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Monotone J6nsson operations and near unanimity functions 

L. ZADORI 

Abstract. We define nonextendible colored posets and zigzags ofa poset. These notions are related to the 
earlier notions of gaps, holes, obstructions and zigzags considered by Duffus, Nevermann, Rival, Tardos 
and Wille. We establish some properties of zigzags. By using these properties we give a proof of the well 
known conjecture that states that any finite bounded poset which admits J6nsson operations, also admits 
a near unanimity function. We also provide an infinite poset that shows that we cannot drop the 
finiteness in this conjecture. 

1. Introduction 

A clone on a set A is a set o f  finitary operations on A that  contains the 
projection operat ions and is closed under composi t ion o f  functions. A monotone 

clone consists o f  all mono tone  operat ions on a partially ordered set. M o n o t o n e  

clones have received a great deal o f  attention. A poset is called bounded if it has a 
largest and a smallest element. Mar tynjuk  proved in [8] that  the mono tone  clone o f  
a finite bounded poset is maximal,  i.e., a dual atom, in the lattice o f  all clones on 

the underlying set. Later, in [15] Rosenberg showed that there are six classes o f  
maximal clones on an arbitrary finite set. One of  them is the class o f  m o n o t o n e  

clones o f  finite bounded  posets. The clones of  the other five types were shown to be 
finitely generated; see [7]. The problem remained: Is the mono tone  clone of  a finite 
bounded  poset finitely generated? The answer is yes if the poset is in one o f  the 
following classes: finite lattice ordered sets [7], finite bounded  posets with at mos t  
seven elements [7], posets obtained f rom some finite lattice ordered set by cancelling 
a convex subset o f  it [4] and finite posets with the strong selection proper ty  [14]. 

But in 1986 Tardos  answered the problem negatively in [17] by showing that  the 
mono tone  clone o f  the eight element poset T shown in Figure 1 is not  finitely 
generated. 

Each mono tone  clone o f  a finite bounded  poset that  is known to be finitely 
generated contains a special, n-ary operation, called a near unanimity function. For  
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Figure 1. Poset T. 

n > 3 an n-ary function f is called a near unanimity function,  briefly a nuf, if it obeys 
the identity f ( x  . . . .  , x, y , x  . . . . .  x) = x  for every 1 < i < n. If n = 3, then f is 

called a majori ty  function.  So the next question that occurs for finite bounded posets 
is whether a monotone clone is finitely generated if and only if it contains a near 
unanimity function. For  any algebra that has a near unanimity function among its 
term operations, the clone of term operations is finitely generated, which proves one 
direction of the claim; see [1] and for an explicit proof  see [16]. The remaining part, 

to prove or disprove the other direction, is mentioned as an open problem in [2], [3] 

and [9]. In [5] Demetrovics and R6nyai proved that the monotone clone of any 
crown is finitely generated, but it has no near unanimity function. As a crown is not 
a bounded poset the previous problem is still open. 

In [17] Tardos uses certain special objects, zigzags, to prove that the clone of T 
is not finitely generated. In the same paper there is a remark that characterizes the 

finite posets having a monotone near unanimity function, in terms of their zigzags. 
Objects similar to zigzags called gaps [6] and [13], holes [12], and obstructions [11], 
have been studied from an order theoretical point of view. In [12] and [14] there is 

a characterization of finite posets having a monotone majority function. The proof  
establishes a connection, similar to Tardos's remark, between holes and ternary 
near unanimity functions. The ideas in the papers cited in this paragraph led us to 
study the zigzags of arbitrary posers. 

A variety of algebras is called congruence modular if the congruence lattice of 

every algebra in the variety satisfies the modular law. A variety of algebras is called 
congruence distributive if the congruence lattice of every algebra in the variety is 
distributive. It is a basic observation (see [10]) that if an algebra has a near 
unanimity term operation, then the variety generated by the algebra is congruence 
distributive and so it is congruence modular. We call an algebra a monotone algebra 

of a poset P if the set of term operations of the algebra coincides with the set of all 
monotone operations of P. Davey showed in [2] that a monotone algebra of  a 
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bounded poser generates a congruence modular variety if and only if it generates a 

congruence distributive variety. In [9] McKenzie gave a useful characterization of 
finite bounded posets for which the corresponding monotone algebras generate 
congruence distributive varieties. It was conjectured in [2], [3] and [9] that if a 

monotone algebra of  a finite bounded poser generates a congruence distributive 
variety, then the algebra has a near unanimity term operation. Since the congruence 
distributivity of the variety generated by an algebra is equivalent to the algebra 

having some special term operations, called J6nsson operations, satisfying certain 
identities, we can rephrase the preceding conjecture as follows. A finite bounded 

poset P has monotone J6nsson operations if and only if there exists a monotone 
near unanimity operation on P. By the use of zigzags we settle this conjecture. So, 
as an immediate corollary, we get that the monotone clone of a finite bounded 

poset P is finitely generated, whenever P has monotone J6nsson operations. 
The outline of the paper is as follows. In Section 2 we give the basic definitions. 

Some examples of zigzags are presented. Finite posets with the strong selection 
property and finite posers with near unanimity functions are characterized in terms 

of zigzags. In Section 3 we prove some claims about the shape of  zigzags. In Section 
4 we give a proof  of the above mentioned conjecture that states that for every finite 
bounded poset P there exist monotone J6nsson operations if and only if there exists 

a monotone near unanimity operation on P. We also give an example of an infinite 
bounded poset that has monotone J6nsson terms but has no monotone near 

unanimity function. So in the infinite case that conjecture does not hold. 

2. Zigzags and related concepts 

The main concept of  this paper is the zigzag. To define it we need to clarify 
some basic concepts involving partially ordered sets. After defining a zigzag we 

present some examples. Then, in Proposition 2.3 we characterize via zigzags the 
finite posets with the strong selection property. In 2.4 we give a proof  of  Tardos's 
remark in [17] that describes, via zigzags, the finite posets with monotone near 
unanimity functions. 

A partially ordered set, briefly, a poset P is a nonempty set P with a reflexive, 
transitive, antisymmetric relation < e on it, i.e., P = (P, < e). A poset with a largest 
and a smallest element is called bounded. For an arbitrary poset P we define 
< e =  < e \ { ( p , p ) : p ~ P } .  We use boldface capital letters to denote a poset 
throughout this paper and when it is possible we leave off the subscript from the 
relational symbol. In a poset P, b ~ P covers a ~ P, i.e., a -<p b if a < e  b and there 
is no c s P s u c h  that a <pC < e b .  
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Let P be a poset and let T be a subset of P u <;p with P N T. We denote the 
poset (P\T, (<p ie\r)\T) by P \ T  and we say that T is cancelled from P. For  two 
posets P and Q with P c ~ Q = ~  let P + Q  denote the poset 
(P w Q, -< l, u <- o w {(p, q): p e P, q e Q }). Let I be an index set and let Pi, i e I, be 
posets. Then the product [ J i ~  P~ is a poset with the base set l-[i~zP~ and the 
ordering (a i )~ t  < (b;)i~l if and only if a~ <pb~ for every i ~ L 

A poset Q is a subposet of  P, i.e., Q -< P if Q ___ P and < Q = -< e tQ- Mainly the 
following weaker notion of comparing posets is used throughout the paper. We say 
that a poset Q is contained in P if Q _ P and < o __c < ~, IQ" If Q is contained in P 
we write Q _c p. We say that Q is properly contained in P if Q ~ P and Q r P. We 
note that each poset P contains any antichain defined on any nonempty subset of 
P. An up set of P is a subset S of P for which s ~ S and s < p e P imply p E S. A 
down set of P is defined dually. Let S _ P. Then S* denotes the set of  all elements 
of P which are greater than or equal to every element of  S in P. S .  is defined 
dually. A map f : Q ~ P is called monotone with respect to Q and P if for every 
a <Qb  we have f(a) <pf(b). For such a map we use the abbreviation that 
f : Q - - ,  P is monotone. We say that an n-ary operation f on P preserves P or P 
admits f i f  and only if f :  P " ~ P  is monotone. 

Let P and Q be posets. A pair ( Q , f )  is called a P-coloredposet if f is a partially 
defined map from Q to P. If f can be extended to a fully defined monotone map 
f '  : Q -~ P on Q then f and (Q, f )  are called P-extendible, otherwise f and (Q, f )  are 
called P-nonextendible. A P-zigzag is a P-nonextendible, P-colored poset ( H , f ) ,  
where H is finite and for every K properly contaned in H, the P-colored poser 
(K, f lx ) is P-extendible. Roughly speaking, the P-zigzags are the finite, minimal, 
nonextendible P-colored posets. The notion of a zigzag is related to that of the gap 
[6], hole [12], obstruction [11] and the zigzags defined in [17]. When it is clear what 
P is we leave it off from the terms like P-zigzags, P-extendible, etc. 

For  two P-colored posets ( H , f )  and (Q, g) we say that ( H , f )  is contained in 
(Q, g) and we write ( H , f )  __ (Q, g) i f H  ~_ Q and f =  g I/~. Observe that every finite 
nonextendible colored poset contains a zigzag. Let ( H , f )  be a P-colored poset and 
let T be a subset of  HwMI~ with H N T .  We denote the P-colored poset 
( H \ T , f ] H \ r )  by ( H , f ) \ T  and we say that T is cancelled from ( H , f ) .  For  a 
P-colored poset ( H , f )  we define C ( H , f ) =  {h e H :f(h) exists} and N ( H , f ) =  
H\C(H, f ) .  We call the elements of C ( H , f )  colored elements and the elements of 
N ( H , f )  noncolored elements. If C ( H , f )  and N ( H , f )  are nonempty we define the 
posets C ( H , f )  and N ( H , f )  by the restriction of <H to C ( H , f )  and N ( H , f ) ,  
respectively. 

Each poset P is associated with two undirected graphs on P. One is called the 
comparability graph of  P that has an edge between a and b if a < p b. The other is 
the covering graph of P that has an edge between a and b if a -<p b. Sometimes, as 
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an example, we shall draw a picture of a P-colored poset ( H , f )  for some particular 
P. A picture like this consists of the covering graph of H and an element of H is 
drawn as a small shaded circle or a small empty circle according to whether f is 
defined or not defined on the given point. Every shaded point is labelled by the value 

o f f  

EXAMPLE 2.1. Let P be the poset shown in Figure 2. Then the P-colored poser 
( H , f )  shown in Figure 2 is a P-zigzag. 

1 

a 

o 

b' b X b' b ~ bt 
a' a a' a a t 

Figure 2. Poset P, a P-zigzag (H,f) and (H,f)\{(hl, h2) }. 

Proof The P-colored poset ( H , f )  clearly is P-nonextendible. Let hi be the 
noncolored element and let h2 be the element colored by b in ( H , f ) .  Then 
( H , f ) \ { ( h l ,  h2)}, which is a maximal P-colored poser properly contained in ( H , f ) ,  
is extendible by coloring hi by b'. The other three maximal P-colored posers properly 
contained in ( H , f )  are P-extendible by symmetric arguments. Thus, by definition, 

( H , f )  is a P-zigzag. [] 

A P-colored poset ( H , f )  is called monotone if f is a monotone map on its domain; 
otherwise ( H , f )  is nonmonotone. A monotone P-colored poset ( H , f )  is called an 
extension of the P-colored poser (H, g) if f is an extension of g. Observe that for any 
poset P the P-colored two element chain in which the top is colored by a and the 
bottom is colored by b where b ;~ a ~ P, is a nonmonotone P-zigzag and every 
nonmonotone P-zigzag is of this form. So for every monotone zigzag ( H , f ) ,  f is 
monotone on its domain and there is at least one element of H wheref i s  not defined. 

A poser determined by the ordering of a complete lattice is called a complete 

lattice ordered set. Observe that there are no monotone L-zigzags for a complete 
lattice ordered set L. The reason is that every monotone L-colored poset ( Q , f )  is 
extendible b y f '  : a ~-~ A {f(b) : b ~ Q, a < b}. In particular, no finite lattice ordered 
set possesses monotone zigzags. 

EXAMPLE 2.2. Let T be the poset shown in Figure 3. Then the T-colored posets 
shown in Figure 3 are T-zigzags. 



Vol. 33, 1995 Monotone Jdnsson operations and near unanimity functions 221 

1 
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Figure 3. Poset T and some T-zigzags. 

Proof Argue as in Example 2.1 or see [17]. [] 

We note that it is easy to prove that the only monotone P-zigzag is ( H , f )  for 
P in Figure 2. It is also easy to prove that the poset T in Figure 3 has infinitely 

many zigzags. All the monotone T-zigzags are described by Tardos in [17]. 
Let us fix a finite poset P. Let Bp = {(D, U):D is a down set of  P, U is an up 

set of  P and D * n  U,  ~ ~ }  and let Bp be the poser on Bp given by the ordering 

(D1, UI) < (D2, U2) if and only if D 1 ___ D2 and U 2 c2 UI" We say P has the strong 
selection property if and only if there exists a monotone map g : Bp ~ P such that 

for every (D, U) ~ Bp, g((D, U)) ~ D* c~ U,. 
In the following proposition we describe via zigzags the finite posets with the 

strong selection property. Their monotone zigzags turn out to be the ones with 

exactly one noncolored element. It is not hard to get a description of the zigzags 
with one noncolored element; see Proposition 3.11. 

P R O P O S I T I O N  2.3. A finite poset P has the strong selection property if and only 
if every P-zigzag has at most one noncolored element. 

Proof Let ( H , f )  be a P-zigzag, where P has the strong selection property. With 

every h ~ H we can associate a pair (Dh, Uh) defining Dh = {a e P : there exists 

h ' ~ C ( H , f ) ,  h '_<h and a < f ( h ' ) }  and U h = { a E P :  there exists h ' e C ( H , f ) ,  
h <- h' andf(h') <- a}. We claim that ( H , f )  cannot contain two or more noncolored 

elements. For  otherwise if h s C ( H , f )  then f(h) ~ D* c~ Uh, and if h e N ( H , f )  
then by cancelling a noncolored point h0 r h from ( H , f )  the resulting colored poset 

will be extendible, so D* c~ Uh, -r ~ .  Thus, by setting f ' (h )  = g(Dh, Uh), where g is 
obtained from the definition of  the strong selection property, we would get a 

monotone extension o f f  to H. 
Now, let us suppose that P is a finite poset such that P-zigzags have at most  one 

noncolored element. We want to show that the above map g exists. Let h be the 
partial map from Bp to P defined by h(({p},,  { p } * ) ) = p , p  e P. The map h is, 
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clearly, monotone from its domain to P. We claim that the P-colored poser (Bp, h) 

is P-extendible. For  otherwise there is a P-zigzag ( H , f )  contained in (Bp, h). Since 
every monotone P-zigzag has exactly one noncolored element, by (2) of Claim 3.11, 

( H , f )  is of the form shown in Figure 4. Let (D, U) be the only noncolored element 
of ( H , f ) .  Obviously, (D, U) e Bp. On the other hand, (D, U) cannot be in Bp since 

a l , . . . , a ,  e D  and b l , . . . , b m ~  U and so D * ~ U .  is empty. Thus, (Bp, h) is 
an extendible colored poset. Let g be a monotone extension of h to B~,. The 
map g clearly satisfies the requirements in the definition of the strong selection 

property. [] 

An n-ary function f :  pn __. p, n > 3, is called a near unanimity function, briefly 

an n-nuf if and only i f f ( a  . . . . .  a, b, a , . . . ,  a) = for every a, b ~ P and for every 
l < i < n .  d~ 

As we will see in the next remark the number of colored elements in the zigzags 

of a finite poser has a great importance in dealing with near unanimity functions 
preserving the poser. This remark is mentioned by Tardos in [17] without proof. 

Remark 2.4. Let n > 3. A finite poser P admits an n-ary near unanimity 

function if and only if in every P-zigzag the number of colored elements is at most 

n - 1 .  

Proof. Let us suppose P admits an n-nuf. Let ( H , f )  be a P-colored poset and 

let C ( H , f )  = {hi . . . . .  ht} such that n <- l = Ic(H,f)l. Furthermore, let us suppose 
that for every H'  properly contained in H, (H ' , f lH . )  is extendible. So for any 

h ~ C ( H , f )  the colored poset (Hh, f ] ,h ) ,  where Hh = ( H \ { h } ,  < n  ],\~h}), is ex- 
tendible. Let us take a function fh :H-- - ,P  for each h e C ( H , f )  such that fh ["h is 

a P-extension of firth to Hh. By the hypothesis there is an /-nuf Mt preserving P. 
Hence M t ( f h l , . . .  ,fht) is a fully defined montone map from H to P that extends f.  
Thus, every P-zigzag must have at most n - 1 colored elements. 

Now, let us suppose that in every P-zigzag the number of colored elements 

is at most n -  1. We look at the partial map M n : P n - - * P  defined by 

Mn(a, b . . . .  , b) . . . . .  M , ( b  . . . . .  b, a) = b. Let us suppose Mn is not extendible to 
Pn as a monotone map from P" to P. Then the colored poset (W, 3//,) contains a 

P-zigzag ( H , f ) .  We know that IC(H,f) ]  < n -  1. Hence there exists an i with 
1 < i < n such t h a t f t a k e s  on the i-th component for each element of C ( H , f ) .  But 
then the i-th projection from H to P is a P-extension of f to H, which is a 
contradiction. [] 

We note that the "only if" part of the proof  is valid for any poset P. 
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3. Properties of zigzags 

In the previous section we defined zigzags. Now, we will explore the properties 
of these objects. In Proposition 3.1 we give a useful characterization of  zigzags. 

Then in 3.2 through 3.11 we prove some claims concerning the shape of zigzags. In 
Proposition 3.12 we show that every zigzag of a finite poset P is a monotone image 
of a zigzag of height less than the height of P. 

A poset is called connected if its comparability graph is connected. 

PROPOSITION 3.1. Let ( H , f )  be a P-colored poset, where H is finite. Then 
( H , f )  is a P-zigzag i f  and only i f H  is connected, ( H , f )  is not P-extendible and by 

cancelling any covering pair of  ( H , f )  the resulting colored poset is P-extendible. 

Proof The "only if" part should be clear by the definition of a zigzag. To show 
the " i f"  part, let H '  ~ H and let us suppose ( H ' , f  I~') is not P-extendible. We will 
show H ' =  H. By the assumption H '  has to contain all covering pairs of H 
otherwise H '  would be extendible. Then H '  has to contain every point of H which 
is in a connected component C of the comparability graph of H, where C has at 

least two elements. By the assumption H has only one component and this 
component has more than one element since ( H , f )  is not P-extendible. So H ~ H'; 
hence H = H'. [] 

Now, we list some facts concerning the shape of a P-zigzag ( H , f ) .  

CLAIM 3.2. Let ( H , f )  be a P-zigzag. The subgraph spanned by N ( H , f )  in the 
covering graph of  H is connected. 

Proof. Let us suppose the claim is not true. Then if we cancel the elements of 
one component of the subgraph spanned by N ( H , f )  from ( H , f )  we get a colored 
poset that is extendible. If we cancel all the other elements of N ( H , f )  from ( H , f )  
we get another extendible colored poset. Because of the assumption, by taking the 
union of two extensions which extend the above two colored posets we would get 
an extension o f f  to H. [] 

CLAIM 3.3. Let ( H , f )  be a monotone zigzag and let a ~ C ( H , f ) .  For every 

b ~ H which satisfies a < b or b < a we have b ~ N ( H , f ) .  

Proof Without loss of generality we can assume b < a. If b E C ( H , f )  then 
cancelling (b, a) in ( H , f )  we get an extendible colored poset and since ( H , f )  is 
monotone putting back (b, a) we still have an extendible colored poset. This 
contradicts the fact that ( H , f )  is not extendible. [] 
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A monotone map between two P-colored posets means a monotone map between 
the two base posers which maps each a-colored element to an a-colored element 
and each noncolored element to a noncolored element. We say that a P-colored 
poset ( H , f )  is a monotone image of a P-colored poset ( H ' , f ' )  if there exists a 
monotone map from ( H ' , f ' )  onto ( H , f ) .  

CLAIM 3.4. For every P-zigzag ( H , f )  there exists a P-zigzag ( H ' , f ' )  such that 

N ( H , f )  = N ( H ' , f ' ) ,  ( H , f )  is a monotone image of  ( H ' , f ' )  and every colored 
element of  ( H ' , f ' )  occurs in exactly one covering pair of  H'. 

Proof  For nonmonotone P-zigzags the claim is obvious. For a monotone 
P-zigzag ( H , f )  the P-colored poset ( H ' , f ' )  is defined as follows. The poset 
N ( H ' , f ' )  is contained in N ( H , f )  in such a way that the covering graph of N ( H ' , f ' )  
is the subgraph spanned by N ( H , f )  in the covering graph of ( H , f ) .  For every 
s ~ C ( H , f )  and h ~ N ( H , f )  with s <H h there is a single element s '  ~ C ( H ' , f ' )  
such that h is the unique element covering s '  in ( H ' , f ' )  and f ' ( s ' ) = f ( s ) .  By 
Proposition 3.1 the so defined colored poset ( H ' , f ' )  is a zigzag which obviously 
satisfies the requirements of the claim. [] 

A colored poset in which every colored element occurs in exactly one covering 
pair is called a standard colored poset. 

CLAIM 3.5. Let ( H , f )  be a P-zigzag and let a and b be two different elements 

o f  C ( H , f ) .  Let us suppose that there exists c ~ N ( H , f )  with c <( a, b. Then f (a)  (~ 

f(b).  

Proof. Let us suppose that the claim is not true. Then f (a)  -<f(b). If we cancel 
(c, b) we get an extendible colored poset for which any extension extends ( H , f ) ,  
too. [] 

CLAIM 3.6. Let ( H , f )  be a P-zigzag and let a, b E C ( H , f ) ,  where a < b. Then 

f (a)  # f(b).  

Proof. The claim is obvious for a nonmonotone zigzag. Now, let us suppose 
( H , f )  is a monotone zigzag. Then, by Claim 3.3, there is a c e N ( H , f )  such that 
a < c < b. By cancelling c from ( H , f )  the resulting colored poset has an extension 
f ' .  I f f ( a )  --f(b)  then f '  together with the coloring of c by f (a)  is an extension of 
f t o  H. [] 
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In 3.4 we split colored points to obtain a new zigzag. In certain cases we can do 
the reverse. 

C L A I M  3.7. Let ( H , f )  be a P-zigzag. Let a, b ~ C ( H , f )  be two different 

maximal elements of  H for which f (a)  =f (b ) .  Then there exists a zigzag ( H ' , f ' ) f o r  
which N ( H ' , f ' )  = N ( H , f )  and there is an onto monotone map form ( H , f )  to ( H ' , f ' )  
which identifies only a and b. 

Proof We define H '  as follows. Above every element of  H\{a ,  b} covered by a 
or b in H we put the covering element c ~ H. The coloring f '  of  H '  is defined by f 
on H \  {a, b } and by f ' (c )  = f(a). By Proposition 3.1, (H' ,  f ' )  is a zigzag which satisfies 
the requirements of  the claim. [] 

CLAIM 3.8. Let ( H , f )  be a P-zigzag. Every monotone g : H- -*H that is the 

identity map on C ( H , f )  has to be onto, i.e., an automorphism of  H. 

Proof  Let us suppose g is a monotone map that is the identity on C ( H , f )  and 
maps H into a proper subset H '  of  H. Since ( H , f )  is a zigzag there is a P-extension 
f '  of  f to H' .  S o f '  o g is a P-extension o f f  to H which contradicts that ( H , f )  is not 
extendible. [] 

Let Q be a finite poser. Then a ~ Q is called retractable if there is a non-onto 
monotone map on Q that fixes each element different from a. An element a ~ Q is 
called irreducible if there is a unique b ~ Q with a -< b or b < a. Observe that every 
irreducible element is retractable. 

CLAIM 3.9. Let ( H , f )  be a P-zigzag. Then N ( H , f )  has no retractable element 

o f  H. 

Proof Apply Claim 3.8. [] 

CLAIM 3.10. I f P  = Q + 1, then every maximal element o f  a P-zigzag ( H , f )  is 
colored. 

Proof Let us suppose there exists a maximal element h of  H that is not colored 
in ( H , f ) .  By cancelling h in ( H , f )  we get an extendible colored poset. Now, a n  
extension of f to this colored poser together with the coloring of h by 1 extends f 
to H. This is a contradiction, so we have the claim. [] 

CLAIM 3.11. For a P-zigzag ( H , f )  the following hold. 

(1) / f  [N(H, f ) [  = 0, then ( H , f )  is a two element nonmonotone zigzag. 

(2) I f  [N(H, f ) [  = 1, then ( H , f )  is the first colored poset shown in Figure 4, 
where m and n are nonnegative integers such that m + n > 0 and n, m v ~ 1. 

Moreover, f is an order isomorphism on its domain. 
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bl b2 bm 
b l  b2 bra " ' "  

a l  0,2 art 
a l  a2  a n  

Figure 4. Monotone  zigzags with one and two noncolored elements. 

(3) I f  [N( H , f )  I = 2, then ( H , f )  is the second colored poset shown in Figure 4, 

where k, l >-1 and m and n are nonnegative integers for  which m, n # 1. 

Moreover, any comparable pair in R a n g e ( f )  not shown in the picture is o f  the 

f o rm  di < cs, ej < b s or at < d,. for  some l < i < k, l < j < l, l < s < m and 
l < t < n .  

Proo f  We showed (1) before Example 2.2. First we prove (2). By Claim 3.3 we 
get the picture of ( H , f ) .  Obviously, m + n > 0. Claim 3.9 gives n, m # 1. Claim 3.5 
gives that f is an order isomorphism on its domain. Next we prove (3). By using 
Claim 3.2 and Claim 3.3 we can see that ( H , f )  has to be a standard zigzag as 
shown in the picture. Claim 3.9 gives k, l > 1 and m, n # 1. To prove the last claim 
use Claim 3.5, Claim 3.6 and the definition of zigzag. [] 

Let Si be the poset that we obtain by cancelling the top element from a Boolean 
lattice ordered set with i atoms. Let S~ a be the dual of Si. Let Tt.~ be the poset 
(St + 1 + Sk a) • (1 + 1) without its top and bottom element. Then the reader can 
easily check the following claims. The poser Sn + Sam has a zigzag of the form in (2) 
of Claim 3.11. The poset Sn +T~.k + Sam has a zigzag of the form in (3) of Claim 
3.11. For more on these posets see [11] and [13]. 

In a finite poset P we define the length between two elements a <p b as the 
maximum cardinality of a chain between a and b. The length between a and b is 
denoted by (p(a, b). 

PROPOSITION 3.12. Let  P be a finite, bounded poset. Then for  every monotone 

P-zigzag ( H , f )  there is a standard zigzag ( H ' , f ' )  such that ( H , f )  is a monotone 

image o f  ( H ' , f ' )  and for  every maximal  chain a = a l  < a 2 < " "  < a ,  = b  o f  

H' ,  n < ~ p ( f ' ( a ) , f ' ( b ) )  + 1. 

Proo f  First of all, recall Claim 3.10 to see that for every maximal chain of any 
P-zigzag the bottom and top elements are colored. The proof  will proceed by 
induction on the cardinality of the set of noncolored elements of a zigzag. By (2) 
in Claim 3.11, the zigzags with one noncolored element satisfy the claim. Let ( H , f )  
be a P-zigzag with IN(H,f) I  = m -> 2 and let us suppose that for every P-zigzag 
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with m - 1 noncolored elements we have the claim. Let h e N ( H , f )  be a maximal 

element of  N ( H , f ) .  Let us color h by p e P in ( H , f ) .  For  every p e P  the resulting 

colored poset contains a zigzag (Hp,fp) such that h S Hp. We select (Hp,fp) 
nonmonotone whenever this is possible. I f  (Hp,fp) is monotone then by the 

induction hypothesis there exists a standard zigzag (Qp, gp) which has (Hp,fp) as its 
monotone image and its maximal chains satisfy the desired property in the claim. 

Observe that under the monotone map from (Qp, gp) onto (Hp,fp) the preimage of 

h contains only maximal elements of  Qp. I f  (Hp,fp) is nonmonotone then we make 

(Qp, gp) a copy of (Hp,fp).  Now, we can construct a standard colored poset (Q, g) 

from (Qp, gp), p ~ P, by gluing all elements of  the preimages of  h into one single 

noncolored point, called h' ,  meanwhile preserving the coloring of the other points. 

This colored poset is not extendible since (Qp, gp),p e P, is not extendible. So it 

contains a zigzag (Q' ,  g ' )  in which the colored elements are exactly the extremal 

elements. Let us construct a standard zigzag ( H ' , f ' )  for (Q ' ,  g ' )  as in Claim 3.4. 

Clearly, there is a monotone map from ( H ' , f ' )  to ( H , f )  and this map must be 

onto; otherwise ( H ' , f ' )  would be extendible. Let a = a~ < a2 < ' " <  an = b be a 

maximal chain of  H' .  I f  this chain does not contain h '  then we are done by the 

induction hypothesis. Otherwise an i = h '  <~n" b. The chain a = al < a2 < �9 �9 �9 < 

an 1 = h '  has to be in the preimage of lip for some p. I f  (Hp,fp) is monotone then 

by applying the induction hypothesis to (Qp, gp) we get n - 1 < gI,(gp(a), p) + 1. 
Since (Hp,fp) is monotone our construction guarantees that if we color h by p in 

(H, f )  we get a monotone colored poser. Now, f ' (b) must be the color of  an element 

above h in ( H , f ) .  Hence, by Claim 3.9 and Claim 3.5 we have p < f ' ( b ) .  Since 

gp(a) =f ' (a)  we have fp(gp(a),p)n t- 1 < fp(f ' (a) , f ' (b)) .  By combining the preced- 
ing two inequalities we get the claim. I f  (Hp,fp) is nonmonotone,  then n = 3 and 
the claim is obvious. [] 

4. Finite bounded posets admitting J6nsson operations 

Ternary operations di, 0 -< i <- n, on a set are called J6nsson operations if they 
satisfy the J6nsson identities given by 

do(x, y, z) = dn(z, y, x) = d,.(x, y, x) = x for 0 < i < n, 

d2 i (x , x , y )=dz i+ l (x , x , y )  f o r O < i < ( n - 1 ) / 2  

and 

dz i+l (x ,y ,y )=d2i+2(x ,y ,y )  f o r O < i < ( n - 2 ) / 2 .  
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As we mentioned in Section 1 an algebra has J6nsson operations among its term 

operations if and only if the variety generated b y  the algebra is congruence 

distributive. Moreover, if an algebra has a near unanimity function among its term 

operations, then it also has J6nsson operations. The converse of  this claim for 

monotone algebras of  finite bounded posets is conjectured in [2], [3] and [9]. The 

main result of  the paper is the proof  of  this conjecture in Theorem 4.1. In Theorem 
4.1 we give a list of  equivalent properties for finite bounded posers. The first 

property on the list is that a finite bounded poset P admits a near unanimity 

function and the second one is that P admits J6nsson operations. We also provide 

an example of an infinite bounded poser which admits J6nsson operations but 

admits no nuf; see Example 4.3. 

A finite poset is called a fence if its comparability graph is a path. In a 

connected poset P we define the distance d(a, b) between a and b as n - 1, where n 

is the smallest integer for whicla there exists an n-element subfence connecting a and 

b in P. So d(a, a) = 0. The diameter o f  P is the supremum of d(a, b), where a, b ~ P. 

The diameter of a colored poset is the diameter of  its base poset. In P we define the 

up distance from a to b as the least positive integer n such that there is a subset 

{ao . . . . .  an } --- P with a -- ao, b = an and ao < al > a2 -< �9 �9 �9 �9 We define the down 

distance from a to b dually. We note that by the definition both the up and down 

distances from a to a are 1. 

T H E O R E M  4.1. For a finite bounded poset P the following are equivalent: 

(1) P admits a near unanimity function. 

(2) P admits J6nsson operations. 

(3) P admits ternary operations D~ , . . . , D,, , for  an n' > 1, satisfying 

D l ( x , x , y ) = D . . ( y , x , x ) = D i ( x , y , x ) = x  for  1 <-i<-n" 

and 

Di (x, y, y) = Di + 1 (x, x, y) for  1 < i < n' - 1. 

(4) For some n there exists a partially defined, monotone n -nu f  that is fully 

defined on the set o f  n-tuples A n = { ( a  . . . . .  a, b , c  . . . .  , c ) : a , b , c ~ P ,  

l < i < n } .  + 

(5) There exists a finite m sueh that every P-zigzag has a diameter at most m. 

(6) The number o f  P-zigzags is finite. 

Proof. (1) implies (2): One can prove it easily as follows. Let f : p s ~  p be a 
monotone nuf. Then we define d 2 i _ l ( x , y , z ) = f ( z , . . . , z ,  i Y F X , . . . , x  ) and 
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d2i(x,y, z) = d2~_ l(x, z, z) for 1 < i < s - 1. Let do(x,y,  z) = x. So the operat ions 

dj (x, y, z), 0 < j < 2(s - 2), are J6nsson operations. 

(2) implies (3): In  [9] McKenzie  proves that P admits J6nsson operat ions if and 

only if P admits operat ions bo(x, y ) , . . . ,  bm,(X , y) which satisfy 

x = bo(x, y) = bi(x, x) = bm,(y, x) for 0 < i < m ' ,  

b2 i (x , y )<b2~§  f o r O < i < ( m ' - l ) / 2  

and 

b2~+l(x,y)>-b2~+2(x,y) f o r O < i < ( r n ' - 2 ) / 2 .  

In fact, in his proof,  when he proves the if part  (Theorem 2.3), he uses the b; to 

construct  mono tone  J6nsson operat ions do(x, y, z) . . . . .  d2n,_ l ( x , y ,  z), where the 

operat ions with even indices do not  depend on their second variable. With the help 

o f  the d2~ 1, 1 < i < n ' ,  we define 

D1 (x, y, z) = d 1 (x, y ,  Z) . . . . .  Dn, (X, y, z) = d2n, 1 (x, y, z). 

For  these operat ions the first line of  identities in (3) immediately follows f rom the 

J6nsson identities, and the second line o f  identities in (3) follows f rom 

Di(x, y, y) = a2~_ ,(x,  y, y) = a2~(x, y, y) = a2~(x, x, y) 

= d 2 i + l  (x ,  x ,  y )  = Di+ 1 (X, X, y). 

Thus if P admits J6nsson operat ions then P admits operat ions defined in (3). 
(3) implies (4): Let B i = { ( a  . . . . .  a, b , c , . . . , c ) : a , b , c ~ P } ~ _ P n ' + 2  for 1 -< 

i -< n '  + 2. Note . tha t  B1 - B2 and Bn, + 2 _c B n, + ~. So An, + 2 = UT"__ +1 Bi. Let D1, .  � 9  
Dn, be the ternary operat ions given in (3). We define an (n '  + 2 ) - n u f f  on An,+ 2. Let 

f ( a  . . . . .  a , b , c  . . . . .  c ) = D i  ~(c,b,a)  on B~ for 2 - < i - < n ' + l .  Observe that  if 
dJ 

d = ( a , . . . , a , b , c  . . . .  , c )~B~c~Bj ,  where 2 < _ i < j < _ n ' + l ,  then either d is a 

constant  vector or  a = b ~ c or a ~ b  -- c. In  the last two cases j has to be i + 1. 

Since f ( a ' ,  . . . .  a ' ,  b ' , . . . ,  b ' )  = D~_ ~(b', a ' ,  a ' )  = Dg(b', b', a') for 2 -< i <- n ' , f ( d )  

is defined the same on B; and Bg+~. Thus f is a well defined function on An,+ 2. 

Also, f is a nu f  on An, + 2 because D1 (x, x, y) = D n,(y, x, x) = Di (x, y, x) = x for 
l <-i<-n'. 

Lastly, we show t h a t f i s  a mono tone  on An, + 2. Let d = (a . . . . .  a, b ,  c , . . . ,  c) < 
d~ 

e = (a' ,  . . . .  a ' ,  b ' ,  c ' ,  . . . .  c'), where d, e ~ An,+2. We want  to show f ( d )  -<f(e). 
d 
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I f  i = j  the proof  is obvious. The j < i case is the dual of  the i < j  case. So let i < j .  

Then 

f (d )  =Di_ l (c ,  b, a) < Di_l(c,  a', a') =Di(c,  c, a') 

< D i (c, a', a') . . . .  < 1)i-2 (c, a', a') = Dj-1 (c, c, a') 

< Dj_,(c ' ,  b', a') = f i e ) ,  

which proves the claim. 

(4) implies (5): Let n be as in (4) and let us suppose there is a P-zigzag with a 

diameter at least n + 2. Then, as in Proposition 3.4, from this zigzag we can 

construct a standard zigzag ( H , f )  which still has a diameter at least n + 2. Hence 

N ( H , f )  has a diameter d > n. Let us select two points a, b ~ N ( H , f )  such that their 

distance is d in N ( H , f ) .  We know that cancelling a in ( H , f )  leaves a P-colored 

poset that is P-extendible. Let fa be such a monotone extension. Similarly, let fb be 

a monotone extension corresponding to the cancellation of b in ( H , f ) .  Let 

B i = { h : h  ~ N ( H , f )  and h has down distance i f rom a in N ( H , f ) } ,  where 

1 < i < d + 1. We note that by definition a ~ B1. Let do = d if Bd+ i = ~3 otherwise 

d o = d +  1. 
Now, we make some observations. Since b has a distance d from a, B~ # G; for 

1 -< i -< do. The sets B 1 . . . . .  Bdo give a partition of N ( H , f )  with a ~ B1 and b ~ Bao. 
For any 1 < i < d0, B~ is a down set if i is odd and B i is an up set if i is even. 

Moreover, U~= ~ Bj and N ( H , f ) \ U ~ =  , B s. span two subposets of  N ( H , f )  which 

cannot be connected in N ( H , f ) \ B i .  

We define a function g~ on H for every 1 < i -< do. Let g,. be fb on Us s_ I Bj and 

let g~ be fa  on N ( H , f ) \ U ~ =  1Bj. On B~ let gg be equal to 0 if i is odd and 1 if i is 

even. Since ( H , f )  is standard every element of  C ( H , f )  is connected to N ( H , f )  by 
a single covering edge. Depending on whether i is odd or i is even we define g~ to 

be 0 or 1 on those elements of  C ( H , f )  which are connected to some element of  B i 

by covering edges. For  the remaining elements of  C ( H , f )  the function gi is defined 

by the corresponding values of  f By the previous observations gi, clearly, is a 

monotone function from H to P. 

Since do > n, by the hypothesis there exists Mdo, a monotone partial do-nuf, 

which is fully defined on Ado. Now, Mao(gl(x ) . . . . .  gdo(X)) is a monotone map 
from H to P which extends f t o  H. This contradicts the fact that ( H , f )  is a zigzag. 

(5) implies (6): For  a finite poser Q let d(Q) denote the number of  elements in 

a subchain of maximum cardinality. For an a ~ Q let do(a) denote the maximum 
number of  elements in a subchain with a top element a. Of  course, we always have 
(Q(a) < d(Q) for every a E Q. 
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Let us suppose (5) is true and P has infinitely many zigzags. Let k be the 

cardinality of P. Since P is finite there is a P-zigzag ( H , f )  such that IHI > 
~7_+o ~ k ik. By Proposition 3.12 we can assume that #(H) is at most k - 1. The basic 
idea of the proof  is simple. Starting from ( H , f )  we create a sequence of zigzags 

(Hi,f-) ,  1 -< i < m + 1, such that each (Hi , f . )  has diameter at least i. The large size 
of IHI will guarantee that we can construct these zigzags. The existence of 

(Hm+l,fm+l) contradicts (5) and so we get the claim. In order to create the 
(Hi,f-) ,  1 < i < m + 1, we need to prove the following two claims. 

CLAIM 1. Let P be a finite poset o f  cardinality k. Let ( H , f )  be a monotone 

P-zigzag and let D be a down set o f  H. Then there exist a P-zigzag (H ' , f ' ) ,  a down 

set D'  o f  H'  and a monotone map g f rom (H ' , f f )  onto ( H , f )  such that the following 
hold. 

(a) H ' \ D '  = H\D,  g(u) = u for  every u ~ H ' \ D "  and g(D') = D. 

(b) ]{d'),] < k ~H(g(a')~ for every d' ~ D'. 

(c) ~(H') <_ ~(H). 

Proof  of  Claim 1. Let ( H , f )  be a P-zigzag and let D be a down set of H. We 
prove the existence of (H ' , f ' ) ,  D '  and g satisfying (a), (b) and (c) by induction on 
IDI. If  IDI=0  there is nothing to prove. Let us suppose IDI > 1. Let d ~ D be 

maximal in the poset D spanned by the elements of D in H. We apply the induction 

hypothesis for ( H , f )  and D\{d} .  Thus, there exist a P zigzag (Ho,fo), a down set 
D o of H o and a monotone map go from (H0,f0) such that the following hold. 

(a') H0 \D 0 = H\ (D\{d) ) ,  go(u) = u for every u ~ Ho\Do and go(Do) = D\{d} .  
(b') [{do},] < k ~"(*~176 for every do e Do. 
(c') ~(Ho) -< ~(H). 

Observe that the properties of go guarantee {d}.\{d} __c Do . Now, we create a new 

P-colored poset (Hi , f1)  from (Ho,f0) by replacing d in (Ho,fo) by elements 
d l , . . . ,  de as follows. For each antichain in {d}.\{d} with at most k elements we 
pick a new element de that covers those elements, and de. itself is covered by all 
elements that cover d in H 0. We leave de noncolored if d is noncolored in (Ho,fo);  
otherwise fl  (de) =f0(d).  The colored poset (Hi ,  f~) so obtained is P-nonextendible. 
For otherwise let f~ be a monotone extension of f~ to H~. Since ( H ~ , f l ) \  

{d~ . . . . .  de} =(Ho,fo)\{d}, f '~lUo\~d)is  a monotone extension o f f 0  to H0\{d}. 
Note that the colored poset (Ho , f ]  [H0\{d)) is nonextendible since (H0,f0) is 
nonextendible. So it contains a zigzag (Q, g). Observe that d E Q. Also (Q, g) is a 
nonmonotone zigzag when d is colored and d is the only noncolored element of 
(Q,g)  when d is noncolored. By (1) and (2) of Claim 3.11, (Q, g) has its colored 
elements in {d},w {d}* and the elements of (Q, g ) i n  {d},\{d} form an antichain 
with at most k elements. This is impossible; otherwise (Q, g) would also be 
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contained in the colored poset (Hl , f~  [H,\{dl . . . . .  d,}) that is assumed to be ex- 
tendible. Thus (Hl , f~)  is nonextendible. Hence it contains a zigzag (H ' , f ' ) .  

There is a monotone map gl from ( H l , f l )  to (Ho,fo) that is the identity map 
on H~ \{dl . . . . .  d, } and sends the elements d ~ , . . . ,  dt to d. Observe that there does 
not exist a nonempty set T of points and covering pairs in H o such that ( H o , f o ) \ T  
is a monotone image of (H ' , f f ) ;  otherwise by composing an extension o f f0  to 
( H 0 , f o ) \ T  with g~ ]/~. we would get a monotone extension of f '  to H'. Hence 
H'\{dl  . . . .  ,dt } = Hi \{d~ . . . . .  d, } and H '  contains at least one of d l , . . . ,  d t. Let 
g = go ~ gl IH' and let D ' =  g - l ( D ) .  Now, clearly, g is a monotone map onto ( H , f )  
and D '  is a down set of H'. 

We want to show that (H ' , f ' ) ,  D'  and g satisfy (a), (b) and (c). First of all, by 
(a') and the fact that H'\{d~ . . . . .  dr} = H ~ \ { d ~ , . . . ,  dr}, (a) is satisfied. Let 
d' e D'. We show (b) holds even in HI. If  d' e D o, then by (b') we have the claim. 
If d' = d i for some i and d' is minimal in H~, then (b) is obvious. In the remaining 
case d' =d i  for some i, and the number of elements covered by d' in H~ is at least 
one and at most k. The elements covered by d' are in D o. So by (b') we have 
l { d ' } . l < k k  t"(g(do)) for an element d o e D  o covered by d'. Now, notice that 
~n(g(do)) -< fn(g(d ' ) )  - 1 since g(do) ~ D \ { d }  and g is monotone. Thus we have 
(b). Finally, (c) is obvious from (c') and the construction of (H ' , f ' ) .  [] 

Let Q be a connected poset. Let a ~ Q and B ~ Q. Then do(a, B) denotes the 
minimum of d o(a, b), b e B, where do(a, b) is the distance between a and b in Q. 

CLAIM 2. Let  P be a finite poset o f  cardinality k. Let  ( H , f )  be a P-zigzag with 

w E H. Let  us suppose that ( H , f )  and w satisfy the following properties. 

(A) H = A • B u C, where A, B and C are pairwise disjoint sets. 

(B) B and C are not empty and B is an up set in H. 

(C) For every a ~ A and c ~ C we have a II c in H. 
(D) w ~ A u B .  

Then there exist a P-zigzag ( H ' , f ' )  and w'  ~ H '  with the following properties. 

(a) H '  = A '  u B '  w C', where A ' ,  B '  and C'  are pairwise disjoint sets. 

(c) B'  is a nonempty up set in H', IB'l-< IBI and IcI < ]c '  I. 
(c) For every a' ~ A '  and c' E C' we have a' II e" in H'.  
(d) w" ~ A ' u B ' .  

(e) dn,(w',  B')  > dn(w,  B) 
(f) #(H') < ((H).  
(g) The number o f  elements c' ~ C'  with c' < b'  for  some b' ~ B '  is at most  kdlB], 

where d is the max imum o f  l{c}.  I for  c ~ C. 

Proo f  o f  Claim 2. We note that if the number of covering pairs between B and 
C is at most klB I, then there is nothing to do. In any case, we construct a 
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nonextendible colored poset (Q, g) from ( H , f )  as follows. Let C = H\(A u B). For 

every monotone extension t of f I c  to C there exists a zigzag in (H, f w t ) .  Let 
(Qt, gt) be such a zigzag for each t. Observe that ~ r Q t n C  ~_ C(Q~,g,) .  If  
(Qt, gt) is monotone, then by Claim 3.3 every element of Qt n C is covered from 
Q~n(A wB), hence by property (C), from QtnB.  Note that if (Q~,g,) is non- 
monotone we also have that every element of Qt n C is covered from Q, n B. Let us 
take disjoint copies, one for C and one for each Q~. Then let us stick together the 
copies of the Qt to the copy of C along the elements that were common in Qt n C. 
In this way we get a poset Q. We refer to the copy of Qt in Q as Qt,o and to the 
copy of C in Q as Co. The coloring g on Q inherits f Ic on Co and f ]Q,\c on Q,,0 
for all t. Now, (Q, g) is not extendible since for every monotone extension t of g to 
Co there exists a copy of (Q,, gt) contained in (Q, g). 

Let ( H ' , f ' )  be a zigzag contained in (Q, g). There is a monotone map h between 
the colored posets ( H ' , f ' )  and ( H , f ) ,  where h maps an element u e H '  to the 
element of  H from which u is copied. Observe that h must be onto; otherwise 
( H ' , f ' )  would be extendible. We define w', A', B' and C' as follows. Let w' be an 
element of H '  with h(w') = w. So there is an s with w' ~ Q~,o. Let A'  be h 1(A) n 
Q~,0. Let B' be h - l ( B ) n  Qs,o. Finally, let C ' =  H ' \ ( A ' u  B"). 

Then we obviously have (a). Since h is onto we have C o -  H' .  So Co-~ C'. 
Hence ]C]-< IC']. By the definition, B' is an up set, and clearly [B' I <_ [B]. Since H '  
is connected w' is connected by a fence to an element of Co in H'  and this fence 
must use a copy of an element of B by properties (C) and (D). Hence B' is not 
empty and (b) holds. By (C) we get (c) and by the definition of w' we get (d). Since 

dn.(w', B') > dqs.o(W', B') > dqs(W, BnQs  ) > dn(w, B), 

(e) also holds. Clearly, f (H ' )  <- E(Q) < ~(H), which gives (f). By Proposition 3.3 
and Proposition 3.5 every element of a P-zigzagcovers at most k colored elements. 
Let us apply this to the zigzag (Qs, gs)- By property (C) we get that the elements 
of B n Q~ together cover at most klB n Qs I colored elements of (Qs, g,)- So in Q the 
copy of  B n Q~ covers at most kIB n Q~ ] elements of Co. Hence the number of 
elements of Co dominated by some elements of B' is at most kdIB], where d is the 
maximum of ]{c}.l for c ~ C. Thus (g) is satisfied in (U ' , f ' ) .  [] 

With the help of the preceding two claims, for 0 < i < m + 1, we give a recursive 
definition of (Hi,f~), Ai, Bi, C; ___ H i and a i e  Hi that satisfy the following proper- 
ties. 

(a0 Hi = Ai u Bi u Ci, where Ai, Bi and Ci are pairwise disjoint sets. 
(bi) If i is even then Bi is a nonempty up set of Hi. If i is odd then Bi is a 
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nonempty down set of H;. In both cases 

IHI- Y,j:o 
(ci) For every a e Ai and c E G we have a [[ c in Hi. 

(di) ai ~ Ai w Bi. 
(ei) d~,(ai, B~) >_ i 
( f i )  ~ ( H i )  -< k - 1 

IB, I k i* and Ic, l >-- 

We define ( H o , f o ) =  ( H , f ) ,  A 0 = ~ ,  Bo = {a0} and Co = H\{a0}, where a0 is a 
maximal element of H. Observe that (Ho,f0), Ao, Bo, Co and ao satisfy (ao)-(fo).  
We define (Hi,f~), Ai, Bi, Ci and a~ for i > 1. We only do this for an odd i. For an 
even i one can define and prove everything dually. 

So let i >- 1 be odd. Then ( H ~ _ l , f  1), A i - l ,  B~_l, Ci_l and ai_l are defined 
already and satisfy (ai_ ~)-(fi 1). Since i - 1 is even B;_ 1 is an up set in Hi_ 1- Let 
us apply Claim 1 to (H,_ ~ , f _  1) with D = G -  1. The resulting zigzag (H; 1,f ;  1) 
with A~_ 1, Bi_ 1, D '  = C~_ 1 and a~ still satisfies (ai_ 1)- ( f i_  1), and we have gained 
the property that for every c e C;_1, ]{c},l < k  k-1. Now we apply Claim 2 to 
(H;_ 1,f~- 1) with A = Ai_ 1, B = Bi_ 1, C = C;_ 1 and w = ai_ 1. Let (Hg,f~) be the 
resulting zigzag. We define Ai = A'  w B'.' Let Bi be the set of  elements in C'  that are 
dominated by some elements of B' and let C~ = H~\(A~ ~Bi).  Finally let a~ = w'. 

Let us check the properties (ai)-(fi) .  First of all, (ai), (ci), (di) and (fi) are 
obvious. Moreover, (ei) is obvious, if we show B i r ~ .  So the property that really 
needs a proof  is (bi). By (f) and (g) of Claim 2 and (b) of Claim 1 we have 
]B~l<kk k-lk(i  l)k=Uk. By (b) of Claim 2 and (a) of Claim 1, 

]C'] > ]C~_ 11 > G-1I .  since c~ = C'\B~ and Bi-~ C', by (b i_ l )  we have 

i - - I  i 

I c i l= lc ' l - IB ,  l>-Ic, ,I-I il>-IHI - E kJ --ki =lHI - E kJ . 
j = 0  j = 0  

Finally, Bi is none, rnpty since B' and C' are nonempty and (Hi , f . )  is connected. So 
we have (5) implies (6). 

(6) implies (1): Use Remark 2.4. [] 

We remark that (4) implies (2) for any poset P since by the proof of (1) implies 
(2) we can also obtain J6nsson operations from a partial n-nuf that is fully defined 

o n  A n . 

PROPOSITION 4.2. Any finite poset P with the strong selection property has a 
partially defined, monotone 4-nuf that is fully defined on A4. 

Proof Let P be an arbitrary finite poset with the strong selection property. 
Then by Proposition 2.3 every P-zigzag has at most one noncolored element. 
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We show that there is a monotone, partial 4-nuf t on P that is fully defined 
o n  A 4 = { ( a , . . . ,  a, b., c , . . . ,  c): a, b, c e P, 1 < j  < 4} c_ p4. Suppose this is not 

true. This means ~hat the colored poset ( A 4 ,  g) ,  where g is given by 
g(a,  . . . , a, b ,  a , . . . ,  a) = a, 1 < j < 4, a, b e P ,  is not P-extendible. So it contains a 

1 

monotone P~-zigzag ( H , f ) .  Let h be the only noncolored element of ( H , f ) .  Recall 
that the zigzag ( H , f )  is of the form described in (2) of Claim 3.11. Note that h s A 4 

has at least two coordinates which are the same, say a ~P .  But then 
f ( h ' )  < a < f ( h " )  for any h', h" e H with h" < h < h". Hence the coloring of  h by a 
yields a monotone extension of ( H , f ) ,  which is a contradiction. [] 

Now, we are prepared to give an example of an infinite bounded poser that 
admits J6nsson operations but does not admit a near unanimity function. 

EXAMPLE 4.3. Let P ,  = S, + S d, where S, is the poset given by the Boolean 
lattice of  n atoms without its top element and S d is the dual of S,. Let P = I-[i~ t Pi, 
where I = {2, 3 , . . . } .  Then P admits J6nsson operations and P admits no nuf. 

P r o o f .  By [13], each Pi, i t / ,  has the strong selection property. Then, by 
Proposition 4.2, for each i E I there exists a partial 4-nuf ti on Pi that is fully defined 
on Bi = {(a . . . .  , a, b., c , . . . ,  c): a, b, c e P~, 1 < j  < 4} ~ p4. With the help of the 

ti, i e / ,  we can also ~efine a monotone, partial 4-ary near unanimity operation on 

{ ( a , . . . ,  a, b., c , . . . ,  c): a, b, c e P, 1 <_j < 4} coordinatewise. So P admits J6nsson 

operations @ the remark following Theorem 4.1. After the proof  of Claim 3.11 we 
a l  a 2  a i  

noted that each P ~ , i ~ I ,  has a Pi-zigzag of the form ~ with 

ai.[-lai+2 a21 

2i colored elements. Let 1 i be the top element of P~ for i ~ I. For each i ~ / l e t  bj E P, 
1 < j  < 2i, be defined by bj ( i )  = aj and b j ( l )  = 1l for 1 ~ I \ { i } .  Then it is easy to see 

bl b2 bi 
l 0--.~ 

that the P-colored poset ~ is a P-zigzag with 2i colored elements. 

at #. �9 .'-o 
bi+tbj+2 b2~ 

Hence, by the note after Remark 2.4, P admits no nuf. [] 
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