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Sublinear Merging and Natural Mergesort 

Svante Carlsson, t Christos Levcopoulos, 2 and Ola Petersson 2 

Abstract. The complexity of merging two sorted sequences into one is linear in the worst case as well 
as in the average case. There are, however, instances for which a sublinear number of comparisons is 
sufficient. We consider the problem of measuring and exploiting such instance easiness. The merging 
algorithm presented, Adaptmerge, is shown to adapt optimally to different kinds of measures of instance 
easiness. In the sorting problem the concept of instance easiness has received a lot of attention, and 
it is interpreted by a measure of presortedness. We apply Adaptmerge in the already adaptive 
sorting algorithm Natural Mergesort. The resulting algorithm, Adaptive Mergesort, optimally adapts 
to several, known and new, measures of presortedness. We also prove some interesting results 
concerning the relation between measures of presortedness proposed in the literature. 
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1. Introduction. It is well known that f~(n log n) time is necessary to sort n elements 
in a comparison-based model of computation [1]. Despite this fact, some instances 
seem easier than others and can be sorted faster than indicated by the lower bound, 
for example, an already sorted sequence or the concatenation of two sorted 
sequences. This observation was first made by Burge [2], who identified this 
instance easiness with the amount of existing order (presortedness) in the sequence, 
and also proposed measures of existing order. 

After being considered by, among others, Cook and Kim [3], Knuth [4], and 
Mehlhorn [1], the concept of presortedness was eventually formalized by Mannila 
[5], who studied several measures of presortedness including the number of runs 
and the number of inversions. Mannila also studied the problem of how a sorting 
algorithm can take advantage of, and thereby adapt to, the existing order. 
A sorting algorithm is said to be adaptive with respect to a measure of 
presortedness if it sorts all sequences, but performs particularly well on those 
having a high degree of presortedness according to the measure. 

For merging, the concepts of instance easiness and adaptive algorithms have 
hardly received any attention in the literature. What is known is that in the worst 
case f](m log((n + m)/m)) time is necessary for merging two sorted sequences X 
and Y of length n and m, respectively, m ___ n, into one, in a comparison-based 
model of computation [1]. Also for merging some instances are much easier than 
others. For example, it may be enough to merge a small portion in the end of X 
with a small portion in the beginning of Y, or the sorted output may be 
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obtained by simply splitting X into a small number of parts and inserting parts 
of Y in between. 

As in the sorting problem, in order to be able to take advantage of some kind 
of instance easiness, or easiness for short, when merging we must be more 
precise with what it means. We examine two different approaches: Max measures 
the maximum distance that an element is from its correct position; Block 
intuitively tells into how many consecutive subsequences the input sequences have 
to be partitioned for the merging to take place. 

We also provide an algorithm, Adaptmerge, which adapts to the measures 
considered. (The concept of adaptivity of a merging algorithm is analogous to 
that of a sorting algorithm.) Adaptmerge is even optimal with respect to Max and 
Block. Here, optimality with respect to a measure means maximum adaptation (in 
an asymptotic sense). 

Max has previously been used as a measure of presortedness, while Block is a 
new measure that generalizes two well-known measures, namely Rein, 
the minimum number of elements that have to be removed from a sequence in 
order to leave a sorted sequence, and Exc, the minimum number of arbitrary 
exchanges needed to bring a sequence into sorted order. 

Mannila [5] proved that Natural Mergesort is Optimal with respect to the 
measure Runs, that is, the number of consecutive upsequences of maximum 
length, even if a straightforward merging algorithm is used. We show how to apply 
Adaptmerge in Natural Mergesort to extend its adaptivity. The resulting 
algorithm, Adaptive Mergesort, is optimal with respect to several measures, namely 
Max, Block, Rein, Exc, and Runs. 

The remainder of the paper is organized as follows. In Section 2 we state some 
preliminary definitions and basic results for adaptive sorting. We also formally 
define our measures of presortedness and establish time lower bounds on sorting 
algorithms that adapt to them. Section 3 is similar to Section 2, but for 
merging instead of sorting. In Section 4 the algorithm Adaptmerge is presented 
and analyzed. In Section 5 we apply Adaptmerge in Natural Mergesort and 
analyze its behavior with respect to the measures. In Section 6 we examine how 
Block is related to other measures of presortedness. Finally, in Section 
7 we give some concluding remarks. 

2. Adaptive Sorting 

Z1. Measures of Presortedness. Let X =  {xl . . . . .  x , )  be a sequence of n 
elements xl from some totally ordered set. For  simplicity, we assume that the 
elements are distinct. For two sequences, X = {xl . . . . .  x , )  and Y = {Ya,--., Y,,), 
their concatenation XY  is the sequence {x 1 . . . . .  x., Yl . . . . .  y,,). Further- 
more, let iX[ denote the length of X and IISII the cardinality of a set S. S, denotes 
the set of all permutations of {1 . . . . .  n}. A sequence obtained by deleting zero 
or more elements from X' is called a subsequence of X. In particular, a 
sequence Y of length m is a consecutive subsequence of X if there 
exists an i, 1 < i _< n - m + 1, such that Y =  (x  i . . . . .  xi+m-a). For an element x, 
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we define its rank in a sequence Y of length m as the number of elements in Y 
that are smaller than x. More formally, 

rank(x, Y) = [[{yj[1 _<j _< m and x > Yj}I[. 

Maximum Distance. The measure Max tells the maximum distance that an 
element is from its correct position. More formally, 

DEFINITION 1. For a sequence X of length n, Max(x )= maxl_~i_<,li-rc(i)l, 
where ~z(/) = rank(xi, At) + 1, for 1 < i < n. 

That is, re(i) the correct position for the element xi, and Max tells the maximum 
distance that an element has to be moved. 

Max is a natural measure of presortedness that, unfortunately, is very sensitive 
to global disorder. For  instance, the sequence (n, 1, 2 , . . . ,  n -  1) maximizes 
the measure. 

Number of  Blocks. The measure Block tells the number of consecutive 
subsequences in the input that remain in the sorted output. 

DEFINITION 2. For  a sequence X of length n, 

Block(X) = ]1 {i] i _< i < n and ~(i) + 1 # ~(i + 1)} H + 1, 

where re(0 = rank(x, X) + 1, for 1 _< i < n. 

Note that the elements contributing to Block are those that receive a new 
successor in the sorted sequence. These elements divide the input sequence 
into Block(X) consecutive subsequences, which will henceforth be called blocks. 

2.2. Optimality. The concept of optimality of a sorting algorithm with respect 
to a measure of presortedness was defined by Mannila [5]. We use 
the following equivalent definitions [6]. 

DEFINITION 3. Let M be a measure of presortedness, and let T, be the set of 
binary comparison trees for the set S,. Then, for any k > 0 and n > 1, 

CM(n, k) = min max {number of comparisons spent by T to sort ~z}, 
T e T,, ~ ~ b e l o wM (n ,  k) 

where belowM(n, k) = {nl~ s S, and M(~) _< k}. 

DEFINITION 4. Let M be a measure of presortedness, and let A be a 
comparison-based sorting algorithm that uses TA(X ) steps on input X. We say that 
A is M-optimal, or optimal with respect to M, if TA(X) = O(Cu([X[, M(X))). 

When proving optimality of an adaptive sorting algorithm the following 
theorem is helpful. 
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Let M be a measure of presortedness. Then 

CM(n , k) = ~)(n + logllbelowM(n, k)[I). 

PROOF. As any binary comparison tree for belowM(n, k) has at least ][belowM(n, k)l] 
leaves, its height is at least logllbelowM(n, k)ll. Further, any comparison tree for S, 
must examine each element at least once. Therefore, 

CM(n, k) = f~(n + log[lbelowM(n, k)ll). 

The upper bound follows from a result by Fredman [-7], who proved that if 
S ~ S,, there exists a comparison tree of height at most 2n + logllS]l that 
differentiates between the elements of S. [] 

A lower bound for sorting algorithms with respect to a measure of presortedness 
is thus obtained by bounding the size of the below-set from below. 

2.3. Lower Bounds 

LEMMA 2. CM,~(n, k) = fl(n log k). 

PROOF. We bound the cardinality of belowMax(n, k) from below. 
For simplicity, assume that k + 1 divides n. Divide the identity permutation in 

S, into n/(k + 1) consecutive subsequences, each of length k + 1. Let 
zt ~ S, be any permutation obtained by rearranging the elements within each of 
the subsequences. As all elements in rt are in their correct consecutive 
subsequences, it follows that Max(n) < k, and thus ~ ~ beIow~ta~(n, k). Since there 
are ( k +  1)! different ways of rearranging each consecutive subsequence, 
we have that 

IlbelOWMax(n, k)tl ~ ((k + 1)!) "/r 

Taking the logarithm and applying Theorem 1 proves the lemma. []  

Instead of making another combinatorial construction to derive a lower bound 
on CB~ock(n, k) we introduce a general technique that can be used to obtain new 
lower bounds from known ones. 

LEMMA 3. Let M 1 and M 2 be measures of presortedness. I f  there exist a function 
f and a constant e such that MI(X) < f(n)" (Mz(X) + c),for any sequence X of  length 
n, then 

( k )  CM,(n, k) > CM~ n, f(n) e . 
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PROOF. If we show that 

(1) belowM,(n, k) ~_ belowM2 n, f(n) c , 

the lemma follows from Definition 3. Let ~ e belowM2(n, k / f  (n) - c). Then 

Ml(~) <- f(n) (M2(~) + c) <- f(n) (~(n) ) �9 " - - c + c  = k ,  

proving that n ~ belowMl(n, k), and thus (1) holds. [] 

Establishing a lower bound on Cnzock(n, k) thus requires bounding Block from 
above in terms of some measure M, and knowledge of a lower bound 
on CM(n, k). As M we use the measure Rem [3], [5], defined as 

Rem(X) = n - max{k IX has an ascending subsequence of length k}. 

We first bound Block in terms of Rem. 

LEMMA 4. For any sequence X, Block(X) < 3" Rem(X) + 1. 

PROOF. Consider a sequence with Rem(x) = k. Let )(1 be a longest ascending 
subsequence in X and let Z2 be the subsequence which has to be removed from 
X to leave X 1 . By the definition of Rem, IX 2 ] = k. 

We derive an upper bound on the number  of elements in X 1 and X2 that can 
contribute to Block(X), starting with X1. Let xi be an element in 
X1. We distinguish two cases. 

(a) If x~ + ~ is in X2, it cannot be the successor of xi in the sorted sequence, because 
in that case the element following x~ in X~ is greater than x~+l, 
and x~+ ~ could thus be added to X 1 without violating its sortedness. This 
contradicts the assumption that X~ is a lonyest ascending subsequence in X. 
Hence, in this case xi receives a new successor. We note that there can be at 
most I X21 x~'s of this kind. 

(b) If x~+~ is in X1, the successor of x~ in the sorted sequence is either xi+z or 
some element from X2. In the former case xi does not receive a new 
successor, while in the latter it does. Again, there can be at most IXzl x~'s of 
the latter kind. 

We conclude that there are at most 21X21 = 2k elements in X~ that receive new 
successors. If also all elements in X2 receive new successors, we arrive 
at the claimed bound. [~ 

At first it might appear  that the lemma can be strengthened to 

Block(X) < 2" Rem(X) + 1. 

However, the stated bound is tight�9 
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Next, we need a lower bound on CRem(n, k). From [5], 

LEMMA 5. Cgem(n, k) = ~(n + k log k). 

Combining Lemmas 3-5 gives 

LEMMA 6. CB~ock(n, k) = ~(n + k log k). 

3. Adaptive Merging 

3.1. Measurin9 Instance Easiness. We use both M a x  and Block for measuring 
easiness i n  the merging problem. The modifications needed are due 
to that the measures should not take the relative order of input sequences into 
account. 

M a x i m u m  Distance. Given two sorted sequences X and I1, M a x  tells the 
maximum distance that an element in either sequence has to be moved. 

DEFINITION 5. For two sorted sequences X and Y of length n and m, respectively, 
Max(X,  !I) = min{ Max(XIO,Max(  YX)}. 

The following lemma can easily be proved [8]. 

LEMMA 7. For any two sorted sequences X and Y o f  length n and m, m <_ n, 
respectively, 

(a) g a x ( X I O  = max{rank(x . ,  Y), n - rank(Yl, X)}. 
(b) I f  x l  < Yl and x .  < y.,, then 

Max(X ,  Y) = max{rank(x. ,  Y), n - rank(y1, X)}. 

(C) [ f  x 1 < YI and x .  > Ym, then 

Max(X ,  Y) = max{m, min{n - rank(y1, X), rank(y.,, X)}}. 

Number o f  Blocks. The Block measure for the merging problem can also be 
defined in terms of that for sorting, however, the following definition is 
easier to grasp. 

DEFINITION 6. Let X and Y be two sorted sequences of length n and m, respect- 
ively, and let Z = <z 1 . . . . .  z,+,,)  be the resulting merged sequence. Then 

Block(X, Y) = [I {i[ 1 <_ i < n + m and z i e Xand z i + t e Y or zl �9 Y and z i + ~ E X }  11 + 1. 

As for sorting, Block tells the number of blocks in the input sequences that 
appear in the merged sequence. The intuition then is that if Block(X, IO is low, X 
and Y need just be split into a small number of blocks for the merging to take 
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place. Consequently, we should not spend constant time on every single 
element, but just find the positions where we have to split the sequences. 

3.2. Optimality. The following definitions of optimality of adaptive merging 
algorithms follow the ones for sorting algorithms in Section 2.2. 

DEFINITION 7. Let M be a measure of easiness for the merging problem. 
Furthermore, let A be any subsequence of (1, 2 . . . . .  n + m)  and let B be the 
sequence remaining after removing A. Then 

belowM(n, m, k) = {(A, B)IIAI = n, IBI = m, and M(A, B) <_ k}, 

for a n y k > 0 ,  m>_l ,  andn>_m.  

DEFINITION 8. Let M be a measure of easiness for the merging problem, and let 
T, + m be the set of binary comparison trees that merges any pair of sorted sequences 
of total length n + m. Then, for any k _> 0, m > 1, and n > m, 

C~t(n, m, k) = rain max 
T~ T,~+,~ (A,B)~belowM(n,m,k) 

{number of comparisons spent by T to merge A and B}. 

For a comparison-based merging algorithm, let the number of steps used on an 
input be the time taken to compute a function that can be used to bring the 
input sequences into a sorted sequence, without performing any comparisons, and 
not the time required to report the output consecutively in an array. The latter 
task will always take linear time. 

DEFINITION 9. Let M be a measure of easiness for the merging problem, and let 
A be a comparison-based merging algorithm that uses TA(X, 19 steps on 
inputs X and Y. We say that A is M-optimal, or optimal with respect to M, if 
TA(X, I9 = O(CM(IXI, I Y[, M(X, 19)). 

The following theorem follows from a straightforward information-theoretic 
argument. 

THEOREM 8. Let M be a measure of  easiness for the merging problem. Then 

CM(n, m, k) = f~(logHbelow~t(n, m, k)]]). 

3.3. Lower Bounds 

LEMMA 9. 

C~ta~(n, m, k) = ~O(m log((m + k)/m)) 

(O(k) 
if re<k,  

otherwise. 
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PROOF. We estimate the cardinality of belowM,x(n, m, k) from below. Partition 
C =  (1,2 . . . .  ,n + m) into two subsequences A and B of length n and m, 
respectively. We distinguish two cases depending on the relation between m and k. 

If m _< k, let B be any subsequence of length rn of the last m + k elements in 
C, and A is what remains in C after removing B. Any choice of B 
guarantees that Max(A, B) <_ Max(AB) <_ k, and (.4, B) is thus in belowu,~(n, m, k). 

Since there are different choices of B, we therefore have 

( ~  
IlbelowM~(n, m, k)ll -> 

m 

Taking the logarithm and applying Theorem 8 proves the claim. 
If rn > k, let B be any subsequence of C constructed as follows. B starts with a 

subsequence of length k of 

( n - k  + l , n - k  + 2 . . . . .  n + k -  l , n + k ) ,  

followed by the last m - k  elements of C. A is the subsequence left in C after 
removing B. Again, we have that M a x ( A , B ) <  M a x ( A B ) < k ,  and thus 

( A , B ) ~ b e l o w u ~ x ( n , m , k ) . I n t h i s c a s e t h e r e a r e ( 2 k ) d i f f e r e n t w a y s t o c h o o s e B ,  

implying 

Nbelowu~x(n,m,k),, > (2k), 

which, after taking the logarithm, completes the proof by Theorem 8. [] 

LEMMA 10. CB,o~k(n, m, k) = f~(k log ((n + k)/k)). 

PROOF. Again, let C = (1, 2 . . . .  , n + m). We partition C into two subsequences 
A and B of length n and m, respectively, as follows. B consists of the first 
m - [k /2l  + 1 elements of C followed by any subsequence of length [.k/2] - 1 
of the remaining elements, A is the sequence left in C after removing B. The 
number of elements from A and B contributing to Block(A, B) is at most 
[.k/21 each. Hence, (A, B) ~ belowngock(n, m, k). Counting the number of ways to 
choose B gives 

logllbelowB~ock(n, m, k)LI > log [_k/21 - 1 

which completes the proof. [] 
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We note that if the measures are maximized, that is, Max(X, Y )= n and 
Block(X, I1)= 2m + 1, the lemmas give the known worst-case lower bound, 
that is, f~(m log((m + n)/m)). 

4. Adaptmerge 

4.1. The Algorithm. At first it may seem that even if we have a merging algorithm 
that performs a sublinear number of comparisons on some inputs, a linear 
number of assignments is always necessary. This is true if the resulting sequence 
is required to be reported consecutively in an array; otherwise, one can do better. 
In Adaptmerge no elements are moved and the number of assignments and 
comparisons are asymptotically equal. 

The input to the algorithm consists of two sorted arrays X and Y of length n 
and m, respectively. The output is reported in another array Z of length 
Block(X, Y). Each entry in Z corresponds to a Block of X or Y. By reporting the 
elements in these blocks in the order given by Z the merged sequence is 
obtained. (See Figure 1.) Hence, Adaptmerge outputs a data structure from which 
the resulting sequence can be computed in m + n assignments and no com- 
parisons. A similar output format turns out to be crucial when a variant of 
Adaptmerge is applied in Natural Mergesort in the next section. 

Consider the example in Figure 1. To compute the array Z we find the elements 
in X and Y that will receive new successors in the resulting sequence, together with 
their successors. Now, the intuition behind the algorithm is that if Block(X, Y) is 
low, there are large blocks in X and Y, which do not need to be examined entirely. 
We therefore apply exponential and binary search [1] to pass these 
blocks as fast as possible in our search for the next element that will receive a 
new successor. 

When merging two sequences X and Y, denote by Xx, )(2 . . . . .  Xp and 
Y1, Y2 . . . . .  Yq the blocks of X and Y, respectively. Then we have that p + q = 
Block(X, Y) and ] p - q ]  < 1. For  simplicity, the following description of 
Adaptmerge assumes that xl <Yl-  (If xl  > y l ,  just swap X and Y.) Then 
Z starts with a block from X, followed by a block from Y, followed by a block 
from X, and so on. The first block in X, that is, X1, is X[1, rank(y1, J0]. This 
is computed by concurrently performing two exponential and binary searches for 
Yl in X; one backward and one forward. Both searches stop once the sought 

1 2 3 4 6 6 7 8 9  1 2 3 4 5 6 7 8  

1 2 3 4 5 

z. I Xtl,41 1 Ytl,3j [ xt6,71 1  't4,81 1 xts,91 

Fig. 1. Example of input and output of Adaptmerge. Here m = 8, n = 9, Max(X, Y/= 8, and 
Brock(X, Y) = 5. 
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position has been reached by either of them. The first block in Y, that 
is, Ya = t"[1, rank(xlx~l + 1, Y)], is computed by an exponential and binary search 
forward in Y. The second block in X, X[IXll + 1, rank(ylr, l+l, X)], is computed 
by an exponential and binary search forward in X. In this way we continue to 
perform exponential and binary searches, alternating between X and Y. We always 
start the search from where the last element found to receive a new successor is 
located. When one of the sequences is finished, the remaining block of the 
nonempty sequence is returned. 

For a slightly less informal description of Adaptmerge, let B o L denote 
concatenating a block B to a sequence of blocks L. 

function Adaptmerge ( X, Y: sequence): sequence of blocks; 
if [Y] = 0 then Adaptmerge: = X 

else begin 
r: = rank(y 1, X); 
Adaptmerge : = X[1, r] o Adaptmerge( Y, X[r + 1, [X[]); 

endelse; 
end; 

Here rank is computed by forward exponential and binary searches, except for 
the first one, which is two-way. 

4.2. Upper Bounds 

THEOREM 11. Adaptmerge is optimal with respect to Block. 

PROOF. Let Block(X, I1)= k and recall that an exponential and binary search 
finds an element located ~ positions away in a sorted array in | ~) time. 
The time consumed by Adaptmerge is given by 

+ ,   log ) 
where the first term corresponds to all searches performed in X and the second 
corresponds to all searches performed in Y. Here, 

loglX~[ = log IX~I _< log 
i = 1  i i 

because p < Lk/2J. Similarly, 

i = 1  
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Hence, 

T(X, Y) = O(k log(~) + k log(~))  O(k lo I/m + n ~  

which completes the proof, by Lemma 10. [] 

THEOREM 12. Adaptmerye is optimal with respect to Max. 

PROOF. Let I X r = n ,  I Y [ = m ,  where m_<n, and let Max(X, Y)=k. We 
divide the analysis into three different cases: 

(a) X and Y do not overlap at all; 
(b) J( and Y overlap partially; 
(c) one sequence completely overlaps with the other. 

(a) If X and Y do not overlap, Adaptmerge completes after the first search, 
which takes constant time. 

(b) There is a partial overlap between Xand Y. Assume that xl < Yl and x, < ym. 
(The case when Yl < x t  and Ym < x ,  is analogous.) Recall that the first 
search is done by a two-way exponential and binary search with Yl in X. This 
takes time 

O(log(min{n - rank(y1, X), rank(y 1, X)})), 

which is O(log k) by Lemma 7(b). 
Since X will be finished before Y, the last block in Y, that is, Yq, only causes 

constant time. The time used by Adaptmerge is therefore 

(2) T(X, Y) = O log k + log[Xi[ + log[ Y~[ . 
i = 2  

The same calculations as in the proof of Theorem 11 give that the second and 
third terms in (2) sum to 

0 (p + q-- 2)-log - . 
P +  

Here ISll = rank(y1, X) and m -[Yq[ = rank(x,, Y), and thus 

n -  IX11 + m -  I Yql < n - rank(y1, X) + rank(x,, Y) < 2k, 

by Lemma 7(b). Therefore, (2) can be expressed as 

(3) T ( X , Y ) = O ( l o g k + ( p + q - 2 ) ' l o g ( p  k)) 
+ q -  
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Now, as each block has length at least one, 

p + q -  2 <__n-lX,[ + m - I Y q l  ___2k, 

which if inserted into (3) gives that T(X, I0 = O(k). On the other hand, 
p + q - 2 = Block(X, Y) - 2, which is at most 2m - 1, since the number of blocks 
is at most 2m + 1. In this case (3) becomes O(log k + m log(k/m)), which is 
O(m log((m + k)/m)). Hence, 

which is Max-optimal, by Lemma 9. 
(c) If Y overlaps X completely, that is, if Yl < xl and y , , > x , ,  then 

Max(X, 13 = n. By Lemma 9, we may spend O(m log((m + n)/m)) time in this case. 
However, since Adaptmerge is Block-optimal, it is also worst-case optimal, that 
is, it merges in O(m log((m + n)/m)) time. 

If X overlaps Y completely, that is, if x ,  < y~ and x n > Ym, we have to be a little 
bit careful. As in (b), the first search done by Adaptmerge takes time 

O(log(min{n - rank(y l, X), rank(y l, X)})). 

Since rank(y1, JO < rank(ym, X), this is bounded by O(log Max(X, t3) by Lemma 
7(c). 

In this case Y is finished before X so the last block in X, that is, Xp, takes only 
constant time to handle. The total time spent by Adaptmerge is therefore 

( '-' k ) T ( X , Y ) = O  l o g k +  ~ log lX , [+  log[Y~[ 
i = 2  i = 1  

= O ( l o g k + ( p + q - 2 ) l o g (  n - l X ' l - l X v l +  m ) )  
7+ -2 " 

As n - [Xl[ = n - rank(yi, X) and n - IX.I = rank(ym, X), we have 

n - I S l l  -IXpl <- min{n - rank(y l, X), rank(ym, X)}, 

which is at most Max(X, Y) = k, by Lemma 7(c). It follows that 

T(X, I1) = O log k + (t9 + q -  2). log + q . 

As in (b), p + q - 2 _< 2m - 1, and thus T(X, 13 = O(m log((m + k)/m)), which is 
Max-optimal by Lemma 9, since k > m, by Lemma 7(c). [] 
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5. Adaptive Mergesort 

5.1. The Algorithm. Natural Mergesort [4] is a sorting algorithm that optimally 
adapts to the measure Runs, formally defined as 

Runs(X) = 11{i11 ~ i < n and xi > xi+~}[[ + 1. 

Presented with a sequence X, Natural Mergesort starts by finding the runs of 
the input sequence X in linear time. Then the first run is merged with the 
second, the third with the fourth, and so on, resulting in [Runs(x)~2-] longer runs. 
These longer runs are then repeatedly merged pairwise until there is just one run 
left, which is the sorted sequence. It is easy to see that Natural Mergesort sorts a 
sequence X of length n with Runs(X) = k in O(n log k) time. Moreover, Mannila 
1-5] proved that this is optimal with respect to Runs. 

What differs Adaptive Mergesort from Natural Mergesort is how the merges 
are implemented. In Natural Mergesort any linear-time merging algorithm can be 
used, while in Adaptive Mergesort we adopt the ideas from the previous section, 
and apply an adaptive merging algorithm, similar to Adaptmerge. 

Observe that if we want to sort some sequences in o(n log Runs(X)) time, while 
sticking to the idea of repeated pairwise merging, we cannot afford to spend 
constant time per participating element in the merges. Hence, the merges cannot 
return two sorted sequences stored consecutively in order, since that would take 
a linear number of assignments in each merging pass. 

In Adaptive Mergesort a run is implemented by a doubly linked list Z with 
pointers to the first and last elements in the list. Initially, there is one linked 
list per run, consisting of one (list) element each, pointing out the run in the input 
sequence X. After some merging passes, a (long) run may consist of several list 
elements, each corresponding to a consecutive portion of X. The list elements are 
linked together in such a way that by concatenating the portions of X in the order 
given by Z the actual (long) run is obtained. For  example, see Figure 2, which 
shows the situation after one merging pass. Note that after [log Runs(X)] passes 
we are finished and there is only one long run consisting of Block(X) list elements, 
which correspond to the blocks of X. 

The result of merging two runs Z 1 and Z 2 is that some list of elements are split 
into smaller ones and these appear in their correct positions in the list Z 
together with those that are not split. For  example, the list element )([9, 14] in 

1 2[3 4 5 6 7 8[9 1011121314 

Fig. 2. Example of how the runs are implemented in Adaptive Mergesort. Z 1 corresponds to the (long) 
run obtained when the run in 1"[1, 2] has been merged with the run in 1"[3, 6]. 
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Z: 

Fig. 3. The result of a merge of Z 1 and Z 2 in Figure 2. 

Figure 2 is split into the three new ones X[9, 10], X[ l l ,  11], and 2"[12, 14], 
as shown in Figure 3, while the list element X[3, 4] remains unchanged. 

A merge of two runs Z 1 and Z z, where Z1 precedes Z 2 in X, resulting in the 
longer run Z, is essentially done list element by list element. To start the merge 
we find where in Z~ the first list element of Zz fits by a backward sequential search 
in Z~. We then merge the linked lists based on the first and last elements in the 
portions of Xwhich correspond to the list elements, in the obvious way, and search 
inside some portion only when it has to be split. Whenever splitting a list element, 
the position in which to split is sought by a two-way exponential and binary 
search, in the same way as the first step of Adaptmerge in Section 4.1. When 
one of the runs is finished, we let the output run Z end with the remaining sublist 
of the nonfinished run, without visiting the list elements. 

The following slightly less informal description of a merge of two long runs 
Z~ and Z2 in Adaptive Mergesort is similar to that of Adaptmerge given in 
Section 4.1. Let Z 1 o Z2 denote concatenating the linked lists Z 1 and Z 2. 
Further, let Split(x, Z, firstZ, lastZ) be a procedure that first performs a se- 
quential search forward in Z to find the list element into which x fits. Second, it 
splits that list element by a two-way exponential and binary search, and returns 
firstZ and lastZ, the sublists of Z preceding and following the splitting position, 
respectively. 

function Merge(Z 1, Z2 : list of portions): list of portions; 
if IZll = 0 then Merge: = Z 2 

else begin 
Split(rain(Z2), Z 1,firstZi, lastZ1); 
Merge: = firstZa o Merge(Z2, lastZi); 

endelse; 
end; 

Recall that the first time Split is invoked, the search for the correct list element is 
done backwards and not forwards. 

5.2. Upper Bounds 

Max-optimality. In the following it is helpful to think of Adaptive Mergesort as 
performing the merges in Flog Runs(X)-] passes. 

We divide the analysis into two parts; the first Flog Max(X)7 passes, and the 
remaining passes. The first Flog Max(X)-] passes take O(n log Max(X)) time, since 
at most linear time is spent in each pass. We show that the remaining passes take 
linear time altogether. To prove this we need two lemmas. 



Sublinear Merging and Natural Mergesort 643 

LEMMA 13. Sortin9 a consecutive subsequence of a sequence does not increase the 
value of Max. 

PROOF. Let X be a sequence with Max(X) = k. Suppose we sort a consecutive 
subsequence of a sequence X. Any such sort can be viewed as a sequence of swaps 
of pairs of adjacent elements that are unordered (cf. Bubblesort). If we show that no 
swap increases the value of Max,.the lemma follows. Assume that we swap the 
elements xj and x j+ 1, that is, xj > xj+ 1, and let X '  be the resulting sequence. Since 
the swap does not affect other elements than xj and xj+ 1, Definition 1 gives 

Max(X') <__ max{k, lJ - ~r(j + 1)1, IJ + 1 -- rc(j)t}. 

The only way for Max(X') to exceed k is if one of the last two terms is greater 
than k. Without loss of generality, assume that [j + 1 - rc(j)l > k. Since [j - ~(J)[ 
< k and [j + 1 - zc(j)[ > k, [j + 1 - 7z(j)] = j + 1 - re(j), but as xj > xj+l, we 
have that 7t(j) > rc(i + 1), and thus 

j + 1 -- 7z(j + 1) > j + 1 -- lr(j) > k. 

This contradicts that Max(X) = k, because Max(X) >_ j + 1 - 7r(j + 1). [] 

LEMMA 14. Any merge in Adaptive Mergesort runs in O(Max(X)) time. 

PROOF. Let Z1 and Z 2 be two (long) runs that are merged in Adaptive Mergesort. 
Let )(1 and X2 be the sorted consecutive subsequences of X corresponding 
to Z 1 and Z2, respectively. Then Max(X1X2) < Max(X), by Lemma 13. The lemma 
follows if we prove that Z 1 and Z 2 are merged in O(Max(X~Xz) ) time. 

Let IXll = n~ and IX21 = n2. Further, let Xl(n 0 be the greatest element in X~ 
and let X2(1) be the smallest element in X2. A merge of Z1 and Z2 starts by finding 
the correct position for X2(1) in XI by a backward sequential search in Z1. Once 
the correct list element in Z 1 is found, the exact position is found by a two-way 
exponential and binary search. In total, this takes O(nl -rank(X2(1), 1(1)) time. 
After that, only the last n 1 - rank(X2(1), X1) elements in X~ take part in the merge. 
Each following search splits off a portion of either Z 1 or Z 2 in time at most linear 
in the number of X-elements split off. Furthermore, the merge stops after having 
considered the first rank(Xl(nO, X2) elements in X2, because at that point Z~ is 
finished. Hence, the total time spent is 

O(nl - rank(Xz(1), Xl) --[- rank(Xl(nO, X2) ), 

which is O(Max(X1X2)), by Lemma 7(a). []  

Now it is easy to prove that all passes in Adaptive Mergesort except the first 
I-log Max(X)-] take linear time altogether. If there are no remaining passes, we 
are done. Otherwise, since there are at most n/2 j merges performed in thej th  pass, 
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j > [-log Max(X)q 4- 1, and as each merge takes O(Max(X)) time, by Lemma 14, the 
remaining passes run in time 

1 / FlogRuns(X)7 

o E 
t j  = Flog Max(X)-[ + 1 

--.. M a x ( X  = 0 2 J j Max(X)" 2 j M a x ( X  

= o = O ( n ) .  

J 

By the above discussion and Lemma 2, we can conclude 

THEOREM 15. Adaptive Mergesort sorts a sequence X o f  length n for  which 
Max(X) = k in time O(n log k), which is optimal with respect to Max.  

5.2.1. Block-optimality. In order to prove that the time consumed by Adaptive 
Mergesort matches Lemma 6 we again divide the analysis into two parts. This 
time, however, not by passes, but by different kinds of operations. First, we estimate 
the time spent on traversing the linked lists. Second, we examine the time spent 
on searches in X, when splitting list elements. 

Initially, there are Runs(X) linked lists containing one element each. As the 
algorithm proceeds the total length of the linked lists is increasing and reaches 
Block(X) when finished. In each merging pass no link in a linked list is traversed 
more than twice (once in the initial search backward and once in the following 
merge). Hence, even if the total length of the linked lists is Block(x) in the first pass, 
the cost for all linked list traversals is bounded by O(Block(x) log Runs(X)). 

When analyzing the time spent on searches for splitting list elements, let 
Block(x) = k. The number of searches performed is k -  Runs(X), since each 
initial run, except one, defines a splitting position which we do not have to search 
for. As Runs(X) >_ 1, this number is at most k - 1. Note that what the searches 
do is splitting an array of length n into k portions. Since the searches are 
exponential and binary and both forward and backward, the position sought is 
found in O(log f) time if it is within distance { from the left or right boundary of 
the portion considered. Since we want an upper bound on the time spent by all 
searches, we might as well assume that each search takes exactly c. log ~ time, 
for some constant c > 0, although some searches may be faster. 

LEMMA 16. For i > 1, let k i denote the number o f  searches which take at least 
c- log(n/2 ~) time and strictly less than c" log(n/2 ~- 1) time. Then ki < 2 i - 1. 

PROOF. A search which takes at least c-log(n/2 i) time and strictly less than 
c" log(n/2 i- 1) time cuts off a portion of X of length at least n/2 ~ and less than 
n/2 ~- 1. Any future search in this portion runs in time less than c-log(n/21), and 
can thus not contribute to k~. We therefore maximize k~ if each search contributing 
to it cuts off as small a portion of X as possible, that is, a portion of length n/2 ~. 
As this can be done at most 2 i - 1 times, the lemma follows. []  
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The time consumed by all searches is thus bounded from above by 

1,,4  ) 
where the upper limit r is chosen so that ~7= 1( 2 i  - -  1) _> k - 1, which is satisfied 
for r -- log k. Now, 

c ~ (2 i -  1).log _< c ~ 21.log 
i=1 i=1 

= ~, ~ ' l o g  
j=O 

= c  Z ~j ' log + c ' k  Z 2 j 
j=o j = o  

fnX~ logk- 1 log~_~- 1 
= c ' k l o g [ c }  ~ 1 j + l  

\t~/ j=o ~ + c ' k  2j j=0 

which is O(k log(n/k)). 
Hence, the time spent on 

< 2 c ' k  lOg(k) + 4c. k, 

splitting list elements in Adaptive Mergesort is 
O(Block(X) log(n/Block(X))). If we add the time required for finding the runs and 
the time spent on linked list traversals, we have 

THEOREM 17. Adaptive Mergesort sorts a sequence X of length n for which 
Block(X) = B and Runs(X) = R in time O(n + B log R + B log (n/B)), which is 
optimal with respect to Block and Runs. 

PROOF. To see that the upper bound matches the lower bound in Lemma 6, 
observe that the second term is at most B log B, because Runs(X)< Block(X), 
and the third term is at most linear. Furthermore, as Block(X) <_ n, it is bounded 
by O(n log R), which is Runs-optimal, as proved by Mannila [5]. [] 

6. A Comparison with other Measures. We study the relation between the new 
measure Block and other measures of presortedness proposed in the literature, 
using the framework introduced by Petersson and Moffat [63. They compared 
measures based on the relation between the values of CM(n, k), as follows: 

LEMMA 18. Let M 1 and m 2 be measures of presortedness. I f  

CM,(IX l, M~(X)) = O(CM~(]XI, Me(X))), 

then every M l-optimal sorting algorithm is Me-optimal. 
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PROOF. Immediate from Definition 4. [] 

To use this lemma, we need a method to derive upper bounds on CM(n, k), 
which can be obtained from upper bounds on sorting algorithms: 

LEMMA 19. Let M be a measure of  presortedness, for which CM(n, k) = f~(f(n, k)), 
where f is nondecreasino on k. I f  there exists a comparison-based sortin9 aloorithm 
S that sorts a sequence X in Cs(X) = O(f(IXI, M(X))) comparisons, then CM(n, k) = 
|  (n, k)). 

PROOF. As S defines a comparison tree in T,, the definition of C~(n, k) gives 

CM(n, k) < max{C~(X)[ IXI = n and M(X) <_ k} 
X 

= O(f(n, k)), 

since f is nondecreasing on j. [ ]  

In Section 5.2 we showed that Adaptive Mergesort runs in time O(n + Block(X) 
log Block(X)). Furthermore, as CBlock(n, k) = f~(n + k log k) by Lemma 6, we con- 
clude that Cme~k(n, k) = | + k log k) by Lemma 19. Applying Lemmas 4 and 
5 now gives 

CB~ock(IXl, Block(X)) = O(IXl + Block(X)log Block(X)) 

= o ( I x l  + Rein(X)log Rein(X)) 

= O(CRem(IXI, Rein(X))), 

and hence, by Lemma 18, 

THEOREM 20. Every Block-optimal sortin9 algorithm is Rein-optimal. 

Consider the sequence 

X =  + 1,} + 2 , . . . ,  n, 1, 2,. . . . .  

for which Rein(X) = n/2 and Block(X) = 2. To sort X, any Rein-optimal sorting 
algorithm may use CRem(n, Rein(X)) = f~(n log n) time, while any Block-optimal one 
completes in linear time. Hence, a Rem-optimal sorting algorithm is not necessarily 
Block-optimal. 

Theorem 20 should be interpreted as follows. From a sorting algorithmic point 
of view, Block is superior to Rem. That is, instances which are "easy" to sort 
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according to Rein are easy to sort according to Block as well. Therefore, in this 
sense Block generalizes Rem. 

Next, we take the opportunity to show the relation between Rem and a measure 
of presortedness for which until this paper no algorithm was known to be optimal 
with respect to, namely, Exc, defined as the minimum number of exchanges of 
arbitrary elements needed to bring a sequence into sorted order [5]. 

LEMMA 21. For any sequence X, Rem(X) <_ 2. Exc(X). 

PROOF. Let X be a sequence of length n, and consider a sequence of Exc(X) 
exchanges which brings the sorted permutation of X into X. Each exchange 
performed removes at most two elements from a longest ascending subsequence 
in the current sequence. Since the length of a longest ascending subsequence is 
initially n, its length in X is at least n - 2. Exe(X). The definition of Rem now gives 
that Rein(X) < 2. Exc(X). [] 

LEMMA 22. Ce~,c(n, k) = ~(n + k log k). 

PROOF. As usual, we estimate the size of belowgxc(n, k) from below. Consider 
any sequence of at most k exchanges performed on the first k + 1 elements of the 
identity permutation in S,. Each such sequence of exchanges defines a permutation 

in belowE~c(n, k). Furthermore, any permutation of the k + 1 elements can be 
produced by performing at most k exchanges, and so [IbelowE~c(n, k)[I > (k + 1)!. 
Theorem 1 now gives 

C~xc(n, k) = f~(n + logj[belowEcx(n, k)ll) : ~ (n  + k log k), 

which completes the proof. [] 

An argument analogous to that in the proof of Theorem 20 gives 

THEOREM 23. Every Rem-optimal sortin9 algorithm is Exc-optimal. 

For  the sequence X = (n, 1, 2 . . . . .  n - 1>, Exc(X) = n - 1 and Rem(X) = 1, 
showing that Theorem 23 is not true the other way around. 

As Mannila's Local Insertion Sort [5] is Rem-optimal, Theorem 23 affirmatively 
answers the question of whether Local Insertion Sort is Exc-optimal or not (see 
discussion in [5]). 

Combining Theorems 15, 17, 20 and 23 gives 

COROLLARY 24. Adaptive Mergesort is optimal with respect to the measures Max, 
Block, Rein, Exc, and Runs. 

7. Concluding Remarks. We would like to mention that the observation that 
some instances of the merging problem are easier than others was also made by 
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Mannila and Ukkonen [9]. They evaluated the easiness by the number of 
inversions in the sequence obtained by concatenating the input sequences. 

Results related to those reported in this paper have independently been achieved 
by Moffat [10]. However, his algorithm is not Block-optimal. 
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