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Abstract.  Let M be a two-dimensional Riemannian manifold with smooth 
(possibly empty) boundary. If  u and v are weak solutions of the harmonic 
map flow in H I ( M  • [0, T];S N) whose energy is non-increasing in time and 
having the same initial data uo E H I ( M , S  N) (and same boundary values 
7 E H3/2(OM;SN) if OM 5t!3) then u = v. 
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1. Introduction 

Let M be a compact two-dimensional Riemannian manifold with smooth (possi- 
bly empty) boundary OM. In this paper we obtain a uniqueness result for solutions 
of the 'harmonic map flow' on M: 

(1.1) 
U t - - A u  -- u[~Tu[ 2 o n M  x (0, T) 
u(x , t )  = 7(x) for t > O,x E OM 
u(x,O) = Uo(X),X E M 

where u(x, t) takes values in the unit sphere S N C ]~N+I. Time-independent 
solutions of (1.1) correspond to harmonic maps from M to S N. The following 
existence and uniqueness theorem for weak solutions of (1.1) when OM = 13 was 
obtained by M.Struwe. Define: 

VT- = H I ( M  • [0, T]; S N) f7 L~176 T];HI(M;SN))  f7 LZ([0, T];HZ(M; sN))  

Theorem 1.1. (M. Struwe, [1].) Assume OM = 13. For any initial value uo E 
H i (M;  S N) there exists a number To = To(uo) > 0 and a solution v E N~"<T0 Vr, 
of(1.1) with u(., O) = uo. Moreover, 
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(i) v is regular in M x (0, To] with the exception of finitely many points (xi, To), 
l < i  < K ;  

(ii) v is the unique solution of(1.1) in the space Ar'<T0 VT, with initial data uo; 

(iii) The energy Ev(t) = fMx{t} IVvl 2dx is finite for all t E [0, To] and nonin- 
creasing in t. 

The same conclusions hold when 0114 ~ ~), assuming 7 E H3/Z(OM) 
(K.C.Chang [2]). We have only stated some of the conclusions in [1] and [2]. 
In particular, M.Struwe's  and K.C. Chang's  results hold for arbitrary compact 
target manifolds. These authors also show that the solution can be continued to 
a weak solution v of  (1.1) in M x [0, oo) whose singular set is finite. Precisely, 

v E HI (M x [0, c~), S N) n L~176 cx:)),HI(M;SN)) 

and one may find a finite sequence of times 0 < T1 < �9 " < Tk = cxD such that 

k--1 

v C A L2~ 
i=l 

The solution v is unique in this class of  weak solutions; we will refer to it as the 
'a lmost  smooth '  solution. It is natural to wonder whether, with the same initial 
data, any other weak solutions u E HX(M x [0, ec), S N) with bounded energy in 
[0, oo) may exist. In this direction the following result was recently obtained by 
T.Rivi~re([3]). 

T h e o r e m  1.2. (T. Rivi~re, [3].) Assume OM ,/~). There exists c~ > 0 such that, 
for any boundary values 7 E H3/2(OM ; S N) and any uo E H1(M ; S N) satisfying 
E(uo) < c~, (1.1) has a unique solution in Htloc([0, oo) x M ) f o r  which Eu(t) <_ 
E(uo) for a.e. t. This solution is regular in [0, oo) x M. 

In [3] this theorem is stated for M an open set in 1I~ 2 with smooth boundary, 
but it is not hard to see that the proof applies to arbitrary Riemannian surfaces 
with non-empty boundary. The main result in this paper states that, assuming 
monotonicity of  the energy, we have uniqueness in H 1 without the small-energy 
assumption of theorem 1.2. 

T h e o r e m  1.3. Let M be a two-dimensional Riemannian manifold with smooth 
(possibly empty) boundary. I f  u and v are weak solutions of(1.1) in HI(M x 
[O,T];S N) satisfying Eu(t) <_ E(uS),Ev(t) < E(vS) for a.e. s < t and having the 
same initial data uo E H1( M ; S N) (and same boundary values 7 E H 3 / 2 ( O M , S N) 
if 0114 ~ ~)) then u = v. 

Combining this statement with theorem 1.1 we immediately obtain the fol- 
lowing 'partial regularity'  result: 

Coro l la ry  1.4. Any weak solution u E HI(M x [0, T];S N) of(1.1) such that 
uo E H I ( M ; S  N) and Eu(t) is non-increasing in t (with 7 E H3/2(OM,SN) if 
OM 5t ~) is smooth in M • (0, T] away from finitely many points. 
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2. Preliminaries 

In this section we list some well-known results that are used in the proof. We 
assume throughout that M is a compact  Riemannian n-manifold with smooth 

(possibly empty)  boundary. 

2.1. Interpolation inequality 

Assume M is two-dimensional.  There exists cl = Cl(M) > 0 such that if f E 
Hi(M),  

(2.1) fM Vledx <_ c~ (fM l~flZdx) ( fM Vl2dx ) . 

2.2. Hodge decomposition theorem 

2.2.1 (OM = O) Denote by o ~  p (0 < p < n) the space of  harmonic forms in M 

of  degree p .  We have the orthogonal Hilbert  space decomposition: 

APL2(M) = dAp-I HI(M) �9 5AP+I HI(M) �9 ,~P.  

2.2.2 (OM =/0)[5, chapter 4.1] Let 0 C AI(M)IoM be the metric dual to the unit 
normal u. Any p-form w E AP(M) has a unique orthogonal decomposit ion at 

points of OM : w = wt + 0 A Wn, where i~wn = 0. Denote by: 

A~- +~ H i (M)-  the H 1 closure of the space of  smooth (p+ 1)-forms w in M such 

that wn = 0 on OM; 
o ~  - the space of  (smooth) p-forms w in M such that dw = 5w = 0 and 

wn = 0 on 0)14. This is a finite dimensional vector space, isomorphic to the 
( ' absolute ' )  cohomology space HP(M, ~). We have: 

APL2(M) = dAp-I HI(M) | 5AP+I HI(M) | o~i~. 

In the unique decomposit ion 

w = d a + 6 ~ + h  (Sa=d/3=O) 

corresponding to either of  the two splittings above, one has the bounds: 

for some c2 = c2(M) > 0. 
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2.3. Linear parabolic theory 

The next two results summarize the existence and uniqueness theory in Sobolev 
spaces for the linear parabolic equation: 

{ ~ t - - A ~ =  9 i n M x ( O , T )  
(2.2) ~(x,  .) = 0 on OM 

~(.,  O) = 0 in M 

We set I = [0, T]. 

2.3.1 Theorem.  (J.L. Lions-E.  Magenes [7], p.89). Assume g E L2(I, H-I(M)) .  
Then problem (2.2) has a unique solution in the space: 

Wo = {~ E Lz(I,H1)[@ E L2(I,H-1), ~[OM = O, ~(., O) = 0 in M}.  

Moreover the map ~/A : L2(I,H -1) --+ Wo, ~g~(g) = ~f is an isomorphism with 
inverse L~ = ~t - A~. 

2.3.2 Theorem.  (P. Grisvard [6], Theorem 9.3 and Remark 9.15). Assume g E 
LP(I,Lq(M)), where 1 < p ,q  < oo are arbitrary. Problem (2.2) has a unique 
solution in the space: 

tPo(i , w2,q)  : {~i~ E LP(I , w 2 ' q ) l ~  t E LP(I , tq), ~IOM = 0, ~(., O) = 0 in M }. 

Moreover  the map S : LP( I ,L  q) ~ LPo(I, w2'q), S ( g )  = ~ is an isomorphism 
with inverse L ~  = ~t - A~.  

In the references given these results are stated for bounded domains in Eu- 
clidean space; the reader familiar with the proofs will observe that they also 
apply to the present context. 

2.4. Wente's theorem 

Let M be a compact  two-dimensional Riemannian manifold with (possibly empty) 
smooth boundary. I f ~ / E  A2HI(M) and 0 C H1(M), then < ~rl, dO > E  H - I ( M )  
and 

11<6~,d0)11~-1 _< C3II6~IIL211dOIIL~, 
for some c3 = c3(M) > 0. 

When M is a bounded domain in N2 (with the Euclidean metric) and ~/ = 
7lldX /~ dy, dO = Oxdx + Oydy, we have: 

(67], dO} = Ox(ll l)y - Oy(Tll)x , 

and the lemma is proved in [9, lemma A.2] following Wente's  original proof for 
M = R 2 [8]. In the general case one takes local conformal coordinates in which 
the metric is written as 9ij = e-2V~ij, 1 < i , j  < 2. This implies ~9~/= e-2V(~eucl~, 
so locally we are back in the Euclidean case, and we may globalize with a simple 
partitions-of-unity argument. We omit the details. 
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2.5. Notation 

We try to adhere to self-explanatory notation; the following abbreviations are 
often used: 

Q = M  x [0, T]; I = [ 0 ,  T]; M t = M  x { t } .  

wk,p(M) is the Sobolev space of functions (or maps to S N) which have k 
distributional derivatives in LP; HS,s E ~, denotes the scale of  Hilbert spaces 
with H ~ = W k'2 for k E N. The domain M and target (S N or R ~+1) are usually 
omitted from the notation, with the understanding that, as usual: 

wk'p(M,S  N) = {u c wk'P(M,~N+I)Iu(x ) E sN+la.e.(x)}. 

LP (I , W k'q) -- LP([0, T]; Wlc'q (m ) ). 

APWk'P,APH ~, etc. denote spaces of differential forms of  degree p with co- 
efficients in the corresponding Sobolev spaces (smooth forms if no space is 
indicated); 6 denotes the co-differential in the metric of M.  

c denotes a generic positive constant whose value depends only on M. 

3. Proof of  Theorem 1.3 

(i) It is enough to prove the theorem assuming v is the 'almost smooth' solution. 
Moreover we may take T to be the T(uo) given by theorem 1.1, and assume v 
is smooth in M • (0, T). For then the conclusion u = v in M • (0, T) will imply 
u is smooth in M • (0, T), hence by the uniqueness result (ii) in theorem 1.1 
u = v in M r and we may iterate. 

(ii) Applying the interpolation inequality (2.1) to Vv  E Hi(Mr) we obtain 
for all t E (0, T): 

(3.1) fM, IVvl4dx <- c2Eo fM, IV2vl2dx" 

Since, for each T ~ < T, v C L2([O,T~],H2), this shows the function t F-+ 
fM, IXTvl 4dx is in LI([0, Tt]). We fix an arbitrary T ~ < T for the remainder 

of  the proof. 
(iii) Let w = u - v. Then w E Hi(Q) M L ~ ( I , H  1) and is a solution of: 

wt - A w  -- ulVul 2 - vlVvl 2 in Q; 
(3.2) w(x, t )  = O,x E OM; 

w(x,O)=O,x E M. 

The main step in the proof is the following lemma: 

L e m m a  3.1. Let u and v satisfy the assumptions of the main Theorem 1.3; in 
addition, assume v is smooth in M x (0, T). Let w = u - v. Then there exists 
r r < T such that V w  E L4([0, r r ] ,  WI'4(M)). 
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Lemma 3.1 implies that w E HZ(Mt,~ u+l) for a.e. t E [0, T'] (this was also 
observed by Rivi~re in [3]): it suffices to write the equation for w in the form: 

w, - A w  = u IVwl z + 2 u V v . V w  + wlVvl 2, 

from which it follows that: 

I~,  - Awl <_ c ( I W [  2 + IVvl2), 

which is in L2(M x [0, T']) by the lemma. Since wt E L2(M x [0, T]), we conclude 
that w E H2(Mt) for a.e.t .  Thus we may integrate by parts (as in the uniqueness 
proof in [1]) and obtain for a.e. t E [0, T']: 

l a JM lwl2ax + fM tVwl2& = s < utVul2--~lVvl2,w > dx 
2d t  , 

<_ ,/~ [l~121Vu[ 2 + IvllwllVUIIVwl]dx 

where following [1] we adopt the suggestive notation [VUI p = IVulp + IVvl p 
(p > 1). This implies (using the interpolation inequality 2.1): 

2 at -2 - IVU 14dx 

_<c I V w l Z d x ) � 8 9  [vuladx) 

for a.e. t E [0, Tq. 
From Lemma 3.1 we obtain that t ~ fM, Ivwl 4& is in L1([0, T~]); combined 

with (3.1), this shows that t ~ fM, IVUI 4dx is also in L~([0, T']). Given that 
w(.,0) -- 0, (3.3) and Gronwall's lemma show that w = 0 a.e. in M x [0, T~]. 
Now iterate the argument, using monotonicity of the energy. 

Proof of  Corollary 1.4. A few words have to be said, since the theorem only 
implies u = v a.e.  on M x [0, T]. The argument following the statement of lemma 
3.1 shows that w (hence u) is in ~r,<r0 Vr (this would also imply uniqueness, 
by (ii) in Struwe's theorem 1.1 above). By theorem 4.1 in [1], u is smooth in 
(0, T(uo)) x M and at most a finite number of singularities develop at T(uo). 
Iterating the argument yields the conclusion. 

4. Proof of Lemma 3.1 

The proof of Lemma 3.1 follows, broadly speaking, the same steps as the argu- 
ments in [3] and [4], with some changes. The main difference is that we appeal 
to linear parabolic existence theory in spaces of the form LP([0, T], Lq(M)) and 
LZ([0, T], H-I(M)) ,  in contrast with the elliptic theory used in [3] and [4]. 
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4.1. Use o f  the Hodge  decomposi t ion  

We begin by applying the Hodge decomposition theorem (2.2.1 or 2.2.2) to the 
1-forms: 

a ij = u idu  j - uJdu i c A I L ~ 1 7 6  1 < i , j  < N + 1, 
1 

(4.1) [laiJllr~(l,V) <_ clldullL~(z,v~ <_ cE~ 

In the Hodge decomposition: 

a ~i = d a  q + ~fl~J + h ~j in M x (0, T) (4.2) 

we have: 

(4.3) II~UIIL~c/,HI~ + II~011L~<Z,HI> ~ clla011L~<X,V> ~ CEo �9 

(measurability in t is not a problem; for example we could consider the Hodge de- 
composition in the corresponding Hilbert spaces for M x (0, T), which coincides 
with the 'slice-wise' decomposition above for a.e.t E [0, T], by uniqueness). We 
will sometimes write 4.2 in the form: 

(4.4) a 0 = ~Sp ij + 0 ij , 

where q5/j = d a  q + h ij @ Lo~ , L  2) satisfies ddt) ij = 0 weakly and: 

(4.5) II+011L~<l,m _< c(ll6~OllL~(, ,v~ + Ila~ _ c g  o .  

From the harmonic map flow equation (1.1) we derive two relations. First, denot- 
ing by { e a , a  = 1,2} a local orthonormal frame, we have (using lu[ 2 = 1 a.e . ) :  

i A u  i = Z ( u i d u J . e a  _ uJdui.ea)duJ.ea bl t - -  

j , a  

= Z ( a i J . e a ) ( d u J . e a )  = Z ( a i J , d u  j )  

j , a  j 

= ~[(6~iJ,duJ) + <qJJ,duY>l, 
J 

which we write in abbreviated form: 

(4.6) 

Second, from: 

ut - A u  = (~513, du) + @ , d u ) .  

6a U = ui A u  j -- uJ A u  i = uiu[ -- uJu[ E L2(M x I )  

and 
(4.7) ~Sa ij = Ac t  q , 

which follows from (4.2), we conclude via the Calder6n-Zygmund inequality that 
oe ij E L 2 ( I , H Z ( M ) )  and: 

(4.8) Ildc~OIl.l(M,~ < c[lOaOIIv(M,) < cllut[IL=(M,) 

for a.e. t E [0, r ] .  
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4.2. Rewriting the equation for w 

We may write for v an equation analogous to (4.6) for u: 

vt -- A v  = (~5~1, dr)  + (r dr) ,  

1 

where ~7 �9 A 2 L ~ ( I , H  l) with II~llL~ ~ cE~ and ~b = (~b ij) �9 L~176  2) 
• 

satisfies IIr < cEg, n simple calculation gives for w = u - v: 

(4.9) 

where 

wt - A w  = (~/3, dw)  +f ,  
w(., O) = 0 
w (x , t )  =O,t  �9 l , x  �9 OM, 

f ( x ,  t) = (0, dw)  + (5(fl - r/), dr)  + (q5 - ~, dr)  . 

4 4 C l a i m . f  E L ( I ,Lg(M))  and 

]bfi]L4(/,L~) < cT�88 Eo + cEo �88 utl] ~ + I]vll ~ -- L2(M • L2(I ,H 2) 

4.3. Proof of  claim 

f consists of  three terms, which we estimate in turn. 

4.3.1. Recall q~ij = daij + h O. The h 0 are smooth harmonic forms, so: 

1 

(4.10) sup Ih~ < clIhUIIL=(M,) <_ c[lla011L= + Ildc~UIIL2 § IldC~0IIL=] _< cE~ 
M, 

for a .e . t .  The second inequality follows from (4.2) and the third from (4.3) and 
the bounds in the Hodge theorem; the first inequality is clear, since the space of 
harmonic forms is finite-dimensional. Thus for a.e. t: 

(4.11) [l(hiJ,dwi)llL4/3(M,) < c(suplhiJl)lldwelk=(M,) <_ cEo. 
M~ 

Now by H61der's inequality: 

(4.12) II(doziJ,d'oji)llL~(M, ) ~ ctldoJJtlLa(M,)IldwilIL2(MD 

(recall f rom (4.3) that d a  ij c Hi(Mr), hence is in LP(Mt) for any p < oo, a.e. 
(t)). We now apply the interpolation inequality (2.1) to V a  ij and conclude: 

fMt[dozijl4dx ~_ C(fMtV20~iJl2dx)(~ldogiJl2dx ) 

<<_ cl[6aiJ 2 IIL2(M,~Eo a .e . ( t ) ,  

where the second inequality follows from (4.3), the Calder6n-Zygmund inequality 
and (4.7). Combined with (4.8) this gives: 
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/0 ) J0 ) (4.13) Ido?Jl4dx dt< cEo lu,12dx at cEollu, I 2 = [L2(M x l )  " 

Finally from (4.12) and (4.13) we obtain: 

T 

(4.14) fo I[(dc~iJ'dwi)lla'L~ (Mt)dt --< ce3ollu, ll~=<M• 

and from (4.11): 

foo T ][(hO,dwi)[I 4, d t< cTE 4, 
L'J (Mr) -- 

which combine to give the estimate for the first term in f(x,  t): 

(4.15) [[((~,dw)IIL4(,,L~ ) <_ cZ�88 Eo + cllutll~2(Mxz)E~/4. 

4.3.2. For the second term, H61der's inequality yields: 

II<~(/~- TI),dv)IILa/3(Mt) ~-- II~(/~- 0)IIL=CM,)IldvlIL4cM,> a.e.(t) 
<_ cE~/2IIdvlIL, cM,>, 

using the estimate (4.3) for fi/3 and the analogous estimate for ~fl. We also 
used the fact that v E L2(I, H2(M)) (recall we're assuming that v is smooth in 
M x (0, T)). Applying once more the interpolation inequality (2.1) yields: 

I[(~(~ 4 cE 2 f idvl4dx - r/),dv}[IL4/XM, ) < 
d M  t 

< cE~(L ldv l2dx ) ( fM[V2v[2dx  ) a.e.(t), 

so 

--Jl T II((~(~ -- ~),d~))l144/3(Mt)d, ~ cE30 --jl T 1[~)[I2H2(M,) dr" 

This gives the estimate for the second term in f (x,  t): 

3/4 1/2 
(4.16) 11(~(9 -- 7]),dv)IILa(I,L 4) ~-- cEo I1~11L2(,,,,2>. 

4.3.3. The estimate for the third term is similar. Notice that (4.5) for r and the 
corresponding inequality for ~b imply q5 - ~b r L~176 L 2) and 

I1r - r < " = o  �9 

This implies, exactly as in 4.3.2: 

I1(r ~ , d v )  4 3 2 IIL4/3(M,) < CEoII~IIH~(M,> a .e . ( t )  , 

SO:  

(4.17) [1(r ~,d,o)[[L4(I,Lg ) < cE3/4[Iv[ 1/2 4 __ L2(I,H2). 

(4.15), (4.16) and (4.17) prove the claim. 
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4.4. Decomposition of  the 'most singular' term in (4.9) 

In 4.4 and 4.5 we set I = [0, Tq.  Given e > 0 there exists T ~ c (0, T) such that: 

where 11/3~IIL~(,,H,) < e and/3P~ E C ~( I ,  AZ(M)) satisfies: 

sup 16 ;I _< 
M • [O,T] 

(Write the decomposition at time zero and note the initial data is achieved in 
H 1 .) Thus: 

(~ t 4 (4.18) I[( tf~,dw)llL4a,L~ I <-- crl/4E~/2lldwllL~q,L2) <- cTI/4Eo" 

We rewrite (4.9) as: 

(4.19) 
wt -- A w  = (tS~e, dw) +fe 
w(x, . )=O, x E OM 
w(. ,0)  = 0 i n M ,  

where fe = f  + (6/3~,dw) C L4(I,L~) (by the claim in 4.2 and (4.18)). 

4.5. Conclusion of  the proof 

We now use Theorem 2.3.2 to show that, for small enough e > 0, (4.19) has a 
unique solution �9 c Lg(I, W 2'4/3) (where we regard f~ as given). Observe that 
(4.19) may be written as (replacing w by e):  

e - S((613c,de))  = S ( f c ) ,  e E L4(I, W 2 ' 4 / 3 ) .  

Showing that �9 H � 9  6/3~, d e  >)  is an isomorphism of L4(I; W z'4/3) will 
establish the existence and uniqueness claimed for (4.19). Let �9 E L~(I; W2'4/3). 
The Sobolev embedding wl'a/3(M) '---+ L4(M) implies d e  c L4(I;L4). By 
H61der's inequality we have, for almost every t: 

II((~]~e,de)l]L4/3(Mt) ~_ clI~IIL2(M,)IIdelIL,(M,) < celldellL,(M,), 

and hence: 
l] (6flr d e )  lloq;e/3 ) _< ce l ie I [L4q;w2.4/3). 

Since 2~  : L4(I;L 4/3) ~ L4(I; W 2'4/3) is bounded, choosing e = e0 sufficiently 
small establishes the claim. (The bound on ~ f  depends on T but not on Tt.) 

As in [3] and [4] we must also consider problem (4.19) in the Hilbert 
spaces L2(I;HS(M)). In order to apply theorem 2.3.1, we must verify that 
fe C L2(I;H -1) and < 6fl~,dO >C L2(I;H -1) if gt C W0. The first assertion 
follows from L4/3(M) ~ H - I ( M )  and f~ E L4(I;L4/3). The second assertion 
follows from Wente 's  theorem 2.4. Indeed we have, for a.e. t: 
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<- 

<_ ccllg'llHl(M,), 

so that: 
1[(6/~,d~V)IIL2(z;,-,) < ccl[~lk=(z;m). 

As before, this implies that choosing c = O < c0 sufficiently small, the map ~P 
~P- ~ ( <  6fl,, d~P >)  is an isomorphism of Wo. Equivalently, (4.19) has a unique 
solution in W0. Since both the solution ~ obtained in the previous paragraph and 
the original w are solutions of (4.19) in W0 (note ~t E L4(I; L 4/3) ~ L2(I; H - l ) ) ,  
it follows that �9 = w, hence w E L4(I, W 2'4/3) C t4(I; wl'4). This concludes 
the proof of lemma 3.1, and with it the proof of theorem 1.3. 
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