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The Yang-Mills flow in four dimensions
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Abstract. Global existence and uniqueness is established for the Yang-Mills heat
flow in a vector bundle over a compact Riemannian four-manifold for given initial
connection of finite energy. Our results are analogous to those valid for the evolution
of harmonic maps of Riemannian surfaces.
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1. Introduction

Let M be a compact connected Riemannian 4-manifold, m: 7 — M a smooth vector
bundle with fibre 77 1(z) = R™ and structure group G C SO(n). 7 carries a natural
metric induced by the Riemannian metric on M and the scalar product in R". We
consider the evolution of connections D on 7 to Yang-Mills connections by the L?-
gradient flow. Introducing this flow requires some terminology. The initiated reader
may wish to skip the remainder of this section and go directly to the statement of our
main result Theorem 2.3.

1.1. Associated bundles

There exists a cover (U,) of M and diffeomorphisms, called local trivializations,
0a:nlu, — Us x R™ with transition functions Sas(z) = 0o (z,05(x,)7!) € G at
any point x € U, N Ug and such that

Sap 083y 0 Syq =id

on U, NUg N U,, for all values o, 3, 7.

The collection (S,p) defines the bundle structure in the large.

On 7 we have the group & = Autn of gauge transformations S, where
Aut 1 = | ),y Aut ; is the automorphism bundle associated to 7). If we agree that
the structure group G acts on the fibres of 17 by multiplication from the right, then any
S € % locally may be represented by a map S: U, — G, acting on 7 by fibre-wise
multiplication from the left. Moreover, G naturally acts on & by conjugation. Sim-
ilarly, if we denote by ad 7 the adjoint bundle, whose sections s € 2%ad ) locally
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may be represented by maps s: U, — g, the Lie algebra of G, then G acts on ad 77
via the adjoint action, that is, the differential of conjugation. We regard ad 7 as the
Lie algebra of &.

By taking tensor products with 7% M, etc., from 2%ad ) we obtain the spaces
2'(ad 7)), whose sections are locally represented as g-valued one-forms, 2%(ad 1),
represented by g-valued 2-forms, etc., and the exterior product and Hodge star-
operation extend to these spaces.

1.2. Connections

There are various equivalent ways of introducing a connection on a principal or vector
bundle 7; see for instance Donaldson-Kronheimer [6] or Jost [10] for a very readable
exposition.

In particular, a connection is related to a covariant derivative V and gives rise to an
exterior differential operator D on forms taking their values in 7. D is the completely
anti-symmetric part of V. V extends the Levi-Civita connection on M while D
extends the exterior derivative d acting on standard differential forms with scalar
coefficients. Moreover, V and D naturally extend to associated bundles {2°(ad ). In
particular, there holds

DA -s)=(DA)-s—A-Ds

for A € 2'(ad 1), s € £2%ad n), where we regard the fibres of ad 7 as subsets of the
space of linear endomorphisms of the fibres of 7. The change in sign in the second
term on the right is due to the fact that we interchange the order of the exterior
derivative and the 1-form A.

The space of connections is an affine space

D ={D=Der+A; Ac D@},

where Dies is the exterior derivative related to some smooth reference connection Ve
which we will assume to be fixed throughout the rest of this paper.

1.3. Sobolev spaces

Using Vier we can define Sobolev spaces of connections, etc., in the same way as for
functions on a Euclidean domain. For instance, H*?({2%(ad 1)) consists of i-forms A
in the adjoint bundle with measurable coefficients such that

1Al = (Z IV fAHLp)_‘ < o0.

It is easily verified that different choices of reference connection lead to the same
spaces with equivalent norms. A connection D is of class H'2 iff D = Dy + A,
where A € HY?(2(ad n)).

Some care is required when we speak of gauge transformations belonging to some
Sobolev space, as in this case we are dealing with a nonlinear range G C SO(n).
Regarding the latter as a subset of R™*", we may define

H"? (%) = {S; S|y, € HY? (U R™™), S(z) € G almost everywhere} .
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Note that this space is a manifold, modelled on H%P(£2°(ad 7)), and & is dense in
HYP(Z), if Ip > dim M = m. Moreover, in general & is not dense in H"?(¥%) for
lp < m. (See Bethuel [2] for a general discussion of Sobolev spaces of maps between
manifolds.)

1.4. Curvature

For D € & the curvature F' = F'(D) is a O-order operator
F=DoD e P@adn).
I satisfies the first and second Bianchi identities
DF =0

and
D*D*F =0.

1.5. Gauge transformations

The group of gauge transformations acts on connections as follows. For S € &,
D e let
S*D)y=S"1oDoS

denote the pull-back connection under S with curvature
F(S*(D)) = (§*(D))* =5 oDoDoS=5"0FoSs.
For later use we note that this yields

dS*(D)

(1) ds S=id

(s)=—soD+Dos=Ds

for any s € £2°(ad 7).

1.6. Yang-Mills connections

Finally, we introduce the Yang-Mills action
1 2
YM (D) = -/ PP de
2Jm

of a conection D with curvature F' = F(D).
Because of the identity

2) F(D +ta)= (D +ta)o (D +ta)= F(D)+tDa+t*aha

for any a € 2'(ad n), any t > 0, we have the relation

d
—YM (D +ta)| =(F,Da)=(D"F, a)
di =0
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for the first variation of YM at D in direction a. (We simultaneously use (-,-) to
denote the metric on 7 and the L?-product.)
A connection D is Yang-Mills iff it is a critical point of YM, which then is
equivalent to the equation
D*F=0.

In order to obtain Yang-Mills connections on any given bundle 7, a natural approach is
to try to follow the lines of steepest descent for YM , given by the evolution equation

d
3 —D=—-D*F
3 p7 ,

starting from any initial connection
“4) D)= Dy.

This approach, standard in other problems, was first suggested for the Yang-Mills
functional by Atiyah-Bott [1] but not followed. However, the flow (3) plays a funda-
mental role in Donaldson’s work; see [6].

Remark that YM is gauge-invariant in the sense that YM (S*(D)) = YM (D) for
any S € &, any D € &. Hence & acts on the solutions of the Yang-Mills equation
which, therefore, is not elliptic, as the kernel of the linearized equation has infinite
dimension.

Similarly, the evolution problem (3) is not parabolic, and the methods developed
for parabolic equations cannot be directly applied to prove existence and uniqueness
for the Cauchy problem.

For further background material see Donaldson-Kronheimer [6], Freed-Uhlenbeck
[71, Jost [10], or Lawson [12].

2. Statement and discussion of main results

Let 7 : 7 — M* be as above.
Definition 2.1. A family D = D({) of connections on 1 is a weak solution of (3) if
D = D,y + A with ‘

Ae LM(0,T[: A (@' @d m))

DoD=F e 1=(10,T[; I*(2ad n)))

and if for any ¢ € C*° ([0, TY; £2"(ad 1)) vanishing near t =0 and t = T there holds

T d
/0 {(A,zl—tqs) —(F,ng)} dt=0.

Remark 2.2. In order to form Do D = F in the distribution sense we need A(t) € L?
for almost every ¢. Similarly, as the product (F, D¢) involves the product of F and A,
we need to require F'(D(t)) € L? almost everywhere and A € LP(I?), F € L4(L?)
with conjugate exponents 1 < p,q < oo, %+é = 1. The above notion of weak solution
then is the weakest possible one which is compatible with the energy inequality (12)
below.
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Theorem 2.3. (i) For any connection Dy of class HY? on 1 there is T > 0 and a weak
solution D = Dyq; + A to the Yang-Mills evolution problem (3), (4) for 0 <t < T
such that

Ae CO([o, T); 1*(£2"(ad n))) N Hl’z([o, T, I2(2' (ad n))) :

F & ¢°(10, T(; I (@¥ad ) )

Moreover, D is gauge- equzvalent to a smooth solution of (3) in the following sense:
There is a solution D = D¢ + A of (3) with

A= 1" (10,T1: L2(2'(@d ) ) 1 €°(10,TL; L*(2'(ad )

and smooth for 0 < t < T, and a sequence of smooth gauge transformations Spe%
and a sequence t;, \, O such that S, — Sy in H'2, S} (D(tk)) — Dy in HY2, and
D= S{)k(D). D is smooth if Dy is smooth (C*°).

(ii) If D is irreducible in the sense of (26) for all t, then D is unique.

(iii) The maximal existence time T is characterized by

%) T=supqi>0;3R>0: sup (/ |F@)* dx) < €
Br(zg)

wrgEM
0<t<f

where €y = €o(1)) > 0. At t1 = T, curvature concentrates in al most finitely many points
z],j=1,..., J1 in the sense that

YR > 0:lim sup/ _ I[P dz > .
t/fl Bgr 37,"17

Concerning the long-time behavior we claim the following.

Theorem 24. (i) At each Z| = T a non-trivial Yang-Mills connection over S* sep-
arates in the sense that for sequences Ry \, 0, xx, — Z, t, /' t; the rescaled
connections

Aw(z) = RpA(zy + Ry, ty) — A in H22 R g),

loc
as k — oo, where d+ A(-,t) is the expression of D(t) in a local trivialization of n near
Z, and D = d+ A extends to a smooth, non-trivial, finite-energy Yang-Mills connection
on R*U {oo} = S%.
Moreover, in a suitable gauge D(t) converges in

H)? (M\ {a:l, . J})

to a limiting connection D1 € HY? on a G-bundle m, over M.
(ii) By iteration, the solution D may be extended uniquely for all time t, having the
properties listed in Theorem 2.3 for all but finitely many times ty, k= 1,..., K, and

with curvature concentrating in at most finitely many points | Z7,, t_k>, 1 <35 < Jg,
1<k<K, Y, Ju <YM Do,

(iii) As t — oo suitably, D(t) converges to a limiting connection Do, in a suitable
gauge and possibly away from finitely many concentration points (22,),1 < j < Joo,
Joo < CYM (Dy), where non-trivial Yang-Mills connections over S* separate. Do
extends to a smooth Yang-Mills connection on a limit bundle 1., over M.
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Remarks: (i) The Yang-Mills evolution problem resembles the evolution problem for
harmonic maps between Riemannian manifolds. The four-dimensional case is critical
for the Yang-Mills problem in the same way as the two-dimensional case is critical
for harmonic maps. For smooth initial data local existence was proved by Donaldson.
Moreover, in the case of a holomorphic vector bundle, Donaldson was able to show
global existence of solutions to (3), and their asymptotic convergence to a limiting
Yang-Mills connection, if the underlying bundle was stable. Finally, he asserted that
on a general bundle over a Kahler surface uniform smallness of the local L2-norms
of the curvature should imply that a solution to (3) can be globally extended. See
Donaldson-Kronheimer [6], p. 236.

In the absence of a holomorphic structure, however, in general blow-up in finite
time might be expected, as in the analogous case of the evolution of harmonic maps
of surfaces; see Chang-Ding-Ye [4]. Thus, one is naturally led to consider initial data
of class H'? — that is, of finite energy — and corresponding weak solutions. For
harmonic maps, the analogue of Theorem 2.3 and 2.4 was obtained by Struwe [18].

Using ideas from [18], together with the results of Uhlenbeck [22] and Sedlaceck
[17] on the weak compactness properties of connections, the asymptotic behavior of
solutions D(?) to (3) claimed above was obtained by Chen-Shen [5], assuming the
existence of a smooth, global solution D(%) to (3) on 0 < ¢ < oo.

(ii) The Yang-Mills flow over 2- or 3-dimensional manifolds was recently studied
by Réde [16], and he obtained global existence and uniqueness of solutions for initial
data D(0) € H"? and their exponential convergence to Yang-Mills connections as
t — oo.

Réde’s method consists in writing (3) as a system

d
—D=-D*
dt
(6) %Q =—(DD*+ D*D){2

for D and {2 = F(D); compare (10) below. If dim M < 3, this system can be solved
by linear methods. The approach, however, seems to fail for dim M > 4.

(iii) In dimensions larger than 4, by analogy with the evolution of harmonic
maps in dimensions > 3 uniqueness in the energy class of weak solutions cannot
be expected; moreover, blow up in finite time actually occurs; see Naito [14]. In
fact, the singular set might be quite large. The recent results of Nakajima [15] on
an analogue of Sedlaceks’s [17] weak compactness result and the results of Chen-
Shen [5], Hamilton [8] and Naito [14] on a monotonicity formula for (3) analogous
to this author’s [19] monotonicity formula for the harmonic map flow, however, are
promising first results towards a better understanding also of the higher dimensional
case.

(iv) Our proof of uniqueness apparently can be adapted to show local uniqueness
for Hamilton’s Ricci flow, provided the initial metric is ‘irreducible’ in a suitable
sense.

3. Preliminaries
3.1. Weizenbock formulae and consequences

Let V be a covariant derivative operator with corresponding exterior differential op-
erator D. Associated with D we define the Hodge Laplacian
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A=A =D*D+DD*.

Similarly we define the rough (or crude) Laplacian V*V.
Acting on bundle-valued forms ¢, these operators differ by a curvature term

) V*V¢ = Ap + FH#¢ +Rm #6,

where F' = F'(D) and Rm ist the Riemannian curvature on the base manifold; see for
instance Lawson [12], Appendix. Here and in the following, # denotes any multi-linear
map with smooth coefficients.

As a consequence of the Weizenbdck formula (7) we obtain the following linear
estimates.

Lemma 3.1. Let D = Dy + A, A € C'(£2%(ad n)). There exist constants Cy = C1(n),
Ch = Co(, || All 1) such that for any ¢ € H*?(£2'(ad 1)) there holds
|12 < Cr | AB]Z: +Ca |17
We sketch the proof for completeness.
Proof. From (7) we have
149l 12 = [V*V + Fitg + Rm #6] 1, .

Suppose first that A = 0, D = Dyes, A = Ay, By Minkowski’s inequality then we
have

1481l 2 V'Vl = Cllgli 2

where C = | F|| ;e + |Rm || ;o = C(n).
Finally, integrating by parts and interchanging derivatives (which introduces a
further curvature term) we obtain

1
IV*98l5: > V29 — Cap Vll3: > 5 IV°¢]l7. — Can [l

where the last inequality results from interpolation between the L?- and H*2-norms.
In the general case we estimate

(8) A — Apes = Vet A + A#A |
whence

[Ag]| s 1Al 2 — | A#Viesll 12 — [|Viet A 12 — || A#A#G| 2

>
> O~ ¢llgee — C@ 1Al Lo s VA L) 1] -
0

Lemma 3.1 implies analogous linear estimates for evolution equations. For ease of
notation for any 7' > 0 we introduce the space

V = Vr(@ad ) = 1(10, 73 H22(2ad ) ) 0 H"2(10, T L(2'(ad m) ) .

Note that by the relations
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d d
s56.0=(500) <[ 39 1ot < (kﬁ ﬂ@h)
and (for V = V)
d d. .
2L ws, V) = (va¢ww)=(—@VYw>
< [ae], 1ot < (o] 1ol

the space V continously embeds into
£=(10, 7% H**(2(ad 1) )

with 5 ) )
) sup (o712 < 10Ol 12 + 2118l -
0<t<T

In fact, V — CY ([O,T];H L2(2'(ad n))); see for instance Lions-Magenes [13],
Theorem 3.1, p. 19.
Here and in the following, we denote

L2(H>) = L2 ([o, T, H*2(£2(ad n))) . ete.

Moreover, we use double indices to denote space-time LP-L9-norms.

1

T
||¢”LQ«P = </0\ H¢(t)||%17 dt) ) 1 S p7q < OO)

etc. In particular, ||-|| .. denotes the L?-norm over space-time. Finally, we let

2
2
+ Bl a2y -

ol = | 5]

Lemma 3.2. Let D = D,y + A, A € Cl(Ql(ad 1)). Then there exists a constant
Cy = Co(n) and a number T = T(n, A) > 0 sucht that for any ¢ € Vi there holds

d 2
—+ A
(+4)¢
Proof. Compute

|G) .. -3

for almost every ¢. By Lemma 3.1 we have

1AGI2, = C™ 1613 — C@, | All ) 8112 -
Moreover, by (7), (8) we have

lely < Co +C | $O)]| 1 -

122

a0l +2 (0. 20)
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d d
2 <ZE¢, A¢> .>_ 2 <d_t¢7 Aref¢> - 0(777 ”A”CI)

d
P

L2

\Y

d d
2 <c_l¥¢’ V:efvrefﬁb) - C (0, 1Al o) H@flﬁHLz 9l 1.2

d
= 5 IVerdllze = C, [ Allc)

2
—Co, | Al 10l -

2

9] ol

d
> o Vel = 5 || 3¢

1la
2 ||dt

Thus, upon integrating in time we obtain

d
el < con (H <a£ + A) ¢

Finally we use (9) to estimate

6@ a2y < TNl 7omerny < T 6O +2T 15, -

2

+ H¢(0)||fql,2> +C(n, ”A“CI)HMI%Z(HI’Z) ‘
2.2

: _ 1
Choosing 7' = HECw AT the lemma follows. O

The linear estimates above may fail in the borderline case where A € H'2, which
is the reason why the evolution problem for Yang-Mills connections over a 4-
dimensional base manifold is interesting.

However, under certain circumstances LP-estimates are still available. To obtain
these estimates we first observe that for any ¢, € 2*(ad n) we have

d(@, )= Vo, 0) +(4, V),

where now again (-, -) denotes the pointwise inner product. In particular, for sections
¢ € 2%ad n), where V¢ = D¢, we obtain Kato’s inequality

|di|| < |Dg)| .
We can combine this with the Sobolev embedding theorem to obtain

10l e < CUDS 2 + 18]l L)

for any ¢ € £2°(ad ) with a uniform constant C' = C(n) independent of D.

To obtain similar estimates for forms of degree ¢ > 1 we need to compare with
full covariant derivatives. Note that on account of (7) this introduces a curvature term
which, however, can be absorbed as long as the curvature does not concentrate.

Lemma 3.3. Let D = Dy + A, A € H"2, with curvature F = F(D) € L*. There exist
constants Cs = C3(n), 6 = 6(n) > 0 such that for any ¢ € 2"(ad 1), any 0 < R < 1,
there holds

615 + 199115 < G5 (D@l + D763 ) + CaR2 [l

provided
sup/ \F|> dz <6.
Br(zo)

Zo
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Proof. Using (7) and Sobolev’s embedding, we find

Co oI5 — 6l < IIVOl2: = (V*V,$) = (Ad, ) + (Fitg, ) + Rm #6, )
‘ DI, + | D* @[5, + (Fito, ¢) + Rm #6, 6).

il

It

Now )
Rm #6,¢) < Cl¢fl7. , C=Cn).

To estimate the middle term we use Sobelev’s embedding theorem on a suitable cover
of M by balls Bgr(z;):

i ! 2
(F#d,¢) < CD 2B ae 191 LB r@n

IA

céz (I900@ne + B 100 nian)

where C = C(n). Since M is compact, there exist a constant Ry = Ro(M) > 0 and a
number I (independent of M) such that for 0 < R < Ry there is a cover (Br(z;))
such that at most L distinct balls of this cover overlap at any point of M.

Thus, for R < Ry and with this choice of (Bg(x;)) the above estimate yields

(Fi6,9) < CLS (V8] + B2 6132 -

Choosing § < 5=+ 28 7 the claim follows. O

3.2. Evolution of curvature and energy inequality

Formula (2) for the first variation of curvature implies that the curvature F' = F(D(2))
of a classical solution D of (3), (4) satisfies

F (D+e4D) — F(D) D(d

(10 iF = lim

dt e—0 €

7 >=—DD F.

In view of the first Bianchi identity, thus we find that F is a solution of the heat
equation

d
an <§+A)F=O

with respect to the evolving connection.
From (11), upon multiplying by F' we obtain the identity

1d d
0= S di HFHLZ +(AF,Fy= —‘YM (D) + “D*FHLZ .

In particular, any (classical) solution of (3) and (4) satisfies the energy inequality
T
(12) YM (D) + / |D*F|2, dt <YM (Dg);
0

in fact, equality holds. Moreover, multiplying by Fy?, where ¢ is a suitable cut-off
function with support in a coordinate ball Byp(zg) and suchthat 0 < ¢ < 1, ¢ =1
on Br(zg), |[V¢| < CR™!, we obtain
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d

— \FPotdz + / |D*F? ¢* dz = —2(D*F, FpDo)
dt Bar(xo) Bz r(wo)

< [ pEP@des [ PRIV s,
Bagplxe) Bar{zo)

which after integration in ¢ yields the local energy inequality

(13) sup / |F@)f dz < / |FO) dz+CTR™>YM (D)
0<t<T J Bp(x) Bar{zo)

as in [18], Lemma 3.6, for the evolution of harmonic maps.
Next, observe that by Holder’s and Young’s inequalities L N L?* «— 32 with

(14) 19155 < ol I91Fas < 5 1803ms+ 5 613

for any ¢. Combining this estimate with Lemma 3.3, (12} and the first Bianchi identity,
we immediately obtain

Lemma 3.4. Let 6 = 6(n) > 0 be as in Lemma 3.3 and suppose D is a classical
solution of (3) and (4) on 10, T with

15 sup / |[FDW®) de < §
xg, 0T Brxg)

for some 0 < R < 1. Then F € L>* with
[F1355 < Ca(l+ TR™HYM (Do),
where Cy = C{(n).
Next, we use (11) and (7) to deduce

Lemma 3.5. Under the assumptions of Lemma 3.4 there holds
* 4 1 d 2 2
D*F € 13, (10, T} L4 (2'(ad m)) ) —Fe L}, (10,73: L2(2*ad ) ) .
Proof. By (11}, at any time ¢ > 0 we have
v O
—2{ DD*F, —F
dt
ES d %
= =2 (D‘F,-%-(D F})

2 (0% (7))

< —ZID FI 2Pl D P

+|DD*F|f%,
L2

|

By Lemma 3.3, (15), and the second Bianchi identity there holds
|D*Flf74 < C|DD*F|7. + CRG? | D" F|7, ,
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for any t.
Upon integrating in time, on any interval [ty £;] C [0, 7] we obtain

” + ID*F ()72 + | D* Fl 7.
122
< OBl (D" Flfso + [D*Fto)ls + CRG? |D"Fla
< Os|1Fllps (1D*Flws + 10" Fz)

+|D* Fto)|2a + Cstty — to)Ry 2 | D*Fl2

where we also used (14).
By Fubini’s theorem, given 7 > 0 we can find ¢ € [0, 7] such that

| D*Fto)|2, <277 ] ’ ID*F@)||3: dt <277'YM (D).
4]

Moreover, by absolute continuity of the Lebesgue integral and Lemma 3.4, we can

achieve that
[ s = ( /t IF®If dt) 43;

uniformly in #; and ¢;, if the difference h = #; — t; is sufficiently small. We may
y4

assume that A < 4‘%
Finally, for any such pair £y < ¢; < to + h we may choose t’l € [to, 1] such that

D (tl)”jﬁ,i =3 HD F”L@’ .
Hence we obtain the assertion of the lemma on [fg, {;]. Covering the interval [r, T}
with finitely many intervals of length &, we conclude. O

Lemma 3.6. Under the assumptions of Lemma 34 there holds D = D,z + A, where
A extends to A € Ciye (]O, T} HY* (2 (ad 77))).

rPraof. By Lemma 3.5 and (3) we have

9 A€ 12,00,75 1,

whence A € C°(J0,TY; L*).
Thus by (2) we see that

( DAY = F(D) 7 A#A € L},.(10,T); L7)
and
DisA € C°00, T3 L) -
Moreover, by the second Bianchi identity and Lemma 3.5

d

d
dt ( fA) ref (% ) A#D'F € Lloc(](}? Th Lz),

whence
DiAeC'(10,T); L7).
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4. Local existence

Before we begin with the proof of Theorem 2.3 it is instructive to review Donaldson’s
approach to local existence in the smooth case.

First consider the action of gauge transformations on (3). Let D = D(t) be a
solution of (3), S = S(t) a family of gauge transformations depending differentiably
on t, D = 8*(D).

Then if S(ty) = id, by (1) we have

d_ d d .
ED—ED‘FD(%S) =—D*F+ Ds

at t = tg, where F' = F(D), s = %S € 2°(ad n). Similarly, in general we find

d - o
16 —D=—-D"F+D
(16) 7 +Ds
with [ = F(D), s =510 45 € 2°ad n), as can easily be seen by applying the
time-independent gauge transformation S(¢y) ! to the preceding formulas.

4.1. Donaldson’s Ansatz

Donaldson uses a version of De Turck’s trick [20]. He makes the Ansatz D = Dy +a,
where he determines a by sclving
d d

an D =70=-DF+D(-D'a), a0)=0.

Note that by (2) we have
F = F(Dy) + Dya + a#ta = F(Dg) + Da + a#a .

Hence, for smooth initial connection Dy, equation (17) is simply a smoothly perturbed
version of the heat equation on M which can easily be solved uniquely for small time
0 <t < T. Through the identification

d _

s=8"1o—8=-D*a,

dt
moreover, the solution o generates a family of gauge transformations S that can
readily be recovered by solving the initial value problem

(18) %S=Sos, S(0) = id.

Letting D = (5"1)’k D, then we obtain the desired solution D of (3), (4).

However, if we consider initial data Dy € H'? this approach fails, because the
term D*F(Dy) in (17) only belongs to H~'(£2'(ad 7)), the dual of H'2,

Thus (17) can only generate a solution a of class H'?, whence s € L? and S,
defined by (18), will only be measurable (and bounded) in z € M. This, however, is
not sufficient to interpret D = (S~H*D even as a weak solution of (3).

The problem can be overcome if we do not attempt to fix the initial connection
as background connection for all time but use a variable (and smoothed) background
connection Dy,(1) to express the evolving connection D(t) as D)= Dre(t) + alt).
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4.2. Choice of background connection

Let Dy of class H'? be given. Fix a smooth connection D; € & and express
Dy =D + Ay in terms of this connection. Solve the initial value problem

d
(19) ?ZEAbg + A1 A =0,  Apg(0) = Ao,

where Ay = DiD; + Dy D} is the Laplace operator for D;.

The initial value problem (19) has a unique, global solution Ap,. Ay, is smooth
for ¢ > 0 and, in addition, by Lemma 3.2 we have Ay, € L? (H*?) N C° (H'*) n
H"? (L?) with estimates depending on D; and Ag. In particular, there exist constants
C =C(n) and Ty = T1{(n, D{) > 0 such that on the interval [0, T1] there holds

(20) “Abg”Loo(Hl,z) <C HAOHH‘=2 :

Moreover, ||Ao||;1. may be chosen as small as we please. Finally we let Dy, =
D+ Abg~
4.3. Local existence for the gauge-equivalent flow

We make the Ansatz ~
D=Dy+a, a0y=0,

where D solves (16) with “drift term” s = —D*q; that is
9D+ D+ D0y =0,
with ' = F(D). Expanding
F=FD)= F(Dypg) + Da + a#a ,

we then obtain the evolution equation

d . d
;igﬂ‘; +Aa = —-D (Fbg + a#fa) — &Dbg
* d %
2D = Dy g — EEAbg + a#Fyg — D¥(a#a)

for a, where A is the Laplace operator for D and Fy, = F(Dy).
Note that

F,

i

F(Dy + Apg)
F(Dy) + Dy Apg + AvghtAye € LA(HY) N CULY),
DiFoy = DiFy+ AwhFa, € L™

i

and are smooth for £ > 0. (Here and in the following we use Sobolev’s embedding
H'? — L* and Holder’s inequality.)
Moreover D*(a#a) = Viyga#a + a#fatfa. Thus we see that o satisfies
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d -
lea + Aa = f + a#Fyg + Vygatta + akatta,

where f € L*? and is smooth for t > 0.
Moreover, since . o
A= Al +V1#A+A#A,
where A = Ay, +a, we obtain

d
—a+ Ala = f + Fbg#a + Abg#Vla + lebg#a

dt
+Ap# Apgtta + a#Via + ApgHatta + attatta .

Local existence of a unique solution a € Vr = L2(H>?) N HY2(L?) to (21) now
follows from Lemma 3.2.
In fact, since a(0) = 0, from (9) we have

d
lall oegrrnay < Clally, < € || (_ . Al> .
dit 12

on any interval [0,T], where 0 < T" < T}, C = C(n). The eight terms I, ..., VIII
occurring on the right may be estimated as follows:

L= Foghall ;2. < [ Fgllpan lall peos < C ”Fbg”Lz(HlsZ) lall Loo ez
< CllAsgll e lall pooanzy < €llall ooz < €llally
if 0 <T < T(e, Dy, Ao);
I = || Apg#Viall 2 < [ Avgll pooss V18] 20

< CllAollge llall paaeey < €llall ey < €llally

The estimate for I = |[f| ;.. is trivial; IV and V may be estimated like II.
Moreover, we have

VI = [a#V1a] 22 < Nlal] poos V10l ot € Cllal] poo gz 0l poapezy < €llally
if flall poog12) < & Finally,
VI = |Asghattal| 12 < || Avgll pooss la#al 26 < C Nl Avgll poo a2y la#all oz
C | Aollzza (I Vrecatall s + 0l

CllAoll gz lallpoos (| Vretall 2e + llall o)
Cll Aol g2 lall oo a2y |
and similarly

IN

IN A

G||L2(Hz,z) <elally

I = |lattatal 122 < Cllalpegms llally < ¢ lally

if [lafl poogprizy < G-

Hence it suffices to first choose D; such that || Aglf 1. < € for some convenient
¢ > 0 depending only on the bundle 1 and then choose T = T'(e, D1, Ag) > 0 to
obtain a-priori bounds and hence existence of a € L>(H>*)NCO(H )N HL*(I*) on
[0, T'] by the contracting map principle. Moreover, a is smooth for ¢ > 0 by the theory
of linear parabolic equations; see for instance LadyZhenskaya-Solonnikov-Ural’ceva
[11].
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4.4. Local existence for the Yang-Mills flow

In order to obtain the desired local solution D of (3), (4) from the solution D con-
structed above, we need to solve the evolution equation

d
22) 5=80s

for the gauge transformaton relating D and D. Recall that
s=—D*a e LXH"?)

and is smooth for £ > 0.

Let (tx) be a sequence of numbers 0 < ¢, < T, 15 \, 0 as k£ — 0. Solve (22)
with initial data Sy = id at ¢ = t; to obtain a sequence Sy = Si(t) € & of gauge
transformations depending smoothly on ¢ for 0 < ¢ < T. Clearly, S = 5, Yt o S,
Let

De = (5D = Si(t)* Dy

be the corresponding connections. For each k, Dy = Dy(t) is of class C* for 0 <
t < T and is a classical solution of (3). Also remark that

(23) D) = Dty) — Dy in HY?

as k — oo.
Moreover, by the energy inequality (12) and invariance of the energy under gauge
transformations we have uniform bounds
d 2
—D
&2

(24) sup YM (Dy(8)) < YM (Dy)
t

ID;F(Dp)|| 722 < YM (D),

for any k. Thus, for each k& the limit

Dy(0) = }{1}) Dr(t)

exists in 2 and in view of (23), moreover,
Dyp(0) — Dy in L?

as k — oo,
Similarly, by (22) we have

2 2
< |Isllz2e < CHSHLZ(HI,z) )

2
d
|
dt 2.4

whence
=1 A
S1(0) %{%Sz(t)e ,

exists for any [.
Fix some [ ={ and let § = S;, D = Dy, Sy = 5(0), Dy = D(0), 8 = S(tx) € .
Then, by the above
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S, — 8 in I,
Dr(0) = §;(Dg) — Dy in L?.
Moreover, if we let Dy = D; + Ay, Ay € L2, we find
Si(Do) — Dy = Si(D1)— Dy +5; " ApSk — Ao
= §; o (D18 + 5 A8, — Ag— 0 in L2,
Thus, also . o )
(25) lim DSy = lim (ApSy, — S Ag) € L?
k—oo k—o0
exists and necessarily coincides with the distributional limit Dlﬁo; that is,
S, —8 in HW.
But this implies that Dy, = §Z(ﬁ) converges uniformly to some
D = 8y(Dy e C%L?

with D(0) = Dy and 2D € L*? by (24).
Similarly,
F(Dy) = Sy (F(D))
converges in L2, locally uniformly for ¢ > 0. Since Dy — D in C°(L?), we moreover

have convergence
F(Dy) — F(D)

in the sense of distributions. Together, these results imply
F(Dy) — F(D) in C°Q0,T]; L?).
In the same way, from (24) and since D € CY%([0,T1; L?), we also obtain that
F(D@)) — F(Do)
weakly in L? as t — 0. Finally, since by (24) also

111? sup IFD®)| 32 < 1FDo)3:

we obtain strong convergence F(D(t)) — F(Dg) in L? as t — 0; that is, F(D) €
Co([0, T1; L?).

Hence D in fact is a weak solution to the Yang-Mills evolution problem (3), (4).
Moreover, D satisfies (12) with equality.

5. Gauge normalization

For the proof of uniqueness, we also consider the gauge-equivalent version (16) of
(3). However, we need to specify a gauge condition.

Before we go into the details of the proof, observe that uniqueness of s and
hence of the evolving gauge transformations .S determined by (18) can only hold
if the operator D:£2%ad ) — £2'(ad ) is invertible. For smooth connections this
condition is equivalent to an algebraic-topological condition on the connection.
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5.1. Irreducible connections

Given a connection D € & on 7, we denote
r=rD)={Se ¥;5D)=D}
the isotropy subgroup of D. I" is a Lie group with Lie algebra
v={s€ 2adn);Ds=0} .

A connection D is called irreducible iff I'(D) consists only of sections with values
in the center of G.
In the special case G = SO(n), n > 3, or SU(n), n > 2 the center of G is trivial,
and hence we obtain:
ker(D) N 2%ad 1) = {0}

iff D is irreducible.

Remark that, if G = SU(2) and D is not irreducible, then either 7 is trivial and
D = d is the trivial connection, or 7 splits into a sum of line bundles and D restricts
to a connection on each factor. (See Donaldson-Kronheimer [6], p. 131 ff., and Freed-
Uhlenbeck [7], p. 47.) Thus, at least in many cases of interest, it does not seem to
constitute a loss of generality to assume that all connections D we encounter in the
evolution (3) are irreducible.

For connections D of class H'? we require irreducibility in the sense that

(26) HSHHl,z < CHDS”L2

for all s € H"2({2%(ad n)) with constants C = C(D). This constant can be chosen
locally uniformly, as follows.

Lemma 5.1. Suppose Dy satisfies (26) with Cy = C(Dy), Do € H2. There exists
an H"“2-neighborhood %" of Dy and a constant C > 0 such that any D € ¥ is
irreducible and there holds

Isll g2 < C|Dsll 2

uniformly for s € H'*(2%ad n)).

Proof. Assume by contradiction that for sequences A, € H'“*(02'(ad 1)), s €
H"2(12%ad n)) with A -~ 0in H'? as k — o0, ||sg| 1. = 1 for all k, we have

| Deskll 2 = (Do + Agdsill 2 — 0
as k — oo. Then from

Cy 't =Cy skl g [ Dosklls < | Drsklips + ILAR#sE]l

<
<o)+ || Akl e skl s < 0(1),

where o(1) — 0 as k — oo, we obtain a contradiction. d
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5.2. Gauge fixing

We need a global analogue of Uhlenbeck’s [22] theorem on the existence of local
Coulomb gauges, depending smoothly on the connection.

Let Dy be a connection of class H % and satisfying (26), and let Dyg(t) = D;+Apg,
0 <t <T,be afamily of background connections such that Dy,(0) = Dy, Abg e C>®
for t > 0 and Apg € L2(H*?) N H2(L?), as determined by (19). Let H'?~clos (%)
denote the H'?-closure of & .

Proposition 5.2. Let D be a weak solution of (3), (4) on [0, T[ as in Theorem 2.3 (i).
There exist Ty > 0 and a family of gauge transformations

5 = S@t) € C°(10, To); H"*-clos (%))

with p
_ gl 27712
s=5"o ——dtS e L°(H"%)

such that ~
D=85"D)=Dy,+a

satisfies a € L®(HY2)yN HYX(L?), a(t) — 0in H'"? ast — 0, and D*a = 0.
Proof. (i) Consider first the case that Dy, Dy, and D are smooth. It is convenient to

express i
D=Dy+a=D,, D=Dy+a=Dg

and to denote the corresponding curvatures by
F(Do)=Fo, F(Da)=Fs.

We apply the implicit function theorem.
For 2 < p < 4 and fixed ¢ > O introduce the map

L: HYP(2'ad n)) x H*P(Z) — LP(2°@ad n))
L(a,S)=D}a,
where by abuse of notation we let
a=aa,S)=5"(Dy) — Dyg.
Recall that for p > 2 the class H 2P(%) is a manifold; see for instance Uhlenbeck

[22]. Moreover, L is of class C' with

(s) =D;Dszs + Dys#a .

L
ld(S) = ‘ Q—
(a,9)

0S8

Multiplying by s, we find
_ 1 _
(la(s), ) = | Dasl|zz + (Dasta, ) > 5 | Dasll: = C lall e llsll s -

Hence by (26) and Lemma 5.1 the operator [ is invertible if ¢ > 0 and |G|+ are
sufficiently small.
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It follows that there exists Ty > 0 and S = S(t) € CY([0, Tp]; H*? %) such that

S(0) = id and
L(a®),5@®)) =

that is, S*(D,) = Dy is of class C'(H!P) and satisfies D3d = 0.
(ii) In order to obtain the analogous result for weak solutions D as in Theorem 2.3,
we apply the above reasoning to the approximating sequence of smooth connections

Dy = 5(D) = Dyg + ax,
on [tx, T[ whose existence is guaranteed by Theorem 2.3 (i), with initial condition
Dy(tr) = Dyo — Do in H'?
for some sequence t; — 0. Note that
\ d
dt

d

D
BT

D‘EL“

Moreover, we choose corresponding smooth background connections Dyg ,, = Dq +
Apg i, Where Apg (1) solves (19) with initial data

Apg k(i) = Ang(ty) + ar(ty) .
Observe that
(27 Dy (tr) = Dyg r(tr) -

Also note that by Lemma 5.1 the data Dy satisfy condition (26) with a uniform
constant C'. Moreover, Abg’ x € Vr, and, given € > 0, by suitable choice of Dy and
choosing a smaller time 7" > 0, if necessary, we can achieve that

2

2 2
Ek(T) = H—Dk s + |lAbg,k|lLoo(H1,2) + HAbg,k”LZ(HZ,Z)
2.2

| d
s

22
+ ||Fbg,kHL2(H1,z) <e,

uniformly in k, k& > ko(e).

By (27), the reasoning in part (i) is applicable for Dy, yielding a C'-family of
smooth gauge transformations S = Si(f) on some interval [tg, T%], tr < T < T,
such that

Dy = Si(Dy) = Dy + ax
satisfies
(28) Diar =
The following estimates establish a uniform lower bound on 7}, and suitable a-priori
bounds on ag, Sy that will allow us to pass to the limit £ — oo in these relations.

Let s, = S; ' 4 S, and extend sj(t) = 0, ax(t) = 0, that is, Si(t) = id, Dyg (t) =

Dk(t) = Dko for O <t <t

Lemma 5.3. There exist constants C = C(Dy), Ty = T'(Dy) such that for 0 < Ty, < T
and sufficiently large k there holds

H—ak + ||C_I/k||L<>O(H1,2) + ||SkHiZ(H1;2) < Cek(Tk) .
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Proof. The proof requires several steps. We drop the index % for simplicity.

Claim 1. There exist constants C' = (D) > 0, Ty = T{Dy) > 0, € > 0 such that for
sufficiently large k& we have

d 2
—a
Hdt L

for 0 < T < T, provided ||a]l ;0 < e

. + HS”L2(HI,2) < CG(T)

Proof. Differentiating the equation (28), we obtain

0= % (D;fi) = DED@S'FD@S#é-FD; (S* (§D> _ E{Dbg>

dt
«f d _
+ (S <&'£D> - E‘EDbg) #a,

where we used (1). Multiplying by s and integrating, we find

|1 Das|2. (D3Dss,5)

< || Dasllzen (“@H;;mm HSHLM + Hf”z,m)“' £l e “&HLCM sl 72 5

where we denote
f=5 —éD - -{—i—D
- dt di e

4
dt

for brevity.
Since

112‘5
D + f dtDbg

i

£l s < H

and since by (26), moreover,

fox 22

Isllz2e <C HSHLZ(Hi,Z) < C|Dasllfee
we obtain the desired estimate for s. Finally, we note that

a
di

and the claim follows. 0

3= 4(S" (Do)~ Dug) = Das 1,

Let § > O be as in Lemma 3.3 and let By > 0 be chosen such that (15) is satisfied,
which is possible because F(D) € CY%ILA). By (13), it is in fact possible to choose
Ro = Ro(Dy) on a time interval of length CR3.

Claim 2. There exist constants C' = C{(Dp), T =T (D) > 0, € = e(Dyp) > 0 such that
a3 s < CUlIFa — Fogll} won + (@)

for 0 < T < Ty, provided ||@]j; 00 < €.
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Proof. By Lemma 3.3 for any ¢ we have
l|alze < C |1Dadlz. + ORs? all7. ,
while by (2) there holds
D{l(_l = F& - Fbg + a#a .
Finally, from Claim 1 and since @(0) = 0 we obtain

2
< CTe(T).

d
|[a||L<x, 2 < CT HE-
122

Together this yields
@ll30e < C | Fa = Fogllioon + C @[30 + CTRG2e(T),

and the claim follows.

Claim 3. Under the assumptions of Claim 2 there holds

”aHiw(HlyZ) < c <”Fd - Fbg”zLoo,z + 6(T))
Proof. 1t suffices to estimate (7 fixed)

Hvrefa“LZ < HVGHLZ (AI +Abg+a)#aHL2 )

M. Struwe

where V is the covariant derivative corresponding to D = D;. Now, by Lemma 3.3,

(15), (28) and (2), we have

IVa|,, < C||Pa|%.+CRy? |l
< C|Fy— Byl +Clal}s + CTRy2e(D)

and in view of Claim 2 the assertion follows.

Claim 4. Under the assumptions of Claim 2 above there holds

[Fa = Fogllan < Ce(D).

Proof. By (16) and the second Bianchi identity there holds

d

a‘EF@ + AaFa = D(ZD[IS

and hence also

d d
a(Fa — Fyg) + Aa(Fa — Fog) = Da Das — — Fyog — Aglig -

dt
Multiplying by F5 — Fyg and integrating, we obtain

1 *
D= 51 Fa — Bogllpws + 1Da(Fa — Fop)ll oo + 1D5(Fa = Fig)lf 12

< TM+MI+1V.
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By the second Bianchi identity, Claim 1 and since by assumption ||@]| ;. < €, We
obtain ‘
I = (D3Das, F) — (DaDss, Fig) = ~(Dg8, Dj Frg)
—<— “DdSHLZaZ (”FbgHLZ(HI,z) + HdHLmA ”FbgHLZ,4> S CE(T) .

Moreover

d d
(anggv Fr - FEg) = (Dbg <§Dbg> 7Fii - Fgg)

d . d . _
(gngg; Dy, (Fz— Fbg}) = (&Dbg; DI — By +a#(F; ~ Fbg))

1]

il

1, . 2 .

< CeD)+ 7 | D5(Fa = Fopllzan + C 1l oo | Fr — Pl
Now by Lemma 3.3,

|Fa = Foglhe < € (ID5(Fs = Fog)la + |1 DaFa = Fop)l3a)

+CTR62 ”F& - Fbg”};m,l ?
whence for small ¢ > 0, T > 0 we obtain
WM< Ce(Ty+ ;— I.

Finally, we may estimate

v = <_A§,Fbg;Fé - th)
—(DaFrg, Da(Fi — Fig)) — (D3 Fog, D3(F5 — Fip))

I

* 1
< C (llDangnZL,_,z + ||Dapbg”2LQyz) .
& 1
< C (Iif‘bgiéiz@,z, 1@ s [ Fg? ) +h

< Ce(Ty+ % I.
Thus we obtain I < Ce(T), as desired. 0
In view of Claims 1,2, and 4 above there exist 7y > 0, C such that
@k < CeT) <€

on [0, 77 for any T' < Ty and sufficiently large & > ko(e), where € > 0 is the constant
in Claims 1-4.
The assertion of the lemma follows. |
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Proof of Proposition 5.2 (continued)

By Lemma 5.3 we can choose 0 < Ty < T such that for large k the linearized
operators [, corresponding to the gauge equation (28) are uniformly invertible on
[0, Tp]. Hence Ty, > Ty for large k.

Moreover, Lemma 5.3 implies that the sequence &y is uniformly equi-continouos
in L?, and — by Rellich’s theorem — pointwise relatively compact in L2. Arzéla-
Ascoli’s theorem thus yields uniform covergence of a sub-sequence

a — a in GO(LZ) .
Hence also _ _
Dy = Dbg,}c + Qp — D=Dbg+(_z-
uniformly in I? as k — oc. Passing to the limit in (28), moreover, we obtain

Dia=0.

Finally, £a € L>? and @ € L*°(H"?) by lower semi-continuity, and
”d(t)HHl,z < Ce(t) — 0

as t — 0.
Similarly, S — S uniformly in L? with s = S~1 28 € L2(H"“?). In fact, by an
argument similar to (25) we find Si — S uniformly in H2, and

Dz = S"(Ds) -
This ends the proof. O

6. Uniqueness

Given Dy € H?, a family of background connections Dy as in Section 4.2, let
D, = Dyg +a be a local weak solution to (3) and D; = Dyg + @ the corresponding
family of normalized connections according to Proposition 5.2.

By (16), D; weakly solves the initial value problem

29 %Da = —DIFs+ Dss,
(30) D;@ =0,
(31 a(0) =0,

where Fj = F(Dj), and
a e 2710, H" (2 ad m)) ) 1 22 (10, T} L* (2 ad ) )
(32) Fe C’O([O,T]; L?(2%(ad n))) j
s € I(10, 7% H'* (2°ad 1))

on some interval [0,7]. & attains its initial data in the H'2-sense. The following
result shows that — provided Dy is irreducible — the solution DJ; above is unique.
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Proposition 6.1. For any Dy C H'? satisfying (26) there exists T > 0 and a unique
solution (&, 8) of (29)-(31) on [0, T7] satisfying (32).

In addition, 6 € L*(H*>?), and @ and s are smooth for t > 0. Finally, if Dy is
smooth, G and s are smooth up to t = 0.

Proof. (i) The existence of (a, s) was shown above.

(ii) To see higher regularity and uniqueness, in a first step we establish suitable
a-priori estimates for solutions in the above class.
Estimate for s: From the second Bianchi identity and (30} we obtain

" [ d _ (2 4
DaDC}S = D(‘z (EDEJ = Dd (Zi_‘EAbg) + a#ga.

Multiplying by s, we find

|Daslre. = (DiDss,s)= (%Abg,z)as) + (a#j—ta, s>
< 0| fn| | 1Paslline + Ol |G| | Il
n dt g 120 a || L2 Leo(HY) dt 12, LAHL2) »
whence
) d . |? d_||?
sl z2criay € CliDasllze < C HEEAbg L +CllallZ ey prid Lo

Estimate for a: Using (30) we rewrite (29) as

d_ . e d
aa + D&F{l + DaDda = DQS — EAbg .

By (2) the left hand side equals
d = * e o gy
Zl—t + Aa a+ Dang + Dd(a#a)

which is (a% + A1) a, the heat operator with respect to Dy applied to &, up to error
terms
V. a#a + a#a#ta + Abg#vlé + Vlf"ibg#@ + Abg#&#d + Abg#Abg#é + D:—;Fbg .

Hence if ||| ;o0 g1, is sufficiently small, which we can achieve by choosing 7' > 0
sufficiently smal&, from Lemma 3.2 and routine estimates we obtain

) d >
= || |+ lalen < € (1Dasles + 1ll) < € Ll
122

Smoothness of @ and s for £ > 0 follows by standard methods; see for instance
LadyZhenskaya-Solonnikov-Ural’ceva [11].

(iii) Next we derive similar estimates for the difference (o, o) of two solutions
(@i, 1), (@2, 82) of (29), (30) with 4,(0) = g = 82(0). Let D, = D;, etc.

Note that (o, o) satisfies
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d
&EO( = — (DTF} - D;Fz) +D181 — D2827

where
Dysy — Dpsy = Do + affo + adts,

denoting by @ any convex linear combinations of &; and d,, and similarly for s.
Moreover, for i = 1,2, we have

D:Fz = D;Fz + Q#E s

and
- B =D;a+o#a.

Also we note that
Dg(}t = D;&l — D;(ig = oifa .

Estimate for o: By the second Bianchi identity we have

D;Da(f

d .
D <§a> + DD} Fy — D} DiF, + oD} Fy + D} a#o + afts)

d_ d ¥rn
= a#%a + gga#a + ot DI Fy + D} (G#o + adts) .
Multiplying by ¢ and integrating by parts in the last term, we obtain
o saray < C1D50 32 = C (D3 Dac, o)
d
<Ci {|—=a —
- ( dt L dt 122

+C|a]l oot 1ol p2ie + |l oot 181 L26) 1 Dao | 2

| D3Pl o zzauLw,A) ol

o+ o

d 2

&—ia

< (3 Clollmgnn) Wolianoy+ Clalmgns

<l

That is, in view of our previous estimates for (d;, s),

122
2

&=

T IDiEI + usnéz(gl,z)) (S

2
2
+ ”Mlzwmh%) ;

”UHI@(H*»?) < Ce (

X
dt 22

where ¢ — Q as T — 0.
Estimate for «: There holds

d
Eia + Az = ot Fy + Di(a#ay + Dy(o#ta) + Do + afo + adts,

whence for 0 < T' < T'(e) and || Aol 12 + ||| oo 12 < € similar to our estimates
for (21) and in view of our estimate for ¢ we obtain
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d
a’ o + el poogizy + ol 2
d
< Ce P . + el ooy + el L2ary | -
Thus, for € > 0 sufficiently small, we have ¢ = 0 and ¢ = 0 as claimed. O

From Propositions 5.2 and 6.1 the uniqueness of the local solution D = D, to (3),
(4) constructed in Sect. 3 follows.

Remark that by solving the initial value problem (29)—(31) we could give an
alternative existence proof for (3).

7. Long-time existence and asymptotic behaviour

Proof of Theorem 2.3 (iii). Suppose T' < oo is maximal such that (3), (4) possesses
a weak solution D which is gauge-equivalent to a smooth solution D= (5*6“ (D)
on )]0, T[ and assume (by contradiction) that there exists R > 0 such that (15) holds.
Then by Lemma 3.6

Jim D@y = D(T)

exists in H12,

Thus for ¢ty < T sufficiently large the local solution D% to the initial value problem
(3) with initial data ﬁ(to) at time ¢ = tg constructed in Section 4 extends to an interval
[to, t1[, t1 > T. By uniqueness of weak solutions to (3) and equivariance of (3) under
time-independent gauge transformations, necessarily D(t) = (Sp)* (D™ (@) on [ty, TT.
Hence S’(’)‘(f)t‘)) extends the solution D(¢) to the interval [Zg,¢;[, contradicting the
maximality of 7. The finiteness assertion is proved as in the case of the evolution of
harmonic maps, using the local form (13) of the energy inequality; see [18], p.577.
O

Blow-up analysis and asymptotics

The proof of Theorem 2.4 relies on Uhlenbeck’s [21] and Sedlacek’s [17] results for
the blow-up analysis and on the local energy inequality (13); however, it promises to
be rather technical, if carried out rigourously, and will be presented elsewhere. An
indication of the proof of the asserted asymptotic behaviour has been given in some
detail by Chen-Shen [5].
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