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Abstract. In this paper we analyze completeness results for basic narrowing. We 
show that basic narrowing is not complete with respect to normalizable solutions 
for equational theories defined by confluent term rewriting systems, contrary to 
what has been conjectured. By imposing syntactic restrictions on the rewrite rules 
we recover completeness. We refute a result of H611dobler which states the complete- 
ness of basic conditional narrowing for complete (i.e. confluent and terminating) 
conditional term rewriting systems without extra variables in the conditions of the 
rewrite rules. In the last part of the paper we extend the completeness results of 
Giovannetti and Moiso for level-confluent and terminating conditional systems 
with extra variables in the conditions to systems that may also have extra variables 
in the right-hand sides of the rules. 

Keywords: Narrowing, Basic narrowing, Conditional narrowing, Completeness, 
Term rewriting systems 

1. Introduction 

The aim of this paper is to analyze the various completeness results for narrowing 
in a uniform setting. In order to avoid biting off more than we can chew, we restrict 
ourselves to ordinary narrowing, basic narrowing, conditional narrowing and basic 
conditional narrowing. In particular, we do not consider normal narrowing (Fay 

* An extended abstract of this paper appeared as Counterexamples to Completeness Results for 
Basic Narrowing (Extended Abstract) in the Proceedings of the 3rd International Conference on 
Algebraic and Logic Programming, Volterra, Lecture Notes in Computer Sciences 632, pp. 
244 258, 1992. Most of the work reported in this paper was carried out while the first author was 
employed at the Department of Software Technology, CWI, Kruislaan 413, 1098 SJ Amsterdam, 
and the second author at the Department of Mathematics and Computer Science, Vrije Universiteit, 
de Boelelaan 1081a, 1081 HV Amsterdam. 
** Partially supported by ESPRIT Basic Research Action 3020, INTEGRATION. 
1985 Mathematics Subject Classification: 68Q50 
1987 CR Categories: F.4.1, F.4.2 



214 A. Middeldorp and E. Hamoen 

[14]), the combination of basic and normal narrowing (R6ty [37], Nutt et al. [36]), 
narrowing modulo equational theories (Kirchner [29]), nor various narrowing 
strategies like innermost and lazy narrowing (Fribourg [15] and You [42] respec- 
tively, see also Echahed [12, 13]). 

Recently there has been much interest in incorporating the logic and functional 
programming paradigms in a single language. The computational mechanism 
underlying many of these imalgamated languages is conditional narrowing. 
Examples include ALF (Hanus [19]), BABEL (Moreno-Navarro and Rodriguez- 
Artalejo [35]), EQLOG (Goguen and Meseguer [18]), K-LEAF (Giovannetti et al. 
[16]) and SLOG (Fribourg [15]). 

Narrowing was first studied in the context of semantic or E-unification. Fay 
[14] and Hullot [23] showed that narrowing is a complete method for solving 
equations in the theory defined by a confluent and terminating term rewriting 
system. Completeness means that for every solution to a given equation, a more 
general solution can be found by narrowing. It is well-known that the termination 
requirement can be dropped, provided we restrict ourselves to normalizable solu- 
tions. In other words, narrowing is complete for confluent term rewriting systems 
with respect to normalizable solutions. In order to reduce the search space of 
narrowing, Hullot [23] introduced the concept of basic narrowing. He showed 
that basic narrowing is complete for confluent and terminating term rewriting 
systems. In this paper we show that basic narrowing is not complete for confluent 
term rewriting systems with respect to normalizable solutions, thereby disproving 
a conjecture of Yamamoto [41]. 

Narrowing has been extended to conditional theories by Kaplan [28], Hugmann 
[25] and Dershowitz and Plaisted [10, 11], among others. Giovannetti and Moiso 
[17] observed that extra variables in the conditions of the rewrite rules may cause 
incompleteness (cf. HulSmann [26]). They showed that this incompleteness can be 
avoided b~/strengthening confluence to level-confluence. We extend their result to 
conditional term rewriting systems with extra variables in the right-hand side of the 
rules. H611dobler [223 was one of the first to perform a systematic and extensive 
analysis of various versions of conditional narrowing for conditional term rewriting 
systems without extra variables. However, we will show that his completeness result 
for basic conditional narrowing with respect to confluent and terminating condi- 
tional term rewriting systems is incorrect. Our counterexample might influence the 
completeness of ALF (Hanus [19]) since its operational semantics is in essence basic 
conditional narrowing. 

The paper is organized as follows. Section 2 contains a concise introduction to 
term rewriting and some elementary unification theory. In Sect. 3 we introduce 
narrowing and review its completeness. Section 4 is concerned with basic narrowing. 
We show that completeness is lost if we drop the termination requirement in 
exchange for the restriction to normalizable solutions, contrary to what is generally 
believed. In Sect. 5 we show that orthogonality and right-linearity are sufficient 
syntactic restrictions for recovering completeness. Conditional narrowing is intro- 
duced in Sect. 6. In Sect. 7 we show that basic conditional narrowing is not complete 
for confluent and terminating conditional term rewriting systems. We show that 
basic conditional narrowing is complete if we strengthen termination to decreasing- 
ness, a property of conditional term rewriting systems that implies the decidability 
of the rewrite relation. In Sect. 7 we also refute a conjecture of Giovannetti and 
Moiso [17] about the completeness of basic conditional narrowing for orthogonal 
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conditional term rewriting systems. Section 8 contains a detailed account of the 
results of Giovannetti and Moiso [-17] concerning the completeness of conditional 
narrowing for level-confluent systems. In Sect. 9 we show that conditional narrow- 
ing is complete for level-complete systems that have extra variables in the right-hand 
sides of the rewrite rules. Section 10 summarizes the results discussed in detail in 
previous sections. We mention some open problems and give suggestions for further 
research. 

It is well-known that the correct use of variables and substitutions in completeness 
proofs requires great care. Several completeness proofs presented in the literature 
are incorrect due to incorrect assumptions about variables occurring in narrowing 
derivations and substitutions. Especially the so-called lifting lemma is notorious in 
this respect. This phenomenon is well-known in logic programming (cf. Shepherdson 
1-40]). In the present paper it is our endeavour to give complete and rigorous proofs 
of the various lifting lemma's and other results. In particular, we take great efforts 
to motivate all assumptions about variables and substitutions. We are aware that 
easy readability is strained by a fully rigorous treatment of these matters. In order 
to enhance readability, the technical proofs of the propositions that relate certain 
rewrite sequences to basic narrowing derivations are deferred till the Appendix. 

2. Preliminaries 

In this section we review the basic notions of terms rewriting and unification. We 
refer to Dershowitz and Jouannaud [5] and Klop [31] for extensive surveys. 

A signature is a set ~ of function symbols. Associated with every f ~  is a natural 
number denoting its arity. Function symbols of arity 0 are called constants. The set 
Y-(~-, f - )  of terms built from a signature ~ and a countably infinite set of variables 

is the smallest set such that ~ c g - (~ ,  ~ )  and i f f ~  has arity n and tl . . . . .  t,~ 
g - ( ~ ,  f~) then f ( t l  . . . . .  t , ) ~ ( ~ ,  U). We write c instead of c( ) whenever c is a 
constant. Identity of terms is denoted by - .  The set of variables occurring in a term 
t is denoted by f'(t). 

A precise formalism for describing subterm occurrences is obtained through the 
notion of position. The set O(t) of positions is a term t is inductively defined as follows: 

{e} i f t~ t : ,  
O(t)= 

({e} c~ {i.p] 1 _< i < n and peO(ti)} ift -- f ( t  1 . . . .  , t,). 

So positions are sequences of natural numbers denoting subterm occurrences. If 
psO(t) then tip denotes the subterm of t at position p, i.e. 

t ifp = e, 

tip= (ti)lq i f t - f ( t l , . . . , t , ) a n d p = i ' q .  

We write s ~ t to indicate that s is a subterm of t. If s ___ t and s ~ t then s is a proper 
subterm of t. The set O(t) is partitioned into O(t) and O:( t )  as follows: O(t)= 
{peO(t)[ t lpCV } and O~(t) = {p~O(t)[tlpe~f }. If p~O(t) then t[S]p denotes the term 
that is obtained from t by replacing the subterm at position p by the term s. Formally: 

s ifp = e, 
t [ s ] .  = 

f ( t l  . . . . .  ti[S]q . . . . .  t,) if t - f ( t l , . . . ,  t,) and p = i.q. 
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Pos i t ions  are par t ia l ly  ordered  by the prefix order ing  __<, i.e. p __< q if there exists an 
r such that  p'r  = q. We write p < q if p < q and  p r q. Pos i t ions  p, q are disjoint, 
deno ted  by p • q, if ne i ther  p __< q nor  q __< p. 

A substitution ~ is a m a p p i n g  from ~U to J - ( ~ ,  U )  such tha t  { x E U l e ( x )  ~ x} is 
finite. This set is called the domain of a and  deno ted  by Do-. We frequently identify 
a subst i tut ion a with the set {~ ~ a(x) lx ~Da}.  The empty subst i tut ion will be denoted  
by e. So e = ~ by abuse  of  nota t ion .  Subs t i tu t ions  are ex tended to morph i sms  from 
r  V )  to ~-(~- ,  ~ ) ,  i.e. cr( f ( t l , . . . ,  t , ) )= f (a ( t  0 . . . .  , a(t,)) for every n-ary func- 
t ion symbol  f and  terms t 1 . . . . .  t,. In  the fol lowing we write ~rt ins tead of ~r(t). The 
set of var iables  introduced by a is deno ted  by J a ,  i.e. J ~  = ~ ) x ~  V(ax) .  C o m p o -  
si t ion of  subst i tu t ions  is deno ted  by 'o', i.e. (aoz)x = a(rx)  for all x e V .  We say that  
a subs t i tu t ion  a i s  more general than  a subs t i tu t ion  r, deno ted  by a < z, if there exists 
a subs t i tu t ion  p such that  p o ~r = r. Let  V ~ ~U. The restriction a Iv of a to V is defined 
as follows: 

a~vX={axX  i fx~V,  
otherwise.  

A variable renamin9 is a bijective subs t i tu t ion  f rom ~ to ~f. We  write a = r [ V ]  if 
a Iv = ~ Fv and a =< r [ V ]  denotes  the existence of a subs t i tu t ion  p such that  p o a  = 
z [V] .  Two terms s that  t are unifiable if there exists a subs t i tu t ion  a, a so-cal led 
unifier of s and  t, such tha t  o's = at. It  is wel l -known tha t  unifiable terms s, t posses 
a most 9eneral unifier a, i.e., a < r for every o ther  unifier ~ of s and  t. M o s t  general  
unifiers are unique up to var iable  renaming.  A subs t i tu t ion  a is idempotent if 
a o a  = a. I t  is easy to show that  a subs t i tu t ion  a is i dempo ten t  if and  only if 
~ a c ~ J a  = ~ .  Given  two unifiable terms s and  t, the unif icat ion a lgor i thms of 
Rob inson  [39] and  Mar te l l i  and  M o n t a n a r i  [331 p roduce  an idempoten t  most  
general  unifier a that  satisfies ~ a  u J a  ___ ~//'(s) w ~V'(t). In the sequel we make  use of 
the fol lowing propos i t ion .  Its rout ine  p roo f  is omit ted.  

Proposition 2.1. I f  a is an idempotent most 9eneral unifier of  two terms s, t that have 
no variables in common then ~ a  w J a  = ~i/'(s)w V(t) .  [] 

Let ~ be a b ina ry  re la t ion on terms. We say that  ~ is closed under contexts if 
s .-~ t implies that  u[s]p ~ u[t];, for all terms u and pos i t ions  peO(u). The re la t ion 

is closed under substitutions if as ~ at whenever  s ~ t, for all subs t i tu t ions  a. A 
re la t ion that  is closed under  contexts  and  subst i tu t ions  is called a rewrite relation. 

An equation is a pa i r  (s, t) of  terms, wri t ten as s = t. Let  E be a set of  equat ions.  
The smallest  symmetr ic  re la t ion that  conta ins  E and is closed under  contexts  and  
subst i tu t ions  is deno ted  by '--~E. So s,--~Et if there exist an equa t ion  1 = r with 1 = r s E  
or r = leE, a pos i t ion  peO(s), and  a subs t i tu t ion  a such that  sip - a l  and  t = s[ar]p. 
The transit ive-reflexive closure of ~--~ is deno ted  by =~. This re la t ion is ex tended  
to subs t i tu t ions  as follows: a = e  r if ax  = e  zx for all x e U .  We write a < e  ~ if there  
exists a subs t i tu t ion  p such that  p o a  = e r .  We define a = ~ r [ V ]  and  a < ~ r [ V ]  as 
above.  

Two terms s and  t are E-unifiable if there exists a subs t i tu t ion  a such that  
as  = e a t .  In the context  of a set of equa t ions  E, the no t ion  of most  general  unifier 
generalizes to complete sets of  E-unifiers. A set of subst i tu t ions  27 is a comple te  set 
of E-unifiers of two terms s and  t if the fol lowing three condi t ions  are satisfied: 

�9 ~ ~ ( s ) w ~ ( t )  for all o 'eX, 
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�9 every a e 2  is an E-unifier  of s and  t, 
�9 ifz is an E-unifier  ofs  and  t then there exists a a e Z  such tha t  a <E ~ [~/(s) u f ( t ) ] .  

Every set consist ing of a most  general unifier a of terms s and t with ~cr __c ~ ( s )  u U( t )  
is a comple te  set of ~ - u n i f i e r s  of s and  t. 

A rewrite rule is a d i rec ted  equa t ion  l -~ r satisfying leaf" and  ~//'(r) ~ ~(1). If  I ~ r 
is a rewrite rule and  a a var iable  r enaming  then the rewrite rule a l -~  ar  is called a 
variant of l---, r. A term rewritin9 system (TRS for short)  is a set of rewri te  rules. A 
rewrite rule l ~ r is left-linear (right-linear) if I (r) does not  conta in  mul t ip le  occur-  
rences of the same variable.  A left-linear (right-linear) TRS only conta ins  left-l inear 
(right-l inear) rewri te  rules. 

The rewrite re la t ion ~ e  associa ted  with the TRS ~ is defined as follows: s ~ e  t 
if there exist a var iant  ~ l ~ r  of a rewrite rule in ~ ,  a pos i t ion  psO(s),  and  a 
subs t i tu t ion  a such tha t  sl; - al  and  t - s[ar];. The term al  is called a redex and  we 
say tha t  s rewrites to t by contractin9 redex al. We  call s ~ e t  a rewrite step. 
Occas iona l ly  we write s--*tp,~ . . . .  j t or  s ~ t p , t ~  t. The transit ive-reflexive c losure  of 
~ e  is deno ted  by --~e. If s--~e t we say that  s reduces to t. The t ransi t ive closure of 
~ e  is deno ted  by ~ .  We write s ~ e  t if t --*e s; l ikewise for s ~--e t. The  t ransi t ive-  
ref lexive-symmetr ic  closure of --*e is called conversion and  deno ted  by = e .  If s = e  t 
then s and  t are convertible. If E is the set of equa t ions  co r re spond ing  to N, i.e. 
E = {l = r ll ~ rEN},  then = e  and  =E coincide. Via this cor respondence  the no t ion  
of N-uni f ica t ion  is implici t ly  defined. Two terms t 1, t 2 a r e  joinable, deno ted  by 
t l  $.e t2, if there exists a term t3 such that  t l  ~ e  t 3 ~ e  t2. Such a term t3 is called a 
common reduct oft~ and  t2. When  no confusion can arise, we omit  the subscr ip t  N. 

A term s is a normal form if there is no term t with s ~ t .  We also say tha t  s is 
normalized. A term s has a n o r m a l  form if there exists a reduct ion  sequence s --~ t 
with t a no rma l  form. A TRS is weakly normalizin9 if every term has a no rma l  
form. A TRS is strongly normalizing if there are no infinite reduc t ion  sequences 
tx--* t2 ~ t3 ~ .. . .  In o ther  words,  every reduct ion  sequence eventual ly  ends in a 
no rma l  form. A TRS is locally confluent if for all terms s, t~, t 2 with t ~  s--* t2 we 
have tlJ, t2. A TRS is confluent or has the Church Rosser prope r ty  if for all terms 
s, t~, t 2 with t x ~ - - s - - ~  t 2 we have t~ +t 2. A wel l -known equivalent  fo rmula t ion  of 
confluence is that  every pa i r  of conver t ib le  terms is jo inab le  (t 1 = t 2 ~ t~ ~, t2).  The 
renowned  N e w m a n ' s  L e m m a  states that  every local ly  confluent  and  s t rongly  
normal iz ing  TRS is confluent.  A complete TRS is confluent  and  s t rongly  normal iz -  
ing. A semi-complete TRS is confluent  and  weakly  normal iz ing.  Each term in a 
(semi-) comple te  TRS has a unique no rma l  form. The  above  proper t ies  of TRSs 
(weak normal iza t ion ,  s t rong normal iza t ion ,  local  confluence, confluence, comple te -  
ness, and  semi-completeness)  specialize to terms in the obvious  way. F o r  instance,  
a te rm s is confluent  if t~ ~ t 2 whenever  t 1 ~--s--* t 2. If  a term t has a unique  no rma l  
form then we denote  this no rma l  form by t,L. 

A subs t i tu t ion  a is normalized (with respect  to a TRS ~ )  is ax  is a no rma l  form 
for every x e ~ a .  A subs t i tu t ion  a is normalizable if ax  has a n o r m a l  form for every 
x s ~ a .  Let  a be a no rmal i zab le  subst i tut ion.  A normal i zed  subs t i tu t ion  z is called 
a normal form of a if ax--* zx  for all x ~ .  

1 The use of variants is not essential for defining the rewrite relation since rewriting is variant 
independent, meaning that if s ~p.t~r.~j t and l ' ~  r' is a variant of 1 ~ ~ then also s ~tv.~'~r'.~'j t for 
some substitution a'. However, it states explicitly that we may rename variables when necessary, 
e.g. when we relate rewriting to narrowing, which is not variant independent in the above sense. 
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Let  ll  ~ r l  and  12 ~ r 2 be var iants  of rewrite rules of a TRS N wi thout  c o m m o n  
variables.  Suppose  peO( l l )  such that  (ll)lp and 12 are unifiable, so ~r(ll)lp - o'12 for a 
most  general  unifier a. The term all = al 1 [al2] p is subject  to the reduct ion  steps 
all ~ a r  1 and  al 1 ~ at 1 [ o r 2 ]  p = a(l  1 [ r z ] p ) .  The pa i r  of reducts  <tT(l I [ r 2 ] p )  , a r  1 ) is a 
critical pair o f  N. If  l x --* r~ and  12 ~ r 2 are variants ,  we do  not  consider  the case pse.  
A crit ical  pa i r  <s, t )  is convergent ifs ~ t. The wel l -known Cri t ical  Pa i r  L e m m a  states 
that  a TRS is local ly confluent  if and  only if all its cri t ical  pairs  are convergent .  

A TRS is called non-ambiguous or  non-overlapping if it has no cri t ical  pairs.  An 
orthogonal TRS is both  left-l inear and  non-ambiguous .  F o r  o r thogona l  TRSs a 
cons iderable  a m o u n t  of theory  has been developed,  see K l o p  [31] for a compre-  
hensive survey. The most  p rominen t  fact is that  every o r thogona l  TRS is confluent.  
In  Sect. 4 we make  use of the work  of Hue t  and  L6vy [21] on needed reduct ions  in 
o r thogona l  TRSs. 

We conclude  this sect ion with some in format ion  on multiset orderings. A muhiset 
over a set A is an unorde red  col lect ion of e lements  of A in which elements  m a y  have 
mul t ip le  occurrences.  Every par t ia l  o rder  (i.e. t ransi t ive and  irreflexive relat ion)  ~- 
on A can be ex tended  to a par t ia l  o rder  >->- on the set of finite mult isets  over  A as 
follows: M ~ -  N if there exists mult isets  X and Y such tha t  

�9 ( 3 ~ X c = M ,  
�9 N = ( M - X ) w Y ,  
�9 for every y E Y t h e r e  exists an x e X  such that  x ~ y .  

The par t ia l  o rder  ~ is called the multiset extension of >-. Dershowi tz  and  M a n n a  
[6] showed tha t  the mult iset  extension of a wel l - founded order  is aga in  well- 
founded.  

3. Narrowing 

In this sect ion we in t roduce  na r rowing  and review some completeness  results. The 
na r rowing  re la t ion defined below was in t roduced  by Hul lo t  [23]. 

Definit ion 3.1. W e  say that  a term t is narrowable into a term t '  if there exist a 
pos i t ion  peO(t),  a var iant  2 l ~ r  of a rewrite rule in ~ ,  and  a subs t i tu t ion  a such 
that  

�9 a is a most  general  unifier of  tip and  I, 
�9 t ' - -  a(t[r]p). 

We write t~,*tp,l . . . .  j t '  or  s imply t--,~ t'. The re la t ion ~ is called narrowing. 

Notation. We write t-~** t' if there exists a na r rowing  der iva t ion  

t =-- t l ' , ~ % l  t2"~'~,a2 .. "~ '~an-  1 tn =- t' 

such that  a = a,_ 1 . . . . .  a2oal.  I f n  = 1 then a = e. 

2 Renaming of rewrite rules is mandatory for ensuring completeness. The idea is to use a single 
variant of a rewrite rule and a single most general unifier, in order to avoid unnecessary 
computations. We always require that the rewrite rule has no variables in common with the term 
to be narrowed, i.e. ~(l) c~ ~(t) = ~ ,  but in general this is not sufficient for completeness. From 
the proof of Lemma 3.4 below, the precise requirements of freshness can be deduced. That proof 
makes also clear that any idempotent most general unifier is adequate for completeness. 
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In a rewrite step s~Ep,~ . . . .  it we may always assume that the applied rewrite 
rule has no variables in common with s and o- is restricted to variables occurring 
in L Consequently, ~r is a most general unifier of sip and l, and t - s[ar]p - a(s[r]p). 
Hence rewriting can be viewed as a special case of narrowing. 

A nice explanation of the word "narrowing" can be found in Klop [-30]. We now 
explain how narrowing can be used for equational unification. In order to facilitate 
the exposition, we extend the set of function symbols with a fresh binary function 
symbol =7 and a fresh constant true. We furthermore assume that ~ contains the 
rewrite rule x =~x ~ true? We consider only terms of the following form: 

�9 terms that do not contain any occurrences of =? and true, 
�9 terms s =~t with s and t satisfying the previous condition, 
�9 the constant true. 

Terms of the second form are called 9oals. It should be stressed that confluence, 
completeness, and semi-completeness are retained under the addition of the rule 
X = ? x - - * t r u e .  4 

Example 3.2. Consider the TRS 

~ O + x  ~ x  

= ( S ( x )  + y - ,  S(x + y). 

Suppose we want to solve the goal z + z =7 S(S(O)). Figure 1 shows that narrowing 
is able to find the (unique) solution {z w-~ S(0)}. This is not a coincidence: below we 
will see that narrowing is able to find all elements of a complete set of N-solutions 5 
of a given goal, provided N satisfies certain conditions. 

The soundness of narrowing is expressed in the next lemma. 

Lemma 3.3. Let  ~ be a TRS .  I f  s =2 t--~* true then a is an ~-uni f ier  o f  s and t. 

Proof. Easy induction on the length of the narrowing derivation s = 2 t ~ *  true, 
using the observation that a 's '  ~ t' whenever s'-~%,t'. [] 

The following lemma of Hullot [23] is the key to completeness. It states that 
rewrite sequences can be 'lifted' to narrowing derivations. 

Lemma 3.4. Let  ~ be a TRS .  Suppose we have terms s and t, a normalized substitution 
0 and a set o f  variables V such that ~U(s) u 9 0  ~= V and t =- Os. I f  t - - ~  t' then there 
exist  a term s' and substitutions 0', a such that 

! 
�9 S ~ * a S ,  

�9 O's' ~ t', 
�9 O'oa=O[V], 
�9 O' is normalized. 

Furthermore, we may assume that the narrowin9 derivation s ~ *  s' and the rewrite 
sequenee t - - ~  t' employ the same rewrite rules at the same positions. [] 

3 This  a s s u m p t i o n  will no t  be m a k e  when  we consider  o r thogona l  TRSs.  
4 This  even holds  if we would  allow unrestr ic ted te rm format ion,  due to modula r i ty  considerat ions;  
see Midde ldorp  [34] 
5 An ~ - s o l u t i o n  of a goal  s =7 t is an  ~-uni f ie r  of  the te rms  s and  t. 
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z + z =? s(s(o)) 

J 
o =7 s(s(o)) 

no solu tion 

s(s(o)) :? s(s(o)) 

true 

solution { z  ~ S(O)} 

\ 
s( ,  + s(z)) =~ s(s(0)) 

/ \  
s(s(~' + s(s(x')))) =~ s(s(o)) 

/ \  
no solut ions 

step 

a 

b 
c 

d 

e 

rewri te  rule 

O + x  --+ x 

S ( x ) + y  --~ S ( x + y )  

O + x'  ~ x '  

x : ?  .~ ---+ true 

s(~') + u' --+ s(~' + r 

narrowing subst i tut ion 

{x, z ~ 0} 
{y, z ~ s(~)} 
{~ ~ 0, . ' ~  s(o)} 
{~ ~ s(s(0))} 
{~ ~ s(~'), u ' ~  s(s(. '))} 

Fig.  1. 

The proof  presented in [23] is incorrect with regard to the normal izat ion of the 
resulting substitution 0'. Before giving a rigorous p roof  of  this lemma we present 
three easy proposi t ions that  are heavily used in the proofs of all lifting lemma's  in 
this paper. 

Proposition 3.5. I f  t is a term and a a substitution then V ( a t ) =  (Y : ( t ) -  ~ a ) u  

Proof. Obvious. [ ]  

Proposition 3.6. Suppose we have substitutions a, O, O' and sets A, B o f  variables such 
that (B - ~ a ) u  d a  ~= A. I f  O = 0' [A]  then 0oa = 0 'oa  [B]. 

Proof. We have (Ooa) [B = (0 t:~oa) [ 8 ~ w O  ~ 8 - ~  = (0' ~:~oa) ~ B ~ w O '  ~ _ ~  = 
(O'oa) [B. The assumptions are used in the second equality. [ ]  

Proposition 3.7. Let  JI be a T R S  and suppose we have sets A, B o f  variables and 
substitutions a, O, O' such that the following conditions are satisfied: 
�9 0 [a is N-normalized, 
�9 0'oa = 0 [A], 
�9 B ~ ( A - ~ a )  w d a [ a .  
Then O' I ,  is also N-normalized. 

Proof. Let x e B .  We have to show that O'x is an ~ - n o r m a l  form. I f x e A  -- ~ a  then 
O'x - (O'oa)x - Ox which is an ~ - n o r m a l  form by assumption. I f x e J a  Pa then there 
exists a variable y e A  such that x e ~ ( a y ) .  We have O'x ~= O'(ay) - Oy. By assumption 
Oy is an ~ - n o r m a l  form and hence its subterm O'x is also an ~ - n o r m a l  form. [ ]  

Proof  o f  Lemma 3.4. We use induction on the length of the reduction sequence from 
t to t'. The case of zero length is trivial. Suppose t ~ e  tl -~e  t' is a reduction sequence 
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of length n + 1. Let t--*tp,~r~t 1. We m a y  assume that  ~U(1)c~ V = ~ . 6  We have 
(0s)l v - rl for some subst i tut ion z with 9 z  N ~U(1). Since 0 is normal ized we have 

peO(s )  and hence (0s)l p = 0(Sip ). Let # = r u 0. We have ~(Slp ) - 0(Sip ) - vl - / d ,  so sip 
and 1 are unifiable. Let  a l  be an idempoten t  mos t  general unifier of sip and L 
Propos i t ion  2.1 yields 9 a  I w J a  1 = ~(Slp ) w ~(1) .  Let sl - al(s[r]p).  By definition 

S~'~"~[p,l . . . . .  ] $I" (1) 

Since a 1 =</~, there exists a substitution p such that  p o a l  = ~. Let V1 = ( V -  9 a 1 )  w J a l .  
Define 01 = p IV1" Clearly 901 = VI. We have V(Sl) = ~(ax(S[rJp))  c= ~(al (s[1]p))  = 
~U(alS) c V1. The  last inclusion follows f rom Propos i t ion  3.5. Therefore  

~P(S1)k.)901 ~ V 1. (2) 

Using 01 = p[V1] we obta in  01sl - psi  - pal(s[r]p) - / z ( s [ r ] f l  = #s[#r]p. Since 
V c ~ g z  = ~ we have/~  = OI[V].  Likewise # = z[~f(r)] .  Hence  the term l~s[t~r] v 
equals Os[zr]p - t 1. Thus 

01S 1 = t 1. (3) 

Next  we show that  01oa 1 = O[V]. Propos i t ion  3.6 yields 01oa I = p o r  I [V] .  We 
already noticed that  # =  O[V]. Linking these two equalities via the equat ion  
p o a  1 = # yields 

01 ~ 1 = O[V]. (4) 

Before we can apply the induct ion hypothesis,  we have to verify that  01 is 
normalized.  Since 901 __c V1 it suffices to show that  0~ Iv, is normalized.  Let 
B = ( V -  9 a z ) u J a  1 iv. Propos i t ion  3.7 (with A = V) yields the normal iza t ion  of 
01 [~. We claim that  ~r 1 _c B and hence B = V~. Recall that  ~r 1 c__ ~(Slp)~, f / ' ( l ) .  
Let x e J a l .  Idempotence  of a l  yields x q g a  1. If  x~ff(slp)__c V then x e  V -  9 a  1. If 
xe~U(l)  then x ~ U ( a l l )  = ~(a l ( s lp ) )  and thus x ~ J ; a l  Iv. So J a t  __c B. Hence 

01 is normalized.  (5) 

The induction hypothesis  yields a term s' and substi tut ions 0', a' such that  

sl~",*,s', (6) 

O's' - t', (7) 

0 ' ~  ' '  = 01 IV1]  , (8) 

0' is normalized.  (9) 

Moreover ,  we m a y  assume that  sl-~, *, s' and t l - -~e t' apply the same rewrite rules 
at the same positions. Let a = a 'oa  1. Concatena t ing  (1) and (6) yields s=~,*s'. By 
construct ion this nar rowing  derivat ion employs  the same rewrite rules at the same 
posi t ions as the rewrite sequence t --~et ' .  It  remains to show that  i f o a =  O[V]. 
Propos i t ion  3.6 applied to (8) yields O'oa'oa I = 0 1 O a x [ V  ] and hence i f o a =  
01 o a  1 = O[V] by (4). [ ]  

Theorem 3.8 (Hullot  [231). Let  ~ be a complete T R S .  I f  as =~  at then there exists 
a narrowin9 derivation s =? t~ ,*  true such that ~ <=.~ a[~V'(s) ~ ~U(t)]. 

6 This is justified by the variant independence of rewriting, cf. footnote 1 on page 217. 
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Pro@ Let a' be the normal form of a, i.e., a ' =  {x~(ax)~lx~a}. Notice that 
a = e a ' .  Clearly a's =ea't.  Confluence of N yields a's~ea't. Hence there exists a 
rewrite sequence a'(s =? t) - ~  true. According to Lemma 3.4 there exists a narrowing 
derivation s =~t-~,*true and a substitution # '  such that a"oz = a'[~t~(s)wYf(t)]. 
Therefore ~ =< a'[Yf(s) w r Since a =~ a' we conclude that z __<e a[U'(s) u ~/f(t)]. 

[] 

In the following, statements like Theorem 3.8 will be abbreviated by saying that 
(a kind of) narrowing is complete for (a class of) TRS (with respect to certain goals 
and substitutions). The reason for this terminology becomes apparent in the 
following equivalent formulation of Theorem 3.8. 

Corollary 3.9. Let ~ be a complete TRS. The set {a ~-(~)~(0[s =?t~*true} is a 
complete set of ~-unifiers of s and t. [] 

From the above proof it is clear that the subscript ~ in z <~ a can be dropped if 
we only consider normalized substitutions. Strong normalization of ~ is only used 
in the normalization of a into a', hence we can strengthen Theorem 3.8 by dropping 
the strong normalization requirement and restricting ourselves to normalizable 
substitutions. 

Theorem 3.10. Narrowing is complete for confluent TRSs with respect to normalizable 
substitutions. [] 

Since in a weakly normalizing TRS every substitution is normalizable, we obtain 
the following result of Yamamoto [41]. 

Corollary 3.11. Narrowing is complete for semi-complete TRSs. [] 

4. Basic Narrowing 

The search space of narrowing is quite large. As a matter of fact, the narrowing 
procedure seldom terminates. Hullot [23] introduced a restricted form of narrow- 
ing, the so-called basic narrowing, which still is complete for complete TRSs. 

Definition 4.1. 
(1) Let t 1 " '*[pl , l ,  ~r l ,o ' l ]  t 2"~[p2,12 ~r2,a2l  " ""m~[p.- ~ , l . -  1 . . . .  1,an- ,J t, be a narrowing deri- 

vation. We inductively define sets of positions B 1 . . . . .  B, as follows: 

B 1 = 0(t l )  , 

Bi+ l=~(Bi ,pi ,r i )  f o r l < _ i < n .  

Here ~(Si, Pi, ri) abbreviates (Bi - {q en  i I Pl <-_ q} ) u {Pi'qlq e O(ri)}. Positions in 
BI are referred to as basic positions and positions in O(ti) - Bi are called non-basic 
(1 __< i__< n). We say that the above narrowing derivation is basic if pieBi for 
l<=i<n. 

(2) A rewrite sequence ta ~[p,.Zl-~r,,a,] t2 - - ) ' [p2,12~rz ,a2]  "'" ---+[Pn- 1,In 1 ~ r n -  1 , a n -  1] t, is 
based on a set of positions B 1 ~ 0(tl)  if piEBi for 1 =< i < n with B 2 . . . . .  B,_ 1 
defined as above. 

So in a basic derivation narrowing is never applied to a subterm introduced by 
a previous narrowing substitution. It should be noted that the concepts defined 
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above do not depend on the used variants of rewrite rules. It is not difficult to show 
that the sets B i defined above are closed under prefix 7 for every rewrite sequence 
that is based on a set which is closed under prefix. This observation will be used 
freely in the sequel. 

Example 4.2. Consider the complete TRS ~ = { f ( f (x ) )  -~ x}. The infinite sequence 
? ~ ! ? / t t  9 tP f ( x ) -  x {x~I(x')lx - f(x)'~'*~x,~f(x,,)if(x ) = 'x  ~"~ I t~ ' )~""  

is the only narrowing derivation issued from the_goal f (x)  =? x. It is not basic since 
the restriction P2 eB2 is violated if we take B~ = O(tO = {~, 1} and B2 = {~}. In later 
examples, when we state that a given narrowing derivation is (non-)basic, the 
justification - i.e. the sets B~ - is given by underlining all non-basic positions. 

Hullot showed that if all basic narrowing derivations starting at a right-hand 
side of a rewrite rule terminate, then the search space of basic narrowing is finite 
for any term. Recently, Chabin and R6ty [4] argued that the termination behaviour 
of basic narrowing can be further improved by adopting a graph representation of 
the TRS and the goal to be solved. 

Herold [20] showed that the sets B i can be reduced by means of left-to-right 
basic narrowing, without losing completeness. The search space can also be reduced 
by means of the so-called selection narrowing of Bosco et al. [3]. In this paper we 
do not consider these optimizations, but we note that all our results concerning 
basic (conditional) narrowing - both positive and negative - extend to both left-to- 
right and selection narrowing. Krischer and Bockmayr [32] describe various 
criteria to detect redundant basic narrowing derivations. 

A more elegant formulation of basic narrowing is obtained by partitioning goals 
into a skeleton and environment part as in Nutt  et al. [36] and H611dobler [22]. 
In such a formulation narrowing would be defined on pairs (t, 0), consisting of a 
term t (the skeleton) and a substitution 0 (the environment), as follows: (t,  0)~,~ 
<t[r]p, t7oO) where peO(t) and a is a most general unifier of (Ot)l p and l for some 
rewrite'rule l ~ r. The main reason for adopting the "standard" definition is that we 
can still use Lemma 3.4 whereas the above formulation requires a more complicated 
lifting lemma (in order to ensure completeness of basic narrowing for complete 
TRSs). 

Besides the lifting lemma, the completeness proof of basic narrowing employs 
Proposition 4.4. A proof of this proposition is given in the Appendix. 

Definition 4.3. An innermost redex does not contain other redexes. In an innermost 
reduction sequence only innermost redexes are contracted. 

Proposition 4.4 (Hullot [24], Yamamoto [41]). Let ~ be a TRS and u a normalized 
substitution. Every innermost reduction sequence starting from at is based on O( t). [] 

Theorem 4.5 (Hullot [23, 24]). Basic narrowing is complete for complete TRSs. 

Proof. Let ~ be a complete TRS and suppose that as =~ at. Let u' be the normal 
form of a. Just as in the proof of Theorem 3.8 we obtain a'(s =7 t ) - -~  true. Because 

is complete we may assume that this reduction sequence is innermost. According 
to the previous proposition the sequence is based on O(s =? t). Since the narrowing 

7 That is, ifp < q and q E B  i then pEB~. 
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derivation constructed by Lemma 3.4 employs the same rewrite rules at the same 
positions, we know that it is basic. The remainder of the proof follows literally the 
proof of Theorem 3.8. [] 

Several authors (Yamamoto [41], H611dobler [22]) reported a mistake in the 
proof of Hullot as given in [23]. Less well-known is the fact that Hullot himself was 
the first to repair the proof, see Hullot's thesis [24]. Yamamoto observed that strong 
normalization can be weakened to weakly innermost normalization. A TRS is called 
weakly innermost normalizing if every term has a normal form that can be reached 
by means of an innermost reduction sequence. More interesting is the following 
statement. 

Conjecture 4.6 (Yamamoto [41]). Basic narrowing is complete for semi-complete 
TRSs. [] 

Counterexample 4.7. Consider the TRS 

f ( x )  ~ g(x, x) 

a ---~b 
~ =  

g(a, b)--, c 

g(b, b) ---, f(a). 

Induction on the structure of terms and straightforward case analysis reveals 
that every term has a unique normal form. Hence ~ is semi-complete. However, 
the goal f (a)  =2 c cannot be solved by basic narrowing. Figure 2 shows all narrowing 
derivations starting from this goal. Recall that non-basic positions are marked by 
underlining. (Since the goal is variable-free, all narrowing steps in the figure are 
rewrite steps.) The steps marked with a star are non-basic because each of them 
rewrites an occurrence of the term a introduced by the substitution {x ~ a} used in 
the step from f (a)=2c  to g(a,a)=2c. Since every successful derivation passes 
through a marked step, basic narrowing is not able to solve the goal f (a)=2c.  
Basic narrowing is also unable to solve the normalized goal g(x, x) =2 c since the only 
(basic) narrowing step starting from g(x, x) =? c produces the goal f (a)  =2 c: g(x, x) =7 
c--~ix~b~f(a ) =? c. 

~ ~  (~)) = ? e 

/ x ~  [ substitution: { x ~ a }  
7 e g(~_,~ =7 c 

/ ' a  
(b,~ =~ c g(a,b) =7 / \  
_ ~ )  - c c = ? c 

1 
true 

Fig. 2. 
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In particular basic narrowing is not complete for confluent TRS with respect to 
normalizable substitutions, contrary to what is generally believed. In the next 
section we recover the completeness of basic narrowing for semi-complete TRSs by 
imposing syntactic restrictions on the rewrite rules. 

5. Restoring Completeness 

Counterexample 4.7 suggests two sufficient conditions for the completeness of basic 
narrowing for semi-complete TRSs: orthogonality and right-linearity. We first show 
the sufficiency of orthogonality. The proof is based on the work of Huet and L6vy 
[21] on needed reductions. Before stating their main result, we introduce a few 
preliminary concepts. 

Definition 5.1. Let A: s ~t,,t~,j t be a reduction step in a TRS ~ and let qEO(s). The 
set q\A  of descendants of q in t is defined as follows: 

~ {q) ifq < p orq_Lp, 

q\A=I{~'P3"P2Irlp3=-IIP~} otherwise.ifq=P'Pa'pzwithpl~O~(l)' 

If Q ~= O(s) then Q\A denotes the set U q\A. The notion of descendant is extended 
q~Q 

to rewrite sequences in the obvious way. Orthogonal TRSs have the nice property 
that a descendant ofa redex is again a redex (with respect to the same rewrite rule). 

Definition 5.2. A redex s in a term t is needed if in every reduction sequence from t 
to normal form a descendant of s is contracted. A needed redex s in a term t is 
innermost if it does not contain other needed redexes. In an (innermost) needed 
reduction sequence only (innermost) needed redexes are contracted. 

Theorem 5.3 (Huet and L6vy [21-]). Let t be a term in an orthogonal TRS. 

�9 l f t  is not a normal form then t contains a needed redex. 
�9 I f t  has a normal form, repeated contraction of  needed redexes leads to that normal 

form. [] 

Definition 5.4. Let ~? be a TRS. We write s-~ t if t can be obtained from s by 
contracting a set of pairwise disjoint redexes in s. The relation ~ is called parallel 
reduction. 

Proposition 5.5. Let ~ be an orthogonal TRS  and a a normalized substitution. Every 
innermost needed reduction sequence starting from at is based on O(t). 

Proof. See the Appendix. [] 

The formulation of the completeness theorem for basic narrowing with respect 
to normalizable solutions in the context of orthogonal TRSs is slightly different 
than previous completeness results. The reason is that the rewrite rule x =Tx-~ true 
cannot be used since it disturbs left-linearity. This also explains why we have to 
require the normalizablity of as and at. 

Theorem 5.6. Let ~ be an orthogonal TRS. I f  as =~ at and a, as, and at are 
normalizable then there exists a basic narrowing derivation s =7 t-~* s' =7 t' and a most 
general unifier z' of  s' and t' such that z'o z <~r a [ • ( s )u  Y~(t)]. 
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Proof. Let a' be the normal form of a. By confluence, the terms as, a's, at, and a't 
have the same normal form n. Thus there exists a sequence a'(s =? t) - ~  n =? n. Due 
to the absence of the rule x =7 x ~ true, the term n =? n is a normal form. According 
to Theorem 5.3 we may assume that in the rewrite sequence from a'(s =? t) to n =? n 
only innermost needed redexes are contracted. From Proposition 5.5 we learn that 
the sequence is based on O(s =? t) and hence the narrowing derivation constructed 
by Lemma 3.4 is basic. The remainder of the proof is similar to the previous 
completeness proofs. [] 

The above completeness result has been independently obtained by Giovannetti 
and Moiso (Corrado Moiso, personal communication, August 1991). 

Corollary 5.7. Basic narrowing is complete for weakly normalizing orthogonal 
TRSs. [] 

The following example shows that the normalizability requirement of as and at 
in Theorem 5.6 is essential. 

Example 5.8. Consider the orthogonal TRS 

f(x)  ~ h(x, x) 

= g(x) ~h(x,i(x)) 

a ---* i(a). 

The following narrowing derivation shows that the goal f(a) =? g(a) can be solved: 

f(a) =? g(a) ~ ,  h(a, a) =? g(a) 

h(a, a) =? h(a, i(a)) 

-~ h(a, i(a)) =? h(a, i(a)). 

The third step in the above sequence is non-basic. One easily shows that f(a) and 
g(a) have no common reduct with respect to basic narrowing. Hence the goal 
f(a) =? g(a) cannot be solved by basic narrowing. 

Furthermore, orthogonality cannot be weakened to non-ambiguity. 

Example 5.9. Consider the TRS 

( f (x)  ~g(x,h(x))  

={g (x , x ) )  a 
I 

[ b --+ h(b). 

Since there are no critical pairs, N is non-ambiguous. With some effort we can show 
that N is confluent, notwithstanding the presence of the non-left-linear rule 
g(x, x ) ~  a. We have f(b)--*e a but basic narrowing is not able to solve the goal 
f(b) =? a. This goal is not normalized. If we add the rewrite rule f'(b')-+f(b) to 
then basic narrowing is unable to find the only solution {x ~-+ b'} of the normalized 
goal f ' (x) =7 a. 

Notice that the TRS in Example 5.9 is not weakly normalizing. We conjecture 
that basic narrowing is complete for semi-complete non-ambiguous TRS. We now 
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consider the sufficiency of right-linearity. The following useful notion is inspired by 
a similar notion introduced by R6ty [37]. 

Definition 5.10. Let A: s --*tp,l-~r~ t be a reduction step in a TRS N. A position qeO(s) 
is called an antecedent of a position q'eO(t)  if q' is a descendant of q. The set of 
antecedents of q' in s is denoted by A/q'. This notion is extended to sets of positions 
in the obvious way. 

The next proposition is the key result for proving the sufficiency of right-linearity 
for the completeness of basic narrowing for confluent TRSs with respect to 
normalizable solutions. We will make a small concession with regard to our 
endeavour to rigorous proofs: statements that depend on the easy but tedious 
interplay between antecedents and basic positions are not proved in full detail. We 
feel that such detail would veil the structure of the proof. The transformation 
presented in the proof  is illustrated in Example 5.12 below. 

Proposition 5.11. Let  ~ be a right-linear T R S  and a a normalized substitution. Every 
reduction sequence starting from at can be transformed into a reduction sequence that 
is based on O(t). 

Proof. We use induction on the length of the reduction sequence starting from at. 
If the length equals zero then we have nothing to prove. Let 

f i t  =-- t 1 ---'~[p1,11 -~rl] "'" ----~[Pn - 1 , ln-  1 - - * r n  - 1 ]  tn  ---'~[pn,ln~rn] tn  + 1 

be a reduction sequence of n steps. Define B 1 . . . . .  B, as usual. According to the 
induction hypothesis we may assume that piEB i for i =  1 . . . .  , n -  1. If p ,~B ,  then 
the whole sequence is based on O(t). So assume that p,q~B,. Define sets of positions 
V 1 . . . . .  V,, Wl , . . . ,  W, as follows: 

�9 v .  = { p . } ,  
�9 Vi = Ai/(V~+ ~ - B~+I) for i =  n - 1 . . . . .  1 (here At is the reduction step from ti to 

ti+ 1)~ 
�9 W i = V i n B i f o r i = l , . . . , n .  

Using the fact that pir it is not difficult to show that q ~ p ~  whenever 
q~ Vi+ 1 - B~+ 1, for i = 1 . . . . .  n - 1. From this we easily obtain that (t~)lq - (t,)lp" for 
all qE Vi. With some effort we can show that for every q~ V~ either q_l_ Pi or q can be 
written as q = Pi'q"q" for some q'~O~-(li). Moreover, if qr W i then only the second 
case applies. Let m be the smallest index such that V m ~: .~j. We now construct the 
diagram of Fig. 3. A few remarks are in order. First note that Vm ~ Bin: ifm > 1 then 
this follows by definition; the normalization of a yields I11 _-__ B1. Therefore V z = Win. 

Pm P m + l  Pm+2 Pn--I p n  
tm 1, tm+l �9 tin+2 7, . . .  �9 t n ~, tn+ 1 
+ W m = V m + V m \ A m  +Vm+l\Am§ _ L V , - I \ A n - l J  I 

T ..'-" 
t "  , t ' + l  t ' + ~  . . .  t" - ' "  

t " + ,  e +~ . . .  

Fig. 3. 
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Right-linearity of ~ yields Vi\Ai  c= Vi+ l and hence V i \ A i u  Wi+ l = Fi+ l .  Observe 
that  Pl is a redex position in t' i even if the rewrite rule Ii -~ r~ is non-left-linear. Since 
1/"._ I \ A . - 1  = {P.} we have t', - t,+ 1. Finally, it is s traightforward to show that the 
reduction sequence 

' ' " -~ t" ' tra4}tm-+tm+l-~tm+l-+tm+2'  '" m + 2 - + ' " - + t  

is based on B m and thus we succeeded in constructing a reduct ion sequence from 
at to t.+ 1 that is based on O(t). [] 

Example 5.12. Consider  the right-linear TRS 

f ( x ,  x) + g(i(b), x) 

~ =  9(x ,x) - -*  f ( x , i ( a ) )  

i(x) --*j(x) 

a --*b 

and the non-basic reduction sequence 

f ( i (a) ,  i(b))--* f( i (b) ,  i ( b ) ) ~  g(i(b),i_(b_))~ f(j_(b), i(a))-+ f ( j (_ ) ,  i(a)). 

The information extracted from this sequence in the proof  of Proposi t ion 5.11 is 
summarized in the following table: 

T a b l e  1 

ti pl Bi Vi Wi 

f(i(a),i(b)) 1 .10( t l )  ~ 
f(i(b),i(b) e O(t2) {1,2} {1,2} 
g(i(b),i(b) ~ {e, 1, 1.1} {1,2} {1} 
f(i(b),i(a)) 1 {e, 2,2.1} {1} 
f(j(b), i(a)) 

This gives rise to the construct ion in Fig. 4, from which we obtain the basic reduction 
sequence 

f ( i(a),  i(b))--, f ( i(b),  i(b))-~ f ( j ( b ) , j ( b _ ) ) ~  g( i (b) ,~(b) )~  9(j(_b),j_'(_b))-+ f(j_'(_b), i(a)). 

Notice that there are two further antecedents of i(b), viz. the underlined subterms 
in f ( i (a) ,  i(b)). These antecedents didn't  make their presence into V 1, and with 

f(i(a),i(b)) , f(i(b), i(b)) 

lO(b),j(b)) 

9(i(b),i(b)) , f(i(b),i(a)) 

1 1 
�9 9(i(b),j(b)) f(j(b),i(a)) 

9(j(b),j(b)) 

F i g .  4.  



Completeness Results for Basic Narrowing 229 

reason: if we start our detour at f(i(a), i(b)) instead off(i(b), i(b)) we do not end up 
with a basic sequence. 

Theorem 5.13. Basic narrowing is complete for confluent right-linear TRSs with 
respect to normalizable substitutions. 

Proof. Similar to the proof  of Theorem 4.5. The only difference is the replacement 
of Proposit ion 4.4 by Proposition 5.11. [] 

Corollary 5.14. Basic narrowin9 is complete for semi-complete right-linear TRSs. [] 

6. Conditional Narrowing 

Before introducing conditional narrowing, we give a short review of conditional 
rewriting. 

The rules of a conditional term rewritin9 system (CTRS for short) have the form 
l--+ r ~ c. Here the conditional part c is a (possibly empty) sequence s~ = t : , . . . ,  s, = t, 
of equations. At present we only require that l is not a single variable. A rewrite 
rule without conditions will be written as l--+ r. The rewrite relation ~ e  associated 
with a CTRS ~ is obtained by interpreting the equality signs in the conditional part  
of a rewrite rule as joinability. Formally, --+e is the smallest (w.r.t. inclusion) rewrite 
relation --+ with the property that la--+ ra whenever there exist a variant 1 ~ r ~ c 
of a rewrite rule in N and a substitution a such that as' + at '  for every equation s' = t' 
in c. The existence of --+e is easily proved (see e.g. Kaplan [27] or Giovannetti  and 
Moiso [-17]). An inductive definition of --+~ is given below (Definition 6.2). All 
notions that we defined in Sect. 2 for TRSs extend to CTRSs. 

The various completeness results for conditional narrowing put different 
restrictions on the distribution of variables among rewrite rules. The next definition 
makes these restrictions explicit. 

Definition 6.1. The set of variables occurring in a conditional rewrite rule R: 
l --+ r ~ c is denoted by Y-(R) and g(R) denotes the set of extra variables occurring 
in R, i.e., E(R) = Y-(R) -- Y-(/). Every rewrite rule l ~ r ~ e is classified according to 
the distribution of variables among l, r, and c, as follows: 

type 

1 
2 

3 

4 

requirement 

y-(r) v y-(c) = y-(1) 
y-(r) ~ Y-(/) 

y-(r) __ y-(l) w y-(c) 
no restrictions 

An n-CTRS contains only rules of type n. So a 1-CTRS contains no extra variables, 
a 2-CTRS may only contain extra variables in the conditions, and a 3-CTRS may 
even have extra variables in the right-hand sides provided these also occur in the 
corresponding conditional part. A 4-CTRS will simply be called CTRS. 

Most of the literature on conditional term rewriting is concerned with 1 and 
2-CTRSs. Just as in the unconditional case, we assume that our CTRSs contain the 
rule x =? x ~ true. 
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N o t a t i o n .  If  c is the sequence of equations s~ = t~, . . . ,  s, = t, then ? denotes the 
multiset 8 {Sl . . . . .  s. =?t .} .  

D e f i n i t i o n  6.2. Let N be a CTRS. We inductively define TRSs ~n for n > 0 as 
follows: 9 

~ o  = { x  =? x ~ true},  

~ ,  + 1 = { al  ~ ar  [ l ~ r ~ c ~ and ae - - -~ ,  true for all e ~ 5}. 

Observe that  ~ ,  __ ~ ,  + ~ for all n > 0. We have s ~ t if and only if s ~ .  t for some 
n > 0 ([27], [ 17]). The min imum such n is called the dep th  of s ~ t. 

We are now ready to define condit ional  narrowing. In the literature several 
different formulat ions are given (e.g. Kaplan  [28], Dershowitz and Plaisted [10], 
Hul3mann [25], Giovannet t i  and Moiso [171 Bockmayr  [2]). In  this paper we 
follow the natural  approach  of Bockmayr  [2]. In this approach  narrowing is directly 
defined, on finite multisets 1~ of goals, the so-called goal  clauses.  In examples goal 
clauses are often presented as sequences of goals, i.e. we frequently omit the curly 
brackets. We also find it convenient to identify a goal e with the goal clauses {e}. 
The rewrite relation ~ a  extends to goal clauses in the obvious way. The extended 
relation inherits all properties (confluence, strong normal iza t ion, . . . )  of the original 
~ a .  The set of variables occurring in a goal clause Twill  be denoted by U(T).  

D e f i n i t i o n  6.3. Let N be a CTRS. A goal clause S condi t iona l ly  narrows  into a goal 
clause T if there exist a goal e e S ,  a position pe6(e) ,  a variant  R : l ~ r ~ c  of a 
conditional rewrite rule in N, and a substitution a such that 

�9 a is a most  general unifier of  elp and l, 
�9 T =  a ( (S  - {e})w {e[r]p} u c-). 

We write S~'te,p,R,~l T or  simply S~,~ T. 

Example 6.4. Consider the CTRS 

even(O) ~ t 

I even(S(x ) )  --* odd(x)  

~l  = odd(x)  ~ t ~ even(x )  = f  

odd(x)  --* f ~ even(x )  = t 

and the goal e v e n ( S ( y ) ) = ? t .  The following derivation shows that the solution 

8 See footnote 11 on page 22. 
9 The usual definition 

�9 ~ o  = ~ ,  
" ~  n + 1 = { a l ~ ar l l - r ~ c E ~  and as +e, at for all s = t in c} 

does not rely on the presence of the rule x =~x ~ true. For terms without occurrences of =? these 
relations coincide with the ones of Definition 6.2. 
xo Representing goal clauses by multisets facilitates the definition of basic narrowing in Sect. 7. 
As far as conditional narrowing is concerned, we might as well opt for a set representation. 
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{y ~ S(0)} is found by conditional narrowing: 

even(S(y)) =? t ~  odd(y) =? t 

~ ,  t =? t, even(y) =~f 

~..%~ t =? t, odd(x) =~ f 

.~  t=Tt, f =? feven(x)=?t  

~ t =? t , f  =~ f ,  t =? t 
~ *  true, true, true. 

Here tr 1 = {yF-~S(x)) and a 2 = {x ~--~ 0}. 

Notation. We will use the symbol T as a generic notation for multisets consisting 
of a finite number of true's. 

Definit ion 6.5. Let ~ be a CTRS and T a goal clause. We write ~ t- T if T - ~  T. 
The set of all such goal clauses is denoted by f#t(~) or simply f#t. If  ~ is confluent 
then fr is closed under ~ .  The level of goal clause Tefr is the least n such that 
~n k- T. 

The soundness of conditional narrowing is expressed in the following lemma. 

Lemma 6.6. Let ~ be a CTRS and T a goal clause. I f  T~,*T then ~tt-aT. 

Proof. Induction on the length of the narrowing derivation from T to T. The case 
of zero length is trivial. Suppose 

T"~'[e,p, l  . . . . . . .  ] T1 "~'2 T. 

Let a = a 2 o a 1. By definition T 1 = a l ( (T  - {e})w {e[r]p} w ~). The induction hypo- 
thesis yields ~ t--a 2 T 1. Hence we have both ~ ~ - a ( ( T -  {e})w {e[r]p}) and ~ ~-trS. 
From the last observation we infer that a l ~  ar and therefore 

aT ~ e  ( a T -  {ae}) w {cre[~rr]p}. 

Since ( a T -  {ae})w {ae[~rr]p} = a((T-- {e})w {e[r],}) we obtain ~ I--aT. []  

In order to compare conditional rewriting and conditional narrowing, Backmayr 
[2] introduced a further relation on goal clauses which he called Reduktion ohne 
Answertung der Prgtmisse (reduction without evaluating conditions). We will denote 
a slight invariant of this relation by ~--,. 

Definit ion 6.7. Let ~ be a CTRS and suppose that S and T are goal clauses. We 
write S~-~ T if there exist a goal eES, a position p~O(e), a variant l ~ r  ~ c of a 
rewrite rule in ~ and a substitution a such that 

�9 elp ~- trl, 
�9 T =  (S - {e})w {e[trr]p} wtr~, 

Occasionally we write S '--*te,p,t . . . . . .  I T  or S ~[e,p,l . . . .  ]T. The transitive-reflexive 
closure of ~--~a is denoted by ,~-*~. We define approximations ~-~ (n > 0) of ,--*~ as 
in Definition 6.2. That  is, S ~--*~ T if T =  ( S -  {e})w {true} with e = (s =~s)eS and 
S ~-*~+ 1 T if S ~--~te,p,t . . . . . .  ] T with ~n t-- a~. We have ~--~ ~ ~-*~+ 1 for all n > 0 and 

= U 
n_->0 
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The difference with the definition of Bockmayr is that we require ~ F-a~. For 
1-CTRSs the relation ~-~ can be viewed as a special case of the conditional narrowing 
relation 4 ,  but in general ~ is not included in -~, due to extra variables in 
conditional rewrite rules. 

Proposition 6.8 (Bockmayr [2]). Let ~ be a C T R S  and T a goal clause. We have 
~tt- T if and only if  T~ -~  Y. 

Proof 
By induction on n we will show the existence of a sequence T ~ - ~  T whenever 
~ ,  t- T. If n = 0 then there exists a rewrite sequence from T t o  T in which only 
the rule x =? x ~ true is used. By definition, this sequence is also a ~-~-sequence. 
Suppose ~n+ 1 ~- T. So there exists and ~ ,+l -sequence  from T to T. We use 
induction on the length of this sequence. The case of zero length is trivial. Let 
T ~ , +  1 T ' - - ~ , +  1T. We obtain a sequence T' ~-~  T from the second induction 
hypothesis. There exist a goal eeT,  a position peO(e), a variant R : l ~ r  ~ c of 
a rewrite rule in ~ ,  and a substitution o- such that e lp - r  T ' =  ( T - { e } ) w  
{e[ar]p}, and ~ ,  F- a~. From the first induction hypothesis we obtain a sequence 
a ~ - ~ T .  We have T~--*~ T ' w ~ .  Combining this step with the sequences 
T ' ~ - ~  T and ag~-~ 1" yields the desired result. 
We use induction on the length of the sequence T ~ , ~  T. The case of zero length 
is trivial. Suppose T~-*~ T ' ~ - ~  T. The induction hypothesis yields ~ t - T ' .  
There exist a goal e ~ T, a position p e O(e), a variant R: l ~ r ~ c of a rewrite rule 
in ~ ,  and a substitution a such that el, ~ -= r T ' =  T " u ~ ,  and ~ - a g .  Here 
T" = ( T -  {e})w {e[ar]~}. Clearly T ~  T". Since T" ~ T' we infer ~ -  T" from 

F- T'. We conclude that ~ t -  T. [] 

In Sect. 7 we will see that ~--~ does not inherit strong normalization of ~ .  
Confluence is preserved, provided we are not particular about  a few extra true's. 

Notation. We write S _- Tif  the goal clauses S and Tare  identical or they differ only 
in the number  of true's, i.e., S - T = T- -  T by abuse of notation. 

Proposition 6.9. Let ~ be a C T R S  and S a goal clause. 
(1) I fS  ~ -~  Tthen Tcan be partitioned into TI and T2 such that S - -~  T 1 and ~ ~- T2. 
(2) I f  S - - ~  T then there exists a goal clause T~ such that S ~ -~  T w  TI and ~ -  T~. 

Proof. Straightforward. []  

Lemma 6.10. Let ~ be a confluent CTRS.  I f  S~,-~ 7"1 and S ~ , ~  T 2 then there exist 
goal clauses T 3 ~- T 4 such that T~ ~-~  Ta and T 2 ~-~  T~. 

Proof. Proposition 6.9(1) yields goal clauses U~, I/1, U2 and V2 such that 
T ~ = U ~ w V ~ ,  T 2 = U 2 k . ) V 2 ,  ~ - V 1 ,  ~ - V 2 ,  S----~gU 1 and S--*eU2. Since the 
relation w e is confluent on goal clauses, there exists a goal clause U a such that both 
U x --~e U 3 and U2 -~e  U3. According to Proposition 6.9(2) there exist goal clauses 
W1 and W 2 such that N t- W1, ~ ~- W2, Ua ~-~e U3 w W~ and U z ~-~,~ U3 w W2. Using 
Proposition 6.8, we obtain 

T~ = U ~ w V~ ~-*~ U 3 k_) W I  L.) V1)~-~  U 3 k..) T 

and likewise 

T 2 = U 2 k-) V 2 ~-~, ~t U 3 k-) W 2 k-) V 2 ~-~ yl U 3 k-) T . [] 



Completeness Results for Basic Narrowing 233 

From Proposition 6.8 and Lemma 6.10 we immediately infer that ~qv is closed 
under ~ for confluent CTRSs ~.  

In the remainder of this section we show that conditional narrowing is complete 
for CTRSs without extra variables - the so-called 1-CTRSs. 

Lemma 6.11. Let ~ be a 1-C TRS. Suppose we have goal clauses S and T, a normalized 
substitution O, and a set V of variables such that : U ( S ) ~ O  ~= V and T = OS. I f  
T ~ - ~  T' then there exist a goal clause S' and substitution 0', a such that 

�9 S ~ * S ' ,  
�9 O'S'= T', 
�9 O ' o a = O [ V ] ,  
�9 O' is normalized. 

Furthermore, we may assume that the narrowing derivation S-~,* S' and the rewrite 
sequence T ~ - ~  T' employ the same rewrite rules at the same positions in the 
corresponding goals. 

Proof. Almost identical to the proof of the lifting lemma for TRSs (Lemma 3.4). 
The only difference is that we are dealing with goal clauses instead of terms. []  

Bockmayr [2] presents an incorrect lifting lemma for 1-CTRSs with respect to 
a single >--+-step. This "one step" lifting lemma is not powerful enough to lift rewrite 
sequence by an inductive proof. The proof of the lifting lemma for 1-CTRS presented 
in Kaplan [-28] employs false assumptions about narrowing substitutions. 

Definition 6.12. A substitution a is called an ~-solution of a goal clause T i f ~  F- aT. 

Theorem 6.13. Conditional narrowing is complete for complete 1-CTRSs. 

Proof. Let ~ / b e  a complete 1-CTRSs and suppose a is an ~-solution of a goal 
clause T. Let a' be the normal form of o-. We obtain ~ ~-a'T from the conflu- 
ence of ~.  According to Proposition 6.8 there exists a sequence a'T>~-~Z. 
Lemma 6.11 yields a narrowing derivation T ~ *  T and a substitution a" such that 
a"oz = a ' [ ~ ( T ) ] .  Therefore z =< a 'EV(T)]  and hence z ==_~ aE~//'(T)]. [ ]  

In the literature this completeness result is ascribed to different authors. It seems 
that Kaplan was the first who presented a detailed proof (in a different setting 
though). As was the case for TRSs, we may drop the requirement of strong 
normalization in exchange for the restriction to normalizable solutions. 

Theorem 6.14. Conditionalnarrowingiscompleteforconfluentl-CTRSswithrespect 
to" normalizable substitutions. [] 

Corollary 6.15. Conditional narrowing is complete for semi-complete I-C T RSs. [] 

7. Basic Conditional Narrowing 

The formulation of basic narrowing for TRSs (Definition 4.1) does not immediately 
extend to the conditional case. The reason is that a goal clause consists of several 
goals, each to be equipped with its own constraint on "narrowable positions". In 
order to keep the administration of these constraints manageable we introduce the 
following concept. 
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Definition 7.1. Let T be a goal clause. A position constraint for T is a mapping  B 
that assigns to every goal e s T a  subset of O(e). The posit ion constraint  that  assigns 
to every e s T t h e  set O(e) will be denoted by T. 

Definition 7.2. 
(1) A narrowing derivation T~ ~'*E~,,p~,h ~ . . . . . . . .  J ' "  ~ ' [  . . . . .  p . . . .  ~.-,-~ . . . . . . . . . . . . .  17", 

is basic ifp~eB~(e~) for 1 < i < n - 1 where the position constraints B 1 . . . . .  B, are 
inductively defined by B 1 = T1 and 

(Bi(e') ife'E T i - {ei}, 

Bi+l(e )=  "] ~_(Bi(ei),pi, ri) i f e ' - e i [ r i ] p , ,  

(O(e ' )  ife'e~i 

for all 1 =< i < n and e -- aie'eTi+l.  11 
(2) A rewrite sequence T 1 ~--~Le~,p,,h ~r,~r . . . . .  p, ~, l , -~ . . . . . . . . . . . .  1T, is 

based on a position constraint  B~ for T~ i f p ~ B  i for 1 _< i _< n - 1 with Bz , . . .  ,B,  
defined by 

I Bi(e) 
Bi + l(e) = ") ~(Bi(ei), Pl, rl) 

t O(e') 

for all 1 < = i < n a n d e  6Ti+l.  

i f e e T  i - {el}, 

ife - ei[~Tiri]pi  , 

ife - a i e '  with e ' ~  i 

HSlldobler [22] showed that  basic condit ional  narrowing is complete for 
complete 1-CTRSs. This fact is also ment ioned in the "summary  of  completeness 
results and open problems for condit ional  narrowing" in Giovannet t i  and Moiso 
[17]. However,  the following example reveals that  this result is incorrect. 

Counterexample 7.3. Consider the 1-CTRS 

{ f ( x ) ~ a  ~ x = b , x = c  
d ~ b  

~ =  d ~ c  
b --* c ~ f (d)  = a. 

Since the recursive path ordering is applicable (with precedence f > -  a and d >- b >- c) 
to the uncondit ional  part  of ~ ,  ~ certainly is strongly normalizing. We have d ~ b 
and d ~ c, and hence f(d)--* a and b--* c, which makes the only critical pair (b, e )  
convergent. Local confluence is obtained by some easy case analysis or  an appeal 
to a result of Dershowitz  et al. [8] which states that  the Critical Pair  Lemma holds 
for overlay 12 CTRSs. According to Newman ' s  Lemma ~ is confluent. However,  
basic condit ional  narrowing is not  able to solve the goal f(d) =?a as can be seen 
from Fig. 5 (in this figure trivial goals of  the form t =2t  are not  shown), while the 

11 Recall that T~+I = ai((T ~ -- {el})w {e~[ri]p,} wg~). If we would have represented goal clauses by 
sets then the definition of Bi+ 1 is ambiguous since T~- {ei} , {e~[r~]p,}, and g, do not have to be 
pairwise disjoint. 
12 An overlay CTRS is a CTRS with the property that if 11 ~ r 1 ~ c~ and 12 ~ r2 ~ c2 are variants 
of rewrite rules and p~O(Ix) such that (lx)lp and 1 z are unifiable, then p = e. 



Completeness Results for Basic Narrowing 235 

f ( d )  =? a 

d =?  b, d =?  e 

l 
d =?  * d =? c ,  c, f ( d )  = ' a  

no progress 

f ( b )  =? a 

/ \  
b =? ", c f ( e )  =" a, f ( d )  =? a 

no fu r t he r  no progress 

basic s teps  

f ( c )  =? a 

l 
c = ' b  

I(d) =~ a 

no progress 

Fig. 5. 

following non-basic narrowing derivation shows that the goal can be solved: 

f(d)=Ta~,~, a=~a ,d=Tb ,  d=?c  

~ a=? a,b=?b,d_=? c 

. ~  a = ? a , b = ? b , c = ? c  
~'~ ~ m . 

Basic conditional narrowing is also unable to solve the normalized goal f ( x )  =7 a. 

The mistake in H611dobler [22] is due to the incorrect assumption that the 
strong normalization of ~--~ is implied by the strong normalization of ~ .  We 
now show that completeness of basic narrowing can be ensured by strengthening 
strong normalization. In the next section we show that completeness can also be 
recovered by strengthening confluence. The property defined below originates from 
Dershowitz et al. [9]. 

Definition 7.4. A 1-CTRS ~ is decreasing if there exists a well-founded extension 
>- of the rewrite relation ~ with the following properties: 

�9 >- has the subterm property, i.e. t >- tip for all positions peO(t)  - {e}, 
�9 i f l ~ r ~ e e ~  and a is a substitution then al>-as,  at for all s = t in c. 

Every decreasing 1-CTRS is strongly normalizing and moreover - when there 
are finitely many rewrite rules - its rewrite relation is decidable. 

Example 7.5. The CTRS of Counterexample 7.3 is not decreasing: as f (d)  ~ a 
d = b, d = c is an instance of the first rewrite rule we must have f (d)  >- b, but the rule 
b ~ c ~ f ( d )  = a requires b ~-f(d) .  

Lemma 7.6. I f  ~ is a decreasing 1 - C T R S  then ~--~ is strongly normalizing. 

Proof. With every goal clause S we associate a multiset re(S) by replacing every goal 
s =? t is S by the terms s and t. The presence of true in S does not contribute to m(S). 
Using the definition of >- it is easy to show that re(S)>->-m(T) whenever S~-~s T. 
Here >-~ is the multiset extension of ~ .  Since the multiset extension of a well- 
founded ordering is well-founded, the relation ,--*~ is strongly normalizing. [] 

The proof  of Proposition 7.7 can be found in the Appendix. 
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Proposition 7.7. Let  ~ be a 1-C T RS, T a goal clause, and a a normalized substitution. 
Every innermost ~---~r starting from a T  is based on T. [] 

Theorem 7,8. Basic conditional narrowing is complete for  decreasing and confluent 
I -CTRSs .  

Proof. Let ~ be a decreasing and confluent 1-CTRSs. Suppose a is an ~-solution 
of a goal clause Tand let a' be its normal form. We obtain a'T~--~ T as in the proof 
of Theorem 6.13. Because ~--*~ is strongly normalizing (Lemma 7.6) there exists an 
innermost ~-~-sequence from # T  to a normalized goal T'. From Lemma 6.10 we 
obtain T ' ~  T, i.e. T ' =  T. According to Proposition 7.7 the innermost sequence 
tr'T~,-*~ T is based on T. It is not difficult to show that the narrowing derivation 
constructed by Lemma 6.11 is basic. The remainder of the proof follows literally 
the proof of Theorem 6.13. [] 

The CTRS of Counterexample 7.3 is not a so-called normal CTRS. In a normal 
CTRS ~ every right-hand side of an equation in the conditions of the rewrite rules 
is a ground normal form with respect to the unconditional TRS obtained from 
by omitting the conditions. One might ask whether this is essential. The following 
example answers this question negatively. 

Example 7.9. Consider the normal 1-CTRS 

f(x)  --* g(x,x) 

a --*b 

= g(a, b) ~ c 

g(b, b) ~ c ~ f (a)  = c. 

Completeness of N? follows as in Counterexample 7.3. (The Critical Pair Lemma 
however is not applicable.) Notice that g(b, b) ~ c since f (a) --, g(a, a) ~ g(a, b) ~ c. 
One easily shows that the goal f ( a )=~c  cannot be solved by basic conditional 
narrowing. Moreover, basic conditional narrowing is not able to solve the 
normalized goal g(x, x) =7 c. 

We conclude this section with a refutation of the following claim. 

Conjecture 7.10 (Giovannetti and Moiso [17]). Basic conditional narrowing is 
complete for  semi-complete orthogonal I -CTRSs .  13 [] 

Since (weakly normalizing) orthogonal CTRSs are in general not confluent 
(Bergstra and Klop [ 1 ]), we cannot replace the phrase "semi-complete orthogonal" 
by "weakly normalizing orthogonal". 

Counterexample 7.11. Consider the orthogonal 1-CTRS 

f(x)  ~ a ~ g(b) = c 

~ =  g(x) ~ c "r x =  f ( x )  

b --. f(b).  

In the Appendix it is shown that ~ is semi-complete. The goal g(b) =? c can be solved 

13 Actually, Giovannetti and Moiso conjecture in [17] the completeness of basic conditional 
narrowing for orthogonal 1-CTRSs with respect to normalized solutions. By refuting the weaker 
statement, our counterexample becomes stronger. 
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s o �9 s I , s? 

/ / / / / 1  
s~ s~ s ~ s~ s ~ sl  

l l t 
s~ s~ s~ 

. . . . .  S~ . . . .  

/ / \  
s~' s ~ , . .  s ~ - '  

1 
s~  

Abbreviations (i/> 0): 

S i : g( f i (b))  =? c S~: c =? r fi(~ =? f(f_.i(b_.)) 

S~: c=?c,  f i ( ~ = ? a , g ( b ) = ? c  Si4: g ( f i ( a ) ) = ? c , g ( b ) = ? c  

fi(t): f(. . . f(t). . .)  
i ]'s 

Fig. 6. 

by conditional narrowing as follows: 

9(b) =e c--,  c =? c, _b =?f(b) 

~,  c =~ c, f(b) =?f(b) 
~ ' ~  1-. 

In this derivation the second step is not basic. Figure 6 reveals that all basic 
narrowing derivations issued from g(b) =~ c come across a goal clause that contains 
the original goal g(b)=? c. Hence basic conditional narrowing is not able to solve 
the goal g(b) =? c. One easily shows that the normalized goal g(x) =~c also cannot 
be solved by basic conditional narrowing. 

8. Level-Confluence 

Hul3mann claimed in [25] that conditional narrowing is also complete for complete 
CTRSs that have extra variables in the conditions of the rewrite rules, but the 
following example of Giovannetti and Moiso [17] shows that this is not the case. 

Example 8.1. Consider the 2-CTRS 

[ a--*b 

~ = ~  a ~ c  

( b ~ c  ~ x = b , x = c .  

It is easy to show that N is complete. In particular we have b ~ e  c, but all narrowing 
derivations issued from the goal b =7c are infinite, e.g. 

b =  c ~ c = "  c,x = b , x  
9 9 9 ! 9 ! 9 

~ c = c , x = c , x = c , x  = b , x  = c  
9 q 9 r 9 X t  9 tt  9 t ? C ~ . ~ c = c , x = c , x = c , x  = c ,  = c , x  = b , x  

In order to cope with extra variables in the conditions of the rewrite rules, 
Giovannetti and Moiso proposed to strengthen confluence. 
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Definition 8.2. A CTRS N is called level-confluent if each ~ ,  (n > 0) is confluent. We 
call ~ level-complete if each ~ ,  (n > 0) is complete. 

Example 8.3. The complete 1-CTRS of Counterexample 7.3 is not level-confluent: 
we have d ~ e ,  b and d ~ e ,  c but the depth of the joining step b ~ e  c is 3. Likewise 
the 2-CTRS of Example 8.1 is not level-confluent. 

Every strongly normalizing and level-confluent CTRS is level-complete, but the 
reverse does not hold. 

Example8.4. Consider the CTRS ~ =  { f ( x ) ~ f ( g ( x ) ) ~ f ( x ) = f ( a ) } .  We have 
~o = {x =? x ~ true} and :~, + 1  ~--- {f(g"(a)) ~ f ( g n  + l(a)) } w N,  for n => 0. It is easy to 
see that every N, is complete. Hence ~ is level-complete, but ~ is not strongly 
normalizing: f (a) ~ , f (g(a) ) -~2  f (g(g(a) ) ) ~ 3 "'" 

The next example shows that the lifting lemma as presented in Sect. 6 for 1-CTRSs 
does not carry over to (level-confluent) 2-CTRSs. 

Example 8.5. Consider the strongly normalizing and level-confluent 2-CTRS 

{ a-~ b 

~ =  b ~ c  ~ x = a , x = b .  

Let S -- {b =~c} and 0 = ~. The rewrite step O S ~ { c  =~c, b =~a, b =Tb} = T' can be 
lifted to S - ~  {c =?c, x =?a, x =~b} -- S'. Any substitution O' satisfying O'S' = T' must 
have O'x = b and thus O' is not normalized as b~e2c.  This is not really a problem 
since T' can be rewritten to T by using only ~--~-steps and b is ~l-normalized. That 
is, the rewrite sequence 

OS,--~J~{c ~='c,b='a,~ b='b}~-~b{c=Tc, ~ 

can be lifted to 

S-~{c =7c, x =Va, x =7 b}~,{c =~c, x =?b, x =v b}~-~* T. 

Now consider the rewrite sequence 

OS~-*~ {c =? c, a =? a, a =? b} ~--~ {c =? c, a =? a, b =? b} ~._,o T 

in which the constant a is substituted for the extra variable of the conditional rewrite 
rule applied in the first step. This sequence cannot be lifted. The problem is that the 
introduced constant a is rewritten. This is possible because the subsequence from 
{c =7 c, a =~ a, a =? b} to Y contains ,-+~-steps and a is normalized only with respect 
to ~t o. 

In the next definition we restrict the relation , -~ ,  based on the findings of the 
previous example. 

Definition 8.6. Let ~ be an arbitrary CTRS. We define relations ~ )  on ~7 for n => 0 
as follows: ~-~ is the restriction of ~-~ to (~T and S ~ + I T  if there exist 
a goal e~S, a position peO(e), a variant R: 1--*r ~ c of a rewrite rule in ~ ,  and a 
substitution a such that 

�9 e l p -  al, 
�9 T =  (S - {e})u {e[ar]p} wag, 
�9 ~ . t -  a& 
�9 a t~(m is ~,-normalized, 
�9 the level of e is at least n + 1. 
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So S ~  + 1 Ti f  S~e,+lR:l . . . . . .  1Twith a re(R)~,-normalized and the level ore at least 
n + 1. The union of all ~ (n > 0) is denoted by ~+~. 

It should be noted that in general the inclusions ~ ~ ~ §  1 (n > 0) do not hold. 
Moreover, ,~,~ is properly included in the restriction of >---~ to f~T. Lemma 8.11 
below states that ~,~ is powerful enough to rewrite all goals in f#T to T, provided 

is a level-complete CTRS. In Lemma 8.13 we show that , ~ - s e q u e n c e s  can be 
lifted to narrowing derivations for any level-confluent 2-CTRSs ~ .  The complete- 
ness of conditional narrowing for level-complete 2-CTRS is an easy consequence 
of these two facts. We start with some easy propositions. 

Proposition 8.7. Let ~ be a level-confluent CTRS and e a 9oal with level n. l f  e -~e,, e' 
with m <= n then the level of e' is at most n. 

Proof. Since ~,~ ~ ~n we have e - ~ ,  e'. By definition e ~ ,  true. Level-confluence 
of ~ yields e' ~ ,  true. Hence the level e' is at most n. [] 

Proposition 8.8. Let ~ be a level-confluent CTRS and S, Te~qT. I f  S ~  T then the 
level of T does not exceed the level of S. 

Proof. I f S ~  ~ Tthen S and Thave the same level. So suppose that " "+ LS ~[e,p,R:l--*r~ c,a] T. 
Let m be the level of S. We have m > n + 1. We will show that the level of every goal 
e ' s T =  ( S -  {e}) u {e[ar]p}wa? is bounded by m. For  e ' ~ S - { e }  this is obvious. 
The level of every e'ea~ is at most n < m. In the only remaining case e' - e[ar]p we 
have e ~ . + ,  e' and hence the result follows from the previous proposition. [] 

Proposition 8.9. Let Jt be a level-complete C T RS and T~ f~v. The following statements 
are equivalent: 
(1) Tis a ~ - n o r m a l  form, 
(2) T is a ~-,~-normal form, 
(3) T is a ,~+~-normal form. 

Proof. The implications "(1)=~(2)" and "(2)=~ (3)" are easy. Suppose there is a 
~+~-normal form T~f~v that is not a ~ - n o r m a l  form. Take the smallest n such 
that T ~ .  T' for some goal clause T'. If n = 0 then we obtain the impossible 
T,~+~ T'. So suppose that n > 0. By definition there exist a goal e~T, a position 
p~O(e), a variant R: l ~ r <= c of a rewrite rule in ~ ,  and a substitution a such that 
elp -= al, T'  = ( T -  {e}) u {e[ar]p}, and A n_ 1 t- a?. Define a substitution z as follows: 

~x = ~ ( a x ) l ~ . _ ,  
g 

ifxe~(R),  

"( ax otherwise. 

The well-definedness of z follows from the completeness of ~ , _  ~. We have 
a g - - ~ , _ ,  zg. Confluence of ~ , _  1 yields ~ . _  1 }- zg. By construction z [r is ~ , _  ~- 
normalized. If the level of e is at least n then T~o+~e,~,~,,](T-{e})~ {e[zr]p} wzg, 
contradicting the ,~+~-normalization of T. If the level of e is less than n then there 
exist an m < n and a goal clause T" such that T ~ T " ,  contradicting the 
minimality of n. We conclude that every , ~ - n o r m a l  form is also a - ~ - n o r m a l  
form. []  

Lemma 8.10. I f  ~ is a level-complete CTRS then every ~,~-sequence is finite. 

Proof. Let Tbe  a goal clause. We will show that there are no infinite ~ - s e q u e n c e s  
starting from T. If T ~ T  then there are no ~,~-sequences originating from T. So 
we may assume that T has some level n. We use induction on n. If n = 0 then only 
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the rule x = ? x ~  true can be used, and the number of applications of this rule is 
clearly bounded by the cardinality of T. Suppose the level of Tis n + 1 and consider 
an infinite ~ - s e q u e n c e  starting from T. Since ~ - s e q u e n c e s  issued from different 
goals in Tdo  not interfere, we infer the pigeon-hole principle the existence of a goal 
eE T with an infinite ,~ - sequence .  Consider the first step 

in this sequence. Since the level of e is n + 1, we have e ~ +  a e[ar]p. Proposition 8.8 
shows that the level of {e[ar]p} w a~ is at most n + 1. Since the level of a? is less 
than n + 1, we learn from the induction hypothesis that there are no infinite 
~ - s e q u e n c e s  starting from a~. Hence there must be an infinite , ~ - s e q u e n c e  
starting from e[ar]p, and thus the level of e[ar]p is n + 1. We repeat the above 
process with e[ar]p. We end up with an infinite ~ +  1-sequence, contradicting the 
strong normalization of ~ ,  + ~. [] 

Lemma 8.1. Let ~ be a level-complete CTRS and T a goal clause. We have ~ t -  T if 
and only if T~,~,~ Y. 

Proof According to Proposition 6.8 it suffices to prove the equivalence of T~--~ q- 
and T ~  Z. 

From Lemma 8.10 we infer that T h a s  a normal form T' with respect to ~ .  
According to Proposition 8.9 T' is also a ~-+~-normal form. Clearly T~-~  T'. 
Lemma 6.10 amounts to T = T, i.e. Y. Therefore T~,,~ T. 

=~ Trivial. []  

Because every ~+~-sequence is finite, we may assume that the normal form 
T' = T in the above proof  is obtained by means of an innermost ~ - s e q u e n c e .  This 
observation will be used in the proof  of the completeness of basic conditional 
narrowing for level-complete 2-CTRSs (Theorem 8.20). 

Definition 8.12. A solution ~ of a goal clause Tis said to be sufficiently normalized 
if a t~(~) is ~ , -normal ized where n is the level of ae, for every goal e~ T. 

The difficult part  in the proof  of the following lifting for level-confluent 2-CTRSs 
is the sufficient normalization of the resulting substitution 0'. 

Lemma 8.13. Let ~ be a level-confluent 2-CTRS. Suppose we have 9oal clauses S 
and T, a sufficiently normalized solution 0 of S, and a set V of variables such that 
~ ( S ) w ~ O  ~= V and T= OS. I f  T ~ , ~  T' then there exist a 9oal clause S' and 
substitutions 0', tr such that 

�9 S ~ * S ' ,  
�9 O'S '=  T', 
�9 O'o~r = O [ V ] ,  

�9 O' is a sufficiently normalized sofution of S'. 

Furthermore, we may assume that the narrowin9 derivation S~,* S' and the sequence 
T ~  T' employ the same rewrite rules at the same positions in the correspondin# 
9oals. 

Proof. We use induction on the length of the ~,~,~-sequence from T to T'. The case 
of zero length is trivial. Suppose T tOe.p.R:t . . . . . .  1TI ~,~'~ T'. We may assume that 
~//'(R) c~ V =  ~ and ~ z  ~ U(R). We first show that p~O(e). Let m be the level of 0e. 
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By definition n < m. We have zl --*~, zr, ~l,_ 1 t- z~, and z tr is ~ , _  1-normalized- 
Because 0 is a sufficiently normal ized solution of S, 0 rf-~) is N, . -normal ized  and 
hence also N,-normal ized .  Thus  peO(e) and so (Oe)lp = O(elp). Let # --' z u 0. We have 
#(ely ) - 0(elp ) -- zl =- #l. Let a~ be an idempoten t  most  general unifier of  ely and 1. 
Propos i t ion  2.1 yields ~ a ~  u oca 1 = "K(elp) u ~(/) .  Let  $1 = a l ( (S  - {e}) u {e[r]p} u 
g). By definition S'~'*te,p,R,,,l $1. Let V 1 = ( V -  ~ a l )  u oCcr 1 w g(R). We now show that  
"U(S1) ~ 1/1. Propos i t ion  3.5 yields 

,,//~(alS ) c2 ( V - -  ~0-1) k_)oof0" 1 ~ V 1. ( I )  

I t  is easy to show that  

N(R) c~ ~ a  1 = ~ .  (2) 

Together  with (1) and the inclusion ~//'(r) __c ~U(/)u g(R), 1r this yields 

~(~rl(e[r]p)) ~= ~(ol(e[l]p)) ~ N(R) = ~(aae) w N(R) c= ~ ( o l S  ) ~ N(R) c= VI. (3) 

The  last inclusion follows f rom (1). F r o m  (2) and the inclusion ~//'(~) ~ ~//-(I) u g(R) we 
obta in  ~(alc')___ ~(al l )~N(R) .  F r o m  formula  (3) we learn that  U(aal)=c 1/1 and 
thus 

V(O'I C~) =~_ V 1 . (4) 

Combin ing  (1), (3), and (4) yields ~ ($1)  _-_ 1/"1 Since a l  < p, there exists a substi- 
tu t ion p such that  poa 1 = # .  Define 01 =P[v, .  By definition ~01__c 1/1 and 
01 = p[V1]. F r o m  (2) and U(/) - ~ a ~  __c ~r we infer that  ~ ( R )  - ~ a l  __c V1 and 
hence ((V ~ U(R))  - Naa)  ~ J a l  = V1. An appl icat ion of Propos i t ion  3.6 yields 
01Oal = poaa = # [ V u  U(R)] .  F r o m  # Iv = 0 and # [r = r we infer that  

01 ~ = O[V] (5) 

and 

01o 0-1 = "L" [ ' i f (R)] .  (6) 

F r o m  these two equalities we obta in  

01S1 = 01al (S-  {e})w{O~ale[Olalr]v}uO~a~= O(S- {e})w{Oe[rr]p} wz~= T 1. 

(7) 

Before we can apply  the induct ion hypothesis,  we have to show that  01 is 
a sufficiently normal ized solution of S r Let e'eS1. By definition there exists 
an e " e ( S - { e } ) u { e [ r ] p } u g  such that  e ' - o l e " .  We distinguish three cases: 
(a) e"eS - {e}, (b) e" - e[r]v, and (c) e"e~. 

(a) Since ~ (e " )  __c Vwe obta in  01e' - 0e" f rom (5) and hence 01e' has the same level 
as 0e", say k. By assumpt ion  0 [fte-) is Nk-normalized.  We have to show that  
01 t~(e')is also Nk-normalized.  Since ~ ( e ' )  __c (U(e")-@aO U J a l  [~(e,,)(Proposi- 
t ion 3.5) this follows f rom Propos i t ion  3.7. 

(b) Let  e " - e [ r ] p .  F o r m u l a  (7) shows that  01e'-Oe[zr]v. Therefore  Oe~eOle' .  
Propos i t ion  8.7 shows that  the level of  01e' is at mos t  m. So it suffices to show 

14 Since ~ is a 2-CTRS we have of course "U(r) ~ "U(/). However, in the next section we will reuse 
most parts of this proof in the context of 3-CTRS. Hence we avoid using the stronger inclusion 
t/(r) ~ ~ff(/) here. 
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that 01 tree') is ~m-normalized. Since ~ is a 2-CTRS 15 we have ~F(r) __ ~(/)  and 
hence ~(e ' )  = ~ (a i ( e [ r ]p ) )~  "r ~(e'). Using the fact that 0 t'U(e)is 
~r,-normalized, we obtain the ~m-normalization of 01 trte') from Propositions 
3.5 and 3.7. 

(c) Let e"e?. Since ~ ( e " ) ~  ~(R)  we obtain 0 r e ' - r e "  from (6). By definition 
~ , _  1 H ~  and ~ te~R) is ~ , _  t-normalized. So the level of 01e' does not exceed 
n - 1 and hence it suffices to show that 01 ~r-ce') is N,_ 1-normalized. From (4) 
we infer that ;V(e')c__Jalug(R). In case (b) we noticed that 0tt.r is 
N~-normalized and thus also N,_ i-normalized. From d~ Nat  = ~ and (6) 
we infer that 0~ tetra equals z te~m, which by definition is N,_ t-normalized. 

The induction hypothesis yields a goal clause S' and substitutions 0', a' such that 
Sl~,, *, S', O'S' = T', O'oa' = 0~ [V~], and 0' is a sufficiently normalized solution of S'. 
Moreover, we may assume that S i-~*, S' and T t ~ , e  T' employ the same rewrite 
rules at the same positions in the corresponding goals. Let a = a ' o a t .  Clearly 
S~,*S  '. By construction this narrowing derivation and the rewrite sequence 
T~,~e T' employ the same rewrite rules at the same positions in the corresponding 
goals. It remains to show that O'oa = O[V]. This follows from O'oa' = 01 [Vt] and 
(5), using Proposition 3.6. [] 

Giovannetti and Moiso [17] present a lifting lemma for level-confluent 2-CTRSs 
without proof. Dershowitz and Okada give a rather informal treatment of a lifting 
lemma for 1-CTRSs and level-confluent 2-CTRSs (Lemma 5.2 in [7]). This lemma 
is not suitable for proving the completeness of conditional narrowing for level- 
complete 2-CTRSs.~ 6 

Theorem 8.14 (Giovannetti and Moiso [17]). Conditional narrowing is complete for 
level-complete 2-CTRSs. 

Proof. Let N be a level-complete 2-CTRS and suppose that a is a solution of a goal 
clause T. Let n be the level of aT. Let a' be the N,-normal form of a. Confluence of 
N, yields N,  H a'T. Hence the level of a'T is at most n and therefore ~r' is a 
sufficiently normalized solution of T. According to Lemma 8.11 there exists a 
sequence a ' T ~ e Y .  Lemma 8.13 yields a narrowing derivation T-~*T and a 
substitution a" such that a"oz= a ' [ ~ ( T ) ] .  Therefore r<a'[~V'(T)] and hence 

<~ a [ ~ ( T ) ] .  [] 

We have seen that in case of complete TRSs and 1-CTRSs strong normalization 
can be dropped, provided we restrict ourselves to normalizable solutions. This does 
not hold for level-complete 2-CTRSs as the following example of Giovannetti and 
Moiso [17] shows. 

Example 8.15. Consider the level-confluent 2-CTRS 

[a--*b ~ x = f ( x )  
" l  

(c--*f(c). 

We have a--,e b because c - ~  f(c), but conditional narrowing is not able to solve 
the goal a =? b, whose trivial solution e is clearly normalizable. 

15 This is the only place in the proof where we use the fact that ~ is a 2-CTRS. 
i6 As exemplified by the level-complete 2-CTRS {a ~ b ~ x = a}. 
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However, it is not difficult to prove the equivalence of ~t ~-T and T~o~e Y (cf. 
Lemma 8.11) for 2-CTRSs N with the property that that every N,  is semi-complete. 
The proof, which cannot be based on Lemma 8.10, has more or less the same 
structure as the proof of Proposition 6.8. Hence we can strengthen Theorem 8.14. 

Definition 8.16. A CTRS ~ is called level-semi-complete if each ~ .  (n > 0) is 
semi-complete. Example 8.18 shows that level-semi-completeness is not the same 
as the combination of level-confluence and weak normalization. 

Theorem 8.17. Conditional narrowing is complete for level-semi-complete 2-CTRSs. 
[] 

Example 8.18. Extend the CTRS of the previous example with the rule 

f(x) ~ d ~ y = f(y). 

The new CTRS is level-confluent and weakly normalizing but not level-semi- 
complete as ~1 is not weakly normalizing. Again the goal a =2b cannot be solved 
by conditional narrowing. 

We conclude this section by proving that basic conditional narrowing is 
complete for level-complete 2-CTRS. This result is due to Giovannetti and Moiso. 
The Appendix contains a proof of the following proposition. 

Proposition 8.19. Let R be a level-confluent 2-CTRS and a sufficiently normalized 
solution of a goal clause T. Every innermost ~o-~-sequence starting from aT is 
based on T. [] 

Theorem 8.20, Basicconditionalnarrowingiscompleteforlevel-complete2-CTRSs. 

Proof. Similar to the proof of Theorem 7.8. Let ~ be a level-complete 2-CTRS. 
Suppose a is an ~-solution of a goal clause Tand let o' be its ~ , -normal  form where 
n is the level of aT. We obtain a'T~,~,~-[" as the proof of Theorem 6.13. We may 
assume that this sequence is innermost (cf. the remark after Lemma 8.11). According 
to Proposition 8.19 it is based on T. It is not difficult to show that the narrowing 
derivation constructed by Lemma 8.13 is basic. The proof is completed as usual. [] 

9. Extra Variables in Right-Hand Sides 

In this section we extend the main result of the previous section - the completeness 
of conditional narrowing for level-complete 2 -CTRSs-  to CTRSs that contain 
extra variables in the right-hand sides of the rewrite rules. An example of such a 
CTRS is the following system (inspired by [8]) which specifies the computation of 
Fibonacci numbers: 

f O+x --*x S(x) + y -o S(x + y) 

f(O) ~ (0, S(O)) 
f(S(x)) ~ (z, y + z) ~ f(x) = (y, z) 
first( (x ,  y )  ) ~ x 

fib(x) -o first(f(x)). 
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We require that extra variables in the right-hand side of a rule occur in its 
conditional part, i.e. we restrict ourselves to 3-CTRSs. This is not a real restriction 
as we consider only strongly normalizing CTRSs. 

Unfortunately, the lifting lemma of the previous section does not extend to 
level-complete 3-CTRSs. 

Example 9.1. Consider the level-complete 3-CTRS 

~ a ~  f ( x )  .r x = b  

~ = ( b ~ c .  

Let S = {a =ef(c)} and 0 = e. Clearly 0 is a sufficiently normalized solution orS. We 
have the rewrite step 

OS~-~ {/(b) =~/(c), b =~b} = T'. 

There is only one narrowing step originating from S: 

S~,~ {f(x) =7 f(c), x =? b } = S'. 

Every substitution O' satisfying O'S' = T' must have O'x = b. But this conflicts with 
the sufficient normalization of O' since the level of O'(f(x) =~f(c)) is 1 and O'x is 
Nl-reducible. Suppose that we extend OS,~J~ r '  with the step r ' ~  ~ {f(b) =':f(c), 
true} = T", i.e. we solve the condition of the rule applied in the previous step. The 
corresponding narrowing step is 

S ' ~ , y ~ b }  {f(b) =~f(c), true} = S", 

where we used the rule y =Ty_~ true. Now the problem has disappeared: Every 
substitution 0" is sufficiently normalized with respect to S". By solving the condition 
x =? b the problematic term b was transferred from the substitution 0' to the goal S". 

Example 9.1 suggests that Lemma 8.13 may hold if we restrict ourselves to 
,~,e-sequences that first solve the introduced conditions after every application of a 
conditional rewrite rule. This indeed turns out to be the case. Observe that 
~-,e-sequences complying with the obligation to solve conditions immediately after 
their introduction correspond to ordinary rewrite sequences, the only difference 
being the introduction of a few harmless constants true after a condition has been 
solved in a ~-~e-sequence. 

Definition 9.2. Let ~ be a CTRS. A ,~-~e-rewrite sequence is said to be well-behaved 
if it can be constructed according to the following two principles. 

�9 Let T~te,p,~ . . . . . .  1 ( T -  {e}) t3 {e[ar]p} u ag. If a?~,~ T is well-behaved then 

T~~'t~,p,, . . . . . .  I ( T -  {e})  ~ {e [or ]p}  u o"~ r~,~-~ ( T -  {e}) u {e [or ]p}  u T 

is well-behaved. In particular every unconditional step T~,te,p,t . . . .  1 ( T -  {e}) u 
{ercrr]p} is well-behaved. 

�9 If TI~ ,  e T 2 and T2~-~ e T 3 a r e  well-behaved then their concatenation T l ~ , e  
T 2 ~  e T s is well-behaved. 

Proposition 9.3. Let R be a level-complete C T R S  and TE(~ 7. There exists a well- 
behaved sequence T~,o.~ T. 
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Proof. According to Lemma 8.11 there exists a sequence T ~ e  T. This sequence can 
be transformed into a well-behaved sequence T ~ , e  T by a straightforward reorder- 
ing process. []  

Lemma 9.4. Let ~ be a level-complete 3-CTRS. Suppose we have goal clauses S and 
T, a sufficiently normalized solution 0 of S, and a set V of variables such that 
~ (S)  u @0 ~ V and T= OS. I f  T~,~e T' is well-behaved then there exist a goal clause 
S' and substitutions 0', a such that 

�9 S~*S', 
�9 O'S'=T', 
�9 O'oo=O[V], 
�9 O' is a sufficiently normalized solution of S'. 

Furthermore, we may assume that the narrowin9 derivation S ~ *  S' and the sequence 
T ~ , e  T' employ the same rewrite rules at the same positions in the correspondin9 
goals. 

Proof. We use induction on the level of T. If  the level of T equals 0 then only the 
rule x =?x ~ true is used in the ~-~e-sequence from T to T'. Since {x =~x ~ true} 
clearly constitutes a level-confluent 2-CTRS, the result follows from Lemma 8.13. 
Suppose the level of T equals N + 1. We use induction on the length of the 
well-behaved ~e - sequence  from T to T'. The case of zero length is trivial. Suppose 
T~'v[nOe,v,R:l . . . . . .  ]Tl~,~e T' with ~(R)c~ V= ~ and ~ z ~  ~U(R). Because this se- 
quence is well-behaved, the subsequence from T1 = ( T -  {0e}) u {Oe[zr]~} u ~ to T' 
can be written as Ta ~,~,a T2 = ( T -  {0e})u {Oe[rr]p} u-F~*~ T'. The structure of the 
proofs is illustrated in Fig. 7. Let m be the level of 0e. Clearly m < N + 1. By definition 
n < m. At this point we follow literally the proof of Lemma 8.13 until we reach 
formula (7). This takes care of diagram (1) in Fig. 7. Next we show the existence of 
a goal clause $2 and substitutions 02,a2 such that -~,* S1 a2S2, ~u'(S2)t,Q~0 2 ~ V2, 
02S2 = T~, Oz ~ = 0~ [V~], and 02 is a sufficiently normalized solution of $2. Here 
V 2 - - (V 1 - ~ a 2 ) u  Jo-  2. We distinguish two cases. 

= ~ (This means that R is an unconditional rewrite rule.) We define $2 = $1, 
02 = 01, and o- 2 = & Since in this case ~( r )  ~ U(/) we can repeat cases (a) and 
(b) in the proof  of Lemma 8.13 in order to conclude that 02 is sufficiently 
normalized solution of S 2. The other requirements are trivially satisfied. 

~ ~ In this case the substitution 0~ is in general not a sufficiently normalized 
solution of S~ since in case (b) of the proof of Lemma 8.13 the requirement 
V(r)  ~ V(/) is essential. Case (c), however, does not rely on the restriction 
to 2-CTRSs. Hence 0~ is a sufficiently normalized solution of z~. From 

T ~o~m TI ~m T2 ~--m T' 
i i i i 
i i i i 
i i i i 
i i i i 

:o (i) ' (2) 1o2 , o~ (3) ,6' 
i i i i 
i ~" i j i 
i i i i 
i i i i 

S ~o~ S] ~;~ S~ -~* S' o,t 

Fig.  7. 
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~ , -  1 H z~ we infer that the level of z~ is less than N + 1. From T 1 ~ T 2 
we extract a well-behaved sequence z&~*~ Z. Applying the first induction 
hypothesis yields substitutions 02 and o. 2 such that o - l ~ *  2 T and 02 o62 = 
01[V1]. Let S 2 = a 2 a i ( ( S - { e } ) w { e [ r ] p } ) u Z .  Clearly $1~,'2S2. Using 
U(S~) = 1/1 we easily obtain ~ ( $ 2 ) =  V2. It is not difficult to show that 
02S2 = T1. Since 02 ~v2 also satisfies the above requirements (i.e. 02 iv2 ~ o2 -- 
01 IV1]  and 02 tv2S2 = T1), we may assume that @02 _-1/2. It remains to 
show that 02 is a sufficiently normalized solution o f  S 2. Let e'eS2 - T. There 
exists an e"e (S -{e} )u{e[r]p}  such that e' = a2ale". We distinguish two 
cases: (a) e"~S - {e} and (b) e " =  e[r]p. 
(a) Since V(e") ~ V and f'(o.le") c= V1 we obtain 02e' - 0e" from 01 o61 = 

O[V] and 02 ~ = 01 [1/1]. Because 0 is a sufficiently normalized solution 
of S, 0 F~(e-) is 5~cnormalized where I is the level of 0e". We have to show 
that 02 P~te,) is also 5~ This follows from 01o61 = O[V], 
02 oo. 2 = 01 [V1], and two applications of Propositions 3.5 and 3.7. 

(b) Let e" = e[r]p. We have Oe ~ Oe[zr]p =- 02e'. Proposition 8.7 shows that 
the level of 02e' is at most m and hence it suffices to show that 02 ~r(~,) 
is ~,,-normalized. The crucial observation is that we have the following 
inclusion: 

~(e') = ~(aZo.l(e[r]p)) ~= ~(a2aae). (1) 

Suppose to the contrary that there exists a variable xE'f'(azal(e[r]p)) - 
3U-(0-2O. 1 e). This implies that XE 3V'(O'zo.1r ). Since 3U'(O.2O.11 ) = 3V'(O'zal(elt,) ) 
~(a2o.le ), we have x e"/f(o.2o.lr ) - ~(o.2611 ). According to Lemma 6.6 we 
may infer ~ H o.2o.l~ from o.l~-~*2 Y. Hence o.2all--+~ a2alr from some 
i >  0. However, since ~ ,  is closed under substitutions (in particular 
under the substitution {x ~+ o-2o.ll}), we obtain an infinite -+~,-sequence 
starting from o.2a 11, contradicting the level-completeness o f~ .  Therefore 
inclusion (1) is valid. Using 01oa I = 0 I V ] ,  ~(e)___ V, and the ~,,-  
normalization of 0 t~e), we obtain the ~-normalization of 0~ r~(~,) by 
means of Propositions 3.5 and 3.7. The ~m-normalization of 02 [r(,~,,e) 
follows in the same way. From (1) we obtain the ~,,-normalization of 
02 [~(e')" 

This includes the construction of diagram (2) in Fig. 7. According to Proposition 8.8 
the level of T 2 is at most N + 1. If it is less than N + 1 then we apply the first 
induction hypothesis. Otherwise we apply the second induction hypothesis. In both 
cases we obtain a goal clause S' and substitution 0', o.' such that $2~-, *, S', O'S' = T', 
0'o o.'= 02 IV2], and O' is a sufficiently normalized solution of S'. Now that we have 
completed diagram (3) in Fig. 7, it is time to glue the three diagrams together. Let 
a=o.'oo.2oal. We clearly have S~,*S'.  From Oloo.l=O[V], 02oo.2=01[V1], 
O'od=Oe[V2], and the definitions of V 1 and V2, we obtain O'o~r=O[V] by 
two applications of Proposition 3.6. []  

Combining Lemma 8.11, Proposition 9.3, and Lemma 9.4 yields the final result 
of this paper. 

Theorem 9.5. Conditional narrowing is complete for level-complete 3-CTRSs. [] 

It is unclear whether basic conditional narrowing is complete for level-complete 
3-CTRSs. The problem is that Proposition 8.19 does not extend to (level-complete) 
3-CTRSs. 
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Example 9.6. Consider again the CTRS of Example 9.1 and the goal S = {a =? f ( c )  }. 
The sequence 

S >~,J~ f(b) =~f(c), b =? b 

>~-~ f(b) =?f(c), true 

~J~ f (c )  =~ f(e),  true 

is innermost and well-behaved, but not based on S. Nevertheless, basic conditional 
narrowing is able to solve the goal a =? f(c): 

S ~  f ( x )  =? f ( c ) , x  =?b 

~'~-~c~ true, c =? b 
9 true, c =" c 

T, 

but the corresponding ~--~-sequence 

S ~--~ f ( c )  =? f(c),  c =? b 

,__~ o true, c =? b 

~--~ true, c =? c 

 ,ov 

is not a ,~-~-sequence since the level of S equals 1. 

I0. Conclusion 

In this paper we have tried to perform a thorough study of the completeness of 
narrowing and basic narrowing for TRSs and CTRSs. The main results are 
summarized below. Results preceded with "o" are new. 

Norrowing is complete for 
�9 complete TRSs (Theorem 3.8), 
�9 semi-complete TRSs (Corollary 3.11), 
�9 confluent TRSs with respect to normalizable solutions (Theorem 3.10). 

Basic narrowing is complete for 
�9 complete TRSs (Theorem 4.5), 
o orthogonal TRSs with respect to normalizable solutions and goals 

(Theorem 5.6), 
o confluent right-linear TRSs with respect to normalizable solutions 

(Theorem 5.13), 
o weakly normalizing orthogonal TRSs (Corollary 5.7), 
o semi-complete right-linear TRSs (Corollary 5.14). 

Basic narrowing is not complete for 
o semi-complete TRSs (Counterexample 4.7). 

Conditional narrowing is complete for 
�9 complete 1-CTRSs (Theorem 6.13), 
�9 semi-complete 1-CTRSs (Corollary 6.15), 
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�9 confluent 1-CTRSs with respect to normalizable solutions (Theorem 6.14), 
�9 level-complete 2-CTRSs (Theorem 8.14), 
o level-semi-complete 2-CTRSs (Theorem 8.17), 
o level-complete 3-CTRSs (Theorem 9.5). 

Conditional narrowing is not complete for 
�9 complete 2-CTRSs (Example 8.1), 
�9 level-confluent 2-CTRSs with respect to normalizable solutions 

(Example 8.15). 

Basic conditional narrowing is complete for 
o decreasing and confluent 1-CTRSs (Theorem 7.8), 
�9 level-complete 2-CTRSs (Theorem 8.20). 

Basic conditional narrowing is not complete for 
o complete 1-CTRSs (Counterexample 7.3), 
o semi-complete orthogonal 1-CTRSs (Counterexample 7.11). 

We except that the completeness of basic narrowing for level-complete 2-CTRSs 
carries over to 3-CTRSs. It is less clear whether level-semi-completeness is sufficient 
for the completeness of conditional narrowing for 3-CTRSs (cf. Theorem 8.17). As 
a matter  of fact, it seems reasonable to conjecture that Theorem 8.17 does not extend 
to 3-CTRSs since strong normalization of every ~ ,  is crucial in the proof of the 
lifting lemma for 3-CTRSs (Lemma 9.4). 

Giovannetti  and Moiso [ 17] observed that the confluence proof of Bergstra and 
Klop [1] for orthogonal and normal 2-CTRSs 0 I I ,  systems in the terminology 
of [1]) actually shows level-confluence. Such a result (if at all true) makes less sense 
for 3-CTRSs since 3-CTRSs typically are not normal, see for example the 3-CTRS 
at the beginning of Section 9. Thus it is important  to develop other criteria that are 
easy to check and which ensure the level-confluence of 3-CTRSs. Useful techniques 
which ensure the strong normalization of 2 and 3-CTRSs need also to be developed. 

If we extend the set of basic positions as in the combination of basic and normal 
narrowing (see R6ty [37]), our counterexamples (4.7 and 7.3) no longer work. It is 
worthwhile to investigate whether such a relaxed form of basic narrowing suffices 
for completeness. 

As explained in the introduction, we restricted ourselves in this paper to 
narrowing and basic narrowing for TRSs and CTRSs. It would be interesting to 
treat the other variants of narrowing in the same systematic way. 
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Appendix 

In this Append ix  we present  proofs  of  P ropos i t ions  4.4, 5.5, 7.7 and 8.19. The proofs  
are very much alike, but  it is difficult to capture  the similari t ies in a separate,  general  
p ropos i t ion .  

Proposition 4.4. L e t  ~ be  a T R S  a n d  a a n o r m a l i z e d  s u b s t i t u t i o n .  E v e r y  i n n e r m o s t  

r e d u c t i o n  s e q u e n c e  s t a r t i n g  f r o m  a t  is b a s e d  on  O(t) .  

P r o o f .  Suppose  

a t  ==- t 1 --*[pt,l~ ~r~,e~l "'" --~[p, - a,l, - a ~r ,  - ~,~, - tl tn 

is an innermos t  reduc t ion  sequence. Let  B1 = O(t )  and  define B2 . . . . .  B , _ I  as in 
Def ini t ion 4.1. By induc t ion  on i we will show that  (ti)lp is a no rma l  form whenever  
p e O ( t l )  - Bi  for 1 < i < n. The case i = 1 follows from the no rma l i za t ion  of  a. 
Suppose  the s ta tement  holds  for i = 1  . . . . .  m and  let p e O ( t m + O - - B , , +  1. W e  
dis t inguish two cases: p_l_ p,, and  p > Pro- (The case p < p,, is imposs ib le  since this 
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would imply p sB,, + 1 as we already know that B m is closed under prefix and p,, E B" . )  

(1) If p i p , .  then clearly p~O( t , . ) -  B,. and (tm+ 1)1, = (tm)lp" The induction hypo- 
thesis yields the desired result. 

(2) If p >Pro then there exist positions q~O~(rm) and q' such that p =p, . .q 'q '  
(otherwise p~_B,.+ 1). Hence (t,.+ 1)IP ~-~ (amr")lq.q' =- (ffmX)lq" where x is the variable 
in r,. at position q. So (tm+l)lp is a proper subterm of aml m and because 
tm~tpm,Zm-" . . . . .  ]tm+l is an innermost reduction step, (t"+l)l p is a normal 
form. [] 

Before proving Proposition 5.5 we give a few elementary properties of ortho- 
gonal TRSs. The following lemma expresses a famous result in the theory of 
orthogonal TRSs (see e.g. Huet  and L6vy [21]). Confluence of orthogonal TRSs is 
an easy consequence of this lemma. 

Parallel Moves Lemma.  Let ~ be an ortho9onal TRS. I f  t-~ tl and t ~ t 2 then there 
exists a term t 3 such  that t 1 -~ t 3 and  t 2 -~ t 3. Moreover, the redexes contracted in 
t 1 -~ t  3 (t 2-~ t3) are the descendants in tl (t2) o f  the redexes contracted in t ~  t 2 
(t-~ tx). []  

The following consequence of the Parallel Moves Lemma is used in the proof  
of Proposit ion 5.5 below. 

Propos i t i on  A.1. Let ~ be an orthogonal TRS. Suppose s contains a redex r which is 
not needed. I f  s ~ t then the descendants o f t  in t are not needed. 

Proof. Because r is not needed there exists a normalizing reduction sequence 

S ~ S I  ---+ S 2  - .+  . . .  .---~ S n  

in which no descendant of r is contracted. Using the Parallel Moves Lemma we 
construct the diagram of Fig. 8. The contracted redexes in ti-~t~+ 1 are the 
descendants of the redex contracted in the step s t~s i+  1. Hence no descendant 
of r is contradicted in the sequence tl --~ t. and because s. - t. no descendant of r 
in t is needed. [] 

Propos i t i on  5.5. Let ~t be an orthogonal T RS and a a normalized substitution(Every 
innermost needed reduction sequence starting from at is based on O(t). 

Proof. The proof  has the same structure as the proof of Proposition 4.4. Suppose 

O't ~--- t 1 --~[px31 ~ r~ , a ~ ]  " ' "  "-'~[p~- ~ 3 , -  ~ ~ r ~ -  ~ ,a~-  1] t n  

is an innermost needed reduction sequence and define B 1 . . . . .  B,_ 1 as usual. By 
induction on i we will show that (t~)lp contains no needed redexes whenever peO(ti) - Bi 
for 1 < i < n. The case i = 1 is trivial. Suppose the statement holds for i = 1 . . . .  , m 
and let peO( t , .+ l ) -Bm+ P The case p-l-pro easily follows from the induction 

$ ~_ .S 1 1L $2  ~ �9 �9 �9 II 3 n  

t - t ,  II ~ t~  II . . . .  II ' t -  

Fig. 8. 
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hypothesis. If  p >Pm then (t,,+ 1)pv is a proper  subterm of amlm, just as in the proof  
of  Proposi t ion  4.4. Suppose (t,,+ 1)lp contains a redex r. Since t,,--*[p,,dm~ . . . . .  it,.+ 1 
is an innermost  needed reduction step, r is not  needed in tr,. Propos i t ion  A.1 shows 
that r is not  needed in t,,+ 1. [ ]  

Proposition 7.7. Let ~ be a I -CTRS,  T a goal clause and tra normalized substitution. 
Every innermost ~--~-sequence starting from aT  is based on T. 

Proof. Suppose 

a T =  T1 v - - + [ e l , p h R l , a l ] ' ' "  ---~[e.-  1 ,pn -  I , R . -  1 ,an -  a] Tn 

is an innermost  ~a - sequence .  Let B1 = T and define the posit ion constraints 
B2,. . . ,  B,_ 1 as in Definition 7.2(2). By induct ion on i we will show that  ely is a 
normal  form whenever e~Ti and peO(e) -Bi (e )  for 1 < i < n .  For  i =  1 this is a 
consequence of  the normalizat ion of  o-. Suppose the statement holds for i = 1 . . . . .  m. 
Let R,, be the rule I , ,~r, ,  ~ Cm and take e eTm+l. We distinguish three cases: 
e~Tm -- {em}, e = em[amr,.]vm, and eeo,,?,,. 

(1) If  eET,,--{e,,} then Bm+l(e)=B,,(e) and hence the result follows from the 
induction hypothesis. 

(2) The case e -= e,,[amr,,]vm follows as in the proof  of Proposi t ion 4.4. 
(3) If  eEo'm~m then Bm+l(e)= 0(e')  where e =  %e ' .  Hence it suffices to show that 

a,. I'r is normalized. Since N is a 1-CTRS, we have q/~(e') ~ ~(l, .) and because 
a,.lm is an innermost  redex in e,, we know that  a~ ['r is normalized. [ ]  

Proposition 8.19. Let Jl be a level-confluent 2-CTRS and ~ a sufficiently normalized 
solution of a goal clause T. Every innermost ~e-sequence starting from a T  is based 
on T. 

Proof. Suppose 

a T =  T 1 ) ' ~ + [ e l , p l , R i  : l l - - . r l  ~ c l , a l ]  " "  )'~ l , p .  l , R . _  l : l n_  l ~ r ~ _  l ~ C n _  a,an_ l] T n 

is an innermost  ~ - s e q u e n c e .  Let B~ = T and define the position constraints 
Bz , . . . ,B ,_x  as in Definition 7.2(2). By induction on i we will show that  elp is 
~ j -normal ized  whenever ee T~ and pEO(e) - B~(e) for 1 < i < n. He re j  is the level of 
e. For  i = 1 this is a consequence of the sufficient normalizat ion of  a. Suppose the 
statement holds for i = 1, . . . ,  m and let k be the level of %. We have 

1 T, ,~ f~ ,p , ,g  . . . .  1 Tm +I = (T,, - {era}) u {e,,[amrm]v..} u a,,a,~ 

for some l < k. Hence 5~z - ~ t-- %e,,  and o-., [~(n~) is N~ _ 1-normalized. Take e e T,, + 1. 
We distinguish three cases. 

(1) If e e T , - { % }  then B,,+l(e ) =Bin(e) and hence the result follows from the 
induct ion hypothesis. 

(2) Let e -- e,,[a,,rs]v. We have % ~ e ,  e. Proposi t ion 8.7 shows that  the level of e 
is at mos t  k and hence it suffices to show that  elp is ~cno rma l i zed .  As in the 
proof  of  Proposi t ion 4.4 we distinguish the two cases p_L p,, and p > pro. 
(a) If  pLp, .  then ely-(e, . ) l  p and pCBm(e,,). Hence the result follows from the 

induction hypothesis. 
(b) Let p > Pro" Since ~ is a 2-CTRS we have ~(r , , )  ___ U(lm) and hence we infer 

that  ely is a proper  subterm of a~l,,. Because a,,l,, is an innermost  Nk-redex in 
e,,, am [ft '~)  is ~k-normalized.  
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(3) If e~a,,g,,  then the level e does not exceed l - 1  and Bm+l(e)= O(e') where 
e = ame'. So it is sufficient to show that a,. r,~(,,) is ~ _  x-normalized. Clearly 
V(e ' )  c= ~ ( l , , ) w g ( R , , ) .  We already observed that % rgcR~) is Nl-1-normalized 
and a,.[,-~l,,) is Nk-normalized. Since k > l - 1 ,  am P~(t~) is certainly ~t-1-  
normalized. [] 

We conclude the Appendix by showing that the orthogonal 1-CTRS ~ of 
Counterexample 7.11 is semi-complete. 

Proof.  We transform 

f(x)--* a ~ g(b) = c 

~ l =  g(x) ~ c  ~ x =  f ( x )  

b - - , f (b)  

into a semi-complete TRS ~ '  such that the relations ~ and ~ ,  coincide. First 
observe the g(b) $~ c. Hence N generates the same rewrite relation as the CTRS 

f(x) ~ a 
~1 = g(x)-+c ~ x = f ( x )  

b ~ f ( b ) .  

It is not difficult to show that {a,b} w {f(s)ls is an arbitrary term} is the set of 
all terms t that satisfy t ~ 1  f ( t ) .  As a consequence, the rewrite relations of N1 and 
the TRS 

coincide. Define 

~7~ 2 I 
f ( x )  ~ a 
g( a) --* c 

g(b) --, c 

gb(f(x))---'c 
~ f ( b )  

f(x)--* a 

~"= o(a)--,c 
b -- . f (b) .  

Clearly ~e ,  ~ ~e2. One easily shows that --*e2 N ~ , .  We conclude that ~ = 
~ ) , .  Confluence of N' is an immediate consequence of orthogonality. Weak 
normalization of N' easily follows by induction on the structure of terms. [] 


