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1. Statement of Results 

Let M m be an m-dimensional compact orientable C ~ manifold with boundary 
~M and let x: M ---> IR" be a minimal immersion of M into Euclidean n space. It 
is well known that M is stationary with respect to m-dimensional volume.That is, 
if E is a normal vector field on M vanishing on OM and if ~p~ denotes the flow 

by E, then setting A(t)=volume ~pt(M), --d~t t_o=0._ We say generated that M is 

(infinitesimally) stable if dt  2 t=o>0, i.e. A(M)  is a strict minimum for all such 
variations. 

Recently Barbosa and do Carmo [-1] have shown that if M is a minimal sur- 
face in IR 3 (m = 2, n = 3) such that the area of the spherical image (without multi- 
plicity) of M is less than 2~, then M is stable. The constant 2~ is sharp. It is the 
purpose of this note to prove similar but weaker stability results in the general 
case. 

Theorem 1. Let  x: M2-*  IR ~, n > 3 be a minimal immersion. There is a constant c I 
depending only on n such that i f  ~ [K[d V < c 1 , then M is stable. 

M 

Theorem 2. Let  x: Mm--~ IR", m >= 3 be a minimal immersion. There is a constant 
c 2 depending only on m such that if(  ~ [[Bl[mdV)l/"~<c2, then M is stable. 

M 

Here K is the Gauss curvature of M and IIBII is the norm of the second funca- 
mental from of M and is defined in Section 2. We point out that although these 
two results formally look the same, the proof of Theorem 1 is of a different character 
than that of Theorem 2 and it is best to separate the two cases. 

As an application of Theorem 1 we obtain information about solutions of 
Plateau's problem for a C 2 Jordan curve F in IR". Let x: A ~Rn,  A = the  unit 
disk in IR 2 be a C2(A -) mapping such that x is harmonic and conformal in A and 
x J~D is a homeomorphism. Denote by ~ k(s) ds the total curvature of F. 

r 

Corollary 3. Let  x: A ~ "  be a solution to Plateau's problem for  a C 2 Jordan 
curve F. I f  ~ k(s) ds < 2zc + q (c 1 as in Theorem 1) then x(A)  is stable. 

F 
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Corollary 3 follows from Theorem 1, since the generalized Gauss Bonnet 
formula [7] and the assumption ~ k(s)ds < 2~z + c 1 imply that x is an immersion 
and ~ IK ldg<q .  r 

x(A) 
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2. The Second Variation and Sobolev's Inequality 

Let x: M m -+ ]R n be a minimal immersion. We denote by [~ the standard connection 
on IR" and by V the induced Riemannian connection on M. The tangent and 
normal bundle of M are denoted by TM and NM respectively, and X r, X N denote 
the projection of a Euclidean vector field X along the mapping onto TM, NM 
respectively. The second fundamental form of the immersion B: TM x TM ~ NM 
is given by 

B(X, Y)=Vx Y - [Vx  y]r=Vx Y - V x  Y=[Vx Y] N. 

Let {e 1, ..., %} be an orthonormal basis of rMp and let EeNMp. We define 

lIB' Eli 2 = ~(B(ei,  e j). E) 2. 

It is easy to see that if [El = 1, lIB" Eli 2 is the sum of the squares of the principal 
curvatures of M at p with respect to the unit normal direction E. Let El, ..., E,_ m 
be an orthonormal basis of NMp. Then the quantity 

IIBII2=~ liB" gkll 2 
k 

is the square of the length of the second fundamental form. From the equation 
of Gauss we find that for a minimal immersion, -IIBII 2 is just the intrinsic scalar 
curvature of M. In particular for m=2,  - I IBI[2=2K,  where K is the Gauss 
curvature of M. 

We next define the Laplace operator A : F(N(M))---~ F(N(M)), where F(N(M)) 
denotes the space of C ~ normal vector fields on M. Let Vx define the connection 
in NM given by Vxv =(VxV) N, XeF(TM). In terms of this connection 

Av(p)= ~ (g,j VejV-- Vvo v)(p) 
j = l  

where e l , . . . ,  e m are an orthonormal basis of TMp. 
We can now state the second variational formula ([5], p. 48): 

dt2 [t=o = - M ~ (E" AE + liB" Ell2)dV (1) 

for a variation vector field EeF(N(M)), EISM=0.  
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We analyze this formula further by writing E=uv,  Iv[ = 1 and ul~?M=0. Then 

AE= ~ (V~j Vej(UlJ ) -  VVe.iej(UV)) 
j = l  

= ~ (V.j(ej(u)v+u V.#)--(Vef)(U)V --U V%e V) 
j=l 

= ~ {(ej(ej(u)) - (Vej ej)(u)) v + u(V.i V.~ v - Vv.~ ej ~) § 2 ej(lg) ~7ej 12} 
j = l  

rn 

=(A u)v +uA v +2 ~ ej(u) VejV. 
j = l  

Hence 

E. A E = u A u + u 2 v  . Av (2) 

since v. V.v=O. Combining (1) and (2) we have the formula 

dZAIdt z I = -  I (uAu+(v .  Av+lIB.vl l2)u2dV (3) 
,~= o M 

for a variation vector field E = u v. 

L e m m a  4. 

t = o  ~ - M ~(uAu+ dpBII2u2)dV= ~ ~(IVul 2 -  IIBIf 2 u2)  dV.  dt 2 

Proof Since liB. vl]2~ [rBr[ 2 we need only show v-ArgO.  For 

j = l  j = l  j = l  

Here we have used the identities v Vx v = 0 and 0 = X(v. V x r) = (V x v) 2 + v. V x V x v. 
Substitution in (3) completes the proof. 

We see from the lemma that a sufficient condition for stability of M is that the 
principal eigenvalue of the linear eigenvalue problem 

Au+2[[B]12u=O on M 

u=O on OM 

is greater than one. Therefore it suffices to show that 

(. [IBl]Zu2dV< [. [Vu[2dV (4) 
M M 

for all u $0  in the Sobolev space Ol(M). 

Proof of  Theorem 2. As we have just remarked, we need only show that the 
hypothesis (~ IIBII'dV)I/'<c2 implies (4). Suppose for contradiction that (4) is 

M 
false, namely 

I IVu?dV< ~ IIB[l~u~'dV (5) 
M M 



172 J. Spruck 

for some ueI2Ii(M), u ~0. Since M is minimal we can apply the Sobolev inequality 
of Michael and Simon [6] to u to obtain 

2m m-2  
( I um-2 dg )  2m ~_~C21(/g/)(I IVul~ dV)+. (6) 
M M 

Then from (5) we have 

2m m-2  
( I um-2dV)  2m ~ C 2 1 (  I IIBIIeu2dg) L (7) 
M M 

But by H61der's inequality 
2 2m m--2 

llBii2uZ d r  <( ~ ilBil,.dg)m( ~ um-2 dg) m (8) 
M M M 

Combining (7) and (8) gives 

2m m--2. 1 2m m--2 
( I IAm-2 dV)  2m ~ C 2 1 ( ~  IIBllmdg)m( I blm-2 dV)  2m 
M M M 

Hence ( I IIBIImd g)l/~ ~ c2 contradicting our assumption. 
M 

3. The Isoperimetric Inequality on the Gaussian Image 

In order to prove Theorem 1, it suffices to show that 

- 2 K u 2 d V <  IWl2aV (9) 
M M 

for all u~fill(M ), u ~0. To establish this inequality we make use of the generalized 
Gauss map [2, 5], the necessary properties of which we now briefly describe. 

If we think of M 2 as a Riemann surface, the generalized Gauss map is an 
antiholomorphic mapping, g: M 2 ~ Q,_ 2 (~) c P~_ 1 (C) into complex projective 
space, such that the image lies in the algebraic subvariety Q,-2 which is given in 
homogeneous coordinates by the equation Z~+.. .+Z~=O. The Gauss map 
induces a new metric on M by setting (U, V ) s = ( g  , U, g.  V), U, VsTM where 
( , )  denotes the (renormalized) Fubini-Study metric on P~_ 1 (C). As in the classical 
case 

(g ,  V)s= - K U .  V ([5],pp. 116-117). (10) 

Since K is nonpositive and vanishes only at isolated points of M (branch points 
of g), ( , ) s  defines a Riemannian metric away from these points. Also we have the 
important formula for the area A(g(M)) of the Gaussian image of M counting 
multiplicites: 

A(g(M)) = ~ IKI dg. 
M 

In proving (9) we will first establish a Sobolev inequality for smooth functions 
with respect to the metric ( , ) s .  



Remarks on the Stability of Minimal Submanifolds of N" 173 

Lemma 5. Let D be a relatively compact subdomain of M which contains no 
branch points of g. Then if u~ C~(D) 

( ~ u2dS)~<c(n) ~ ]Vsu[ dS (11) 
D D 

provided ~ [K[d V < e(n). Here ~ is a positive constant which depends on the geometry 
D 

of Q,_ 2 and hence only on n; c(n) is an absolute constant. 

Proof Let O t = {peD] u(p)> t}. We write As(Dr) for the area of D t and Ls(ODt) 
for the length of OD t with respect to the metric ( , ) s .  Since D contains no branch 
points of g, g: D ~ Q,-2 is an immersion. In fact g is a minimal immersion since g 
is antiholomorphic and Qn-2 is a K~ihler manifold ([5], pp. 33). It follows from the 
isoperimetric inequality in the Gaussian image g(Dt) (Theorem 2.2 of [-4]) that for 
almost all t 

�89 < A s (Dt) = c (n) L s(ODt) (12) 

provided j" [KldV<e(n). It is now a well-known fact that (12) is equivalent to (11). 

For we have the formulas 

oo oo 

~u2dS=~2tAs(Dt) and ~lVsuldS=~Ls(~Dt)dt. (13) 
D 0 D 0 

oo o3 

Since ~ 2tAs(D~)dt<=(S As(mt)dt) 2 (12) and (13) imply (11). 
0 O 

(The proof of this inequality is elementary; the point is that As(Dr) is non- 
oo 

�89 nonincreasing and ~ A~ (Dr)dt < oo.) 
0 

Proof of Theorem 1. Let u~/]l(M), u~0 .  Since u can be approximated in 
HI(M ) by C~(M) functions, we can assume that u~C~(M) and D=suppor t  u 
is a relatively compact subdomain of M. In particular D can contain only a finite 
number of branch points of g. Let D' denote D with these branch points deleted. 
Then if ~ [K[ dV< e(n) 

M 

( ~. u 2 dS)~ ~ c(n) ~. I Vsul dS (14) 
D D 

since we can approximate u by functions with compact support in D' each satis- 
fying (11) (by Lemma 5) and obtain (14) in the limit. Applying Schwarz's inequality 
to (14) we obtain 

[ u2 dS ~c2(n) 5 IVsul2 dS f dS 
D D D 

or equivalently using relation (10) 

S -Ku2dV<c2(n)  ~ IKIdV [, IVul2dV. (15) 
D D D 
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Finally choosing the constant q in the statement of Theorem 1 as c 1 = min(e (n), 
�89 we have ~ - g u  2 d V<�89 2 dV establishing (9) and completing the 

D D 
proof of Theorem 1. 

This research was partially supported by the Army Research Office. 
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