The maximal ring of quotient f-ring

J. MARTINEZ

Abstract. In this article it is shown that the maximal quotient ring *QA* of a commutative semiprime f-ring A can be obtained by the formation of the orthocompletion of \overline{A} , followed by that of the classical quotient ring; for archimedean f-rings the order of these can be inverted. It is shown that if $C = C(X, Z)$, where X is a zero-dimensional Hausdorff space, then the integral closure is the Dedekind-McNeille completion of C. The paper closes with a number of observations and examples.

I. Introduction

In this article all rings will be commutative and be endowed with an identity. We will rely upon Banaschewski's [Ba] construction of the maximal quotient ring for semiprime ring $-$ rings in which the intersection of the prime ideals is trivial $-$ and chiefly for this reason will restrict our attention to semiprime f-rings.

It is not our intention to introduce the notation of the maximal quotient ring as an f-ring extension. This has already been done, and in greater generality by F. W. Anderson in [An], an article which is interesting and not sufficiently well known, it appears.

An f-ring A is a lattice-ordered ring in which $a \wedge b = 0$ implies that $a \wedge bc = 0$, for all $c \ge 0$. In the context of *ZFC* this requirement is equivalent to the condition that A be embeddable as a subdirect product of totally ordered rings. For basic information on lattice-ordered groups and f-rings, the reader is encouraged to consult [BKW] and [AF]. In an f-ring every minimal prime/-ideal is a (ring) ideal. If \overline{A} is semiprime then every minimal prime ideal is an *l*-ideal, and therefore a minimal prime *l*-ideal. In particular, if A is a semiprime f-ring then $ab = 0$ precisely when $|a| \wedge |b| = 0$. Thus, an element is a weak order unit exactly when it is regular in the ring. Also, 'polar' and 'annihilator' signify the same thing.

To recall, if $X \subseteq A$, then X^{\perp} denotes the *polar* of X; that is to say, $X^{\perp} = \{a \in A : |a| \wedge |x|=0, \text{ for all } x \in X\}.$

Recall the following useful condition, due to Mel Henriksen: suppose that Λ is an f-ring; A is said to satisfy the *bounded inversion* property if $a > 1$ implies that it

Presented by M. Henriksen.

Received September 23, 1991; accepted in final form September 27, 1993.

is a multiplicative unit. The following convenient characterization first appeared in $[HJI]$.

LEMMA 1.0. *Suppose that A is a semiprime* f-ring. *Then A satisfies the bounded inversion property if and only if every maximal ideal of A is an l-ideal.*

We denote by $Max(A)$ the topological space of maximal ideals under the hull-kernel topology. This topology has as its base the sets

 $m(a) = \{M \in \text{Max}(A) : a \notin M\}.$

 $Min(A)$ stands for the space of minimal prime ideals (which if the f-ring is semiprime, is also the space of minimal prime l -ideals.) Min (A) is also endowed with the hull-kernel topology, in which it is a (Hausdorff) zero-dimensional space; that is, one having a base of clopen sets.

A consequence of the lemma quoted above is that for a semiprime f -ring Λ with bounded inversion $Max(A)$ is a Hausdorff space; it is compact regardless. We recall – see [CM1] and [HJ] for different versions – that, for a semiprime f-ring A , $Min(A)$ is compact if and only if A is *complemented*: that is, for each $a \in A$ there is a $b \in A$ so that $ab = 0$ and $a + b$ is regular.

If A is any ring, we denote by qA the classical ring of quotients. If A is an f-ring then qA has a natural f-ring structure extending that of A, so that qA is a semiprime f-ring with bounded inversion, and A is an f-subring. Let us sketch how this is done: first any fraction a/b can be written with $b > 0$, because $a/b = ab/b^2$. Then define $a/b \vee 0 = (a \vee 0)/b$; this is well-defined, and endows *qA* with the lattice-order we want. It has the bounded inversion because $a/b > 1$ implies that $a > b$, and since b is regular, so is a, proving that the fraction *a/b* is a multiplicative unit of *qA.*

Recall that the prime ideals of *qA* are in one-to-one correspondence with the prime ideals of A which miss all the regular elements; see [AMc]. Therefore $Max(qA)$ consists of the extensions of the prime ideals of A which are maximal with respect to excluding all regular elements. The maximal ideals of qA are *l*-ideals, since *qA* has bounded inversion. It can also be shown directly that the ideals of A which are maximal with respect to excluding all the regular elements are *l*-ideals.

For the remainder of this article we assume that, unless the contrary is stipulated, every f-ring *is semiprime.*

From the way the order on A was extended to *qA,* the respective spaces of minimal prime ideals are homeomorphic. This can easily be seen by recalling the notion of rigid containment in a lattice-ordered group.

Suppose that G is an *l*-subgroup of the lattice-ordered group H . We say that G is *rigid* in H if for each $h \in H$ there exists a $g \in G$ such that $h^{\perp \perp} = a^{\perp \perp}$. (The symbol \perp , refers to polars in the larger of the two lattice-ordered groups.) Now, returning to the f-ring A, note that $(a/b)^{\perp} = a^{\perp}$, which shows that A is rigid in *qA*. Recalling from [CM2] that, if G is rigid in H, then $Min(G)$ is homeomorphic to Min(H), and via the contraction map $P \to P \cap G$, we conclude:

PROPOSITION 1.1. For any semiprime *f*-ring A, $Min(A) = Min(qA)$, *via the contraction map.*

The following proposition helps clarify the force of certain related conditions on *qA.* First, let us recall some definitions. A is said to be *yon Neumann (regular)* if for each $a \in A$ there is an $x \in A$ such that $a^2x = a$; it is well known that this is equivalent to the condition that every principal ideal of A be generated by an idempotent.

A is projectable if for each $a \in A$, $A = a^{\perp} + a^{\perp \perp}$. If A is von Neumann and $a \in A$, then there is an idempotent e such that $Aa = Ae$. Then e and $1-e$ are disjoint idempotents and $a^{\perp \perp} = Aa$, while $a^{\perp} = A(1-e)$, which shows that A is projectable.

PROPOSITION 1.2. *Suppose that* $A = qA$ is a semiprime *f*-ring. The following *are equivalent:*

- (1) *A is yon Neumann.*
- (2) *A is projectable.*
- (3) *A is complemented.*

Proof. We have already seen that (1) implies (2). That (2) implies (3) is trivial (and well known). Finally, if A is complemented and $a \in A$, then suppose $b \in A$ satisfies $ab = 0$ and $a + b$ regular; since $A = qA$, $(a + b)c = 1$, for a suitably chosen $c \in A$. It is easy to show that *ac* is idempotent and generates *Aa*.

2, The maximal quotient ring

We sketch here the construction of *QA,* the maximal quotient ring of a semiprime ring \vec{A} , given by Banaschewski in [Ba], which we shall refer to in this development as the *Gel'fand-Banaschewski representation.* We shall recall as well, because it is very closely related to Banaschewski's construction, Bleier's development of the orthocompletion of a (representable) lattice-ordered group in [B1].

First, let us give a definition of the general notion of quotient ring. For a comprehensive account the reader may refer to Lambek's book [L], where the

subject is treated for the non-commutative case as well. Once more, let us mention [An], for a discussion of the subject in the context of f -rings.

If A is a subring of B, we call B a *quotient ring* of A if for each pair b_1 and b_2 in B, with $b_2 \neq 0$, there is an $a \in A$ such that ab_1 and ab_2 belong to A and $ab_2 \neq 0$. It is in this sense then, that every semiprime ring A has a unique *maximal quotient ring QA.*

Since A is semiprime, one can regard it as a subcartesian product of fields: $A \subseteq \pi \{F_x : x \in X\}$. We consider the Zariski topology on X, for which the basic open sets are the

$$
S(f) = \{x \in x : f(x) \neq 0\}, \quad \text{for all } f \in A.
$$

Let D stand for the family of dense open subsets of X, and for each $W \in D$ set *A_W* defined as follows: $f \in A_W$ if and only if $f \in \pi \{F_x : x \in W\}$, and for each $y \in W$ thee is a neighborhood U of y, $U \subseteq W$, and $a, b \in A$ such that $f(z) = a(z)/b(z)$, all $z \in U$. Then A_W is a subring of the direct product $\pi\{F_x : x \in W\}$, and if $W \supseteq V$, both dense open subsets of X , there is an obvious induced homomorphism $\pi_{W,V}:A_W\rightarrow A_V$ by restriction. The rings A_W together with the connecting maps π_{WV} form a direct system, and Banaschewski showed in [Ba] that the direct limit is *QA.*

It is well worthwhile to observe that part of Banaschewski's achievement, is to demonstrate that the construction of *QA does not depend* on the (particular) Gel'fand- Banaschewski representation.

In particular, and since A is semiprime, one can use the space $Min(A)$ to obtain the above representation; (the Zariski topology coincides with the hull-kernel topology.) A is a subdirect product of the residues A/P , and hence a subcartesian product of their fields of fractions.

For our purposes, and beginning with a (semiprime) f -ring A , let us see what the ordering adds to the picture. Each minimal prime ideal is an /-ideal, and so each A/P is a totally ordered integral domain, whence $q(A/P)$ is a totally ordered field.

The direct product $\pi\{q(A/P) : P \in \text{Min}(A)\}\$ is a semiprime f-ring with coordinatewise operations, and so is the analogous direct product over any dense open subset of Min(A). It is easy to verify that the A_W 's constructed above are f-subrings of their respective direct products, and that each $\pi_{W,V}$ (with $W \supseteq V$) is an l-homomorphism. All of this establishes most of:

THEOREM 2.1. *For each semiprime f-ring A, the maximal ring of quotients QA admits a lattice-ordering making it a semiprime f-ring and containing A as an f-subring,* $f \in OA$ *is positive iff for each dense open subset W of* $Min(A)$ *, and each* $P \in W$ there exists an open set U and positive elements a and b in A, so that $P \in U \subseteq W$ and for each $Q \in U f(Q) = (a + Q)/(b + Q)$. This is the unique lattice*ordering on QA making it an f-ring and A an f-subring of it. Finally, QA is a yon Neumann ring.*

(Note: It should be obvious from the definition of the ordering that it is unique. The fact that *QA* is von Neumann is quite easy to prove, and may, in any event, be found in [L].)

Now let's review Bleier's construction of the orthocompletion, translating it to the topological language introduced here: for each dense open subset W of $Min(A)$ define B_w to be the subring of A_w of all $f \in \pi\{q(A/P) : P \in W\}$ such that for each $P \in W$ there exists an open set U and $a \in A$ such that $P \in U \subseteq W$, and for each $Q \in U$, $f(Q) = a + Q$.

 B_W is, indeed, an *f*-subring of A_W , and if V is a dense open subset of W, then the restriction $\pi_{W,V'}$ of $\pi_{W,V}$ to B_W is an *l*-homomorphism. The direct limit of the *Bw,* according to the account in [B1], is the *orthocompletion oA* of A. It should be noted that this construction is independent of the dense open set W.

To review, for a representable lattice-ordered group G (one which is representable as a subdirect product of totally ordered groups) the *orthocompletion* is a lattice-ordered group H , for which the following conditions are satisfied:

- (orth-1) H is *laterally complete;* that is to say, every set of pairwise disjoint elements has a supremum;
- (orth-2) H is projectable, and
- (orth-3) no proper lattice subgroup of H containing G is both laterally complete and projectable.

By a routine argument with direct limits, there is a natural inclusion of *oA* in *QA*, which is as an *f*-subring. Thus:

PROPOSITION 2.2. *The maximal ring of quotients QA of A contains the orthocompletion of A.*

We mention here the excellent work in [FGL], where the authors consider various rings of quotients, but, in particular, the maximal ring of quotients of $C(X)$, the ring of all continuous real-valued functions defined on the *Tychonoff* space X (and recall that a space is Tychonoff if it has a base of cozero-sets). Denoting $Q(C(X)) = Q(X)$, it is shown in [FGL] that $Q(X)$ is the ring of continuous functions defined on dense open subsets of X , subject to identification on the intersection of common domains; formally,

$$
Q(X) = \text{Lim}\{C(U) : U \text{ a dense open subset of } X\}.
$$

By contrast,

$$
q(X) \equiv q(C(X)) = \lim_{\longrightarrow} \{C(V) : V \text{ is a dense cozero-set in } X\}.
$$

But more than what is asserted in Proposition 2.2 is true: the same argument that Bleier uses to prove that oA is orthocomplete applies to show that OA is orthocomplete. In fact:

PROPOSITION 2.3. A = *QA if an only if A is orthocomplete and every regular element of A is invertible; that is,* $A = qA$.

Proof (of the sufficiency). Suppose $A = qA$ and A is orthocomplete. It suffices to prove that for each dense open subset W of Min(A), $A_W = B_W$. If $f \in A_W$ and $P \in W$, there is a neighborhood U of P and elements a and b in A, so that $U \subseteq W$ and for each $Q \in U f(Q) = (a + Q)/(b + Q)$.

Since \vec{A} is projectable, we may without loss of generality take \vec{b} to be regular: $b+Q=b+(1-e)+Q$, where $e^2=e$ and $b^{\perp\perp}=e^{\perp\perp}$. Since $A=qA$, b is invertible, and, in particular, invertible mod Q. Thus $f(Q) = ab^{-1} + Q$, for each $Q \in U$, proving that $f \in B_W$.

By a slight modification of the above proof, we obtain the first main theorem of this section.

THEOREM 2.4. If A is any projectable f-ring, then $QA = o(qA)$.

Proof. The only part that requires checking is that *qA* is projectable. If *a/b* and c/d are in *qA* we may, without loss of generality, suppose that $b = d > 0$. Write $a = a_1 + a_2$, so that $a_1 \in c^{\perp\perp}$ and $a_2 \in c^{\perp}$. It follows that $a/b = (a_1/b) + (a_2)/b$, and $a_1/b \in (c/b)^{\perp}$ while $a_2/b \in (c/b)^{\perp}$.

It turns out that the order of the operators q and q can be reversed without peril; this is the subject of the second mai'n theorem of the section. (It is Theorem 2.4 which is difficult to extend.)

THEOREM 2.5. *If A is orthocomplete then so is qA, so that* $qA = QA$ *. In general, QA = q(oA).*

Proof. Consider $\{a_{\sigma}/b_{\sigma} : b_{\sigma} > 0, a_{\sigma} \ge 0, \sigma \in \Sigma\}$, pairwise disjoint in *qA*. In view of the projectability of A, we can assume that for each $\sigma \in \Sigma$, the projection of b_{σ} on a_{σ}^{\perp} is an idempotent (because if $b_{\sigma} = x_{\sigma} + y_{\sigma}$, so that $x_{\sigma} \in a_{\sigma}^{\perp}$ and $y_{\sigma} \in a_{\sigma}^{\perp}$, and e_{σ} is the idempotent generator of $a_{\sigma}^{\perp\perp}$, then $a_{\sigma}/b_{\sigma} = a_{\sigma}/(x_{\sigma} + (1-e_{\sigma}))$).

The x_{σ} , projections of b_{σ} on $a_{\sigma}^{\perp\perp}$, are then also pairwise disjoint. Now form $a=\sqrt{a_{\sigma}}$, $x=\sqrt{x_{\sigma}}$ and $e=\sqrt{e_{\sigma}}$; then $e^{\pm\frac{1}{2}}=a^{\pm\frac{1}{2}}$, and it is easy to verify that $b = x + (1 - e)$ is regular. We leave it to the reader to verify that $a/b = \sqrt{a_{\sigma}/b_{\sigma}}$. This proves that q_A is laterally complete; this means that it is complemented, and, by 1.2, projectable. Then on account of Theorem 2.4, *qA = QA.*

In general, and since $q(oA)$ is orthocomplete, Proposition 2.3 implies that $q(oA) = Q(q(oA)) = Q(oA) \supseteq QA$. On the other hand, since $oA \subseteq QA$, it follows that $q(oA) \subseteq QA$, proving that $QA = q(oA)$.

In attempting to decide whether the order of the application of the operators q and σ matters in general, it will be useful to recall the notion of a locally inversion closed ring, as introduced in [Ba] by Banaschewski.

A (semiprime) ring A is *locally inversion closed* if for each $a \in A$, $a \neq 0$, and $P \in \text{Min}(A)$ so that $a \notin P$ there is a neighborhood U of P, $U \subseteq U_a$ ${Q \in \text{Min}(A) : a \notin Q}$, and an element $b \in A$, such that $ab + Q = 1 + Q$, for all $Q \in U$. Banaschewski points out that if A is locally inversion closed then $QA = oA$. It is shown in $[AC]$, Theorem 3.4, $C(X)$ is locally inversion closed, for any Tychonoff space X.

Consider the following example: Let A be the subalgebra of *C(R)* consisting of the functions which are piecewise polynomials (with finitely many pieces). The functions of *oA* are the ones which are defined on a dense open subset of the reals, and are local polynomials. This excludes the function *1/x,* which is in *qA* and hence in *QA*. So $oA \neq QA$. Observe that A is not locally inversion closed, nor does it satisfy the bounded inversion property.

However, A is complemented, which insures that *qA* is locally inversion closed, as we are about to see, and that in turn will be enough to make $QA =$ $Q(qA) = o(qA)$.

It is easy to verify that A is complemented if and only if *qA* is projectable. Owing to Proposition 1.2, this occurs precisely when *qA* is von Neumann regular. Now, it should be clear that a semiprime f-ring which is yon Neumann regular is locally inversion closed. This explains why the preceding example has a locally inversion closed classical quotient ring.

The next theorem, a converse to Banaschewski's observation concerning local inversion closure, is helpful.

THEOREM 2.6. $QA = oA$ if and only if A is locally inversion closed. In general, *QA = o(qA) precisely when qA is locally inversion closed.*

Proof. Only the necessity has to be proved. Let us suppose that $a \in A$, and without loss of generality, suppose that $a > 0$. Complete $\{a\}$ to a maximal pairwise disjoint set $\{a(i) : i \in I\}$, with $a = a(j)$. Let $W = \bigcup \{u_{a(i)} : i \in I\}$; this is a dense open subset of Min(A). Let $b = \sqrt{a(i)}$ in *oA*, and observe that *b* is regular and therefore a multiplicative unit; say $bc = 1$, with $c \in QA = oA$.

Now for each $P \in \text{Min}(A)$ with $a \notin P$, there is an open set $U \subseteq W$ such that $P \in U$ and a $d \in A$ such that $c(Q) = d + Q$, for each $Q \in U$. Also, $b = a \vee x$, where x is the supremum of the $a(i)$, $i \neq j$, and $x \in Q$, for each $Q \in u_a$, since $a \wedge x = 0$; this means that $b(Q) = a + Q$ for all such Q. Therefore, if $Q \in U \cap u_a$, we have that

$$
ad + Q = (a + Q)(d + Q) = b(Q)c(Q) = 1 + Q,
$$

proving that $ad \equiv 1 \mod Q$, for all Q in $U \cap u_a$, and hence that A is locally inversion closed.

As to the second assertion, if qA is locally inversion closed, then $QA =$ $Q(qA) = o(qA)$, by Banaschewski's remark. Conversely, if $Q(qA) = QA = o(qA)$, then by the first part of this proof, qA is locally inversion closed.

Now it is left to decide whether *qA* is locally inversion closed, for every semiprime *f*-ring.

As a first step, Theorem 2.6 guarantees that closure under local inversion is independent of the Gel'fand-Banaschewski representation; that is, independent of which family of prime ideals with trivial intersection one employs. As we have already observed, Bleier's construction of *oA* is also independent of which family of primes (with trivial intersection) one uses in the representation.

Next, let us recall a definition: if A is an f-ring then A(1) denotes the *bounded subring* of A; meaning, the convex f-subring generated by 1. Let us further agree to call *A bounded* if $a = A(1)$. Recall that in any f-ring A, $a = (a \wedge 1)(a \vee 1)$, for each $a \in A$, Then observe that if A satisfies the bounded inversion property, then by this identity, $A \subseteq q(A(1))$, which means that A and its bounded subring have the same classical quotient ring.

We now settle, for archimedean, semiprime f-rings, the matter of the application of the operators o and q , in two stages.

THEOREM 2.7. *Suppose that A is an archimedean f-ring with the bounded inversion property. Then A is locally inversion closed, and therefore QA = oA.*

Proof. The final assertion follows from Theorem 2.6. By the remarks preceding this theorem, it suffices to assume that A is bounded. Then the Jacobson radical of A is trivial; in addition, for each maximal ideal M of A , A/M is an archimedean

totally-ordered field. Armed with this, we will use the Gel'fand-Banaschewski representation on its maximal ideal space, to show that A is locally inversion closed.

Suppose that $0 < a \in A$ and $M \in \text{Max}(A)$ with $a \notin M$. Then, since A/M is archimedean, there exist natural numbers m and n such that $a > m/n$ mod M. Now let $c = a \vee m/n$; since A satisfies the bounded inversion property, c is a multiplicative unit. Next, observe that $(c-a)(a-m/n)^+ = 0$; dividing by c this reads as follows: $(1 - a/c)(a - m/n)^{+} = 0$. Furthermore, with $d = (a - m/n)^{+}$, $a/c \equiv$ 1 mod N, for each $N \in u_d$, proving that A is locally inversion closed.

Since *qA* already has the bounded inversion property and it is archimedean whenever A is, we obtain the following corollary.

COROLLARY 2.7.1. *For any archimedean, semiprime* f-ring *A, qA is locally inversion closed; hence* $QA = o(qA) = q(oA)$.

In the non-archimedean case the matter of $o(qA)$ vs. $q(oA)$ remains unsettled; it is probable that the operators cannot be reversed, in general, but we know no counter-examples.

To conclude this section we comment on the injectivity of the maximal ring of quotients. It is well-known that *QA* is self-injective; mention of this occurs already in [FGL]. It can be proved directly, employing the so-called "Injective test" Lemma. However, from [L], p. 95, 4.3, we obtain that QA is, in fact, injective as a module over A. Since it is clear that *QA* is an A-essential extension of A, we can conclude the following:

PROPOSITION 2.8. For any semiprime ring A, QA is the A-injective hull of A.

3. Integral closure in *QA*

The broad goal of this section is to demonstrate that, under very reasonable hypotheses, the integral closure of a semiprime f-ring is determined by its additive and lattice-theoretic structure.

Let us begin by recalling some basic definitions; suppose that A is a subring of B (not necessarily semiprime). We say that $x \in B$ is *integral over A* if there is a monic polynomial $f(T) \in A[T]$ such that $f(x) = 0$. The collection of all elements of B which are integral over A form a subring of B, called the *integral closure* of A (in B).

Now, let us return to semiprime f-rings.

If A is such a ring, then let *sA* denote the *saturated hull* of A in *QA;* that is to say, sA is the *l*-subgroup generated by all the components of elements of A lying in *QA.* (If $a = x + y$, and $x \wedge y = 0$, we say that x and y are components of a.) Notice that if x and y are components of a and b respectively, then xy is a component of *ab*; therefore, *sA* is, in fact, an *f*-subring of *QA*. Recall that *QA* is a von Neumann ring; since it is also orthocomplete, the boolean algebra $E(OA)$ of idempotents is complete. (Note: the Stone dual of $E(OA)$, namely Max (OA) is extremally disconnected.) Thus, sA is rigid in *QA.* Moreover, each component of an element of A is of the form *ae*, where $a \in A$ and $e \in E(QA)$. This means that *sA* is the A-submodule of *QA* generated by the idempotents of *QA.*

Note also that *sA* is, in fact, contained in *oA.*

Let us summarize the preceding paragraph as follows:

PROPOSITION 3.1. *For any semiprime* f-ring A, *sA, the saturated hull of A in QA is the A-submodule generated by E(QA), the complete boolean algebra of idempotents of QA. Moreover, sA is rigid in QA, and a subring of oA.*

Let us denote by *iA* the integral closure of *A* in *QA*. If $0 < a \in A$ and *b* is a component of a in *QA*, then b satisfies the polynomial $T^2 - aT$, which implies that $sA \subseteq iA$. Furthermore, if $x \in iA$, then x^{+} satisfies the polynomial $T^{2}-xT$, whence x^+ is integral over *iA* and, therefore, over A. This shows that *iA* is an f-subring of *QA.*

Recall now the notion of a *Specker ring,* one which is generated as an abelian group by its idempotents (for references, see [C]). If A is a Specker ring then each $a \in A$ can be expressed uniquely as a sum $m_1e_1 + m_2e_2 + \cdots + m_ke_k$, where the $m_i \in \mathbb{Z}$ and the e_i are pairwise disjoint idempotents. A Specker ring A is archimedean, projectable, semiprime and $qA = A$; moreover, QA is its lateral completion. In particular – see $[BKW]$ – each idempotent in QA is a disjoint supremum of idempotents in A.

Topologically speaking, Specker rings can be viewed in the following way. Suppose that X is any zero-dimensional Hausdorff space (recall; a *zero-dimensional* space is one possessing a base of clopen sets). Let $C(X, Z)$ denote the f-ring of all integer-valued continuous functions on X. Then an f-ring Λ is a Specker ring if and only if $A = C(X, Z)$, for some compact zero-dimensional space X.

For any zero-dimensional space, $C = C(X, Z)$ is a projectable, semiprime f-ring.

Before stating the next result, recall the definition of the *Dedekind-McNeille completion:* if G is any archimedean lattice-ordered group, let *dG* denote this completion; dG is (conditionally) complete, and each positive element of dG is the supremum of elements of G. Also, recall from Lemma 2.3 in [CMc], that if an archimedean lattice-ordered group G is order-densely embedded in a complete l -group H, then dG is the convex hull of G in H.

PROPOSITION 3.2. *Suppose that A is a Specker ring. Then sA = iA is the Dedekind-McNeitle completion of A.*

This proposition will be a corollary of Theorem 3.3. However, we need a few preliminaries before stating it.

For each minimal prime ideal P of C, either *C/P* is the ring Z of integers, or else, by work of Norman Alling [A1], *C/P* is a non-standard model of the integers, which means that it satisfies all the first-order properties held by **Z**, in the first-order theory of totally ordered rings. Being "integrally closed" is such a property (as opposed to being "integrally over", which is not). Thus, *C/P* is integrally closed in either event.

The fact that Z has no non-zero, proper convex ideals is also such a first-order property (as opposed to being archimedean, which is not). Thus, by Alling's work, if C/P is a non-standard model of **Z** it has no non-zero, proper convex ideals. This means that in C every minimal prime ideal is also maximal among l -ideals which are ring ideals.

If X is a Tychonoff space then *EX* stands for its *absolute;* this is the projective cover in the category of Tychonoff spaces; see $[PW]$ for details. $C(EX, Z)$ is complete. Moreover, $oC = D(EX, Z)$; this is the algebra of all continuous functions on X with values in $\mathbb{Z} \cup \{\pm \infty\}$, which are finite on a dense set.

As we have seen, *sC* lies in *oC*; it is actually easy to see that $sC \subseteq C(EX, Z)$. Thus, by Lemma 2.3 in [CMc], C^c , the convex hull of C in $C(EX, Z)$, is the Dedekind-McNeille completion of C.

THEOREM 3.3. For each zero-dimensional Haudorff space X, $iC(X, Z)$ = $sC(X, Z) = dC(X, Z).$

Proof. Let $C = C(X, Z)$; to show that $iC = sC$, it obviously suffices to show that if $x \in QC$ is integral over C, then it lies in the saturated hull of C. In fact, let us make the following observation. If $Q \in \text{Min}(sC)$ then, clearly, $Q \not\subseteq C$, and $Q \cap C$ is a prime ideal of C which is also an *l*-ideal. By the remark immediately preceding this theorem, it follows that $Q \cap C$ is a minimal prime ideal of C.

On the other hand, if b is any component of $a \in C$, then either b or $a - b$ belongs to Q, which proves that $sC = Q + C$. Now, by the comments preceding the theorem, $C/(Q \cap C)$ is integrally closed; furthermore, $C/(Q \cap C) = (C + Q)/Q =$ sC/O . This shows that for each $O \in \text{Min}(sC)$, sC/O is a totally ordered integral domain, which is integrally closed and has no non-zero, proper convex ideals.

Suppose then that x is integral over C, and let $P \in \text{Min}(QC)$; put $P' = P \cap$ *sC.* Since x is integral over C, $x + P$ is integral over $C/(P \cap C) = sC/P' =$ $sC/(sC \cap P) = (sC + P)/P$. Moreover, as each element of *QC* is locally a fraction of elements from C, we see that $q(QC/P) = q(sC/P')$, and so $x \in sC + P$. This means that $x + P = a(P) + P$, for some $a(P) \in sC$. We may, in fact, write $x = a(P) + y(P)$, with $y(P) \in P$, and so that $|a(P)| \wedge |y(P)| = 0$, since *sC* is projectable.

Consider now the basic open set u_x in the Min(QC); it is compact-open, and is covered by the sets $\{u_x(P): P \in U_x\}$. Thus, we have finitely many indices $i = 1, 2, \ldots, k$, such that (with $a(i) = a(P_i)$) the $u_{a(i)}$ cover u_x . But this means that $x = a(1) \vee \cdots \vee a(k)$, and we conclude that $x \in sC$. This shows that $iC \subseteq sC$; since we had already observed the reverse containment, it follows that $iC = sC$.

Let us now prove that *sC* is, in fact, the Dedekind–McNeille competition of C. We already know that $dC = C^c$. We will show that $C^c = sC$; it is evident that $sC \subseteq C^c$.

Following Pierce [P], we observe that each function $f \in C$ can formally be expressed as $f=\sum_{n\in W}ne_n$, where e_n is the characteristic function of $\{x \in X : f(x) = n\}.$

Suppose then that $0 \le y = \sum_{n \in N} nf_n \le \sum_{n \in N} ne_n$. The e_n are pairwise disjoint idempotents in C, whereas the f_n are pairwise disjoint idempotents in $C(EX, Z)$. Then, for each $n \in N$, we have an increasing sequence of natural numbers $n(1)$, $n(2)$, ..., such that, for a suitable choice of a component f_k^{\sim} of $f_{n(k)}$, we have $y(n) \equiv \sum_{k} n(k) f_k \leq ne_n$. Thus the $n(k)$ are bounded, and consequently $y(n) =$ $\sum_i s_{i(n)}g_{i(n)}$, where each $s_{i(n)}$ is a natural number, and each $g_{i(n)}$ is an idempotent formed by summing from among the f_k^* ; thus, the $g_{i(n)}$ remain pairwise disjoint. In addition, for each $n \in N$, all but finitely many of the $s_{(n)} = 0$.

Now, form (in $C(EX, Z)$) $g = \bigvee_n v_i g_{i(n)}$; this makes sense since $C(EX, Z)$ is Dedekind complete. Also form $a = \sum_{n \in N} (\sum_{i} s_{i(n)})e_n$, which is an element of C. Finally, note that $y = \sum_{n \in N} y(n)$, and

$$
ag = \sum_{n \in W} \left(\sum_{i} s_{i(n)} \right) (v_j g_{j(n)}) \in sC,
$$

and that *y* is a component of *ag*, whence it follows that $y \in sC$.

This proves that $C^c = sC$, and we have finished the proof of the theorem. \square

We should point out that, in general, the Dedekind-McNeille completion of $C(X, Z)$ is not $C(EX, Z)$. It is precisely when X is a so-called *weak c.b. space*; these are the spaces given by the following condition: whenever E_n is a decreasing sequence of regular closed sets for which $\bigcap F_n = \emptyset$, there is a decreasing sequence of zero-sets $Z_n \supseteq E_n$, such that $\bigcap Z_n = \emptyset$. (See [PW], Section 8.5, for a discussion of the $C(X)$ version of this.) The weak c.b. spaces include all the pseudo-compact ones.

4. Concluding remarks

Recall (Proposition 1.2) that if $A = qA$, then A is complemented precisely when it is projectable. In the proof of Theorem 2.4 it was verified that if A is projectable then so is qA ; the same implication holds for complemented *f*-rings; indeed, since A is rigid in *qA,* it follows that A is complemented if and only if *qA* is. Now:

4.1. An example of a semiprime f-ring A with the bounded inversion property which is not projectable, yet such that qA is.

Let $A = C(X)$, where X is any metric space. It is not hard to see that A is complemented, whence qA is projectable. However, as long as X is not an F -space, then A is not projectable, because X is not basically disconnected. (Note: for any Tychonoff space, $C(X)$ is projectable precisely when X is basically disconnected; this is well-known, and, in any event, easy to derive.)

Recall that a lattice-ordered group G is said to have *stranded primes* is every prime l -ideal of G exceeds a unique minimal prime l -ideal. It is well known that if G is projectable then it has stranded primes, although the converse is false (see [AF] or [BKW]).

Then this same example shows that:

4.2. *If qA is projectable A need not have stranded primes.*

Since X was stipulated not to be an F -space, it follows from Theorem 14.25 in [GJ] that Λ does not have stranded primes; not even for its prime (ring) ideals.

4.3. *Even if* $A = qA$, A may have stranded primes and fail to be projectable.

Let $A = C(\beta N\setminus N)$; since $\beta N\setminus N$ is an *F*-space, *A* has stranded primes. However, $\beta N/N$ is not basically disconnected – see [GJ] – so that A is not projectable. Note that $A = qA$, as the space in question has no proper dense cozero sets.

4.4. *qA need not have stranded primes.*

Let D be an uncountable set with the discrete topology, and $A = C(\alpha D)$, where αX stands for the one-point compactification of X. Since D is uncountable, αD has

no proper dense cozero sets, which means that $A = qA$. However, the root system of primes of A is not stranded: $Max(A) = \alpha D$, but beneath the maximal ideal at infinity there are all the non-isolated points of βD .

We mention the following item without proof, although we do illustrate the converse.

4.5. *If A is a semiprime f-ring with bounded inversion, and A has stranded primes then so does qA, but the converse is false.*

Converse: let $A = C(\alpha N)$, where αN is the one-point compactification of N; $qA = QA = C(N)$, the lateral completion of A. A does not have stranded primes.

Before concluding we ought to mention a very recent contribution of Wickstead (see [Wi]), which fits very nicely in the context of this paper. We shall only apply it to semiprime f -rings, although it is valid in a more general $-$ and non-ordertheoretic - context.

Wickstead calls a semiprime, commutative ring *A fully regular* if for each subset D of mutually annihilating elements, and each partition $D = D_1 \cup D_2$ of D, there is an element $s \in A$ such that $d^2s = d$, for each $d \in D_1$, and $ds = 0$, for each $d \in D_2$. The main theorem in [Wi] shows that a semiprime ring \vec{A} is self-injective – that is, injective over itself- precisely when it is fully regular.

By way of summary, and for semiprime f-rings, let us tie in his result with the maximal ring of quotients and the material in the first section of this article.

THEOREM 4.6. *For a semiprime f-ring A the following are equivalent.*

 (1) $A = QA$.

- (2) *A is self-injective.*
- (3) *A is fully regular.*
- (4) *A is orthocomplete and every regular element of A is invertible.*
- (5) *A is laterally complete and yon Neumann regular.*

REFERENCES

- [Al] ALLING, N., *Rings of continuous integer-valued functions and non-standard arithmetic*, Trans. AMS, June 1965, pp. 498-525.
- [An] ANDERSON, F. W., *Lattice-ordered rings of quotients*, Canad. Jour. Math. 17 (1965), 434-448.
- [AC] ANDERSON, M. and CONRAD, P., *The hulls of C(Y),* Rocky Mountain Jour. *12* (I) (1982), 7-22.
- [AF] ANDERSON, M. and FEIL, T., *Lattice-Ordered Groups; an Introduction*, Reidel Texts, Math. Sci., Kluwer, 1988.
- [AMc] ATIYAH, M. and MACDONALD, I., *Introduction to Commutative Algebra,* Addison-Wesley, 1969.
- [Ba] BANASCHEWSKI, B., *Maximal rings of quotients of semi-simple commutative rings,* Archiv Math. *XVI* (1965), 414-420.
- [BKW] BIGARD, A., KEIMEL, K. and WOLFENSTEIN, S., *Groupes et Anneaux Réticulés*, Springer Lecture Notes, Vol. 608, Springer Verlag, 1977.
- **[BI]** BLEIER, R., *The orthocompletion of a lattice-ordered group,* Proc. Kon. Ned. Akad. v. Wetensch., Series A, *79* (1976), 1-7.
- $[C]$ CONRAD, P. *Epi-archimedean groups,* Czech. Math. Jour. *24* (99), (1974), 192-218.
- [CM1] CONRAD, P. and MARTINEZ, J., *Complemented lattice-ordered groups,* Indag. Math, New Series, Vol 1, No. 3 (1990), 281-298.
- [CM2] CONRAD, P. and MART1NEZ, J., *Complementing lattice-ordered groups; the projectable case,* Order 7(1990), 183-203.
- [CMc] CONRAD, P. and MCALISTER, D., *The completion of a lattice-ordered group,* Jour. Austral. Math. Soc., *IX* (1969), 182-208.
- [FGLI FINE, N., GILLMAN, L. and LAMBEK, J., *Rings of Quotients of Rings of Functions,* McGill University, 1965.
- $[GJ]$ GILLMAN, L. and JERISON, M., *Rings of Continuous Functions,* Grad. Texts in Math. 43, Springer-Verlag, 1976.
- $[HII]$ HENRIKSEN, M.,]SBELL, J. R. and JOHNSON, D. G., *Residue class fields of lattice ordered algebras,* Fund. Math. *50* (1961), 107-117.
- [HJI HENRIKSEN, M. and JERISON, M., *The space of minimal prime ideals of a commutative ring,* Trans. AMS 115 (1965), 110-130.
- $[L]$ LAMBEK, J., *Lectures on Rings and Modules,* Ginn-Blaisdell, Waltham, Mass, 1966.
- $[P]$ PIERCE, R. S., *Rings of integer-valued continuous functions,* Trans. AMS *I00 (1961),* 371-394.
- [PWl PORTER, J. R. and WOODS, R. G., *Extensions and Absolutes of Hausdorff Spaces,* Springer-Verlag, 1988.
- [Wi] WICKSTEAD, A. W., An intrinsic characterisation of self-injective semiprime commutative rings, Proc. Royal Irish Acad., Section A, *90A(1)* (1989), 117-124.

Department of Mathematics University of Florida Gainesville, Florida 32611 U.S.A.