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Congruence distributive quasivarieties whose finitely snbdirectly 
irreducible members form a universal class 

JANUSZ CZELAKOWSKI AND WIESLAW DZIOBIAK 

To the memory of Basia Czelakowska 

Abstract. By a congruence distributive quasivariety we mean any quasivariety K of algebras having 
the property that the lattices of those congruences of members of K which determine quotient 
algebras belonging to K are distributive. This paper is an attempt to study congruence distributive 
quasivarieties with the additional property that their classes of relatively finitely subdirectly irreducible 
members are axiomatized by sets of universal sentences. We deal with the problem of characterizing 
such quasivarieties and the problem of their finite axiomatizability. 

For a quasivariety K of algebras and its member A denote by ConK A the set 
of all congruence relations O on A such that the quotient algebra A/O belongs to 
K. As the set COnK A is closed under arbitrary intersections, it forms a complete 
lattice. Hence for any pair of elements of A, say, a and b, we can form a least 
congruence relation on A, denoted OK(a, b), that contains (a, b) and belongs to 
ConK A. By Lemma 2.2 of section 2, every such congruence relation is a compact 
element of ConK A. So, as each element O of COnK A coincides with the lattice 
join (formed in ConK A) of all OK(a, b) where a =- b(O), the lattice ConK A is 
algebraic. 

We say that a quasivariety K of algebras is congruence distributive if, for 
every member A of K, the lattice ConK A is distributive. Due to Baker [1], [2], 
Jdnsson [19], [20] and others we know that congruence distributive varieties 
possess very strong and nice properties. Our purpose for a long time before 
writing this paper was an intention of extending at least some of them into 
quasivarieties. This was partially realized by the first author in [7] (see also [8] 
and [9]) but in the area of propositional logics having a well behaved connective 
called disjunction. Another point was achieved when the second author had 
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observed in [12] that within a congruence distributive quasivariety every finitely 
subdirectly irreducible algebra is finitely subdirectly irreducible in the absolute 
sense. The crucial point for writing this paper was overcome when we had 
realized due to the paper of Blok and Pigozzi [5] that the notion of disjunction 
connective from metalogical investigations can be put with a success into 
investigations of quasivarieties. 

A quasivariety K of algebras is said to have equationally definable principal 
(congruence) meets (EDPM for short) if there exists a finite system A = 
(pc(x, y, z, w), qi(x, y, z, w)) ,  i = 0 , . . . ,  n - 1, of pairs of 4-ary terms such that, 
for all A ~ K and a, b, c, d ~ A,  

OK(a, b) N OK(c, d) = V OK(piA( a, b, c, d), qA(a, b, c, d)) 
i < n  

where the join V is formed in COnK A. In this event A is called a system of 
principal (congruence) intersection terms (in four variables). This notion for 
varieties was introduced and discussed in Blok and Pigozzi [5]. With the 
restriction Iz~[ = 1, it was previously considered in Baker [1] under the name of 
principal intersection property. 

The aim of the paper is twofold. First, we deal with the problem of 
characterization of quasivarieties with EDPM. We prove two characterization 
theorems (Theorem 2.3 and Theorem 4.2). The first theorem reflects a result 
proved previously for varieties in Blok and Pigozzi [5] while the second one is in 
the style of J6nsson's Theorem characterizing congruence distributive varieties. 
From the first theorem it follows that for a given finite set M of finite similar 
algebras of finite type the problem whether or not the quasivariety generated by 
M has EDPM is decidable. The first characterization theorem also says that the 
quasivarieties with EDPM are exactly those which are congruence distributive 
and whose finitely subdirectly irreducible members form a universal class. Thus 
our paper can be viewed as an attempt to study congruence distributive 
quasivarieties with the additional property that their classes of finitely subdirectly 
irreducible members are axiomatized by sets of universal sentences. Many 
examples of these quasivarieties arise from the process of algebraization of 
deductive systems for propositional logics having a disjunction connective. For 
instance, quasivarieties generated by any set of finitely subdirectly irreducible 
Heyting or interior algebras are among them. 

The second aim is subordinated to the axiomatization problem of quasivarieties 
with EDPM. We show (Theorem 3.4) that every quasivariety with EDPM and of 
finite type is finitely based provided that the class of its finitely subdirectly 
irreducible members is strictly elementary. The idea used in the proof of this 
result refers to Czelakowski [7, Theorem 3.2] where a related result but for 
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propositional logics with disjunction connective was established (compare also 
Wojtylak [26, Theorem 3.4]). Among consequences of this result there is one 
saying that if K is a variety of finite type with EDPM and M is a subclass of KFS ~ 

then the least quasivariety Q(M) containing M is finitely based iff ISP~:(M) is a 
strictly elementary class. A similar result but under the additional assumption that 
M is a finite set of finite algebras was stated in Blok and Pigozzi [5, Corollary 
2.7]. Moreover, having K and M as above we extend (see Corollary 3.8) Baker 's  
idea of UDE-sentences to form a basis for Q(M) provided that there is known a 
set of universal basic sentences axiomatizing ISPv(M).  Applying arguments from 
Belkin [4] we also provide an answer to a question suggested in Blok and Pigozzi 
[5] by presenting a finite subdirectly irreducible lattice whose quasivariety is not 
finitely based. 

1. Distributivity 

Given a quasivariety K of algebras and A e K. An element O of ConK A is 
said to be finitely meet irreducible in COnKA if, for all Oo, O1 c COnKA, 
O = O0 ^ O1 implies O = Oo or O = Of. If the identity relation on A, denoted 
~OA, is finitely meet irreducible in ConK A then the algebra A is said to be finitely 
subdirectly irreducible in K. By KFS I we denote the class of all finitely subdirectly 
irreducible members of K and we assume the convention that trivial algebras 
belong to KFS I. The lattice of all congruence relations on A will be denoted by 
Con A. The lattice meet of ConK A as well as of Con A coincides with the 
set-theoretical intersection and it will be denoted by A while to denote the lattice 
join of ConK A we shall use the symbols +K- For other notions occurring in this 
paper we refer to [17] and [22]. 

L E M M A  1.1 (cf. [10, Theorem 1] and [12, Lemma 2.1]). For a quasivariety N 

of  algebras the following conditions are equivalent: 
(i) K is congruence distributive. 

(ii) For every A e K and 0o, 0 i ,  ~P e COnK A: if ~p is finitely meet irreducible 

in ConK A and 6)0 ^ 01 ~ ~P then Oo <~ ~P or 01 <~ % 
(iii) For every A e K, 6)0, Ol e Con A and ~p ~ COnK A : if  ~ is finitely meet 

irreducible in Coni~ A and 01 ,x Oa <~ ~P then Oo ~ ~0 or 01 <~ % 
(iv) For every A e K, a, b, c, d e A and ~p c COnK A:  if V2 is finitely meet 

irreducible in ConK A and OK(a, b) ^ OK(c, d) <~ ~p then (a, b) e ~p or 

(c, d) e ~p. 

Proof. The parts (i) implies (ii) and (iii) implies (iv) are obvious. 
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(ii) ~ (iii): First, we show that (ii) implies 

*) For every A �9 K, 80, 8~ �9 Con A and ~p �9 ConK A: if ~p is finitely meet 
irreducible in ConK A, { 8o, 01} C3 Conic A 4= Q and 8o/x 01 ~< ~p then 
O0 ~< tp or 81 ~ 2p. 

Suppose that on a certain algebra A �9 K we have congruence relations 8o, 8~ and 
~p satisfying: 

1. ~p is a finitely meet  irreducible element of Conic A. 
2. { 80, 8~ } f'l COnK A ~ Q. 
3. 6)o/, 8 1 ~  ~Jr ~. 
4. Neither 8o ~< ~ nor O~ ~< ~. 

Assume 80 �9 ConKA; in the case 0 1 � 9  ConKA we proceed similarly. Let 
B = {(a, b) �9 A x A : (a, b) �9 81}. As B is a subalgebra of A x A whose projec- 
tions ~1, 7c2:B--~A fulfill ~ I ( B ) =  z z ( B ) =  A, we have s r [ l (Oe)=  ~c21(01). From 
this it follows 

5. ,/l~11({~0) A ,.~21((DA) ~ ,Tgll(Ip). 

Indeed,  ~'c~-1(8o) A ff/721(0)A) ~ a~'ll(80) A 3"g21(81) = YEll(80) A 3"g11(8|) = 
Sri-l(80 ^ 81)~< (by (3 ) )~ [10p  ). As 8o~; ~p and s r l ( B ) = A ,  we have 

6. ,/gll({~0) ~ ,71~1i('q)). 

Take (a, b ) � 9  01\~P; by (4) such a pair exists. As (a, b), (b, b ) � 9  B, we obtain 
(a, b) =- (b, b)(~rz-t(O~A)) and (a, b) ~ (b, b)(3r[:(~p)). Thus we also have 

7. ~s ~ :Z'['(~). 

Since B, A / O o � 9  K and B/~[l(Oo) ~--A/Oo, we get ~ -1 (0o)  �9 ConK B. Similarly, 
we have Jr21(OOA), J r ( l (~p) �9  Moreover,  Jr[l(~p) is finitely meet ir- 
reducible in ConK B because zp is finitely meet irreducible in ConK A. Thus, by 
(5), (6) and (7), the condition (ii) is not satisfying, showing that (ii) implies * ). 
Applying the same arguments it is an easy matter to show that * ) yields (iii). 
Thus (ii) implies (iii). 

(iv) ~ ( i ) :  Assume (iv) and let A �9 K. As every element of ConK A is the meet 
of finitely meet irreducibles over it, we get 

e,,(a, b) ^ V OK(c, d) = V e~(a, b) ^ OK(c, d) 
(c,d)eH (c,d)eH 
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where (a, b) e A ,  H is a finite subset of A x A  and \ /  is the join formed in 
ConK A. Therefore, as ConK A is algebraic, we obtain 00 A (O1 +K 02) = Oo A 
(91+ I~ (90 /x (92 for all(9o, (91, (92 of ConKAo Thus ConKA is distributive, 
showing that (iv) implies (i). 

As a consequence of the above lemma we have 

PROPOSITION 1.2. Let K be a quasivariety with E D P M  and system 
A = (pi(x, y, z, w), qi(x, y, z, w ) ) ,  i < n, o f  principal intersection terms. Then the 

following conditions are fulfilled: 

(i) K is congruence distributive. 
(ii) For every A ~ K, A c Kvsl iff A ~ Vxyzw[(  &i<,pi (x ,  y, z, w ) = 

qi(x, y, z, w))-->(x = y  or z = w)]. 

Proof. (i) Let a, b, c, d c A  e K, and let (9 be a finitely meet irreducible 
element of ConK A such that (gK(a, b) ^ (gK(c, d) ~< @. Then 
(pA(a, b, c, d), qA(a, b, c, d)) e (9 for all i < n .  Hence (gK([a]O,[b](9)^  
(9K([C](9, [ d ] O ) =  O)A/O. Therefore (a, b ) ~  (9 or (c, d ) ~  0 because A / O  c KFSl. 
Thus, by Lemma 1.1, K is congruence distributive. 

(ii) Directly from the assumptions. 

The next consequence of Lemma 1.1 provides a necessary condition for a 
quasivariety of algebras to be congruence distributive. 

PROPOSITION 1.3 (see [12]). I f  a quasivariety K of  algebras is congruence 

distributive then KFSI = V(K)FsI fq K. 

Proof. Let A e KFS~ and (9o A (91 = mA where 6}o, 6}l 6 Con A. As 6o A is 
finitely meet irreducible in Cong A, by Lemma 1.1, we get 6}o = (DA OF ~}1 = (DA- 

Thus A e V(K)Fsl. 
From the proposition it easily follows 

C O R O L L A R Y  1.4. Let K be a congruence distributive quasivarie~y of  
algebras. Then for  a quasivariety L contained in K the following conditions are 

equivalent: 
(i) L is congruence distributive. 

(ii) L v s  I ~ KFSI .  

Proof. (i) ~ (ii). By Proposition 1.3. 
(ii) ~ (i): Let (90 A O1 ~< ~ where A ~ L, Oo, Ol ~ ConA and ~p ~ ConL A. As 

L ~ K, ~p ~ Con~ A. Hence, by (ii) and Lemma 1.1, 6}0 ~< ~P or (91 <~ ~ whenever 
~p is finitely meet irreducible in COnL A. Thus, by Lemma 1.1, L is congruence 
distributive. 
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For a class M of similar algebras by Q(M) we denote the least quasivariety 
containing M. By a result of Gr~itzer and Lakser [18], Q(M) = ISPPv(M).  

The origin of the following lemma stems from J6nsson [19]. 

LEMMA 1.5. Let M be a class o f  similar algebras. Then every nontrivial 
member o f  Q(M)FsI belongs to ISPu(M). 

Proof. Let A ~ Q(M)Fsl and iAI > 1. Then A is a subalgebra of H(C~:i e l ) ,  
where C~ E ISPv(M), i E I. For S c_ I denote by 19s a congruence relation on 
II(C~:i ~ I) defined as follows: a =-- b(19s) iff {i e I :a ( i )  = b(i)} _~ S. Obviously, 
Os 1 A e Cono(M ) A for all S. Let  ~ denote the set of all filters F on I satisfying 
Os 1 A = O)A for all S e F.  As {I} e o~, ~ is non-empty. As the poset (if,, ~ )  is 
inductive, it has maximal elements. Choose one of them and denote it by U. We 
claim that U is an ultrafilter over I. By IAI > 1, U ~ 2  *. Suppose now that for a 
certain S c_ I,  neither S nor I \S  belong to U. Then for some G e U, Oans 1 A --is 
~o A and 19an(~\s) ] A 4: oo A. But 19arts ] A/~ 19an(t\s) ] A = 19c ] A.  Therefore ,  by 

Oc ] A = wA and A e Q(M)vsb we have Oc, ns ] A = o )  A or Oc, n(~\s) ] A = O ) A ,  a 
contradiction. Thus for every S c_/, S e U or I \S  e U, showing the claim. Since 

V (Os : s e u )  ] A = O)A, then by the claim, A is embeddable into the ultraprod- 
uct of C/s modulo U. Hence A e ISP•(M) because ISPv(M) is closed under I, S 
and Pc. 

2. Characterization theorem 

In this section we prove our first characterization theorem. It is in spirit of a 
corresponding result proved previously for varieties in Blok and Pigozzi [5, 

Theorem 1.5]. 

LEMMA 2.1. For a quasivariety K of  algebras, A,  B E K, a, b ~ A,  6)0, 19~ e 
ConK A and a surjective homomorphism h : A ~ B it holds: 

(i) h(19K(a, b ) + K K e r h ) =  19~(h(a), h(b)) .  
(ii) I f  ConK A is distributive then h(19o/x 191 + K Ker h) = h(19o + K Ker h)/x 

h(01  +KKer  h). 

Proof. (i) As A / h - I ( V )  ~- B/~p and h - l h ( O )  -- 19 for all 19/> Ker h and all % 
h(19K(a, b) +KKer  h) e ConK B. Hence h(19K(a, b) + K K e r h ) / >  19K(h(a), h(b)) .  
Obviously, OK(a, b) +K Ker h <-h-1(19K(h(a), h(b))) .  Therefore ,  by hh-1(~p) = 
% h(OK(a, b) +i~ Ker h) <- 19K(h(a), h(b)) .  
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(ii) It suffices to show that h ( [ O o + ~ K e r h ] A [ O l + K K e r h l ) = h ( @ o +  ~ 
Ker h)/x h(  O~ +K Ker h). Let (a, b) �9 h(  Oo +K Ker h) e, h(  Oa +K Ker h). Then 
(a, b) = (h(x), h(y ) )  for some (x, y) �9 00 +KKerh .  Hence (x, y) �9 h - l h ( O t  +K 
Ker h), and, therefore, (x, y ) � 9  +K Ker h] /x [O1 +K Ker h]. Thus 
(a, b) �9 h([O0 +K Ker h]/x [O1 +K Ker h]). The converse inclusion is immediate. 

For a given type v of algebras, let Q(r)  denote the set consisting of the 
following quasiidentities: 

( 1 )  x = x 

(2) x = y ' - ~ y  = x  
(3) x = y & y = z - - ~ x = z  

(4) &,<,x~ = yi--"> f ( X o  . . . .  , X n - l )  = f ( Y o ,  " " " , Y n - 1 )  

where f is an n-ary function symbol from the first-order language of ~. Notice that 
in the above quasiidentities and others occurring in this paper we omit universal 

quantifiers. 
In the following lemma Id (K) denotes the set of all identities valid in K and 

OK(H ) denotes the least element of ConK A containing H. 

LEMMA 2.2. Let K be a quasivariety of  algebras of  type 3, F be a set o f  
quasiidentities which are not identities, and let K = Mod Id (K) L; F. Then for  every 
A � 9  H c A  x A  and a, b � 9  it holds: a=--b(OK(H)) iff there exists a finite 
sequence (ao, bo) . . . . .  (an-l,  bn-~) of  elements o f  A x A such that (a,_~, bn-t)  = 
(a, b) and, for every i < n, (ai, bi) �9 H or there exist a sequence ]o . . . . .  ]k-~ < i, a 
quasiidentity to(Y) = So(i) & . " & rk-l(Y) = Sk--l(Y)--~ r(Y) = s(Y) �9 F U Q(~),  
where s =Xo, �9 �9 �9 , Xp_l, and a sequence ~ = ao . . . . .  ap_l o f  elements o f  A such 
that {(r~(~i), sA(~)): m < k} = {(ai, ., bj.,):m < k} and (ra(go, sA(fi)) = (a~, bi). 

Proof. Define O __ A x A by (c, d) �9 0 iff the right hand side of the above 
pattern is satisfied by (c, d). Obviously, H __ O. Applying quasiidentities from the 
set Q(r)  we obtain that O is a congruence relation on A. Since A / O ~ I d  (K) U F, 
O � 9  Hence O K ( H ) ~  O. On the other hand, as OK(H) � 9  
O ~< OK(H). Thus OK(H) = O, showing the lemma. 

A lemma much more reflecting than the above one the spirit of Mat'cev 
lemma characterizing principal congruences the reader may find in Gorbunov [16, 
Lemma preceding Theorem 3]. 

By Proposition 1.2, we know that every quasivariety with EDPM is con- 
gruence distributive and its finitely subdirectly irreducible members form a 
universal class. It turns out that the converse implication is also true. This follows 
from the following theorem. The theorem also explains the connection between 
EDPM and congruence distributivity. 



Vol. 27, 1990 Congruence distributive quasivarieties 135 

THEOREM 2.3. 
equivalent: 

(i) 
(ii) 

For a quasivariety K of algebras the following conditions are 

K has EDPM. 
For every member A of  K the lattice ConK A is distributive and the set of  
its compact elements forms a sublattice. 

(iii) The lattice COnK AK(W) /S distributive and the set of  its compact elements 
forms a sublattice. 

(iv) K is congruence distributive and Kvsr forms a universal class. 
(v) The lattice COnK FK(W) is distributive and Kvs~ forms a universal class. 

(vi) The lattice ConK FK(4) is distributive and the set of its compact elements 
forms a sublattice and, moreover, S(Kvsi) ~_ KFSI. 

(vii) There exists a finite system (pi(x, y, z, w), qi(x, y, z, w)) ,  i <n,  of  pairs 
of  4-ary terms such that 

y,z, y z, 1 

(viii) There exists a finite system (pi(x, y, z, w), qi(x, y, z, w)) ,  i <n,  of  pairs 
of  4-ary terms such that for every A e K and all a, b, c, d e A it holds: 

(gK(a, b) A OK(C, d) = wa iff A ~ & pi(x, y, z, w) = qi(x, y, z, w)[a, b, c, d]. 
i < n  

For K being a variety the equivalence of (i), (ii), (iii), (iv) was proved in Blok 
and Pigozzi [5]. Another theorem characterizing quasivarieties with EDPM will 
be given in the last section; see also Corollary 2.6 and 2.7 below. 

Proof (of Theorem 2.3). By Proposition 1.20) , (i) implies (ii). The part (ii) 
implies (iii) is trivial. Having Lemmas 2.1 and 2.2 we can proceed as in the proof 
of Theorem 1.5 in Blok and Pigozzi [5] to get that (ii) yields (i). Thus the 
conditions (i), (ii) and (iii) are equivalent. We shall show that the conditions (i), 
(iv), (v), (vi), (vii) and (vii) are equivalent as well. By Proposition 1.2, (i) implies 
(iv). That (iv) implies (v) is obvious. 

(v) ~ (vi): Assume (v). Let x, y, z, w be free generators of FK(4) and let 
(P,, qo~), o~<fl, be a system of generators OK(X,y) A OK(Z, W). We claim 
KFSI ~ Vxyzw[ ( &o~<a p~(x, y, Z, W) = qo~(X, y, Z, w ) )---~ (x = y or z = w)]. Let A 
KFsx and let h:FK(4)---~A be a homomorphism such that h(p~(x ,y ,  z, w))= 
h(q~(x, y, z, w)) for all ol </3. Then (p~, q~)e Ker h for all o~ < fl, and hence 
OK(x, y) A OK(Z, W) ~< Ker h. But Ker h is finitely meet irreducible in ConK FK(4) 
because FK(4)/Kerh is embeddable into A and S(Kvs,)~_KFsI. Therefore, 
by distributivity of ConK FK(4), we get OK(a, b) ~< Ker h or OK(C, d) ~< Ker h, 
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that is, h(x)= h(y) or h(z) = h(w), proving the claim. By the claim and the fact 
that KFS I is closed under ultraproducts we conclude the existence of a finite 
subsystem of (p~ ,%) ,  0~<fl, say, (Pi, qi), i < n ,  such that KFS~ 
Vxyzw[(&i<npi(x ,y , z ,w)=qi(x ,y , z ,w)) - - -~(x=y or z = w ) ] .  As KFs~ 
Vxyzw[(x=y or z =w)--~p~(x,y, z, w ) = % ( x , y ,  z, w)] for all o :<f i ,  we get 

* ) Kvsi ~ Vxyzw[(&~<n pi(x, y, z, w) = qi(x, y, z, w)) ~ (x = y or z = w)]. 

Let a, b, c, d e FK(4). We show OK(a, b) A OK(C, d) = Vi<,  OK(pi(a, 
b, c, d), q~(a, b, c, d)) which, by distributivity of ConK FK(4), would imply that 
the set of compact elements of ConK FK(4) forms a sublattice; the rest of 
(vi) is immediate. Let Vi<n OK(pi(a, b, c, d), qi(a, b, c, d)) ~ ~p, where ~p is a 
finitely meet irreducible element of ConKFK(4). Then pi([altp,[b]~p, 
[c]~p, [d]~p) = qi([a]~P, [b]W, [c]~p, [d]~0) for all i < n. Hence, by FK(4)/~p s KFS~ 
and *),  we get OK(a, b) <~ ~p or OK(c, d) <~ ~ which in turn yields OK(a, b) ^ 
OK(C, d) <~ ~p. Thus OK(a, b) A OK(C, d) <~ Vi<n OK(p~(a, b, c, d), q~(a, b, c, d)). 
Now, let (e, f )  r OK(a, b)/x OK(C, d). Then (e, f )  r OK(a, b) or (e, f )  q~ OK(c, d). 
Let (e, f)r OK(a, b); when (e, f ) $  OK(c, d) we proceed similarly. Then there 
exists a finitely meet irreducible element ~p of ConK FK(4) with (e, f ) r  ~p and 
OK(a, b) ~ ~p. As [altP = [b]~p in FK(4)/~P and FK(4)/V2 e Kvsb by * ) we obtain 
pi([a]~p, Ibis0, [c]~0, [d]~p)= qi([a]V/, [b]~p, [c]ga, [d]~p) in FK(4)/~p for all i <  n. 
Hence (e, f )  $ Vi<, OK(p~( a, b, c, d), qi(a, b, c, d)) and thus OK(a, b)/x 
OK(C, d) >i ~/~<~ OK(p~(a, b, c, d), qt(a, b, c, d)), completing the proof that (v) 

implies (vi). 
(vi) ~ (vii): Assuming (vi) and proceeding as in the part (v) implies (vi) we 

easily find a finite system of pairs of 4-ary terms satisfying (vii). Thus (vi) implies 

(vii). 
(vii) ~ (i): Assume (vii) and next proceed as in the proof of (v) implies (vi) to 

get that for all a , b , c ,  d e A e K : O K ( a , b ) ^ O K ( c , d ) = ~ < , O K ( p ~ ( a , b ,  
c, d), qi(a, b, c, d)). Thus the conditions (i)-(vii) are equivalent. But it is an easy 
matter to show that (i) implies (viii) and (viii) implies (vii). Thus all conditions of 
our theorem are equivalent. 

Looking inside the proof of the part (vii) implies (i) we have 

COROLLARY 2.4. If  Kvs~ ~ Vxyzw[(&~<~ p~(x, y, z, w) = qi(x, y, z, w)) 
(x = y or z = w)] then (pi(x, y, z, w), qi(x, y, z, w) } , i < n, is a system of principal 
intersection terms for K. 

By the above theorem we obtain 

COROLLARY 2.5. For a given finite set M of finite algebras of finite type the 
problem whether or not Q(M) has EDPM is decidable. 
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Proof. As Q(M) is locally finite of finite type and, by Lemma 1.5, every 
nontrivial member of Q(M)FsI belongs to IS (M), we can decide in a finite 
number of steps whether or not there exists a finite system 
(pi(x, y, z, w), qi(x, y, z, w)), i < n ,  of pairs of 4-ary terms with Q(M)vs~ 
Vxyzw[(&i<, pi(x, y, z, w) = qi(x, y, z, w)) ~ (x = y or z = w)]. Hence, by 
Theorem 2.3, the corollary follows. 

Although every quasivariety K with EDPM is always congruence distributive, 
the least variety V(K) containing it need not be congruence distributive. We shall 
show that it even may happen that V(K) satisfies no nontrivial congruence lattice 
identity. 

Let A = ({0, 1, 2), f, 0) be an algebra of type (4, 0) with f defined as follows: 
f ( a , b , c , d ) = O  when a = b  or c = d ,  and f(a,  b, c, d)= l otherwise. Take 
p(x, y, z, w) :=f(x ,  y, z, w) and q(x, y, z, w) := 0. We have A 
Vxyzw[p(x, y, z, w) = q(x, y, z, w) ~ (x = y or z = w)]. Hence, by Lemma 1.5 
and Theorem 2.3, Q(A) has EDPM. Now, consider the algebra A/6)(O, 1). As 
69(0, 1) = {(0, 1), (1, 0)} tA ~OA, A/O(O, 1) is a 2-element algebra every operation 
of which takes the same fixed value for all its arguments. Hence every 
equivalence relation on any direct power of A/6)(O, 1) is a congruence relation. 
Thus each finite partition lattice is embeddable into congruence lattice of some 
finite direct power of A/6)(O, 1). Therefore, by the well-known result of Lattice 
Theory, it follows that congruence lattices of members of V(K) cannot satisfy any 
nontrivial lattice identity. 

In the case V(K) is congruence distributive we have 

COROLLARY 2.6. Let K be a quasivariety of  algebras such that V(K) is 
congruence distributive. Then the following conditions are equivalent: 

(i) K has EDPM. 
(ii) K = Q(M) for some class M such that ISPu(M) ~_ V(K)vsi. 

Proof. (i) ~ (ii): By Theorem 2.3 and Proposition 1.3, as M we can take Kvs~. 
(ii) ~ (i): By Lemma 1.5, Kvsl ~_ ISP~:(M +) where M + is obtained from M by 

adjoining a trivial algebra. As ISPv(M)AK~_V(K)vsI,  we have Krsi= 
ISPu(M+). Hence K~si is a universal class. Moreover, by Corollary 1.4, K is 
congruence distributive. Thus, by Theorem 2.3, K has EDPM. 

When K is contained in a variety with EDPM we can prove more (see also 
Proposition 4.4): 

COROLLARY 2.7. Let L be a variety with EDPM, and let Z~= 
(pi(x, y, z, w), qi(x, y, z, w)), i < n, be a system of  principal intersection terms for 
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L. Then for a quasivariety K contained in L the following conditions are 
equivalent: 

(i) K has EDPM and zl is a system o f  principal intersection terms tbr  K. 
(ii) K has EDPM. 

(iii) K is congruence distributive. 
(iv) K = Q (M) for  some M _c Lvs 1. 

Proof. (i) ~ (ii): Trivial. (ii) ~ (iii): By Theorem 2.3. (iii) ~ (iv): Use Propo- 
sition 1.3. ( i v )~ ( i ) :  By Theorem 2.3, M ~ V x y z w [ ( & , < ~ p i ( x , y , z , w ) =  
qi(x, y, z, w))  ~ (x = y or z = w)]. Hence, by Lemma 1.5 and Corollary 2.4, z~ is 
a system of principal intersection terms for K and hence K has EDPM. 

An easy inspection of the above proof shows that Corollary 2.7 remains true 
when L is a quasivariety with EDPM. 

3. Finite basis results 

Let A = (pi(x, y, z, w), qi(x, y, z, w) ) ,  i < n, be a fixed finite system of pairs 
of 4-ary terms of some type ~ of algebras. With every quasiidentity Q : &j<,~ r, = 
s j - + r = s  expressed in the language of ~ we associate the set zl(Q) of n 
quasiidentities constructed from Q and the equations of zl in the following way: 

& & pi(ri, sj, z, w) = qi(r i, s t, z, W)--*pk(r, S, Z, W) = qk(r, S, Z, W) 
i<n j<m 

where k = 0 , . . . ,  n - 1 and the variables z, w are assumed to be distinct from the 
variables occurring in Q. Likewise as in Blok and Pigozzi [5] the sets of the form 
A(Q) will play a central role in proofs of our finite basis results. A related 
concept to A(Q) was also used in Czelakowski [7] and in the proof of a result 
announced in Wojtylak [26, Theorem 3.4] to obtain some finite basis results for 
propositional logics. 

Let Z(z~) denote the set consisting of the following quasiidentities: 

(l)ij [r l~Lj<n pi(Pj(X, y, Z, W), qj(x, y, Z, W), V, U) 
= qi(pj(x, y, z, w), qj(x, y, z, w), v, u)] 

---~pi(x, y, p/(z, w, v, u), qj(z, w, v, u)) 
-- qi(x, y, &(z ,  w, v, u), qj(z, w, v, u)) 

(2)ij [(~i<n &j<n Pi( X, Y, pj(z, W, V, U), qj(z, w, v, u)) 
= qi(x, y, pj(z, W, V, U), qi(z, W, V, U))] 

---> pi(pj(x, y, z, w), qj(x, y, z, w), v, u) 
= qi(pj(x, y, z, w), qi(x, y, z, w), v, u) 

where i, j = 0 . . . . .  n - 1, and x, y, z, w, v, u are distinct individual variables. 
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LEMMA 3.1. Suppose A is an algebra o f  type ~ and A ~ ~(A) .  Then for  every 
quasiidentity Q it holds: i f  A ~ A(Q)  then A ~ z~(R) for  every R ~ A(Q).  

Proof. Let Q be of the form r o = s o & . , . & r m _ l = s m _ l - - ~ r = s  and let 
A ~: A(Q). Assume that z, w, v, u are distinct from the variables occurring in Q. 
Consider a quasiidentity 

R : [ &  & pi(rj, si, z, w)=qi(r~,sj ,  z, w)J - -~pk(r , s , z ,  w ) = q k ( r , s , z ,  w) 
k i<n  j < m  

where k < n. Since A ~ A(Q) ,  for every i, k < n we have 

A ~ I & & pi(rj, sj, pk(z,  w, v, u), qk(z, w, v, u)) 
L i<n j < m  

= qi(rj, sips(z, w, v, u), q~(z, w, v, u)) 1 

"-+pi(r, s, pk(z,  w, v, u), qk(z, w, v, u)) 

= q,(r, s, p~(z, w, v, u), qk(z, w, v, u)). 

Hence 

A ~ [ & & & pi(rj, Sj, pk(Z, W, V, It), qk(z, W, V, U)) 
k i<n  j < m  k<n  

= qi(rj, sj, p~(z, w, v, u), qk(z, w, v, u))] 

---~pi(r, s, p~(z, w, v, u), qk(z, w, v, u)) 

= qi(r, s, pg(z, w, v, u), qk(z, W, V, U)) 

for all i, k < n which, by (1)i~, yields 

ii&<~ & & pi(pk(rj, s t, z, w), qk(r), sj, z, w), v, u) A 
j < m  k < n  

= q~(p~(rj, sj, z, w), qk(rj, s t, z, w), v, u) l  

--~ pi(r, s, p~(z, w, v, u), q~(z, w, v, u)) 

= qi(r, s, pk(z,  w, v, u), qk(z, w, v, u)) 

for all i, k < n. Thus, by (2)i~, A ~ A(R), proving the lemma. 
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Now, let F(A) denote the set consisting of all elements of X(A) and the 
quasi/dent/ties listed below, where i = 0 , . .  o, n - 1 and qo(x, y, z, w) abbreviates 
the formula &i<,  pi(x, y, z, w) = q/(x, y, z, w). 

(1)i x =y---~pi(x, y, z, w)=qi (x ,  y, z, w). 
(2); q)(x, y, z, w)--*p/(y, x, z, w) = qi(y, x, z, w). 
(3), q~(xo, xl ,  z, w) & c;(x,, x2, z, w)---,p/(xo, x2, z, w) = q,(Xo, x~, z, w). 

( 4 f ) i  &]<m qlg(Xj, yj, Z, W)-"~pi( , f (X 0 . . . . .  Xm--1), f (yo . . . . .  Ym-1),  z ,  w )  

= qi(f(xo, �9 �9 �9 , Xm-1), f ( Y o  . . . .  , Y,,-1), z, w) where f i s a  m-ary function 
symbol from the language of r and m ~> 1. 

(5)i cp(x, y, z, w)--*pi(z, w, x, y) = qi(z, w, x, y). 
(6) ep(x, y , x ,  y ) - ~ x = y .  

L E M M A  3.2. Let K be a quasivariety with A as a system of principal 
intersection terms. Then K ~ F(A) ,  and K ~ A(Q) for every quasiidentity Q valid 

in K. 

Proof. Use Proposition 1.2(ii). 

L E M M A  3.3. Suppose Z is a set of  quasi/dent/ties expressed in the ianguage 
of T. Then every finitely subdirectly irreducible member of  the quasivariety 
Mod Z U F(A) U [.J (z~(Q) : Q c Z u F(zS)) satisfies Vxyzw[(&~<, p;(x, y, z, w) = 
qi(x, Y, z, w)) ~ (x = y or z = w)]. 

Proof. By (1)i and (5)/, it suffices to show that every member A of 
Nod  Z U F(A) td {._) ( A ( Q ) : Q  e 2; u F(A))FsI satisfies Vxyzw[(&i<, pi(x, y, z, 
w) = qi(x, y, z, w))---~ (x = y or z = w)]. Let a, b, c, d e A and A ~ q~(x, y, z, w)[a, 

b, c, d]. Define 

O0 = {(e, f )  ~ A x A : A ~ cp(x, y, z, w)[e, f ,  c, dl} 

01 = { (e, f ) e A x A : A ~ q)(x, y, z, w )[g, h, e, f ] for all (g, h) e 0o}. 

We claim that O0 and O1 are congruence relations on A. By (1)i-(4s)i, Oo 
is a congruence on A. By (1)i and (5)i, O1 is reflexive. By (2)i and (5)/, 
O1 is symmetric, and, by (3)/ and (5)/, O1 is transitive. That O1 preserves 
operations follows from (4y)~ and (5)/. Now, we show that A/Oo and 
A / 0 1  belong to M o d 2 ; U F ( A )  U { . J ( A ( Q ) : Q e Z U F ( A ) ) .  Let R be an 
element of X U F ( A )  U U ( A ( Q ) : Q e Z U F ( A ) )  and assume that it is of 
the form &j<m rj(2) = sj(2)--~ r(Y) = s(2) where 2 = xo, .  �9 �9 , Xp_i. Let 
A/Oo~rj(X) =sj(2)[[aolOo . . . . .  [ap-llOo] for all j < m .  Then (rj(gQ, s j(a))e  6)o 
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for all j < m  where ~i=a0 . . . . .  ap_l. Hence, by definition of O0, 
A ~ l~j< m cp(rj(s sj(s z, w)[G c, d]. But A ~ &j<,n q0(rj(s sj(27), z, w) 
pk(r(s S(s Z, W) = qk(r(Y~), S(s Z, W)[& C, d] for all k < n since, by X(A) ~ 
F(A) and Lemma 3.1, A ~ A(R). Hence A ~ qv(r(2~), s0?), z, w)[& c, d] and, 
therefore, (r(8), s(ci)) e Oo. Thus A/Oo ~ r(2) = s(s [ap-1]Oo], prov- 
ing that A/Oo~R .  Similarly, applying (5)i one can show that A / O I ~ R .  Thus 
A/  Oo and A /  O 1 belong to Mod X U F( A ) U U ( A(Q ) : Q c X U F( A ) ). From this, 
as (a ,b)  eOo  and (c ,d)  eO1, it follows that OK( a, b ) ^ OK( c, d) <<- 6)o ^ 01 
where K abbreviates Mod X t3 F(A) U U (A(Q) : Q e 2J t3 F(A)). But, since (6) e 
F(A), 00 ,x O1 = O)A. Hence OK(a, b) A OK(c, d) = 09A which in conjunction with 
AeKFsl  yields OK(a,b)=o)A or OK(c,d)=~OA. Thus A r  or z =  
w[a, b, c, d], completing the proof. 

Our original proof of Lemma 3.3 did not use congruences O0 and O 1. It 
employed some idea from Czelakowski [7]. The idea of applying congruences O0 
and O1 to the above proof is borrowed from Blok and Pigozzi [6]. 

We are ready now to prove the following 

THEOREM 3.4. Let K be a quasivariety with EDPM and let the type of  K be 
finite. Then the following conditions are equivalent: 

(i) K is finitely based. 
(ii) KFS I is strictly elementary. 

Proof. (i) ~ (ii): By Proposition 1.2(ii). 
( i i )~( i ) :  Let the system A =  (pi(x, y, z, w), qi(x, y, z, w)), i <n ,  realizes 

EDPM for K Let q~ be a first-order sentence axiomatizing KFS I. By Proposition 
1.2(ii) and compactness theorem, 2J U {Vxyzw[(&s<n ps(x, y, z, w) = 
q~(x, y, z, w)) ~ (x = y or z = w)} ~ (p for some finite set S of quasiidentities valid 
in K. Hence, by Lemma 3.3 and Proposition 1.2(ii), M o d X U F ( A )  U 
U (A(Q) : Q e N U F(A)) c__ K. On the other hand, by Lemma 3.2, K ~ Mod S U 
F(A) U U (z~(Q) : e ~ x u F(A)). Thus K = Mod X U F(A) U I._J (A(Q) : Q e X u 
F(A)), showing that (ii) implies (i). 

As corollary we obtain 

COROLLARY 3.5. Let M be a finite set of  finite algebras of  finite type, and let 
Q(M) have EDPM. Then Q(M) is finitely based. 

Proof. By Lemma 1.5, Q(M)Fsl is strictly elementary. Hence, by theorem 
3.4, Q(M) is finitely based. 
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We also have 

COROLLARY 3.6. Suppose M is a finite set of finite subdirectty irreducible 
algebras of finite type such that S(M)~_ V(M)Fsl, and let V(M) be congruence 
distributive. Then Q(M) is finitely based. 

Proof. Use Corollary 2.6 and 3.5. 

Due to Baker [2] we know that the variety generated by any finite algebra of a 
congruence distibutive variety of finite type is finitely based. The analogous result 
for the quasivariety generated by such an algebra is impossible to obtain because 
there are examples of finite lattices (Belkin [3], [4] and Tumanov [25]) as well as 
finite Heyting and interior algebras (Dziobiak [12] and Rybakov i24]) that 
individually generate non-finitely based quasivarieties. However, as the variety 
generated by a finite algebra A in a congruence distributive variety coincides with 
Q(HS(A)vsr), Blok and Pigozzi [5] asked whether the following natural generali- 
zation of Baker's finite basis result might still be possible: Is it true that every 
finite set of finite, subdirectly irreducible algebras in a congruence distributive 
variety of finite type generates a finitely based quasivariety? This question is 
equivalent to the following: Is Corollary 3.6 true without the assumption that 
S(M) c V(M)Fsfl The lattice L of Figure 1 is subdirectly irreducible. Evidently, 
S(L) is not contained in V(L)vsi. Applying arguments used in Belkin f41 we shall 
show that Q(L) is not finitely based which would provide an answer to the above 
question. 

L 

Figure  1 

Let An, n >>- 1, denote the lattices depicted in Figure 2. We have 

CLAIM (see Belkin I4]). For every n >1 1 the following conditions are 
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A 2 : 

6 

&3 &4 

b 

Figure 2 

satisfied: 

(1) Every proper  sublattice of An belongs to Q(M3-3). 

(2) If O is an atom in ConAn then either a=-b(O) or An/O and A , - i  are 
isomorphic via an isomorphism f such that f(a) = a and f (b)  = b. 

As the lattice M3-3 of Figure 3 is a sublattice of L,  it follows from claim (1) 
that every proper  sublattice of every An belongs to Q(L). Hence,  as the lattices 
An, n ~> 1, belong to the locally finite variety V(At),  to show that Q(L) is not 
finitely based it remains then to prove that An ~ Q(L) for all n >/1. To this effect 
suppose otherwise. Then there exist congruence relations 0 o , . . . ,  6)k-1 on An 
such that A((Oj :j < k) = O)An and A,,/(9 i ~ IS(L) for all j .  Since ILl < ]An[ for all 
n~>2, then by claim (2), for every j, An /O j~AI  or a~b(Of l .  But A1 is not 
embeddable into L. So, for all j < k ,  a =--b(O~), a contradiction. Thus Q(L) 
cannot be finitely based. 
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M3_ 3 

Figure  3 

It is worth to mention that due to Corollary 3.6 the algebra (L, a)aeL 
generates a finitely based quasivariety. 

Blok and Pigozzi [5] proved that every finite set of finite subdirectly 
irreducible algebras of finite type belonging to a variety with E D P M  generates a 
finitely based quasivariety. The following corollary strengthens this result. 

C O R O L L A R Y  3.7. Suppose K is a variety with E D P M  and let the type of  K 
be finite. Then for M c Kvsl the following conditions are equivalent: 

(i) Q(M) is finitely based. 
(ii) ISPu (M) is a strictly elementary class. 

Proof. By Corollary 2.7, Q(M) has EDPM,  and, by Lemma 1.5, Q(M)Fs~ = 
ISPu (M +) where M + is obtained from M by adjoining a trivial algebra. Hence,  
by Proposition 1.2(ii), (i) implies (ii). Assume now that ISPu ( M ) =  Mod q) for 
some first-order sentence rp. Then ISPu (M +) = Mod q~ or Vxy[x = y ] .  Hence 
Q(M)FsI is a strictly elementary class because, by Lemma 1.5, Q(M)vs~ = 
ISPv(M+).  Thus, by Theorem 3.4, Q(M) is finitely based, showing that (ii) 

implies (i). 

The above corollary does not indicate to us how to construct a basis for Q(M) 
even in the case we know a set axiomatizing ISPu (M). The discussion presented 
below removes partly this disadvantage. 

A universal sentence whose matrix is of the form &~<~ re = s,--+ \~/j<,, ~'j = w, 
will be called a universal basic sentence or UB-sentence for short. The name is 
justified by the fact that every universal sentence is equivalent to the conjunction 
of a finite number of universal basic sentences. Hence,  as the class ISPu (M) is 
universal, it can be axiomatized by a set of UB-sentences. Notice that if a trivial 
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algebra belongs to ISPu (M) then every UB-sentence valid in ISPv (M) must have 
at least one disjunct in its consequent. In the sequel by M + we denote the class 
obtained from M by adjoining a trivial algebra. 

For a universal basic sentence U whose matrix is of the above form with 
m i> 1, we put k(U)  = m and define inductively the sets ~,(U) j, j < k(U) ,  

x ( u )  ~ = {to = Wo} 

and, for ] < k(U)  - 1, 

2;(UY +1= {pi(r, s, tj+,, Wj+I)= q,(r, s, tj+l, w~+~):i < n and r = s e 2J(Uy}. 

Notice that k(U)  is the number of disjuncts occurring in the consequent of U. 
Denoting by A ( U )  the formula &i<k r~ = S~ we have the following corollary which 
extends Baker's idea of UDE-sentences (see Baker [1]) into. quasivarieties. 

COROLLARY 3.8. Suppose K is a quasivariety with EDPM and a system of  
principal intersection terms A = (Pi, qi),  i < n. Moreover, assume that the class 
ISPv (M +) is axiomatized by a set 2: of  UB-sentences, where M c_ KFsi. Then 
Q(M) can be axiomatized relative to K by the set F tO U (A(Q): Q e F), where 

F = {A(U) -," r = s : U e 2: and r = s 6 2;(g)k(v~-l}. 

Proof. Since M c_ KFSI, then by Lemma 1.5 and Corollary 1.4 it follows that 
Q(M) is congruence distributive. On the other hand, by Lemmas 3.2, 3.3 and 
Theorem 2.3, ModK F U U (A(Q)  : Q e F) is congruence distributive as well. 
Hence, by Corollary 1.4, Q(M)FsI and ModK F tO [._j (A (Q)  : Q e F)FSI are con- 
tained in Kvsx. So, to complete the proof it suffices to show that for every 
A e KFS b A e A(M) iff A e ModK F U U (zS(Q) : Q e F). Let A e Kvs I and A e 
Q(M). Then, by Lemma 1.5, A 6 I S P v ( M  +) which means A~2:,  and, by 
AeKFsb  A ~ F U U ( A ( Q ) : Q e F ) .  Now, let A e M o d K F U U ( A ( Q ) : Q e F ) .  
Then A e F and, by A e KFs~, A ; 2: which in turn, by ISPv (M +) = Mod 2:, yields 
A e Q(M). Thus Q(M) = ModK F U t.J (A(Q) : Q e F), showing the corollary. 

4, Another characterization 

We want now to present an alternative characterization of quasivarieties with 
EDPM. First, notice 

LEMMA 4.1. For every A, the quasivariety Mod F(z~) t_J (_j (A(Q) : Q 6 F(z~)) 
has EDPM and A is a system of  principal intersection terms for it. 
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Proof. Use Lemma 3.3, Theorem 2.3 and Corollary 2.4. 

Now, we have: 

T H E O R E M  4.2. For a quasivariety K the following conditions are equivalent: 

(i) K has EDPM. 
(ii) K is congruence distributive and K c Mod F(Zi) U (._j (A(Q):  Q e F(A))  

for some finite system A of pairs of  4-ary terms. 
(iii) KFSI c_ V(K)Fsl and K c Mod F(zi) U (._J (zi(Q) : Q e F(A))  for some finite 

system A of  pairs of 4-ary terms. 

Proof. ( i ) ~  (ii): By Theorem 2.3 and Lemma 3.2. ( i i ) ~  (iii): By Proposition 
1.3. (iii) ~ (i): Assume (iii). Then KFs~ c Mod r ( a )  u U ( A ( Q ) : Q  e F(A))Fs~. 
Hence, by Lemma 4.1, Kvst ~ Vxyzw[(&i<, pi(x, y, z, w) = qi(x, y, z, w)) <-> (x = 
y or z = w)]. Thus, by Theorem 2.3, K has EDPM. 

We also want to mention that the quasivariety Mod F ( A ) U ~ i  (A(Q):  Q 
F(A)) is the largest among those which have EDPM with respect to A. This 
follows from Lemma 3.2. So, it is not a surprise that we also have 

PROPOSITION 4~ Let A = (pi(x, y, z, w), q~(x, y, z, w)) ,  i < n, be a finite 
system ofpairs of 4-ary terms of  type r. Then Mod F(A) U (_j (A(Q) : Q e F(A))  = 
Q({A :A is of type r and A ~ Vxyzw[(&,<,, pi(x, y, z, w) = qi(x, y, z, w)) ~-~ (x = y 

o r  z = w ) ] } ) .  

Proof. c_: The inclusion is obvious because, by Lemma 4.!, Mod F ( A ) U  
g (a(O) : Q e F(A))Fs~ ~ Vxyzw[(&i<, pi(x, y, z, w) = qi(x, y, z, w)) ~ (x = y or 
z = w ) ] .  

_~: By Lemma 1.5 and Corollary 2.4, Q ( { A : A  is of type T, and A 
Vxyzw[(&i<npi(x, y, z, w)=qi(x ,  y, z, w))~->(x =y  or z = w)]}) has EDPM with 
A as a system of principal intersection terms. So, by Lemma 3.2, the inclusion 

follows. 

Concluding we notice the following 

PROPOSITION 4.4. Each of the conditions of  Corollary 2.7 is" equivalent to 

each of the following two: 

(v) For every quasiidentity Q, K ~ Q implies K ~ A~(Q). 
(vi) K = ModL F U (__J (A(Q) :Q e F) for some F. 
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Proof. That (iv) implies (v) is obvious. Let K =  ModL F. Then, by (v), 
K = ModL F t3 (_J (A(Q) : Q e F). Thus (v) yields (vi). By Lemmas 3.2, 3.3 and 
Corollary 2.4, (vi) implies (i). 

5. Questions 

This section contains some questions that naturally arise from the context of 
the paper. 

QUESTION 1. Assume A is a finite subdirectly irreducible algebra of finite 
type without nontrivial proper subalgebras. Is the quasivariety generated by A 
finitely based? 

Actually, we do not even know whether Q(A) is finitely based under the 
stronger assumption that A is simple. By a result of Pigozzi [23], a corresponding 
question for the variety generated by A has a negative answer. Notice also that if 
A is chosen from a congruence distributive variety then due to Corollaries 2.6 and 
3.5 the quasivariety Q(A) is finitely based. A related question whether there 
exists a finite hereditary simple algebra of finite type whose quasivariety is not 
finitely based was raised by Gorbunov [15]. 

Let K be a finitely generated quasivariety of algebras of finite type. By 
Theorem 2.3 and Corollary 3.5 we know that if K is congruence distributive and 
KFS t is a universal class then K is finitely based. This result is not true without the 
assumption that K is congruence distributive. Indeed, let K = Q ( A )  where 
A = ({0, 1, 2},f, g) is of type (1, 1) with f and g defined by f(0) = 1, g(0) = 2 and 
f(x) = g(x)=x for x C0. Due to Gorbunov [14], K is not finitely based, and 
applying Lemma 1.5 one can verify that KFS 1 is a universal class. However, we do 
not know whether the second assumption in the above result is necessary. In 
other words, we have 

QUESTION 2. Is every finitely generated and congruence distributive 
quasivariety K of algebras of finite type finitely based? 

We also want to ask about a generalization of Theorem 3.4. 

QUESTION 3. Suppose K is a congruence distributive quasivariety of 
algebras of finite type and let the class KFS~ be strictly elementary. Is K finitely 
based? 
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Let M be a finite set of finite subdirectly irreducible algebras of finite type 
from a variety with EDPC in th sense of [I3]. For each member A of M let A + 
denote the algebra resulting from A by adjoining two new constants representing 
in A distinct elements that are collapsed by every congruence relation on A 
different from C0A. The variety V({A+:AcM)) is congruence distributive 
because, by a result of K6hler and Pigozzi [21], V(M) is congruence distributive. 
Moreover, as V(M) has the congruence extension property, every subalgebra of 
every A + is subdirectly irreducible. Hence, by Corollary 2.6, Q({A + :A E M}) has 
EDPM. Thus, by Corollary 3.5, Q({A + :A ~ M))  is finitely based. However, the 
following question remains still open. 

QUESTION 4 (Blok and Pigozzi [5]). Does  every finite set of finite 
subdirectly irreducible algebras of finite type from a variety with EDPC generate 
a finitely based quasivariety? 

In [12], the second author proved that if in addition K is contained J n a 
congruence distributive quasivariety Mod Z U F, where X is a set of identities and 
F is a finite set of quasiidentities, then the answer to Question 2 is affirmative. 
Recently, in a letter to the first author Professor Don Pigozzi informed us that 
modifying the proof of Theorem 3.4 and applying some arguments from [6] he 
had answered Question 2 affirmatively without any additional assumptions. 
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