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The maximal ring of quotient f-ring 

J. MARTINEZ 

Abstract. In this article it is shown that the maximal quotient ring QA of a commutative semiprime 
f-ring A can be obtained by the formation of the orthocompletion of A, followed by that of the classkal 
quotient ring; for archimedeanf-rings the order of these can be inverted. It is shown that if C = C(X, Z), 
where X is a zero-dimensional Hausdorff space, then the integral closure is the Dedekind-McNeille 
completion of C. The paper closes with a number of observations and examples. 

I. Introduction 

In  this article all rings will be commuta t ive  and be endowed with an identity. We 
will rely upon  Banaschewski ' s  [Ba] construct ion of  the maximal  quot ient  ring for  
semipr ime ring - rings in which the intersection of  the pr ime ideals is trivial - and 
chiefly for  this reason will restrict our  a t tent ion to semiprime f-r ings.  

I t  is not  our  intention to introduce the nota t ion  o f  the maximal  quot ient  ring as 
an f - r i ng  extension. This has already been done,  and in greater  generali ty by F. W. 
Anderson  in [An], an article which is interesting and not  sufficiently well known,  it 
appears .  

An f - r i ng  A is a lat t ice-ordered ring in which a ^ b = O implies that  a/x  bc = O, 

for  all c > 0. In the context  o f  Z F C  this requirement  is equivalent  to the condi t ion 
that  A be embeddable  as a subdirect  p roduc t  o f  totally ordered rings. Fo r  basic 
in format ion  on lat t ice-ordered groups  and f - r ings ,  the reader is encouraged to 
consult  [BKW] and [AF]. In an f - r i ng  every minimal  p r ime / - idea l  is a (ring) ideal. 
I f  A is semipr ime then every minimal  pr ime ideal is an /-ideal, and therefore a 
minimal  p r ime/ - idea l .  In part icular ,  if  A is a semipr ime f - r i ng  then ab = 0 precisely 
when [a[ A Ibl = 0. Thus,  an element is a weak order  unit  exactly when it is regular  
in the ring. Also, ' po la r '  and 'annihi la tor '  signify the same thing. 

To  recall, if X ~ _ A ,  then X l denotes  the polar of  X; that  is to say, 

X z = { a s A : l a l A I x [ = 0 ,  for  a l l x s X } .  
Recall the following useful condition,  due to Mel Henriksen: suppose tha t  A is 

an f - r ing;  A is said to satisfy the bounded ~nversion proper ty  if a > 1 implies tha t  it 
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is a multiplicative unit. The following convenient characterization first appeared in 
[HI J]. 

LEMMA 1.0. Suppose that A is a semiprime f-ring. Then A satisfies the bounded 
inversion property if and only if every maximal ideal of A is an l-ideal. 

We denote by Max(A) the topological space of maximal ideals under the 
hull-kernel topology. This topology has as its base the sets 

m(a) = {M ~ Max(A) : a  r M}. 

Min(A) stands for the space of minimal prime ideals (which if the f-r ing is 
semiprime, is also the space of  minimal prime /-ideals.) Min(A) is also endowed 
with the hull-kernel topology, in which it is a (Hausdorff) zero-dimensional space; 
that is, one having a base of clopen sets. 

A consequence of the lemma quoted above is that for a semiprime f-r ing A with 
bounded inversion Max(A) is a Hausdorff space; it is compact regardless. We 
recall - see [CM1] and [HJ] for different versions - that, for a semiprime f-r ing A, 
Min(A) is compact if and only if A is complemented: that is, for each a s A there is 
a b ~ A so that ab = 0 and a + b is regular. 

If  A is any ring, we denote by qA the classical ring of  quotients. If A is an f-r ing 
then qA has a natural f-r ing structure extending that of A, so that qA is a semiprime 
f-r ing with bounded inversion, and A is an f-subring. Let us sketch how this is 
done: first any fraction a/b can be written with b > 0, because a/b = ab/b 2. Then 
define a/b v 0 = (a v 0)/b; this is well-defined, and endows qA with the lattice-order 

we want. It has the bounded inversion because a/b > 1 implies that a > b, and since 
b is regular, so is a, proving that the fraction a/b is a multiplicative unit of qA. 

Recall that the prime ideals of qA are in one-to-one correspondence with the 
prime ideals of  A which miss all the regular elements; see [AMc]. Therefore 
Max(qA) consists of the extensions of  the prime ideals of A which are maximal with 
respect to excluding all regular elements. The maximal ideals of qA are l-ideals, 
since qA has bounded inversion. It can also be shown directly that the ideals of A 
which are maximal with respect to excluding all the regular elements are l-ideals. 

For the remainder of this article we assume that, unless the contrary is stipulated, 
every f-r ing is semiprime. 

From the way the order on A was extended to qA, the respective spaces of 
minimal prime ideals are homeomorphic. This can easily be seen by recalling the 
notion of rigid containment in a lattice-ordered group. 
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Suppose that G is an / -subgroup of the lattice-ordered group H. We say that G 
is rigid in H if for each h e H there exists a g ~ G such that h •177 = a •177 (The symbol 
_L, refers to polars in the larger of the two lattice-ordered groups.) Now, returning 
to the f-r ing A, note that (a /b)•177 a •177 which shows that A is rigid in qA. 
Recalling from [CM2] that, if G is rigid in H, then Min(G) is homeomorphic to 
Min(H), and via the contraction map P ~ P  c~ G, we conclude: 

PROPOSITION 1.1. For any semiprime f-r ing A, Min (A)=  Min(qA), via the 
contraction map. 

The following proposition helps clarify the force of  certain related conditions on 
qA. First, let us recall some definitions. A is said to be yon Neumann (regular) if for 
each a e A  there is an x c A  such that a2x = a ;  it is well known that this is 
equivalent to the condition that every principal ideal of A be generated by an 
idempotent. 

A is projectable if for each a ~ A, A = a •  a •177 If A is von Neumann and 
a E A, then there is an idempotent e such that Aa = Ae. Then e and 1 -  e are 
disjoint idempotents and a •177 =Aa,  while a • = A ( 1 - e ) ,  which shows that A is 
projectable. 

PROPOSITION 1.2. Suppose that A = qA is a semiprime f-ring. The following 
are equivalent: 

(1) A is yon Neumann. 
(2) A is projectable. 
(3) A is complemented. 

Proof. We have already seen that (1) implies (2). That  (2) implies (3) is trivial 
(and well known). Finally, if A is complemented and a e A, then suppose b s A 
satisfies ab = 0 and a + b regular; since A = qA, (a + b)e = 1, for a suitably chosen 
c ~ A. It is easy to show that ac is idempotent and generates Aa. ~ 

2, The maximal quotient ring 

We sketch here the construction of QA, the maximal quotient ring of a 
semiprime ring A, given by Banaschewski in [Ba], which we shall refer to in this 
development as the Gel'fand-Banaschewski representation. We shall recall as well, 
because it is very closely related to Banaschewski's construction, Bleier's develop- 
ment of the orthocompletion of a (representable) lattice-ordered group in [B1]. 

First, let us give a definition of the general notion of quotient ring. For  a 
comprehensive account the reader may refer to Lambek's book [L], where the 
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subject is treated for the non-commutative case as well. Once more, let us mention 
[An], for a discussion of the subject in the context off-r ings.  

If A is a subring of B, we call B a quotient ring of  A if for each pair bl and b2 
in B, with b2 r 0, there is an a ~ A such that ab I and ab 2 belong to A and ab 2 ~ O. 
It is in this sense then, that every semiprime ring A has a unique maximal quotient 

ring QA. 
Since A is semiprime, one can regard it as a subcartesian product of fields: 

A _c ~ {Fx : x ~ X}. We consider the Zariski topology on X, for which the basic 

open sets are the 

S ( f )  = {x ~ x : f (x)  r 0}, for all f e A. 

Let D stand for the family of dense open subsets of X, and for each W e D set 

Aw defined as follows: f ~  Aw  if and only i f f e  rc{Fx :x  ~ W}, and for each y ~ W 
thee is a neighborhood U of y, U _ W, and a, b E A such that f ( z )  = a(z)/b(z), all 
z ~ U. Then A w is a subring of the direct product rC{Fx : x ~ W}, and if W ~_ V, 
both dense open subsets of X, there is an obvious induced homomorphism 

rCw, v : A w ~ A v  by restriction. The rings Aw together with the connecting maps 
7rw.v form a direct system, and Banaschewski showed in [Ba] that the direct limit is 

QA. 
It is well worthwhile to observe that part of Banaschewski's achievement, is to 

demonstrate that the construction of QA does not depend on the (particular) 

Gel ' fand-  Banaschewski representation. 
In particular, and since A is semiprime, one can use the space Min(A) to obtain 

the above representation; (the Zariski topology coincides with the hull-kernel 
topology.) A is a subdirect product of the residues AlP,  and hence a subcartesian 

product of their fields of fractions. 
For our purposes, and beginning with a (semiprime)f-ring A, let us see what the 

ordering adds to the picture. Each minimal prime ideal is an /-ideal, and so each 
A / P  is a totally ordered integral domain, whence q(A/P) is a totally ordered field. 

The direct product ~{q(A/P) :P  E Min(A)} is a semiprime f-r ing with coordi- 
natewise operations, and so is the analogous direct product over any dense open 
subset of Min(A). It is easy to verify that the A w'S constructed above are f-subrings 
of their respective direct products, and that each ~Zrv, v (with W~_ V) is an 
l-homomorphism. All of this establishes most of: 

T H E O R E M  2.1. For each semiprime f-ring A, the maximal ring of  quotients QA 

admits a lattice-ordering making it a semiprime f-ring and containing A as an 

f-subring, f E QA is positive iff for each dense open subset W of  Min(A), and each 
P ~ W there exists an open set U and positive elements a and b in A, so that 
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P ~ U ~_ W and for each Q ~ Uf (Q)  = (a + Q)/(b + Q). This is the unique lattice- 

ordering on QA making it an f-ring and A an f-subring of it. 
Finally, QA is a yon Neumann ring. 

(Note: It should be obvious from the definition of  the ordering that it is unique. 

The fact that QA is von Neumann is quite easy to prove, and may, in any event, 

be found in [L].) 

Now let's review Bleier's construction of  the orthocompletion, translating it to 

the topological language introduced here: for each dense open subset W of Min(A) 

define B w to be the subring of  Aw of a l l f E  rc{q(A/P) : P ~ W} such that for each 

P ~ W there exists an open set U and a e A such that P E U ___ W, and for each 

Q ~ U, f (Q)  =a + Q. 
Bw is, indeed, an f-subring of Aw, and if V is a dense open subset of W, then 

the restriction ~Zw, v, of  zCw, v to Bw is an l-homomorphism. The direct limit of the 
Bw, according to the account in [B1], is the orthocompletion oA of  A. It should be 

noted that this construction is independent of the dense open set W. 

To review, for a representable lattice-ordered group G (one which is repre- 

sentable as a subdirect product of totally ordered groups) the orthocompletion is a 

lattice-ordered group H, for which the following conditions are satisfied: 

(orth-1) H is laterally complete; that is to say, every set of pairwise disjoint 

elements has a supremum; 
(orth-2) H is projectable, and 

(orth-3) no proper lattice subgroup of H containing G is both laterally complete 
and projectable. 

By a routine argument with direct limits, there is a natural inclusion of oA in 

QA, which is as an f-subring. Thus: 

PROPOSITION 2.2. The maximal ring of quotients QA of A contains the 
orthocompletion of A. 

We mention here the excellent work in [FGL], where the authors consider 
various rings of quotients, but, in particular, the maximal ring of quotients of C(X), 
the ring of all continuous real-valued functions defined on the Tychonoff space X 
(and recall that a space is Tychonoff if it has a base of cozero-sets). Denoting 
Q(C(X)) =-Q(X), it is shown in [FGL] that Q(X) is the ring of continuous 
functions defined on dense open subsets of  X, subject to identification on the 
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intersection of common domains; formally, 

Q(X) = Lim{C(U) : U a dense open subset of  X}. 

By contrast, 

q(X) =- q(C(X)) = Lim{C(V) : V is a dense cozero-set in X}. 

But more than what is asserted in Proposition 2.2 is true: the same argument that 

Bleier uses to prove that oA is orthocomplete applies to show that QA is orthocom- 

plete. In fact: 

PROPOSITION 2.3. A = QA if  an only if  A is orthocomplete and every regular 
element of  A is invertible; that is, A = qA. 

Proof(of  the sufficiency). Suppose A = qA and A is orthocomplete. It suffices to 

prove that for each dense open subset W of Min(A), Aw = Bw. I f  f ~  A~v and 

P ~ W, there is a neighborhood U of P and elements a and b in A, so that U ~ W 

and for each Q e U f (Q)  = (a + Q)/(b + Q). 
Since A is projectable, we may without loss of  generality take b to be regular: 

b + Q = b + ( 1 - e ) + Q ,  where e 2 = e  a n d b  •  L• S i n c e A = q A ,  b i s i n v e r t -  

ible, and, in particular, invertible rood Q. Thus f (Q)  = ab - 1 + Q, for each Q ~ U, 

proving that f e Bw. [] 

By a slight modification of the above proof, we obtain the first main theorem of  

this section. 

T H E O R E M  2.4. I f  A is any projectable f-ring, then QA = o(qA). 

Proof. The only part  that requires checking is that qA is projectable. I f  a/b and 

c/d are in qA we may, without loss of  generality, suppose that b = d > 0. Write 

a = al + a2, so that a 1 ~ c a--- and a 2 ~ e • It follows that a/b = (al/b) + (a2)/b, and 

al/b E (c/b) •  while a2/b e (e/b) • [] 

It turns out that the order of  the operators q and o can be reversed without 

peril; this is the subject of  the second mai'n theorem of the section. (I t  is Theorem 

2.4 which is difficult to extend.) 

T H E O R E M  2.5. I f  A is orthoeomplete then so is qA, so that qA = QA. In 
general, QA = q(oA). 
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Proof. Consider {a~/b~ :b~ > 0, a~ -> 0, ~ e 2}, pairwise disjoint in qA. In view 
of the projectability of A, we can assume that for each a ~ 22, the projection of b~ 
on a~ • is an idempotent (because if b~ = x~ +y~,  so that x~ s a~ •177 and y~ E a~ • 
and e~ is the idempotent generator of a~ •177 then a~/b~ = a~/(x~ + ( 1 -  e~))). 

The x~, projections of b~ on a~ •177 are then also pairwise disjoint. Now form 
a = V a o ,  x = V x  ~ and e = V e ~ ;  then e •  •177 and it is easy to verify that 
b = x + (1 - e) is regular. We leave it to the reader to verify that a/b = Va~/b~. 
This proves that qA is laterally complete; this means that it is complemented, and, 
by 1.2, projectable. Then on account of Theorem 2.4, qA = QA. 

In general, and since q(oA) is orthocomplete, Proposition 2.3 implies that 
q(oA) = Q(q(oA))= Q(oA)~_ QA. On the other hand, since oA c_ QA, it follows 
that q(oA) c_ QA, proving that QA = q(oA). [] 

In attempting to decide whether the order of the application of the operators q 
and o matters in general, it will be useful to recall the notion of a locally inversion 
closed ring, as introduced in [Ba] by Banaschewski. 

A (semiprime) ring A is locally inversion closed if for each a cA,  a va0, 
and P ~ M i n ( A )  so that a ~ P  there is a neighborhood U of P, U__cU~= 
{Q e Min(A) : a ~ Q}, and an element b eA,  such that ab + Q = 1 + Q, for all 
Q e U. Banaschewski points out that if A is locally inversion closed then QA = oA. 
It is shown in [AC], Theorem 3.4, C(X) is locally inversion closed, for any 
Tychonoff space X. 

Consider the following example: Let A be the subalgebra of C(R) consisting of 
the functions which are piecewise polynomials (with finitely many pieces). The 
functions of oA are the ones which are defined on a dense open subset of the reals, 
and are local polynomials. This excludes the function 1/x, which is in qA and hence 
in QA. So oA r QA. Observe that A is not locally inversion closed, nor does it 
satisfy the bounded inversion property. 

However, A is complemented, which insures that qA is locally inversion closed, 
as we are about to see, and that in turn will be enough to make QA = 
Q(qA) = o(qA). 

It is easy to verify that A is complemented if and only if qA is projectable. 
Owing to Proposition 1.2, this occurs precisely when qA is von Neumann regular. 
Now, it should be clear that a semiprime f-ring which is yon Neumann regular is 
locally inversion closed. This explains why the preceding example has a locally 
inversion closed classical quotient ring. 

The next theorem, a converse to Banaschewski's observation concerning local 
inversion closure, is helpful. 

THEOREM 2.6. QA = oA if  and only if A & locally inversion closed. In general, 
QA = o(qA) precisely when qA is locally inversion closed. 
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Proof  Only the necessity has to be proved. Let us suppose that a s A, and 
without loss of generality, suppose that a > 0. Complete {a} to a maximal pairwise 

disjoint set {a(i) : i c I}, with a = a(j).  Let W = U{us(0 : i s I}; this is a dense open 
subset of Min(A). Let b = Va(i)  in oA, and observe that b is regular and therefore 

a multiplicative unit; say be = 1, with c ~ QA = oA. 

Now for each P e Min(A) with a r P, there is an open set U _ W such that 

P ~ U and a d cA such that e(Q) = d + Q, for each Q e U. Also, b = a v x, where 
x is the supremum of the a(i), i r and x e Q, for each Q e us, since a/x x = 0; this 
means that b(Q) = a + Q for all such Q. Therefore, if Q e U n us, we have that 

ad + Q = (a + Q)(d + Q) = b(Q)e(Q) = 1 + Q, 

proving that ad - 1 rood Q, for all Q in U n ua, and hence that A is locally inversion 

closed. 
As to the second assertion, if qA is locally inversion closed, then QA = 

Q(qA) = o(qA), by Banaschewski's remark. Conversely, if Q(qA) = QA = o(qA), 

then by the first part of this proof, qA is locally inversion closed. [] 

Now it is left to decide whether qA is locally inversion closed, for every 

semiprime f-ring. 
As a first step, Theorem 2.6 guarantees that closure under local inversion is 

independent of the Gel 'fand-Banaschewski representation; that is, independent of  

which family of prime ideals with trivial intersection one employs. As we have 
already observed, Bleier's construction of oA is also independent of which family of 

primes (with trivial intersection) one uses in the representation. 

Next, let us recall a definition: if A is an f-r ing then A(1) denotes the bounded 

subring of A; meaning, the convex f-subring generated by 1. Let us further agree to 
call A bounded if a = A(1). Recall that in any f-r ing A, a = (a ^ 1)(a v 1), for each 
a E A, Then observe that if A satisfies the bounded inversion property, then by this 
identity, A ~_ q(A(1)), which means that A and its bounded subfing have the same 

classical quotient ring. 
We now settle, for archimedean, semiprimef-rings, the matter of the application 

of the operators o and q, in two stages. 

T H E O R E M  2.7. Suppose that A is an archimedean f-ring with the bounded 

inversion property. Then A is locally inversion closed, and therefore QA = oA. 

Proof  The final assertion follows from Theorem 2.6. By the remarks preceding 

this theorem, it suffices to assume that A is bounded. Then the Jacobson radical of 
A is trivial; in addition, for each maximal ideal M of A, A / M  is an archimedean 
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totally-ordered field. Armed with this, we will use the Gel 'fand-Banaschewski 

representation on its maximal ideal space, to show that A is locally inversion closed. 
Suppose that 0 < a s A  and M e M a x ( A )  with a ~ M .  Then, since A/M is 

archimedean, there exist natural numbers m and n such that a > m/n mod M. Now 
let c = a v m/n; since A satisfies the bounded inversion property, c is a multiplica- 
tive unit. Next, observe that ( c - a ) ( a - m / n )  + =0 ;  dividing by c this reads 
as follows: (1 - a/e)(a - m/n) + = O. Furthermore, with d = (a - m/n) +, a/c =- 
1 mod N, for each N ~ ua, proving that A is locally inversion closed. [] 

Since qA already has the bounded inversion property and it is archimedean 
whenever A is, we obtain the following corollary. 

COROLLARY 2.7.1. For any archimedean, semiprime f-r ing A, qA is locally 
inversion closed; hence QA = o(qA)= q(oA). 

In the non-archimedean case the matter of o(qA) vs. q(oA) remains unsettled; it 
is probable that the operators cannot be reversed, in general, but we know no 
counter-examples. 

To conclude this section we comment on the injectivity of the maximal ring of 
quotients. It is well-known that QA is self-injective; mention of this occurs already 
in [FGL]. It can be proved directly, employing the so-called "Injective test" 
Lemma. However, from ILl, p. 95, 4.3, we obtain that QA is, in fact, injective as a 
module over A. Since it is clear that QA is an A-essential extension of  A, we can 
conclude the following: 

PROPOSITION 2.8. For any semiprime ring A, QA is the A-injective hull of A. 

3. Integral closure in QA 

The broad goal of  this section is to demonstrate that, under very reasonable 
hypotheses, the integral closure of a semiprime f-r ing is determined by its additive 
and lattice-theoretic structure. 

Let us begin by recalling some basic definitions; suppose that A is a subring of 
B (not necessarily semiprime). We say that x E B is integral over A if there is a monic 
po tynomia l f (T)  e A[T] such tha t f (x )  = 0. The collection of all elements of B which 
are integral over A form a subring of B, called the integral closure of A (in B). 

Now, let us return to semiprime f-rings. 
If A is such a ring, then let sA denote the saturated hull of  A in QA; that is to 

say, sA is the/-subgroup generated by all the components of elements of A lying in 
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QA. ( I f  a = x + y, and x /x  y = 0, we say that x and y are components of a.) Notice 

that if x and y are components of a and b respectively, then xy is a component of 

ab; therefore, sA is, in fact, an f-subring of QA. Recall that QA is a v o n  Neumann 

ring; since it is also orthocomplete, the boolean algebra E(QA) of idempotents is 

complete. (Note: the Stone dual of E(QA), namely Max(QA) is extremally discon- 

nected.) Thus, sA is rigid in QA. Moreover, each component of an element of A is 
of  the form ae, where a ~ A and e ~ E(QA). This means that sA is the A-submodule 

of QA generated by the idempotents of QA. 
Note also that sA is, in fact, contained in oA. 
Let us summarize the preceding paragraph as follows: 

PROPOSITION 3.1. For any semiprime f-r ing A, sA, the saturated hull of A in 
QA is the A-submodule generated by E(QA), the complete boolean algebra of 
idempotents of QA. Moreover, sA is rigid in QA, and a subring of oA. 

Let us denote by iA the integral closure of A in QA. If 0 < a ~ A and b is a 
component of a in QA, then b satisfies the polynomial T 2 - aT, which implies that 
s A c  iA. Furthermore, if x E iA, then x + satisfies the polynomial T 2 -  xT, whence 

x + is integral over iA and, therefore, over A. This shows that iA is an f-subring of  

QA. 
Recall now the notion of a Specker ring, one which is generated as an abelian 

group by its idempotents (for references, see [C]). If  A is a Specker ring then each 

a s A can be expressed uniquely as a sum mlel +m2e2 + ' ' '+mkek ,  where the 
m i ~ Z  and the ei are pairwise disjoint idempotents. A Specker ring A is 

archimedean, projectable, semiprime and qA = A; moreover, QA is its lateral 

completion. In pa r t i cu la r -  see [ B K W ] -  each idempotent in QA is a disjoint 

supremum of  idempotents in A. 
Topologically speaking, Specker rings can be viewed in the following way. 

Suppose that X is any zero-dimensional Hausdorff space (recall; a zero-dimensional 
space is one possessing a base of clopen sets). Let C(X, Z) denote the f-r ing of all 

integer-valued continuous functions on X. Then an f-r ing A is a Specker ring if and 

only if A = C(X, Z), for some compact zero-dimensional space X. 
For any zero-dimensional space, C = C(X, Z) is a projectable, semiprime f-ring. 
Before stating the next result, recall the definition of the Dedekind-McNeille 

completion: if G is any archimedean lattice-ordered group, let dG denote this 
completion; dG is (conditionally) complete, and each positive element of dG is the 

supremum of elements of  G. Also, recall from Lemma 2.3 in [CMc], that if an 
archimedean lattice-ordered group G is order-densely embedded in a complete 
/-group H, then dG is the convex hull of G in H. 



Vol. 33, 1995 The maximal ring of quotients of an f-ring 365 

PROPOSITION 3.2. Suppose that A is a Specker ring. Then sA = iA is the 

Dedekind-McNeitle completion of A. 

This proposition will be a corollary of Theorem 3.3. However, we need a few 
preliminaries before stating it. 

For each minimal prime ideal P of C, either C/P is the ring Z of integers, or 
else, by work of Norman Alling [A1], C/P is a non-standard model of the integers, 
which means that it satisfies all the first-order properties held by Z, in the first-order 
theory of totally ordered rings. Being "integrally closed" is such a property (as 
opposed to being "integrally over", which is not). Thus, C/P is integrally closed in 
either event. 

The fact that Z has no non-zero, proper convex ideals is also such a first-order 
property (as opposed to being archimedean, which is not). Thus, by Alling's work, 
if C/P is a non-standard model of Z it has no non-zero, proper convex ideals. This 
means that in C every minimal prime ideal is also maximal among/-ideals which 
are ring ideals. 

If X is a Tychonoff space then EX stands for its absolute; this is the projective 
cover in the category of Tychonoff spaces; see [PW] for details. C(EX, Z) is 
complete. Moreover, oC = D(EX, Z); this is the algebra of all continuous functions 
on X with values in Z u { + oe}, which are finite on a dense set. 

As we have seen, sC lies in oC; it is actually easy to see that sC c_ C(EX, Z). 
Thus, by Lemma 2.3 in [CMc], C C, the convex hull of C in C(EX, Z), is the 
Dedekind-McNeilte completion of  C. 

THEOREM 3.3. For each zero-dimensional Haudorff space X, iC(X, Z ) =  
sC(X, z) = 4 c ( x ,  z). 

Proof Let C = C(X, Z); to show that iC = sC, it obviously suffices to show that 
if x E QC is integral over C, then it lies in the saturated hull of C. In fact, let us 
make the following observation. If  Q e Min(sC) then, clearly, Q ~ C, and Q n C is 
a prime ideal of C which is also an/-ideal.  By the remark immediately preceding 
this theorem, it follows that Q n C is a minimal prime ideal of C. 

On the other hand, if b is any component of a e C, then either b or a - b  
belongs to Q, which proves that sC = Q + C. Now, by the comments preceding the 
theorem, C/(Q n C) is integrally closed; furthermore, C/(Q n C) = (C + Q)/Q = 
sC/Q. This shows that for each Q e Min(sC), sC/Q is a totally ordered integral 
domain, which is integrally closed and has no non-zero, proper convex ideals. 

Suppose then that x is integral over C, and let P E Min(QC); put P ' - - P  n 
sC. Since x is integral over C, x + P is integral over C / ( P n C ) = s C / P ' =  
sC/(sC riP) = (sC + P)/P. Moreover, as each element of QC is locally a fraction of 
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elements from C, we see that q(QC/P) = q(sC/P'), and so x ~ sC + P. This means 

that x + P = a(P) + P, for some a(P) ~ sC. We may, in fact, write x = a(P) + y(P), 
with y(P) e P, and so that la(P) l A ly(P)[ = 0, since sC is projectable. 

Consider now the basic open set ux in the Min(QC); it is compact-open, and is 

covered by the sets {ux(P):P e Ux}. Thus, we have finitely many indices 

i = 1, 2 , . . . ,  k, such that (with a(i) = a(Pi)) the ua(i) cover ux. But this means that 

x = a(1) v . . -  v a(k), and we conclude that x ~ sC. This shows that iC ~_ sC; since 

we had already observed the reverse containment, it follows that iC = sCo 
Let us now prove that sC is, in fact, the Dedekind-McNeil le  competition of C. 

We already know that dC = C c. We will show that CO= sC; it is evident that 

sC ~_ C C. 
Following Pierce [P], we observe that each function f E C can formally be 

expressed as f = ~ , ~ w n e n ,  where en is the characteristic function of 

{x E X : f ( x )  =n} .  
Suppose then that 0-< y = ~ , ~ u  nf, <-~,neN ne,. The e, are pairwise disjoint 

idempotents in C, whereas the f ,  are pairwise disjoint idempotents in C(EX, Z). 

Then, for each n c N, we have an increasing sequence of natural numbers 

n(1), n(2) . . . . .  such that, for a suitable choice of  a component  f ;  off,(k), we have 

y ( n ) -  ~ k n ( k ) f ~  < he,. Thus the n(k) are bounded, and consequently y(n) = 
~'~s~c~)g~(~), where each si(~) is a natural number, and each g;(,) is an idempotent 

formed by summing from among the f Z  ; thus, the gz(,,) remain pairwise disjoint. In 

addition, for each n e N, all but finitely many of the s~(,) = 0. 

Now, form (in C(EX, Z)) g = Vn vigi(~); this makes sense since C(EX, Z) is 

Dedekind complete. Also form a = ~n~  ~v (~sz ( , ) )e , ,  which is an element of  C. 

Finally, note that y = ~n~Ny(n) ,  and 

and that y is a component  of  ag, whence it follows that y c sC. 
This proves that C" = sC, and we have finished the proof  of  the theorem. [] 

We should point out that, in general, the Dedekind-McNeil le  completion of 
C(X, Z )  is not C(EX, Z).  It is precisely when X is a so-called weak c.b. space; these 

are the spaces given by the following condition: whenever E n is a decreasing 

sequence of regular closed sets for which NF~ = ~ ,  there is a decreasing sequence 

of zero-sets Zn --- En, such that NZ~ = ~ .  (See [PW], Section 8.5, for a discussion 

of the C(X) version of this.) The weak c.b. spaces include all the pseudo-compact  

ones. 
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4. Concluding remarks 

Recall (Proposition 1.2) that if A = qA, then A is complemented precisely when 
it is projectable. In the proof  of  Theorem 2.4 it was verified that if A is projectable 
then so is qA; the same implication holds for complemented f-rings; indeed, since 
A is rigid in qA, it follows that A is complemented if and only if qA is. Now: 

4.1. An example of a semiprime f-ring A with the bounded inversion property which 
is not projectable, yet such that qA is. 

Let A = C(X), where X is any metric space. It is not hard to see that A is 
complemented, whence qA is projectable. However, as long as X is not an 
F-space, then A is not projectable, because J( is not basically disconnected. 
(Note: for any Tychonoff  space, C(X) is projectable precisely when X is basically 
disconnected; this is well-known, and, in any event, easy to derive.) 

Recall that a lattice-ordered group G is said to have stranded primes is every 
prime/- ideal  of G exceeds a unique minimal prime/-ideal.  It is well known that 
if G is projectable then it has stranded primes, although the converse is false (see 
[AF] or [BKW]). 

Then this same example shows that: 

4.2. I f  qA is projectable A need not have stranded primes. 

Since X was stipulated not to be an F-space, it follows from Theorem 14.25 
in [GJ] that A does not have stranded primes; not even for its prime (ring) 
ideals. 

4.3. Even if A = qA, A may have stranded primes and fail to be projectable. 

Let A = C(flN\N); since f lN\N is an F-space, A has stranded primes. 
However, flN/N is not basically disconnected - see [GJ] - so that A is not 
projectable. Note that A = qA, as the space in question has no proper dense 
cozero sets. 

4.4. qA need not have stranded primes. 

Let D be an uncountable set with the discrete topology, and A = C(aD), 
where ~X stands for the one-point compactification of Jr-. Since D is 
uncountable, ~D has 
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no proper dense cozero sets, which means that A = qA. However, the root system 

of primes of A is not stranded: Max(A) = c~D, but beneath the maximal ideal at 

infinity there are all the non-isolated points of/~D. 

We mention the following item without proof, although we do illustrate the 

converse. 

4.5. I f  A is a semiprime f -r ing with bounded inversion, and A has stranded primes 

then so does qA, but the converse is false. 

Converse: let A = C(eN) ,  where eN is the one-point compactification of N; 

qA = QA = C(N) ,  the lateral completion of A. A does not have stranded primes. 

Before concluding we ought to mention a very recent contribution of Wickstead 

(see [Wi]), which fits very nicely in the context of  this paper. We shall only apply 

it to semiprime f-rings, although it is valid in a more g e n e r a l -  and non-order- 

theoretic - context. 
Wickstead calls a semiprime, commutative ring A ful ly  regular if for each subset 

D of mutually annihilating elements, and each partition D = D1 w D2 of D, there is 

an element s e A such that d2s = d, for each d e D1, and ds = 0, for each d s D 2. 

The main theorem in [Wi] shows that a semiprime ring A is self-injective - that is, 

injective over i t s e l f -  precisely when it is fully regular. 
By way of summary, and for semiprime f-rings, let us tie in his result with the 

maximal ring of quotients and the material in the first section of this article. 

T H E O R E M  4.6. For a semiprime f -r ing A the following are equivalent. 

(1) A = Q A .  

(2) A is self-injective. 

(3) A is fu l ly  regular. 
(4) A is orthocomplete and every regular element o f  A is invertible. 

(5) A is laterally complete and yon Neumann regular. 
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