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1. Statement of Results

Let M™ be an m-dimensional compact orientable C* manifold with boundary
OM and let x: M —R" be a minimal immersion of M into Euclidean n space. It
is well known that M is stationary with respect to m-dimensional volume. That is,
if E is a normal vector field on M vanishing on M and if ¢, denotes the flow

dA
generated by E, then setting A(f)=volume ¢,(M), m =0. We say that M is
2 t=0
(infinitesimally) stable if I >0, ie. A(M) is a strict minimum for all such

variations. =0

Recently Barbosa and do Carmo [1] have shown that if M is 2 minimal sur-
face in R® (m=2, n=3) such that the area of the spherical image (without multi-
plicity) of M is less than 27, then M is stable. The constant 27 is sharp. It is the
purpose of this note to prove similar but weaker stability results in the general
case.

Theorem 1. Let x: M*— R", n>>3 be a minimal immersion. There is a constant ¢,
depending only on n such that if | |K|dV <c,, then M is stable.
M

Theorem 2. Let x: M™— R", m=3 be a minimal immersion. There is a constant
¢, depending only on m such that if ( | | B|"dV)''™<c,, then M is stable.
M

Here K is the Gauss curvature of M and {|B| is the norm of the second funca-
mental from of M and is defined in Section 2. We point out that although these
two results formally look the same, the proof of Theorem 1 is of a different character
than that of Theorem 2 and it is best to separate the two cases.

As an application of Theorem 1 we obtain information about solutions of
Plateau’s problem for a C? Jordan curve I' in R". Let x: A >R" A=the unit
disk in R? be a C?(4) mapping such that x is harmonic and conformal in 4 and
x|0D is a homeomorphism. Denote by [ k(s)ds the total curvature of I'.

r

Corollary 3. Let x: A—>R" be a solution to Plateaw’s problem for a C* Jordan
curve I'. If [ k(s)ds<2m+c; (¢, as in Theorem 1) then x(A) is stable.
r
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Corollary 3 follows from Theorem 1, since the generalized Gauss Bonnet
formula [7] and the assumption jk(s )ds<2m+c, imply that x is an immersion
and | |K|dV <c,.
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It is a pleasure to thank Robert Gulliver for several stimulating conversations.

We also thank Morris Kalka for his interest in our work.

2. The Second Variation and Sobolev’s Inequality

Let x: M™—R" be a minimal immersion. We denote by I the standard connection
on IR” and by V the induced Riemannian connection on M. The tangent and
normal bundle of M are denoted by TM and NM respectively, and X7, XV denote
the projection of a Euclidean vector field X along the mapping onto TM, NM
respectively. The second fundamental form of the immersion B: TM x TM — NM
is given by

B(X,Y)=V, Y=V Y] =V, Y=V, Y=[F, YI".
Let {e,, ..., e,} be an orthonormal basis of TM,, and let EeNM,,. We define
IB- ElI?=}.(Ble;, e)) - E)*.

It is easy to see that if |E|=1, |B- E||* is the sum of the squares of the principal

curvatures of M at p with respect to the unit normal direction E. Let E,, ..., E
be an orthonormal basis of NM,,. Then the quantity

n—-m

IBI>=3_ 1B E,*
k

is the square of the length of the second fundamental form. From the equation
of Gauss we find that for a minimal immersion, — || B||? is just the intrinsic scalar
curvature of M. In particular for m=2, —|B||?=2K, where K is the Gauss
curvature of M.

We next define the Laplace operator 4: I'(N(M))— I'(N(M)), where I'(N(M))
denotes the space of C* normal vector fields on M. Let Vy define the connection
in NM given by V,v=(V,v)", Xe(TM). In terms of this connection

4v(p)= Z e Ve,v =V, V)0)

where e,, ..., e, are an orthonormal basis of TM,.
We can now state the second variational formula ([5], p. 48):

d*A

yr =— ((E-4E+|B-E|*»dV (1)
M

t=0

for a variation vector field EeI'(N(M)), E|6M=0.
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We analyze this formula further by writing E=uv, |[v|=1 and u|0M =0. Then

AE= Z(V v, (uv)— Vveje,-(“"))

l7 Se;yv+ul, v)—(V, e)wv—uly e,-")

e (u)) ¥V, e))v+ul, 7, VVejejv)+2ej(u)l7ejv}

=(4 u)v+uAv+2_Zlej(u) v, v
j=

Hence

E-AE=udu+u*v-A4v 2
since v - v, v=0. Combining (1) and (2) we have the formula

dZ A 2Y.,2

yra i ——J(uAu+(v-Av+|[B-vH Yu2dV (3)
for a variation vector field E=uv.

Lemma 4.

d’A

e >~ [(du+|BIud)dV= [ ([Vul*— | B|*u?)dV.
M M

Proof. Since (|B-v||?<||B||*> we need only show v- Av<0. For

t=0

vedy= Z v-(V, Ve y=",, ,v)= Z vV, v, v=— Z ¥, 2.

h J
j=1 =

Here we have used the identities vVyv=0 and 0=X(v- Vyv)=(Vyv)* +v - Fx Pyv.
Substitution in (3) completes the proof.

We see from the lemma that a sufficient condition for stability of M is that the
principal eigenvalue of the linear eigenvalue problem

Au+Ai|BJ*u=0 on M
u=0 on oM

is greater than one. Therefore it suffices to show that

[ I1BI2u2dV < | |Pul2dV )
M M

for all # =0 in the Sobolev space ﬁl (M).

Proof of Theorem 2. As we have just remarked, we need only show that the
hypothesis ( | | B|™dV)""™<c, implies (4). Suppose for contradiction that (4) is
M

false, namely

[Ivul?dv < [ |B|?u?dV )
M M ’
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for some ue H, (M), u%0. Since M is minimal we can apply the Sobolev inequality
of Michael and Simon [6] to u to obtain

Zm_ m—2
(Fum=2av) 2™ <c; m)( [ [Pu*d V2. (6)
M M
Then from (5) we have
2m  m=2
(fum=2av)*™ <c;* ([ |BI*u?d V)t (7
M M
But by Hélder’s inequality
2 2m  m=2
FIBI2u?dv <( [ |BImdVY"([um—2dV) ™ . 8)
M M M
Combining (7) and (8) gives
2m m—2 1 2m m—2

(fu2av) ™ <e;*([UBImav)"({ " 2av) 7

Hence ( | [[B|™dV)'™=c, contradicting our assumption.
M

3. The Isoperimetric Inequality on the Gaussian Image

In order to prove Theorem 1, it suffices to show that

[ —2Ku2dV < [|Vul?dV ©)
M M

for all ue H (M), uz£0. To establish this inequality we make use of the generalized
Gauss map [2, 51, the necessary properties of which we now briefly describe.

If we think of M? as a Riemann surface, the generalized Gauss map is an
antiholomorphic mapping, g: M*—>Q, ,(C)=P,_,(C) into complex projective
space, such that the image lies in the algebraic subvariety Q,_, which is given in
homogeneous coordinates by the equation Z}+:--+Z2=0. The Gauss map
induces a new metric on M by setting <U, V}¢=<g, U, g, V>, U, Ve TM where
{, » denotes the (renormalized) Fubini-Study metric on P,_,(C). As in the classical
case

(U,Vys=—KU-V ([5],pp. 116-117). (10)

Since K is nonpositive and vanishes only at isolated points of M (branch points
of g), <, >4 defines a Riemannian metric away from these points. Also we have the
important formula for the area A(g(M)) of the Gaussian image of M counting
multiplicites:

A(g(M))=A£ IK|dV.

In proving (9) we will first establish a Sobolev inequality for smooth functions
with respect to the metric {, 5.
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Lemma 5. Let D be a relatively compact subdomain of M which contains no
branch points of g. Then if ue Cy (D)

(fudS)t<cn) [ |Voul dS 11)
D D

provided ||K|dV <e&(n). Here ¢ is a positive constant which depends on the geometry
D

of Q,_, and hence only on n; c(n) is an absolute constant.

Proof. Let D,={peD|u(p)>t}. We write Ag(D,) for the area of D, and Ls(0D,)
for the length of dD, with respect to the metric , >¢. Since D contains no branch
points of g, g: D— Q, , is an immersion. In fact g is a minimal immersion since g
is antiholomorphic and Q, _, is a Kihler manifold ([5], pp. 33). It follows from the
isoperimetric inequality in the Gaussian image g(D,) (Theorem 2.2 of [4]) that for
almost all t

43(D)<c(n) Ly(@D,) (12)

provided [ |K|dV <ég(n). It is now a well-known fact that (12) is equivalent to (11).
D

For we have the formulas

DfuzdS= Oj 2tA¢D,) and D[ |VeuldS = Oj Lg(oD,)dt. (13)

Since j2tA (D )dt<(j' A%(D,)dt)* (12) and (13) imply (11).
(The proof of thlS 1nequahty is elementary; the point is that A%(D,) is non-

nonincreasing and j" A%(D)dt<o0.)
0

Proof of Theorem 1. Let ueH, (M), u%0. Since u can be approximated in
H, (M) by CJ(M) functions, we can assume that ue Cy (M) and D=support u
is a relatively compact subdomain of M. In particular D can contain only a finite
number of branch points of g. Let D’ denote D with these branch points deleted.
Then if [|K|dV<e(n)

M

(fu?dS)E<c(n) [ |VsuldS (14)

since we can approximate u# by functions with compact support in D’ each satis-
fying (11) (by Lemma 5) and obtain (14) in the limit. Applying Schwarz’s inequality
to {14) we obtain

Ju*dS=c*(n) | (Vsul?dS [ dS
D D D

or equivalently using relation (10)

[ —Ku?dV <c(n) [ |K|dV | |Vul2dV. (15)
D D D
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Finally choosing the constant ¢, in the statement of Theorem 1 as ¢, =min(&(n),
$¢*(n) we have | —Ku?>dV<}{|Vu|*>dV establishing (9) and completing the
b b

proof of Theorem 1.

This research was partially supported by the Army Research Office.
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