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On complements in lattices with covering properties 

MANFRED STERN 

Dedicated to the memory of Herbert Gross 

1. Introduction 

Stenstr6m [4] investigated joins of  finitely many atoms in a complete modular  

lattice. Among others, he proved a necessary and sufficient condition for such a join 

to have a complement. We show that Stenstr6m's criterion also holds under 

assumptions weaker than modularity. These weaker assumptions are the so-caUed 
covering properties and neighborhood conditions. 

2. Prefiminaries 

All lattices are assumed to be complete. The least and greatest elements will be 

denoted by 0 and 1, respectively. We say that x is covered by y and write, x - - <  y 

if x < y and if x < z < y implies z = x for all z. An element x is called an a tom if 
0 - -<  x and a dual a tom if x ---< 1. 

A lattice L is called atomic if, for each x ~ 0, there exists an a tom p such that 
p < x. A lattice is called atomistic if each of  its elements is a join of  atoms. Similarly 

a lattice is called dually atomistic if each of its elements is a meet of  dual atoms. 
In investigations on nonmodular  lattices so-called modular  pairs play an impor- 

tant role. For  a detailed background concerning this notion (which is due to L. R. 
Wilcox) we refer to M a e d a - M a e d a  [3]. 

D E F I N I T I O N .  Let L be a lattice and a, b e L. We say that a, b is a modular  
pair and write (a, b)M if 

c < b  implies (c v a )  ^ b = e  v ( a / x b ) .  
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We say that a, b is a dual-modular pair and write (a, b)M* if 

c > b  implies (c /xa)  v b = c / x ( a v b ) .  

A lattice is obviously modular if and only if (a, b)M holds for each a, b ~ L. 
From Dedekind's isomorphism principle it follows that each modular lattice 
satisfies the neighborhood condition 

a /xb - - -<  a implies b---< a v b  (N) 

and the dual neighborhood condition 

b - - <  a v b  implies a A b - - - <  a. (N*) 

In lattices of finite length, (N) and (N*) together imply modularity; for lattices in 
general, this is no longer true (cf. Crawley and Dilworth [2]). 

For lattices with continuous chains the implications (N) and (N*) are trivially 
fulfilled. On the other hand, for lattices of infinite length which have discrete chains 
(in particular, for atomistic lattices) it makes sense to single out those lattices which 
satisfy (N) or (N*) or both in a nontrivial manner. 

Examples of such lattices are atomistic modular lattices (as, for instance, the 
subspace lattices of projective geometries). There are also atomistic lattices satisfy- 
ing both (N) and (N*) but not being modular: for instance, the lattice of all closed 
subspaces of an infinite dimensional Hausdorff topological vector space (cf. 
Maeda-Maeda  [3]). 

For a lattice L, the interval [a, b] (a, b ~ L, a < b) is the set of all x ~ L for which 
a<_x<_b. 

An element b is said to be of finite height, if the length of the interval [0, b] is 
finite. Any atom is an element of height 1. In general, an element of finite height 
need not be a join of atoms. 

In lattices with (N) each join of finitely many atoms is of finite height. In 
atomistic lattices with (N) each element of finite height can be represented as a join 
of finitely many atoms. By a finite element we mean either 0 or an element which 
is a join of finitely many atoms. 

An element b of a lattice L is called modular if (x, b)M holds for every x ~ L. 
Atomistic lattices with (N) and (N*) have the property that each finite element 

is a modular element. More precisely, if L is an atomistic lattice with (N) and (N*), 
and if b is a finite element, then (x, b)M and (b, x)M* hold for each x e L (cf. 
Maeda-Maeda  [3], Corollary 9.4). Because of this property, an atomistic lattice 
with (N) and (N*) is said to be finite-modular. Note that, in general, such a lattice 
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is neither finite nor modular. As a more general version of  Dedekind's isomorphism 

principle we have 

PROPOSITION 1 (cf. Maeda -Maeda  [3], Lemma 1.3). Let a, b be elements of  

a lattice L. I f  both (a, b)M and (b, a)M* hold, then the transposed intervals [a, a v b] 

and [a A b, b] are isomorphic (by the mutually inverse mappings x ~ x  ^ b and 
y--*y va) .  

Proposition 1 and the foregoing observations imply that if, in an atomistic lattice 
with (N) and (N*), b is a join of finitely many atoms, then the transposed intervals 
[b/~ x, b] and [x, b v x] are isomorphic. We shall use this fact in the next section. 

3. Elements of finite height with complements 

We say that an atom p of a lattice L has the covering property (C) if, for any 

x ~ L, x ^ p = 0 implies x ---< x v p. A lattice is said to have the covering property 
(C) if each of its atoms has the covering property (C). A lattice with neighborhood 
condition (N) has clearly the covering property (C) whereas the converse is not 
true. However, if an atomistic lattice has the covering property (C), then it also 
satisfies the neighborhood condition (N) (cf. Maeda-Maeda  [3], Theorem 7.10). 
Atomistic lattices with (N) are therefore also called AC-lattices. 

Similarly, a dual atom m of a lattice L is said to possess the dual covering 
property (C*) if, for any x ~ L, x v m = 1 implies x ^ m - -<  x .  A lattice is said to 
have the dual covering property (C*) if each of its dual atoms has the dual covering 
property (C*). Again, it is clear that a lattice with (N*) also satisfies (C*), but not 
conversely. 

In what follows we denote by x+ the meet of all lower covers of the element x. 

PROPOSITION 2. Let L be a complete lattice with dual covering property (C*). 
Then b+ < 1 + holds for all b ~ L. 

Proof  If L has no dual atom, then 1+ = 1 and the assertion trivially holds. 
Next we observe that for an arbitrary dual atom mi and for an arbitrary b ~ L we 
have either b <mi  or b ~m~ implying by (C*) that b ^mi - - -<  b. Hence 
b+ =<A(b Ami) < A m i  = 1+. 

PROPOSITION 3. Let L be a complete lattice satisfying the neighborhood 
condition (N) and its dual (N*), and let (0 v~ ) b ~ L be an element of  finite height. I f  
b/x 1+ = 0, then b is a join of  finitely many atoms. 
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Proof  From b ^ I+ = 0 it follows by Proposition 2 that 

b ^ b+ = 0. (1) 

Since b+ < b for any element b ( 4: 0) of  finite height we conclude from (1) that 
b+ = 0. This means that [0, b] is a sublattice of  finite length with (N) and (N*) in 

which 0 is the meet of  all dual atoms [0, b]. It follows that [0, b] is a modular  and 
atomistic sublattice (cf. Birkhoff [1], Chapter VII). In particular, b is a join of  

finitely many atoms. 
Next we show that if, in a complete lattice with (N) and (N*), an element b of  

finite height satisfies the condition b/x 1+ = 0, then b has a complement. As a 

preparation, we prove 

LEMMA 4. In a complete lattice L with (N) let m be a dual atom satisfying (C*) 

and b an element such that b ff~ m. I f  b A m has a complement c, then c ^ m is a 

complement o f  b. 

Proof. The main steps are visualized in Figure 1. From b ~ m we obtain 

b v m = l >---m (2) 

b vm = I =(b Am) vc 

m 

b A m  ~ c a m  

I 

O=(b Am) ^ c 

Figure [ 
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which implies by (C*) (which was assumed to hold for m) that b ^ m - - ~  b. Since 

c is a complement of  b ^ m we have 

(b Am) v c = l  (3) 

and 

(b Am) A c = 0 .  (4) 

It follows that c z~ m since otherwise c v (b A m ) <  m - - - < 1  contradicting our 

assumption that c is a complement of  b A m. Thus c v m = 1 > - -  m which yields 
that 

c A m - - - <  c (5) 

since m satisfies (C*). Next we observe that 

C A m < ( c A m )  v ( b  A m ) < m .  (6) 

We show that here the right inequality is in fact an equality. To see this, note first 
that (5) and (6) yield c A [(e A m) v (b A m)] = c A m ----< c. Hence we obtain by 
(N) and by (3) that (c A m) v (b A m) ---< c v [(c A m) v (b A m)] = 
c v (b A m) = 1. Since (c A m) v (b A m) <-- m - - <  1 we conclude that 

(c Am) v(b A m ) = m .  (7) 

Using (7) it is now easy to see that c A m is a complement of  b. Namely, from (2) 

and (7) it follows that l = b  v m = b  V [ ( c A m )  v ( b A m ) ] = [ b  v ( b  A m ) I v  

( c A m ) = b v ( c A m ) .  On the other hand, we get from (4) that b A ( c ^ m )  
----(b A m) A C = 0. This proves the lemma. 

For complete modular  lattices the assertion of the preceding lemma was proved 

in StenstrSm [4]. The nonmodular  (but  semimodular) lattice of  Figure 1 indicates 
that in fact we need only (N) and a weaker requirement than (N*). Of  course, our 

following applications concern lattices satisfying both (N) and (N*) which means, 
in particular, that (C*) holds for all dual atoms. But even then we do not have to 

assume modulari ty which shows that our approach comprises a more general 
situation than Stenstr6m [4]. 
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C O R O L L A R Y  5. Let L be a complete lattice with neighborhood condition (N)  

and its dual (N*), and let b ~ L be an element of  finite height, l f  b ^ 1 ~ = O, then b 

(is a join of  finitely many atoms and) has a complement in L. 

Proof. Proposition 3 implies that b is a join of finitely many atoms. If  the other 

statement were false, one could find an element b of minimal height having no 

complement. From b A i __ = 0 we obtain the existence of a dual atom m such that 
b ~ m. By Lemma 4, b / ,  m cannot possess a complement, a contradiction. 

The preceding corollary applies, in particular, to finite-modular AC-lattices and 

to modular lattices (the latter case was shown in Stenstr6m [4]). We proceed now 

to prove a converse to Corollary 5. 

L E M M A  6. Let L be a complete lattice with neighborhood condition (N) and let 

b be a join of  finitely many atoms. Assume moreover that (b, x ) M  and (x, b)M* hold 

for all x ~ L. I f  b has a complement, then b A 1 + = O. 

Proof. Let b'  be a complement of b. It is sufficient to show that b '  is a meet of  
dual atoms. To see this, we first observe that [0, b] is a modular  sublattice of  finite 

length whose greatest element is a join of  atoms. Thus [0, b] is complemented and 

hence relatively complemented. It follows that 0 can be represented as the meet of 
(all) dual atoms in the interval [0, b]. Next we observe that, by assumption, we have 
(b ,b ' )M and (b ' ,b)M*.  This implies by Proposition 1 that the interval 

[b', b v b'] = [b', 1] is isomorphic to the interval [0, b] with the canonical mappings 

establishing an isomorphism. We conclude that the complement b '  of b must be the 

meet of (all) dual atoms of the interval [b', 1]. Thus we obtain ! + < b'. In view of 

b ^ b '  = 0 this implies b A 1 _~ = 0 which was to be shown. 
In particular, Lemma 6 applies to finite-modular AC-lattices as well as atomic 

modular lattices. The latter statement is proved in Stenstr6m [4]. We note that the 
assumption "b is a join of  finitely many a toms"  cannot be replaced in the preceding 

lemma by the weaker requirement "b is of  finite height" as the lattice of  Figure 2 

shows. 

From Corollary 5 and Lemma 6 we obtain 

T H E O R E M  7. Let L be a complete finite-modular AC-lattice and let b be a finite 

element o f  L. Then b has a complement i f  and only i f  b A 1 + = O. 

The preceding theorem generalizes M a e d a - M a e d a  [3], Theorem 27.10, where it 
was shown that in a DAC-lattice (i.e. an AC-lattice whose dual is also an 
AC-lattice) each finite element has a complement. This is an easy consequence of 
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l = b v b '  

b ^ l  

1+ b' 

O=b Ab" 

Figure 2 

Theorem 7 since a DAC-lattice is dually atomistic and therefore has the property 
1+ =0 .  

As a by-product we get 

T H E O R E M  8. Let L be a complete atomic lattice with (N) and (N*). Each atom 
of L has a complement if and only if each finite join of atoms has a complement. 

Proof Assume that each atom has a complement. Observing that a complement 
of an atom must be a dual atom, it follows that 1 + = 0. Hence b A 1 + = 0 holds for 
all b which are joins of  finitely many atoms. By Corollary 5, each such b has a 
complement. The converse is trivial. 

Again, the preceding result applies, in particular, to the finite-modular and the 
modular case. As already remarked, in a DAC-lattice each finite element has a 
complement. It seems therefore natural to ask whether a complete finite-modular 
AC-lattice in which each finite element has a complement is already a DAC-lattice. 
The following example shows that this is not the case: 

EXAMPLE. Let A be the lattice of  all subspaces of  an infinite dimensional 
Hilbert space H. Let L be the set formed by removing from A all non-closed 
subspaces of finite codimension, that is, all subspaces M such that M has a finite 
complement M • and M < (M j-) • By Maeda -  Maeda [ 3], Theorem 15.15, L (when 
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partially ordered by set inclusion) is a finite-modular AC-lattice in which every 

atom and hence every finite element (cf. Theorem 8) have a complement. It is 

well-known that H has a nonclosed subspace M having the property that both M 

and any complement of  M are infinite dimensional, whence M e L. Letting N 

denote the closure of  M, we have M _ N with M • = N I .  Every dual atom of L 

that lies above N also lies above M. Since the dual atoms of L are all closed 
subspaces, the converse is also true. It  follows that L is not a DAC-lattice. 
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