential foiTns with scalar 
coefficients. Moreover, V and D naturally extend to associated bundles s ~7)- In 
particular, there holds 

D ( A  . s) = ( D A )  . s -  A .  D s  

for A c ~@(ad ~7), s E D~ rT), where we regard the fibres of ad ~7 as subsets of the 
space of linear endomorphisms of the fibres of ~7. The change in sign in the second 
term on the right is due to the fact that we interchange the order of the exterior 
derivative and the 1-form A. 

The space of connections is an affine space 

= { D  = Dref + A; A E XT(ad r/)} , 

where Dref is the exterior derivative related to some smooth reference connection Vref 
which we will assume to be fixed throughout the rest of this paper. 

t.3. Sobolev spaces 

Using Vref we can define Sobolev spaces of connections, etc., in the same way as for 
functions on a Euclidean domain. For instance, H@(~ i ( ad  r/)) consists of i-forms A 
in the adjoint bundle with measurable coefficients such that 

/ 

= V k A  p 
k=O 

It is easily verified that different choices of reference connection lead to the same 
spaces with equivalent norms. A connection D is of class H 1,2 iff D = Dref + A, 
where A E Hl'2(f21(ad ~/)). 

Some care is required when we speak of gauge transformations belonging to some 
Sobolev space, as in this case we are dealing with a nonlinear range G C SO(n) .  
Regarding the latter as a subset of R nxn, we  may define 

H~ 'P(~)  = {S; Slu~ E Hz'P(Ua; R~X~), S ( z )  E G ahnost everywhere} . 
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Note that this space is a manifold, modelled on Hl,P(Y2~ ~)), and ~ is dense in 
Hl ,P(f f ) ,  if lp > d i m M  = m. Moreover, in general f f  is not dense in H l , P ( ~ )  for 
lp < m. (See Bethuel [2] for a general discussion of  Sobolev spaces of maps between 
manifolds.) 

1.4. Curvature 

For D C ~ the curvature F = F ( D )  is a 0-order operator 

F = D e D E Y22(ad r/). 

F satisfies the first and second Bianchi identities 

D F  = 0 

and 
D * D * F  = O. 

1.5. Gauge transformations 

The group of  gauge transformations acts on connections as follows. For S E i f ,  
D E ~-~ let 

S * ( D )  --= S - 1  0 O 0 S 

denote the pull-back connection under S with curvature 

F ( S * ( D ) )  -- (S*(D)) 2-- S - '  o D o D o S = S - '  o F o S .  

For later use we note that this yields 

dS*(D) S=id (1) dS (s) = - s  o D + D o s = Ds  

for any s E Y2~ ~). 

1.6. Yang-Mills connections 

Finally, we introduce the Yang-Mills action 

YM ( D ) =  ~ IFI 2 dx 

of  a conection D with curvature F = F(D).  
Because of  the identity 

(2) F ( D  + ta) = (D + ta) o (D + ta) = F(D)  + t D a  + t2a A a 

for any a E ~21(ad ~/), any t > O, we have the relation 

d ta) t=0 ~ Y M  (D + = (F, Da) = ( D ' F ,  a) 
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for the first variation of YM at D in direction a. (We simultaneously use (., .) to 
denote the metric on ~7 and the L2-product.) 

A connection D is Yang-Mills iff it is a critical point of YM, which then is 
equivalent to the equation 

D * F  = O. 

In order to obtain Yang-Mills connections on any given bundle r/, a natural approach is 
to try to follow the lines of  steepest descent for Y M ,  given by the evolution equation 

d 
(3) - - D  = - D ' F ,  

dt 

starting from any initial connection 

(4) D(0) = Do.  

This approach, standard in other problems, was first suggested for the Yang-Mills 
functional by Atiyah-Bott [1] but not followed. However, the flow (3) plays a funda- 
mental role in Donaldson's  work; see [6]. 

Remark that YM is gauge-invariant in the sense that YM (S*(D)) = YM (D) for 
any 5? C ~ ,  any D C ~ .  Hence ~ acts on the solutions of the Yang-Mills equation 
which, therefore, is not elliptic, as the kernel of  the linearized equation has infinite 
dimension. 

Similarly, the evolution problem (3) is not parabolic, and the methods developed 
for parabolic equations cannot be directly applied to prove existence and uniqueness 
for the Cauchy problem. 

For further background material see Donaldson-Kronheimer [6], Freed-Uhlenbeck 
[7], Jost [10], or Lawson [12]. 

2. Statement and discussion of main results 

Let 7r : r/---+ M 4 be as above. 

Definition 2.1. A family D = D(t)  o f  connections on rl is a weak solution of  (3) if 
D = Dref + A with 

A E L l ( [ O , T [ ; L 2 ( y 2 1 ( a d ~ ) ) ) ,  

and if for  any ~ E C ~ ([0, T]; f?l(ad 7)) vanishing near t = 0 and t = T there holds 

Remark 2.2. In order to form D o D = F in the distribution sense we need A(t)  E L 2 
for almost every ~. Similarly, as the product (F, D~b) involves the product of F and A, 
we need to require F(D( t ) )  c L 2 almost everywhere and A E LP(L2), F E Lq(L 2) 

1+1 with conjugate exponents 1 _< p, q < oc, ~ ~ = 1. The above notion of weak solution 
then is the weakest possible one which is compatible with the energy inequality (12) 
below. 



The Yang-Mills flow in four dimensions 127 

Theorem 2.3. (i) For any connection Do o f  class H 1,2 on r 1 there is T > 0 and a weak 
solution D = D ~ I  + A to the Yang-Mills evolution problem (3), (4) for  0 < ~ < T 
such that 

A~ C~ ([0, T]; L2(f21(ad ~?))) N H1'2 ([0, T]; L 2 ( ~ l ( a d  ~ ) ) ) ,  

Moreover, D is gau~e-equivalent to a smooth solution o f  (3) in the following sense." 
There is a solution D = Dref + • o f  (3) with 

A= H1'2 ([0, T]; L2(g21(ad r]))) fq C~ ([0, T[; L2(~?l(ad r]))) 

and smooth for  0 < t < T,  and a sequence of  smooth gauge transformations Sk E ~? 
and a sequence tk ~ 0 such that Sk ~ So in H 1,2, S~ (b(tk)) ~ Do in H l'z, and 

D = S~(~)). D is smooth if  Do is smooth (COO). 
(ii) I f  D is irreducible in the sense of  (26) for  all t, then D is unique. 
(iii) The maximal existence time T is characterized by 

where eo = co(rl) > O. At  {1 = T,  curvature concentrates in at most finitely many points 
~c~, j = 1, . . . ,  J1 in the sense that 

VR > 0:limsup ; IF(t)l 2 dx  >>_ eo. 

Concerning the long-time behavior we claim the following. 

Theorem 2.4. (i) At  each x~ = Y: a non-trivial Yang-Mills connection over 5; 4 sep- 
arates in the sense that for  sequences Rk  ~ O, xk  -+ Yc, tk / z  tl the rescaled 
connections 

H2,2(R 4. Ak(x )  := R k A ( x k  + R k x ,  tk) ~ A in Zo~ ,~), 

as h --+ ~ ,  where d + A(.,  t) is the expression o l D ( t )  in a local trivialization o f  ~l near 
Y~, and D = d + A extends to a smooth, non-trivial, finite-energy Yang-Mills connection 
on R 4 U {(x?} --~ 5;4. 

Moreover, in a suitable gauge D(t)  converges in 

to a limiting connection D1 E H l'e on a G-bundle z h over M .  
(ii) By iteration, the solution D may be extended uniquely for  all time t, having the 

properties listed in Theorem 2 .3 for  all but finitely many times {k, k = 1 , . . . ,  K ,  and 

with curvature concentrating in at most finitely many points (Y:J ) 
/ \ 

k,fk , l  < j < _ J k ,  

1 < k < K,  ~-~k Jk <- YM (Do)% 1. 
(iii) As t --~ cx~ suitably, D(t)  converges to a limiting connection D ~  in a suitable 

gauge and possibly away from finitely many concentration points (Y:J~), 1 <_ j < J ~ ,  
J ~  < C Y M  (Do), where non-trivial Yang-Mills connections over S 4 separate. D ~  
extends to a smooth Yang-MilIs connection on a limit bundle zl~ over M .  
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Remarks." (i) The Yang-Mills evolution problem resembles the evolution problem for 
harmonic maps between Riemannian manifolds. The four-dimensional case is critical 
for the Yang-Mills problem in the same way as the two-dimensional case is critical 
for harmonic maps. For smooth initial data local existence was proved by Donaldson. 
Moreover, in the case of a holomorphic vector bundle, Donaldson was able to show 
global existence of solutions to (3), and their asymptotic convergence to a limiting 
Yang-Mills connection, if the underlying bundle was stable. Finally, he asserted that 
on a general bundle over a K~ihler surface uniform smallness of the local L2-norms 
of the curvature should imply that a solution to (3) can be globally extended. See 
Donaldson-Kronheimer [6], p. 236. 

In the absence of a holomorphic structure, however, in general blow-up in finite 
time might be expected, as in the analogous case of the evolution of harmonic maps 
of surfaces; see Chang-Ding-Ye [4]. Thus, one is naturally led to consider initial data 
of class H 1,2 - that is, of finite energy - and corresponding weak solutions. For 
harmonic maps, the analogue of Theorem 2.3 and 2.4 was obtained by Struwe [18]. 

Using ideas from [18], together with the results of Uhlenbeck [22] and Sedlaceck 
[17] on the weak compactness properties of connections, the asymptotic behavior of 
solutions D(t) to (3) claimed above was obtained by Chen-Shen [5], assuming the 
existence of a smooth, global solution D(t) to (3) on 0 < t < oc. 

(ii) The Yang-Mills flow over 2- or 3-dimensional manifolds was recently studied 
by R~tde [16], and he obtained global existence and uniqueness of solutions for initial 
data D(0) E H 1'2 and their exponential convergence to Yang-Mills connections as 
~ --+ co. 

R~de's method consists in writing (3) as a system 

d 
--D = - D * ~  
dt 
d 

(6) --S2 = -(DD* + D*D)K2 
d~ 

for D and $2 = F(D);  compare (10) below. If d i m M  _< 3, this system can be solved 
by linear methods. The approach, however, seems to fail for dim M > 4. 

(iii) In dimensions larger than 4, by analogy with the evolution of harmonic 
maps in dimensions > 3 uniqueness in the energy class of weak solutions cannot 
be expected; moreover, blow up in finite time actually occurs; see Naito [14]. In 
fact, the singular set might be quite large. The recent results of Nakajima [15] on 
an analogue of Sedlaceks's [17] weak compactness result and the results of Chen- 
Shen [5], Hamilton [8] and Naito [14] on a monotonicity formula for (3) analogous 
to this author's [19] monotonicity formula for the harmonic map flow, however, are 
promising first results towards a better understanding also of the higher dimensional 
case. 

(iv) Our proof of uniqueness apparently can be adapted to show local uniqueness 
for Hamilton's Ricci flow, provided the initial metric is 'irreducible' in a suitable 
sense. 

3. Preliminaries 

3.1. Weizenbi~ck formulae and consequences 

Let V be a covariant derivative operator with corresponding exterior differential op- 
erator D. Associated with D we define the Hodge Laplacian 
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A = A H = D*D + D D * .  

Similarly we define the rough (or crude) Laplacian V*V. 
Acting on bundle-valued forms r these operators differ by a curvature term 

(7) V*Vr  = Ar  + F# r  + Rm #r 

where F = F ( D )  and Rm ist the Riemannian curvature on the base manifold; see for 
instance Lawson [12], Appendix. Here and in the following, # denotes any multi-linear 
map with smooth coefficients. 

As a consequence of the WeizenbSck formula (7) we obtain the following linear 
estimates. 

Lemma 3.1. Let D = D r e f  + A, A C C 1 (~21(ad ~l)). There exist c o n s t a n t s  C1 = CI(T]), 

C2 = C207, HA[[c~) such that for any r C H2'Z(f2i(ad ~l)) there holds 

2 
]lCllm,~ -< e l  IIz~Crl~,~ + c2 J1r �9 

We sketch the proof for completeness. 

Proof. From (7) we have 

I]Ar 2 = ]IV*Vr + F# r  + Rm #r - 

Suppose first that A = 0, D = Dref, A = Are f. By Minkowski's inequality then we 
have 

llzmlr~2 >_ I I V * V r  - c IIr 

where C = I[FrlLOO + [IRm I 1 ~  = C(~). 
Finally, integrating by parts and interchanging derivatives (which introduces a 

further curvature term) we obtain 

V , ~ 7  2 2 2 1 2 2 2 
II r -> I lv r - c(,7)IIVr _> ~ I lv  r - c( )11r 

where the last inequality results from interpolation between the L 2- and H2,2-norms. 
In the general case we estimate 

A - Are f = %Tref#A + A # A ,  (8) 

whence 

[t zmtlL~ > IIArefr --IIA#VrefeHn2 --]lVrr162 -IIA#A#r 

_> c(v)  -1 I1r -- C('7, IrAIILoo, I IVAIILon I1r �9 
[ ]  

Lemma 3.1 implies analogous linear estimates for evolution equations. For ease of 
notation for any T > 0 we introduce the space 

Note that by the relations 
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iI+IIL~ <- ~ + I1r 
2 - L2 

and (for V = Vref )  

l d  ( d ) ( d )  
2 d7 ( r e '  VqS) = V ~, V~ = ~, V*V~ 

~ L 2 1 (  d 2 ) -< ~ + IIv2+llL: -< ~ a +  L: + IIv2+1t2~: 

the space V continously embeds into 

L~176 rl))) 

with 
(9) sup II 2 0 2 r < []+( )IIH,,~ +2ll~ll~+ �9 

0<t<T 

In fact, V ~ C~ 7)));  see for instance Lions-Magenes [131, \ / 
Theorem 3.1, p. 19. 

Here and in the following, we denote 

L2(H 2'2) = L2([O,T];H2'2(~i(ad rl))) , etc. 

Moreover, we use double indices to denote space-time LP-Lq-norms. 

1 

(/0 T [l~tlLq,p= [lr , 1 _<p,q < cx~, 

etc. In particular, I1.1[L2,2 denotes the L2-norm over space-time. Finally, we let 

Lemma 3.2. Let D = Dref + A, A E C 1 (~21(ad 7)). Then there exists a constant 
C2 = C2(~) and a number T = T(% A) > 0 sucht that for any ~ c VT there holds" 

H~llv <- c2 ~ + za + c2 II+(o)IIH,,2 

Proof. Compute 

( ~ + Z I ) {  2L2= d 2 2 

for almost every t. By Lemma 3.1 we have 

2 
i l~+t I~2  _> c ( ~ ) - '  I1+11~=,= - c ( ~ ,  I IAIIc,) I1+11~= - 

Moreover, by (7), (8) we have 
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2 ( d ~ , z ~ )  ~ 2 (d~,Aref~)_C(7],[[A[[cI)d~ L2 [[~],H1, 2 

~ 2 ( ~ - - ~ , ~ ; e f V r e f r  (/'], [[A[[c1) ~ r  L 2 ,]r 2 

d V 2 d e  
- dt Jl reer -- C(o, rlAIIc,) ~ L2 I1r 

d v 2 l d r  
- -  - - I I r  > dt II refr ~ C(,,llAIIc~) 2 

Thus, upon integrating in time we obtain 

< 1lr +C(~,[[AlIc,)IIr 

Finally we use (9) to estimate 

2 2 2 
][r ) _ T IIr --< T I1r + 2T 11r - 

Choosing T 1 the lemma follows. [] - 4(l+C(mllmllc~)), 

The linear estimates above may fail in the borderline case where A E H 1'2, which 
is the reason why the evolution problem for Yang-Mills connections over a 4- 
dimensional base manifold is interesting. 

However, under certain circumstances LP-estimates are still available. To obtain 
these estimates we first observe that for any 4, 9 E Y2~(ad ~/) we have 

d(r r  = ( r e ,  r  + (4, r e ) ,  

where now again (., .) denotes the pointwise inner product. In particular, for sections 
r E Q~ ~]), where ~7r = De ,  we obtain Kato's inequality 

Idlr -< [OCt �9 

We can combine this with the Sobolev embedding theorem to obtain 

I1r --< C(IIDr + 11r 

for any r C ~2~ ~) with a uniform constant C = C(T/) independent of D. 
To obtain similar estimates for forms of degree i >_ 1 we need to compare with 

full covariant derivatives. Note that on account of (7) this introduces a curvature term 
which, however, can be absorbed as long as the curvature does not concentrate. 

Lemma  3.3. Let D = Dref + A, A E H 1'2, with curvature F = F ( D )  E L 2. There exist 
constants C3 = C3(~), ~5 = ~5(~) > 0 such that for  any r E Y2i(ad ~7), any 0 < R < 1, 
there holds 

( D  2 D .  2 )  2 ][(~)]]24 -[-[[V(~[122 ~ C3 It (~)[1L 2 "q- [1 r 2 + C3R-2 [[(~][L 2 , 

provided 

sup I IF[ 2 dx <_ ~5 
xo ,] BR(xo) 
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Proof. Using (7) and Sobolev's embedding, we find 

C(~)-~ 2 [Ir 4 -- ]tOHL 2 5 [IVq~[[22 = (V*V(~, ~) = (z..~r @) --}- (F#q~, ~) + (Rm #0,  r  
, 2 = IIO~l12= + liD r + (Y#~, r + (Rm #0, 05). 

Now 
(Rm #qS, 0) -< C I1r o = c ( , 7 ) .  

To estimate the middle term we use Sobelev's embedding theorem on a suitable cover 
of M by balls BR(x{): 

(F#O, r <_ I . 2 c ~ I[FilL=<B~<~,>> ~I~IIL'<BR<~,)) 
i 

, 2 - 2  2 

{ 

where C = C(7/). Since M is compact, there exist a constant Ro = Ro(M) > 0 and a 
number L (independent of M) such that for 0 < R _< R0 there is a cover (BR(xJ) 
such that at most L distinct balls of this cover overlap at any point of M. 

Thus, for R <_ R0 and with this choice of (BR(x{)) the above estimate yields 

( Vr R--2 ]l r (F#< O) <_ CLe ~1t + 

Choosing 6 < 2@L, the claim follows. 

3,2. Evolution of curvature and energy inequality 

Formula (2) for the first variation of curvature implies that the curvature F = F(D(t)) 
of a classical solution D of (3), (4) satisfies 

(10) - - F =  lim = D D = - D D * F .  
dt ~--+o e 

In view of the first Bianchi identity, thus we find that F is a solution of the heat 
equation 

(11) ( d + ~ )  F = 0  

with respect to the evolving connection. 
From (11), upon multiplying by F we obtain the identity 

l d  2 d , 2 
0 = ~ ~ HFIIL2 + (AF, F)  = ~:YM (D) + lID FllL=. 

In particular, any (classical) solution of (3) and (4) satisfies the energy inequality 

(12) YM (D(T)) + !ID*FI}2~ dt < YM (Do); 

in fact, equality holds. Moreover, multiplying by F ~  2, where r is a suitable cut-off 
function with support in a coordinate ball B2n(zo) and such that 0 < 0 _<_ 1, r -- 1 
on BR(xo), IVOI <_ CR -~, we obtain 
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d_s iFt22dx + s i ,Fj22dx=_2( ,F,F v ) 
dt ~n(zo) 2s(xo) 

R(xo) R(ZO) 

which after integration in t yields the local energy inequality 

(13) sup [ IF(012 & _< [ IF(0)I 2 dx + CTR-2YM (Do) 
0< t <T J BR(x) J B2:~ (xo) 

as in [18], Lemma 3.6, for the evolution of harmonic maps. 
Next, observe that by HSlder's and Young's inequalities L ~,2 ~ L 2,4 ~ L 3,3 with 

2 ~- ~ 1 2 2 
(14) I1r 3 <-- /tr ~ I1r --< ~ IIr ~ + ~ /1<1~. 

for any ~. Combining this estimate with Lemma 3.3, (12) and the first Bianchi identity, 
we immediately obtain 

Lemma 3.4. Let ~ = ~(~) > 0 be as in Lemma 3.3 and suppose D is a classical 
solution of (3) and (4) on ]0, T[ with 

(15) sup f lF(D(t))l 2 dx < 5 
xo, 0 < t < T  JBR(xo) 

for some 0 < R <_ 1. Then F C L 3'3 with 

2 IIFIIL~,~ -< c4(1 + TR-2)yM (Do), 

where C4 = C(r]). 

Next, we use (11) and (7) to deduce 

Lemma 3,5. Under the assumptions of Lemma 3.4 there holds 

D* F E L2~ (]O' T]; L4 ( ' ' ( a d  rl)) ) ' d C L2oc (]O, T]; L2 ( g22(ad rl) ) ) 

Proof. By (11), at any time t > 0 we have 

d F 2 +I[DD*F,,:2 = - 2 ( D D * F ,  d F )  
dt L 2 

+ 2 ( D * F , ( d D ) # F ) )  

-< -d~d lID*FIlL_ + 2 IIFIIL, IID*FII~-,3 

By Lemma 3.3, (15), and the second Bianchi identity there holds 

ii D,FlIr.42 _< C [IDD*F[I~2 + Cf~o 2 IID*FII~ , 
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for any t. 
Upon integrating in time, on any interval [to, t~] C [0, T] we obtain 

~ F  2 
dt L~,~ + IID*F(t~)II2~ + [[D*FII2~2'~ 

- -2  * 2 < C liFJlL3,3 llD*FII23,3 + llD*F(to)l122 + C R  0 lID FILL2,2 
_ * . t 2  

+ IlD*F(to)[[22 + Cs(tl - to)Ro 2 HD*FII2~,2 , 

where we also used (14), 
By Fubini's theorem, given r > 0 we can find to E [0, r] such that 

llD*F(to)!122 <_ 2 <  1 !JD*F(t)lI22 dt _< 2 < I Y M  (Do). 

Moreover, by absolute continuity of the Lebesgue integral and Lemma 3.4, we can 
achieve that 

Hrll.,~ = IIF(t)tt3, dt <_ 4C5 

uniformly in to and tt, if the difference h = tl - to is sufficiently small. We may 

assume that h < R~ 
- -  4 C s "  

Finally, for any such pair to < tl _< to + h we may choose t~ ~ [to,tl] such that 

, , 2 2 , 2 
lid (tl)llL2 >_ ~ lid FIIL~,,- 

Hence we obtain the assertion of the lemma on [to, ~i]. Covering the interval [% T] 
with finitely many intervals of length h, we conclude. [] 

Lemma 3.6. Under the assumptions of Lemma 3.4 there holds D = Dref + A, where 

A extends to A E Clo~ (]0, T]; H1,2(Di(ad ~))), 

Proof. By Lemma 3.5 and (3) we have 

--dA dt E L~or T]; L 4) 

whence A E C~ T]; L4). 
Thus by (2) we see that 

d (Dr~fA)= f f ~ F ( D ) + d  A # A E  L2o~(]O,T];L2) 

and 
DrefA E C~ T]; L 2) . 

Moreover, by the second Bianchi identity and Lemma 3.5 

d (D*fA) = Dr; f = A#D*F e L2o~(]0, T]; L2), 
d-~ 7/ 

whence 
D~fA e C ~ (]0, T]; n2).  
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4. Local existence 

Before we begin with the proof of  Theorem 2.3 it is instructive to review Donaldson's 
approach to local existence in the smooth case. 

First consider the action of  gauge transformations on (3). Let D = D(t )  be a 
solution of  (3), S --- S( t )  a family of  gauge transformations depending differentiably 
on t, D = S*(D). 

Then if S(to) = id, by (1) we have 

dt dt ~ = - D * F  + D s  

d_ S at t = to, where F = F ( D ) ,  s = at E ~~ r]). Similarly, in general we find 

d -  
(16) - - D  = - / ) * / ~  + / ) s  

dt 

~ S  with F = F (D) ,  s = S -1 o e t  E g?~ 7), as can easily be seen by applying the 
time-independent gauge transformation S(to) -1 to the preceding formulas. 

4.1. Donaldson's Ansatz 

Donaldson uses a version of De Turck's trick [20]. He makes the A n s a t z / )  = Do + a, 
where he determines a by solving 

(17) __d/) = d 
dt ~ a  = - D * F  + D ( - D * a ) ,  a(O) = O. 

Note that by (2) we have 

P = F(Do)  + Doa + a#a = F(Do)  + D a  + a#a.  

Hence, for smooth initial connection D0, equation (17) is simply a smoothly perturbed 
version of  the heat equation on M which can easily be solved uniquely for small time 
0 < t < T,.  Through the identification 

8 = S -1 0 d s - -  - D ' a ,  
dt 

moreover, the solution a generates a family of gauge transformations S that can 
readily be recovered by solving the initial value problem 

d 
(18) ~ s  = ,9 o s, s ( o )  = id. 

Letting D = (S -1)* ]), then we obtain the desired solution D of (3), (4). 
However, if we consider initial data Do E H 1'2 this approach fails, because the 

term D*F(Do)  in (17) only belongs to H -1 (~21(ad ~/)), the dual of H 1'2. 

Thus (17) can only generate a solution a of  class H 1'2, whence s E L 2 and S, 
defined by (18), will only be measurable (and bounded) in x C M.  This, however, is 
not sufficient to interpret D = (S 1)*D even as a weak solution of  (3). 

The problem can be overcome if we do not attempt to fix the initial connection 
as background connection for all time but use a variable (and smoothed) background 
connection Dbg(t) to express the evolving connection D(t )  as D(t)  = Dbg(t) + a(t). 
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4.2. Choice of background connection 

Let Do of class H 1'2 be given. Fix a smooth connection D1 E 5~ and express 
Do = D1 + A0 in terms of this connection. Solve the initial value problem 

d 
(19) ~-~Abg + A1Abg = 0, Abg(0) = A0, 

where A1 = D"{D1 +DID'{ is the Laplace operator for D1. 
The initial value problem (19) has a unique, global solution Abg. Abg is smooth 

for t > 0 and, in addition, by Lemma 3.2 we have Ab~ E L 2 (H 2'2) A C o (H 1,2) N 

H 1,2 (L 2) with estimates depending on DI and A0. In particular, there exist constants 
C = C(rl) and TI = Tiff/, D1) > 0 such that on the interval [0, T1] there holds 

(20) [[Abg HL~(~,2) _< C [iAo [[H,,~ �9 

Moreover, HA011m,2 may be chosen as small as we please. Finally we let Dbg = 
D1 + Abg. 

4.3. Local existence for the gauge-equivalent flow 

We make the Ansatz 
J~) = Dbg + a ,  a(0) = 0 ,  

where / )  solves (16) with "drift term" s = - / ) * a ;  that is 

d---D + D* F  + D(D* a) = O, 
dt 

with/7, = F(D).  Expanding 

[' = F(D)  = F(Dbg) + Da + a#a, 

we then obtain the evolution equation 

d 
dadt + z~a = --/)*(Fbg + a#a) -- ~Dbg 

. d 
(21) = --DbgFbg -- ~Abg + a#Fbg -- D*(a# a) 

for a, where z~ is the Laplace operator f o r / )  and Fbg = F(Dbg). 
Note that 

Fbg = F(D1 + Abg) 

= F(D1) + D1Abg + Abg#Abg C LZ(H 1'2) fit C~ 

DbgGg = D~Fbg q- abg#/~tbg C L 2'2 

and are smooth for ~ > 0. (Here and in the following we use Sobolev's embedding 
H 1'2 ~-+ L 4 and H61der's inequality.) 

Moreover/)*(a#a) = Vbga#a + a#a#a. Thus we see that a satisfies 
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d 
7/a + Aa = f + a#Fbg + Vbga#a + a#a#a, 

where f E L 2'2 and is smooth for t > 0. 
Moreover, since 

z~ = A 1 + V l # e l  + A#A, 
where el = Aug + a, we obtain 

d 
7 / a  + A l a  = f + Fbg#a + Abg#Vla + V1Abg#a 

+Abg#Abg#a + a # V l a  + Abg#a#a + a#a#a. 

Local existence of a unique solution a E VT = L2(H a'2) N HL2(L  2) to (21) now 
follows from Lemma 3.2. 

In fact, since a(0) = 0, from (9) we have 

Ilallz, oo(w,~) _< Cl la l lv  -< C 7i  + 4 1  a , 
L2,2 

on any interval [0, T], where 0 < T _< T1, C = C(r/). The eight terms I, . . . ,  VIII  
occurring on the right may be estimated as follows: 

IIFbgllL~,~, Ilall,:,oo,,, <_ C IIFNglIL~(H',*) JJallL~(m,2) 
C IIA~,gIIL2(H=,~)[lallcoo(.,,~) _< ~ Ilallc~(H,,~) --< ~ I I< lv ,  

II = IlFb#allL~,2 --< 
< 

if 0 < T 5_ T(e, D1, A0); 

Ill  = IIAbN#VlalIL2,2 _< JlAbgllLoo,,, } IV*alIL. 
_< C [IA011H,,~ IlalILa(H~,~ ) < ~ ]IalIL~(H~,~) < ~ I I< Iv ,  

if liA0ilul,2 < ~ ,  with C = C(r/). 
The estimate for I = [tfi[Lm is trivial; IV and V may be estimated like II. 

Moreover, we have 

v I  = ]la#Vlalls2,= < Ilal]L~,~ IlV,ajlse,4 _< C Jlalls~(m,=)}}<IL~<H=,=) < e  Itdlv , 

if I}allL~(H,,2) < ~. Finally, 

V I I  = II&g#a#allL~,2 <_ IIAbgllL~,,, Ira#allL=,. <<_ C IIAbg]l>o(Hl,,) Ila#alts=(H,,=) 

(rr ) ~7 C /IA011HI,2 Vre~a:~allL2,2 + IlallL4,4 
< c IIAol[.,,~ IlaH,>,~ (IAVre~allL2,,, + Ilall,:,*,,,) 
< C IIAoll.,,~ II<IL~,(~.2)Ilall~2<.~,~) -< ~ I1<1~ 

and similarly 

III = jla#a#a]JL2,2 < C IlallLoO(Hl,2)}lallv < c I la l l v  
g. 

if Ilalls~(~,?-) -< v" 
H e n c e  it suffices to first choose D1 such that IJAoljH,,2 < e for some convenient 

e > 0 depending only on the bundle fl and then choose T = T(e, D1; Ao) > 0 to 
obtain a-priori bounds and hence existence of a r L2(H 2'2) r3 C ~  1'2) r)H1,2(L 2) on 
[0, T] by the contracting map principle. Moreover, a is smooth for f > 0 by the theory 
of linear parabolic equations; see for instance Ladykhenskaya-Solonnikov-Ural 'ceva 
[11]. 
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4.4. Local existence for the Yang-Mills flow 

In order to obtain the desired local solution D of (3), (4) from the solution/7) con- 
structed above, we need to solve the evolution equation 

d 
(22) ~ S = S o s 

for the gauge transformaton relating D a n d / ) .  Recall that 

s = - / ) * a  C L2(H 1'2) 

and is smooth for t > 0. 
Let (tk) be a sequence of numbers 0 < tk _< T, tk "N 0 as k --+ 0. Solve (22) 

with initial data Sk = id at t = tk to obtain a sequence Sk = Sk(t) E ~ of gauge 
transformations depending smoothly on t for 0 < t _< T. Clearly, Sk = sz-l(tk) o Sz. 
Let 

Dk = (S~-I)*D = Sz(tk)*D~ 

be the corresponding connections. For each k, Dk = Dk(t) is of  class C ~ for 0 < 
t <_ T and is a classical solution of (3). Also remark that 

(23) D~(tk) = / ) ( t~ )  + Do in /_/1,2 

a s  ]~----+ oo .  

Moreover, by the energy inequality (12) and invariance of the energy under gauge 
transformations we have uniform bounds 

(24) 

d 2 

~Dk L 2,2 = 
llDEF(Dk)l1222 YM (Do), 

supYM (Dk(t)) << YM (Do) 
t 

for any k. Thus, for each k the limit 

Dk(0) = lim Dk(t) 
t'N0 

exists in L 2 and in view of  (23), moreover, 

Dk(0) -~ Do 

as k --~ ~ .  
Similarly, by (22) we have 

whence 

exists for any 1. 

in L 2 

2 
d $1 2 2 

L2,4 

Sz(O) = lim Sl(t) c L 4 
t"~O 

Fix some 1 = l" and let S = Sg , / )  = Dg, So = S(0), Do = / ) (0 ) ,  Sk = S(tk) e ,~'. 
Then, by the above 
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~k --+ S0 in L 4 , 

Dk(0) = S/~(/)o) ~ Do in L 2 . 

Moreover, if we l e t / )o  = D1 + -/1o, Ao c L 2, we find 
^ ~  ^ ^,~ 
Sk(Do) Do D1 +S~I~oSk Ao - = S k ( O l ) -  

= ~ - ~ o ( D 1 S k ) + S k - I ~ 0 S k - A 0 - + 0  in L 2. 

Thus, also 
(25) lim D1Sk = lim (-AoSk - SkA0) E L 2 

k---~oc k-+ec 

exists and necessarily coincides with the distributional limit D1S0; that is, 

Sk---+S0 in H 1,2. 

But this implies that Dk = S~(/))  converges uniformly to some 

D = So(/)) E C ~  

with D(0) = Do and A D  E L 2,2 by (24). dt 
Similarly, 

r(D ) : s;  (F(b)) 

converges in L 2, locally uniformly for t > 0. Since Dk --+ D in C~ we moreover 
have convergence 

F(Dk) -~ F(D) 

in the sense of  distributions. Together, these results imply 

F(Dk) ~ F(D) in C~ T] ;L2) .  

In the same way, from (24) and since D E C~ T]; L2), we also obtain that 

F(D(t)) ~ F(Do) 

weakly in L 2 as t ---+ 0. Finally, since by (24) also 

l imsup IJF(D(t))II2r2 <_ IlF(D0)ll~2, 
t--+O 

we obtain strong convergence F(D(t)) -+ F(Do) in L 2 as t -~ O; that is, F(D) E 
C~ T]; L2). 

Hence D in fact is a weak solution to the Yang-Mills evolution problem (3), (4). 
Moreover, D satisfies (12) with equality. 

5. Gauge normalization 

For the proof of uniqueness, we also consider the gauge-equivalent version (16) of  
(3). However, we need to specify a gauge condition. 

Before we go into the details of  the proof, observe that uniqueness of  s and 
hence of the evolving gauge transformations S determined by (18) can only hold 
if the operator D: Y2~ r~) --+ Y21(ad ~7) is invertible. For smooth connections this 
condition is equivalent to an algebraic-topological condition on the connection. 
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5.1. Irreducible connections 

Given a connection D ~ ! ~  on r/, we denote 

F = F(D) = {S  E ~r S*(D) = D} 

the isotropy subgroup of  D. F is a Lie group with Lie algebra 

"y = {s C S?~ r/); Ds = 0} . 

A connection D is called irreducible iff F(D) consists only of sections with values 
in the center of G. 

In the special case G = SO(n), n _> 3, or SU(n), n > 2 the center of G is trivial, 
and hence we obtain: 

ker(D) N f2~ r/) = {0} 

iff D is irreducible. 
Remark that, if G = SU(2) and D is not irreducible, then either r / is  trivial and 

D = d is the trivial connection, or r/splits into a sum of line bundles and D restricts 
to a connection on each factor. (See Donaldson-Kronheimer [6], p. 131 ft., and Freed- 
Uhlenbeck [7], p. 47.) Thus, at least in many cases of interest, it does not seem to 
constitute a loss of generality to assume that all connections D we encounter in the 
evolution (3) are irreducible. 

For connections D of class H 1,2 we require irreducibility in the sense that 

(26) ]ls[tH,,2 ___ C [IDSllL2 

for all s ~ H 1,2 (s2~ r/)) with constants C = C(D). This constant can be chosen 
locally uniformly, as follows. 

L e m m a  5.1. Suppose Do satisfies (26) with Co = C(Do), Do C H 1'2. There exists 
an H1,2-neighborhood ~/" of Do and a constant C > 0 such that any D E ~"  is 
irreducible and there holds 

Ilslk~2 _< c klOsllL2 
uniformly for s E H 1'2 ( ~~ rl)). 

Proof. Assume by contradiction that for sequences Ak C Hl'2(X?1(ad r/)), sk E 
H',2(X2~ r/)) with Ak --+ 0 in H 1,2 as k -+ oc, Ilsk[lm,2 --- 1 for all k, we have 

IIDk~IIL2 = [l(D0 + &)sk l lL~ + 0 

as k --~ oo. Then from 

Co 1 = Co 1 IINs ~_ IID0skllL2 _< [IDksk]IL~_ + II[Ak#sk]IIL2 

< o(1)+ [IAkll> ]lsk[iL4 < o(1) ,  

where o(1) ---+ 0 as k -§ oc, we obtain a contradiction. [] 
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5.2. Gauge fixing 

We need a global analogue of Uhlenbeck's [22] theorem on the existence of local 
Coulomb gauges, depending smoothly on the connection. 

Let Do be a connection of class H 1,2 and satisfying (26), and let Dbg(t) = D1 +Aug, 
0 < t < T, be a family of background connections such that Dbg(0 ) = Do, Abg C C ~ 
for t > 0 and Abg C L2(H 2'2) n HI'2(L;), as determined by (19). Let H1,2-clos ( ~ )  
denote the H1,2-closure of ~ .  

Proposition 5.2. Let D be a weak solution of(3), (4) on [0, T[  as in Theorem 2.3 (i). 
There exist To > 0 and a family o f  gauge transformations 

with 

such that 

S = S( t )  E C~ ([0, To]; Hl'2-clos ( ~ ) )  

8_=S 1 d S o dt E L2(H I'2) 

f9 = S*(D)  = Db9 + 

satisfies ~ C Loo(H 1'2) f~ H1'2(L2), g(t) --~ 0 in H 1'2 as t --+ O, and f?*fz = O. 

Proof. (i) Consider first the case that Do, Dbg and D are smooth. It is convenient to 
express 

D = Dbg + a =: Da,  / )  = Dbg + 0~ = Da 

and to denote the corresponding curvatures by 

F(Da)  = Fa,  F(D~)  = Fa.  

We apply the implicit function theorem. 
For 2 < p < 4 and fixed ~ _> 0 introduce the map 

L: Hl 'p (~ l (ad  ~])) • H2 'p (~)  ---+ LP(~~ ~1)) 

L(a, S)  = D*g ,  

where by abuse of notation we let 

8 = g~(a, S)  = S*(Da) - Dbg. 

Recall that for p > 2 the class H2'P(c~) is a manifold; see for instance Uhlenbeck 
[22]. Moreover, L is of class C 1 with 

OL (a,S) 
la(s) := ~-~ (s) = D~Das  + D~s#~.  

Multiplying by s, we find 

1 2 
(l~(s), s) -- IIDasl122 + (O~s#~, s) > ~ IID~SI[L2 -- C II~IIL4 [Isllr~l,~ 

Hence by (26) and Lemma 5.1 the operator Ia is invertible if t > 0 and II0~HL4 are 
sufficiently small. 
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It follows that there exists To > 0 and S = S(t) ~ C1([0, To]; Ha'Pg~) such that 
S(0) = id and 

L(a(t), S(t)) = 0;  

that is, S*(Da) = Da is of class CI(H I'p) and satisfies D*0~ = 0. 
(ii) In order to obtain the analogous result for weak solutions D as in Theorem 2.3, 

we apply the above reasoning to the approximating sequence of smooth connections 

^ ~  ^ 

Dk = Sk(D) = Dbg + ak , 

on [tk, T[  whose existence is guaranteed by Theorem 2.3 (i), with initial condition 

Dk(tk) = Dko --+ Do in H 1,2 

for some sequence tk ---+ 0. Note that 

d D k  = d D  cL2,2 " 

Moreover, we choose corresponding smooth background connections Dbg,k = D1 + 
Abg,k, where Abg,k(t) solves (19) with initial data 

Abg,k(tk) = Abg(tk) + ak(tk). 

Observe that 
(27) Dk(tk) = Dbg,k(tk) �9 

Also note that by Lemma 5.1 the data Dk0 satisfy condition (26) with a uniform 
constant C. Moreover, Abg,k C VT, and, given c > 0, by suitable choice of D1 and 
choosing a smaller time T > 0, if necessary, we can achieve that 

d 2Lz,z d A 2L2,2 2 2 ek(T)  := ~ D k  + ~ bg,k + IIAbg,kllL~(H,,2)+ IIAbg,kllL2(H2,2) 
2 

+ IIFbg,kIIL=<W,~) < e ,  

uniformly in k, k _> k0(e). 
By (27), the reasoning in part (i) is applicable for Dk, yielding a Cl-family of 

smooth gauge transformations Sk = Sk(t) on some interval [tk,Tk], tk < Tk <<_ T, 
such that 

Ok = S~(Dk) = Dbg,k + gtk 

satisfies 
(28) / ) ;gk  = 0.  

The following estimates establish a uniform lower bound on Tk and suitable a-priori 
bounds on  0~k, Sk that will allow us to pass to the limit k --+ cx~ in these relations. 

--1 d Let sk = S k NSk and extend skit) = 0, 0~k(t) = 0, that is, Sk(t) = id, Dbg,k(t) = 
Dk(t) = Dko for 0 < t < tk. 

L e m m a  $.3. There exist constants C = C(Do), To = T(Do) such that for 0 < T~ < To 
and sufficiently large k there holds 

dak  2L2,Z T ]]~tk],L~(Ht,2) + 2 ][SklIL2(HI,2) ~ C6.k(Tlr 
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Proof. The proof requires several steps. We drop the index k for simplicity. 

CLaim 1. There exist constants C = C(Do) > 0, To = T(Do) > 0, e > 0 such that for 
sufficiently large k we have 

d ~ 2 L ,  2 < + I l s l l L , ( . , , ~ )  _ C~(T) 

for 0 < T < To, provided IlatlLo~,, d e. 

Proof. Differentiating the equation (28), we obtain 

0 = ~ /  ~/ - ~ z ~ g  

where we used (1). Multiplying by s and integrating, we find 

2 IID~sll~:~,~ = (D~Das, s) 
<- llDas]ln~.2 (l[a])L~,,~ [tSllL~,~ + [[fl[g2,~) + IIfHL2,2 NattL~,4 HS[IL2,4 , 

where we denote 

for brevity. 
Since 

~Dbg 

d D I d 
ItfI]n2,2 _ < -~ L2,~ + t~ --Dbg [L2, 2 

and since by (26), moreover, 

II~llL~,4 <- c llsllL2<., 2) < V llD~SltL2,~, 
we obtain the desired estimate for s. Finally, we note that 

~ g  = .(S*(Da) - Dbg) = Das + f ,  

and the claim follows. [] 

Let 5 > 0 be as in Lemma 3.3 and let/~o > 0 be chosen such that (t5) is satisfied, 
which is possible because F(D) E C~ By (13), it is in fact possible to choose 
R0 = R0(Do) on a time interval of length CRo 2. 

Claim 2. There exist constants C = C(D0), To = T(Do) > 0, e = e(Do) > 0 such that 

_ a C( t!F,~ 2 

for 0 < T _< To, provided l ia l t~ , ,  -< ~. 
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Proof. By Lemma 3.3 for any t we have 

11a1124 5 C I I D ~ I I ~  + c R o  2 - 2 I I < b  , 

while by (2) there holds 
Da~ = F~ - Fbg + ~#0~. 

Finally, from Claim 1 and since ~(0) = 0 we obtain 

- 2 d ~  ~2, 2 I[allL~,2 _< CT <_ CTe(T). 

Together this yields 

- 2  2 - 4  
IlallL~,4 < C IIF~ + CTRo2e(T) - Ybgl[z~,2 C t I~I IL~ ,  + 

and the claim follows. [] 

Cla im 3. Under the assumptions of Claim 2 there holds 

- 2 ([]Fg 2 e(T)) _ - FugllL~,2 + IlallL~(m,2) < C 

Proof It suffices to estimate (t fixed) 

IlVref<lL2 --< II <l. + I / (& + Aug + a)#al[~2 , 

where ~'  is the covariant derivative corresponding t o / )  = / ) a .  Now, by Lemma 3.3, 
(15), (28) and (2), we have 

Ile ll 2 <- c IIb<l + c R J  IlaItL~-2 
- 4 

_< C [IF~ - Fugl122 + C IlalIL4 + CTRoZe(T), 

and in view of Claim 2 the assertion follows. [] 

Cla im 4. Under the assumptions of  Claim 2 above there holds 

IIF~ 2 -- FbgllL~,Z <_ C ( ( T ) .  

Proof. By (16) and the second Bianchi identity there holds 

d 
~ F a  + AaF~ = DaDa8 

and hence also 

d d 
~ ( F a  - Fog) + Aa(Fa  - Fbg) = DaDas - ~Fbg -- AaFbg �9 

Multiplying by F~ - F b g  and integrating, we obtain 

1 2 
Fbg)l152,2 IID~(F~ 2 - - Fbg)ll f m  I := ~ IIFa Fbgl[c~,2 +IIDa(F~ + 

< I I + I H + I V .  
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By the second Bianchi identity, C l a ~  1 and since by assumption IIaItL~., _< e, we 
obtain 

II = (De, Des, Fe) - (DeDas,/~g) = - (Das ,  D*Fb~) 

_< IlD~slIL=,2 (llFbgllz~<H,,~)+ IlallL~,4 IIFbglIL~,~) _< Ce(T) . 

M o r e o v e r  

III = 

< 

Now by Lemma 3.3, 

2 IIF~, - FbgllL~-,4 

d . (-~Dbg, Obg(F&--Fbg))=(ddDbg, D~(Fo.-Fbg)-l'~"(F&---~bg)) 
t lID;(F ~ f@llZ2,2+Cllali2z~,4ltF~_ 2 Ce(T) + ~ - " Fbg II L~,~ 

ill ~ 2 2 ) 

+CTRo  2 IIF~ - &I[L~,~ ,  

whence for small e > 0, T > 0 we obtain 

III< Ce(T) + 1 I. 
- 3 

Finally, we may estimate 

IV = (-- AaFbg,  F a  - Fbg) 

= - (DaFbg ,Da(Fa-  Fbg))-  (D~Fbg, D ~ ( F a -  Fbg)) 

1 
C (llDaFbg]l~;,,, + [ID*Fbgl]~2,2) + ~ I  

( C IIfballc:(m,:) + IiallL~.. [IFbgllL~,. + 3 

<< Cc(T) + 3 I. 

Thus we obtain I < Ce(T), as desired. [] 

In view of Claims 1,2, and 4 above there exist To > 0, C such that 

- 2 Ila~llr~,4 <- Ce(T) < e 

on [0, T] for any T < To and sufficiently large k > k0(e), where c > 0 is the constant 
in Claims 1-4. 

The assertion of the lemma follows. [] 
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Proof of Proposition 5.2 (continued) 

By Lemma 5.3 we can choose 0 < To _< T such that for large k the linearized 
operators lak corresponding to the gauge equation (28) are uniformly invertible on 
[0, To]. Hence Tk _> To for large k. 

Moreover, Lemma 5.3 implies that the sequence 6~k is uniformly equi-continouos 
in L 2, and - by Rellich's theorem - pointwise relatively compact in L 2. Arz61a- 
Ascoli's theorem thus yields uniform covergence of a sub-sequence 

~k -+ 0~ in C~ 

Hence also 
])k = Dbg,/~ +ate ~ D = Dbg + a  

uniformly in L 2 as k --~ cx~. Passing to the limit in (28), moreover, we obtain 

= 0 .  

Finally, && L 2,2 at E and & E L~~ 1'2) by lower semi-continuity, and 

Ila(t)ll ,,  _< c (t) o 

as t ~ 0 .  
Similarly, Sk -+ S uniformly in L 2 with s = S-~--a S E L2(Hl'2). In fact, by an dt 

argument similar to (25) we find Sk --+ S uniformly in H t'2, and 

Do. = S*(Do~). 

This ends the proof. [] 

6. Uniqueness 

(29) 

(30) 
(31) 

where Fa = F(Da), and 

Given Do E H 1'2, a family of background connections Dbg as in Section 4.2, let 
Da = Dbg + a be a local weak solution to (3) and De = Dbg + 0~ the corresponding 
family of normalized connections according to Proposition 5.2. 

By (16), De weakly solves the initial value problem 

~ = -D~Fa  + Das , 

D~(Fz) = O, 

a(o) = o ,  

on some interval [0, T]. g attains its initial data in the HI,a-sense. The following 
result shows that - -  provided Do is irreducible - -  the solution Da above is unique. 
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Proposition 6.1. For any Do c H 1'2 satisfying (26) there exists T > 0 and a unique 
solution (~, s) of (29)-(31) on [0, T] satisfying (32). 

In addition, ?t E L2(H2'2), and ?t and s are smooth for t > O. Finally, if Do is 
smooth, ?t and s are smooth up to t = O. 

Proof. (i) The existence of (~, s) was shown above. 
(ii) To see higher regularity and uniqueness, in a first step we establish suitable 

a-priori estimates for solutions in the above class. 
Estimate for s: From the second Bianchi identity and (30) we obtain 

( d  ) , ( d A )  d D~Das=D~ ~ D e  = D a  ~ bg +a#~-~O~- 

Multiplying by s, we find 

IlD~slfz~=,~ = (OaOas , s) = Abg, Das + a#~O~, s 

d a 
< C dAbg L:,2 IID~sllL:'~ +CllalIL~<H''=) ~ -  L=,= IlSi]L=<m'2) ' 

whence 

[Isll/2<m,=) ___ c [ l  ~sllL2,~ < C + Ct[all~<H,,~) �9 

Estimate for ?t: Using (30) we rewrite (29) as 

d D,  d ~ + ~Fa + DaD~ft = Das - ~Abg.  

By (2) the left hand side equals 

+ As a + DaFbg + D*(&#~) 

which is ( ~  + A1) 0~, the heat operator with respect to D1 applied to g, up to error 
terms 

~71a#a. + ~#a#a, + Abg#Vla + ~7I Abg#0~ + Abg#0~#0~ + Abg#Abg#a + D*fbg �9 

Hence if IlallL~(g~,~) is sufficiently small, which we can achieve by choosing T > 0 
sufficiently small, from Lemma 3.2 and routine estimates we obtain 

Ilall~- = - a  + Ila]lv<m,:) < C IID~sll~,~ + II&gll _< CtlAbgll~ �9 

Smoothness of a and s for t > 0 follows by standard methods; see for instance 
Lady2henskaya-Solonnikov-Ural'ceva [11]. 

(iii) Next we derive similar estimates for the difference (a, a) of two solutions 
(al, 81), (a2, 82) of (29), (30) with 0d(0 ) = a0 = a2(0)- Let Dl = Da~, etc. 

Note that (a, o-) satisfies 
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d 

where 
D i s  1 - D 2 8 2  = aacr + ~z#a + a#s ,  

denoting by s any convex linear combinations of 81 and 82, and similarly for s. 
Moreover, for i = 1, 2, we have 

D**~ = D*F~ + a # ~ ,  

and 

Also we note that 

F1 - F2 = D a a  + a # ~ .  

D * a  = D*~I - D*a.2 = oz#g. 

Estimate for  a: By the second Bianchi identity we have 

,(,o) , D~Daa = Do. ~ + D~D~F1 - D~D~'Fz + a#D*Fa + D a (a#a + a#s) 

d d . 
= a # ~ h  + ~a#a .  + a#D~Fa + Da(a#a + a#s) .  

Multiplying by a and integrating by parts in the last term, we obtain 

2 , 2 

( ~t 17i ~,,=+ ~ ~,,L,,, ~' , ) , ,  ,IL~,0 
+C(lltz[iL~,4 l!crllL2,4 + IlCt'IiLo~,4 HSlIL,=,~) IIDe~llc~,,- 

( ~  ) 2 - 2 f d 2L2,2 _< +CtlallLoo(m,~) II<lL=(m,=)+CllallL~(U,,=)--a 

S 2 2 
+C 7 / a  L-',= + IID~Fal{~='2 + tl liLt<m,=> t!<[c~<m,~). 

That is, in view of  our previous estimates for (ai, s), 

il<IL2a~,,_ ) < Cc --~ + IIalIL~H,,2) , 
- dt LZ,2 

where e --~ 0 as T -~ 0. 
EstimateofOr a: There holds 

d 
~ a  + A ~ a  = a # F a  + D*(a#g)  + Da(a#g)  + Dao" + cS.#a + a # s ,  

whence for 0 < T _< T(e) and [[A01[H~a + I[a][L~(H~,2) < e similar to our estimates 
for (21) and in view of  our estimate for cr we obtain 
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d + + II IIL <H2, )) _ cc ( L= II IIL (H,, ) 

Thus, for e > 0 sufficiently small, we have a = 0 and cr = 0 as claimed. [] 

From Propositions 5.2 and 6.1 the uniqueness of  the local solution D = Da to (3), 
(4) constructed in Sect. 3 follows. 

Remark that by solving the initial value problem (29)-(31) we could give an 
alternative existence proof for (3). 

7. Long-time existence and asymptotic behaviour 

Proof of Theorem 2.3 (iii). Suppose T < cx~ is maximal such that (3), (4) possesses 
a weak solution D which is gauge-equivalent to a smooth solution b = (So-1)*(D) 
on ]0, T[  and assume (by contradiction) that there exists R > 0 such that (15) holds. 
Then by Lemma 3.6 

lim D(t)  = / ) ( T )  
t----~T 

exists in H 1'2. 
Thus for to < T sufficiently large the local solution b to to the initial value problem 

(3) with initial data D(to) at time t = to constructed in Section 4 extends to an interval 
[to, tl[, tl > T. By uniqueness of  weak solutions to (3) and equivariance of (3) under 
time-independent gauge transformations, necessarily D(t) = (S0)*(D~~ on [to, T[. 
Hence S~(D t~ extends the solution D(t) to the interval [t0, tl[, contradicting the 
maximality of  T. The finiteness assertion is proved as in the case of  the evolution of 
harmonic maps, using the local form (13) of  the energy inequality; see [18], p. 577. 
[] 

Blow-up analysis and asymptotics 

The proof of  Theorem 2.4 relies on Uhlenbeck's [21] and Sedlacek's [17] results for 
the blow-up analysis and on the local energy inequality (13); however, it promises to 
be rather technical, if carried out rigourously, and will be presented elsewhere. An 
indication of  the proof of  the asserted asymptotic behaviour has been given in some 
detail by Chen-Shen [5]. 
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