
Algorithmica (1993) 9:629-648 Algorithmica
�9 1993 Spfinger-Verlag New York Inc.

Sublinear Merging and Natural Mergesort

Svante Carlsson, t Christos Levcopoulos, 2 and Ola Petersson 2

Abstract. The complexity of merging two sorted sequences into one is linear in the worst case as well
as in the average case. There are, however, instances for which a sublinear number of comparisons is
sufficient. We consider the problem of measuring and exploiting such instance easiness. The merging
algorithm presented, Adaptmerge, is shown to adapt optimally to different kinds of measures of instance
easiness. In the sorting problem the concept of instance easiness has received a lot of attention, and
it is interpreted by a measure of presortedness. We apply Adaptmerge in the already adaptive
sorting algorithm Natural Mergesort. The resulting algorithm, Adaptive Mergesort, optimally adapts
to several, known and new, measures of presortedness. We also prove some interesting results
concerning the relation between measures of presortedness proposed in the literature.

Key Words. Merging, Sorting, Instance easiness, Measures.

1. Introduction. It is well known that f~(n log n) time is necessary to sort n elements
in a comparison-based model of computation [1]. Despite this fact, some instances
seem easier than others and can be sorted faster than indicated by the lower bound,
for example, an already sorted sequence or the concatenation of two sorted
sequences. This observation was first made by Burge [2], who identified this
instance easiness with the amount of existing order (presortedness) in the sequence,
and also proposed measures of existing order.

After being considered by, among others, Cook and Kim [3], Knuth [4], and
Mehlhorn [1], the concept of presortedness was eventually formalized by Mannila
[5], who studied several measures of presortedness including the number of runs
and the number of inversions. Mannila also studied the problem of how a sorting
algorithm can take advantage of, and thereby adapt to, the existing order.
A sorting algorithm is said to be adaptive with respect to a measure of
presortedness if it sorts all sequences, but performs particularly well on those
having a high degree of presortedness according to the measure.

For merging, the concepts of instance easiness and adaptive algorithms have
hardly received any attention in the literature. What is known is that in the worst
case f](m log((n + m)/m)) time is necessary for merging two sorted sequences X
and Y of length n and m, respectively, m ___ n, into one, in a comparison-based
model of computation [1]. Also for merging some instances are much easier than
others. For example, it may be enough to merge a small portion in the end of X
with a small portion in the beginning of Y, or the sorted output may be

x Department of Computer Science, Lulegt University, S-95187 Lulegt, Sweden.
2 Department of Computer Science, Lurid University, Box 118, S-22100 Lund, Sweden.

Received November 6, 1990; revised June 26, 1991. Communicated by Takao Nishizeki.

630 S. Carlsson, C. Levcopoulos, and O. Petersson

obtained by simply splitting X into a small number of parts and inserting parts
of Y in between.

As in the sorting problem, in order to be able to take advantage of some kind
of instance easiness, or easiness for short, when merging we must be more
precise with what it means. We examine two different approaches: Max measures
the maximum distance that an element is from its correct position; Block
intuitively tells into how many consecutive subsequences the input sequences have
to be partitioned for the merging to take place.

We also provide an algorithm, Adaptmerge, which adapts to the measures
considered. (The concept of adaptivity of a merging algorithm is analogous to
that of a sorting algorithm.) Adaptmerge is even optimal with respect to Max and
Block. Here, optimality with respect to a measure means maximum adaptation (in
an asymptotic sense).

Max has previously been used as a measure of presortedness, while Block is a
new measure that generalizes two well-known measures, namely Rein,
the minimum number of elements that have to be removed from a sequence in
order to leave a sorted sequence, and Exc, the minimum number of arbitrary
exchanges needed to bring a sequence into sorted order.

Mannila [5] proved that Natural Mergesort is Optimal with respect to the
measure Runs, that is, the number of consecutive upsequences of maximum
length, even if a straightforward merging algorithm is used. We show how to apply
Adaptmerge in Natural Mergesort to extend its adaptivity. The resulting
algorithm, Adaptive Mergesort, is optimal with respect to several measures, namely
Max, Block, Rein, Exc, and Runs.

The remainder of the paper is organized as follows. In Section 2 we state some
preliminary definitions and basic results for adaptive sorting. We also formally
define our measures of presortedness and establish time lower bounds on sorting
algorithms that adapt to them. Section 3 is similar to Section 2, but for
merging instead of sorting. In Section 4 the algorithm Adaptmerge is presented
and analyzed. In Section 5 we apply Adaptmerge in Natural Mergesort and
analyze its behavior with respect to the measures. In Section 6 we examine how
Block is related to other measures of presortedness. Finally, in Section
7 we give some concluding remarks.

2. Adaptive Sorting

Z1. Measures of Presortedness. Let X = {xl x ,) be a sequence of n
elements xl from some totally ordered set. For simplicity, we assume that the
elements are distinct. For two sequences, X = {xl x ,) and Y = {Ya,--., Y,,),
their concatenation XY is the sequence {x 1 x., Yl y,,). Further-
more, let iX[denote the length of X and IISII the cardinality of a set S. S, denotes
the set of all permutations of {1 n}. A sequence obtained by deleting zero
or more elements from X' is called a subsequence of X. In particular, a
sequence Y of length m is a consecutive subsequence of X if there
exists an i, 1 < i _< n - m + 1, such that Y = (x i xi+m-a). For an element x,

Sublinear Merging and Natural Mergesort 631

we define its rank in a sequence Y of length m as the number of elements in Y
that are smaller than x. More formally,

rank(x, Y) = [[{yj[1 _<j _< m and x > Yj}I[.

Maximum Distance. The measure Max tells the maximum distance that an
element is from its correct position. More formally,

DEFINITION 1. For a sequence X of length n, Max(x)= maxl_~i_<,li-rc(i)l,
where ~z(/) = rank(xi, At) + 1, for 1 < i < n.

That is, re(i) the correct position for the element xi, and Max tells the maximum
distance that an element has to be moved.

Max is a natural measure of presortedness that, unfortunately, is very sensitive
to global disorder. For instance, the sequence (n, 1, 2 , . . . , n - 1) maximizes
the measure.

Number of Blocks. The measure Block tells the number of consecutive
subsequences in the input that remain in the sorted output.

DEFINITION 2. For a sequence X of length n,

Block(X) =]1 {i] i _< i < n and ~(i) + 1 # ~(i + 1)} H + 1,

where re(0 = rank(x, X) + 1, for 1 _< i < n.

Note that the elements contributing to Block are those that receive a new
successor in the sorted sequence. These elements divide the input sequence
into Block(X) consecutive subsequences, which will henceforth be called blocks.

2.2. Optimality. The concept of optimality of a sorting algorithm with respect
to a measure of presortedness was defined by Mannila [5]. We use
the following equivalent definitions [6].

DEFINITION 3. Let M be a measure of presortedness, and let T, be the set of
binary comparison trees for the set S,. Then, for any k > 0 and n > 1,

CM(n, k) = min max {number of comparisons spent by T to sort ~z},
T e T,, ~ ~ b e l o wM (n , k)

where belowM(n, k) = {nl~ s S, and M(~) _< k}.

DEFINITION 4. Let M be a measure of presortedness, and let A be a
comparison-based sorting algorithm that uses TA(X) steps on input X. We say that
A is M-optimal, or optimal with respect to M, if TA(X) = O(Cu([X[, M(X))).

When proving optimality of an adaptive sorting algorithm the following
theorem is helpful.

632

THEOREM 1.

S. Carlsson, C. Levcopoulos, and O. Petersson

Let M be a measure of presortedness. Then

CM(n , k) = ~)(n + logllbelowM(n, k)[I).

PROOF. As any binary comparison tree for belowM(n, k) has at least][belowM(n, k)l]
leaves, its height is at least logllbelowM(n, k)ll. Further, any comparison tree for S,
must examine each element at least once. Therefore,

CM(n, k) = f~(n + log[lbelowM(n, k)ll).

The upper bound follows from a result by Fredman [-7], who proved that if
S ~ S,, there exists a comparison tree of height at most 2n + logllS]l that
differentiates between the elements of S. []

A lower bound for sorting algorithms with respect to a measure of presortedness
is thus obtained by bounding the size of the below-set from below.

2.3. Lower Bounds

LEMMA 2. CM,~(n, k) = fl(n log k).

PROOF. We bound the cardinality of belowMax(n, k) from below.
For simplicity, assume that k + 1 divides n. Divide the identity permutation in

S, into n/(k + 1) consecutive subsequences, each of length k + 1. Let
zt ~ S, be any permutation obtained by rearranging the elements within each of
the subsequences. As all elements in rt are in their correct consecutive
subsequences, it follows that Max(n) < k, and thus ~ ~ beIow~ta~(n, k). Since there
are (k + 1)! different ways of rearranging each consecutive subsequence,
we have that

IlbelOWMax(n, k)tl ~ ((k + 1)!) "/r

Taking the logarithm and applying Theorem 1 proves the lemma. []

Instead of making another combinatorial construction to derive a lower bound
on CB~ock(n, k) we introduce a general technique that can be used to obtain new
lower bounds from known ones.

LEMMA 3. Let M 1 and M 2 be measures of presortedness. I f there exist a function
f and a constant e such that MI(X) < f(n)" (Mz(X) + c),for any sequence X of length
n, then

(k) CM,(n, k) > CM~ n, f(n) e .

Sublinear Merging and Natural Mergesort 633

PROOF. If we show that

(1) belowM,(n, k) ~_ belowM2 n, f(n) c ,

the lemma follows from Definition 3. Let ~ e belowM2(n, k / f (n) - c). Then

Ml(~) <- f(n) (M2(~) + c) <- f(n) (~(n)) �9 " - - c + c = k ,

proving that n ~ belowMl(n, k), and thus (1) holds. []

Establishing a lower bound on Cnzock(n, k) thus requires bounding Block from
above in terms of some measure M, and knowledge of a lower bound
on CM(n, k). As M we use the measure Rem [3], [5], defined as

Rem(X) = n - max{k IX has an ascending subsequence of length k}.

We first bound Block in terms of Rem.

LEMMA 4. For any sequence X, Block(X) < 3" Rem(X) + 1.

PROOF. Consider a sequence with Rem(x) = k. Let)(1 be a longest ascending
subsequence in X and let Z2 be the subsequence which has to be removed from
X to leave X 1 . By the definition of Rem, IX 2] = k.

We derive an upper bound on the number of elements in X 1 and X2 that can
contribute to Block(X), starting with X1. Let xi be an element in
X1. We distinguish two cases.

(a) If x~ + ~ is in X2, it cannot be the successor of xi in the sorted sequence, because
in that case the element following x~ in X~ is greater than x~+l,
and x~+ ~ could thus be added to X 1 without violating its sortedness. This
contradicts the assumption that X~ is a lonyest ascending subsequence in X.
Hence, in this case xi receives a new successor. We note that there can be at
most I X21 x~'s of this kind.

(b) If x~+~ is in X1, the successor of x~ in the sorted sequence is either xi+z or
some element from X2. In the former case xi does not receive a new
successor, while in the latter it does. Again, there can be at most IXzl x~'s of
the latter kind.

We conclude that there are at most 21X21 = 2k elements in X~ that receive new
successors. If also all elements in X2 receive new successors, we arrive
at the claimed bound. [~

At first it might appear that the lemma can be strengthened to

Block(X) < 2" Rem(X) + 1.

However, the stated bound is tight�9

634 S. Carlsson, C. Levcopoulos, and O. Petersson

Next, we need a lower bound on CRem(n, k). From [5],

LEMMA 5. Cgem(n, k) = ~(n + k log k).

Combining Lemmas 3-5 gives

LEMMA 6. CB~ock(n, k) = ~(n + k log k).

3. Adaptive Merging

3.1. Measurin9 Instance Easiness. We use both M a x and Block for measuring
easiness i n the merging problem. The modifications needed are due
to that the measures should not take the relative order of input sequences into
account.

M a x i m u m Distance. Given two sorted sequences X and I1, M a x tells the
maximum distance that an element in either sequence has to be moved.

DEFINITION 5. For two sorted sequences X and Y of length n and m, respectively,
Max(X, !I) = min{ Max(XIO,Max(YX)}.

The following lemma can easily be proved [8].

LEMMA 7. For any two sorted sequences X and Y o f length n and m, m <_ n,
respectively,

(a) g a x (X I O = max{rank(x . , Y), n - rank(Yl, X)}.
(b) I f x l < Yl and x . < y.,, then

Max(X , Y) = max{rank(x. , Y), n - rank(y1, X)}.

(C) [f x 1 < YI and x . > Ym, then

Max(X , Y) = max{m, min{n - rank(y1, X), rank(y.,, X)}}.

Number o f Blocks. The Block measure for the merging problem can also be
defined in terms of that for sorting, however, the following definition is
easier to grasp.

DEFINITION 6. Let X and Y be two sorted sequences of length n and m, respect-
ively, and let Z = <z 1 z,+,,) be the resulting merged sequence. Then

Block(X, Y) = [I {i[1 <_ i < n + m and z i e Xand z i + t e Y or zl �9 Y and z i + ~ E X } 11 + 1.

As for sorting, Block tells the number of blocks in the input sequences that
appear in the merged sequence. The intuition then is that if Block(X, IO is low, X
and Y need just be split into a small number of blocks for the merging to take

Sublinear Merging and Natural Mergesort 635

place. Consequently, we should not spend constant time on every single
element, but just find the positions where we have to split the sequences.

3.2. Optimality. The following definitions of optimality of adaptive merging
algorithms follow the ones for sorting algorithms in Section 2.2.

DEFINITION 7. Let M be a measure of easiness for the merging problem.
Furthermore, let A be any subsequence of (1, 2 n + m) and let B be the
sequence remaining after removing A. Then

belowM(n, m, k) = {(A, B)IIAI = n, IBI = m, and M(A, B) <_ k},

for a n y k > 0 , m>_l , andn>_m.

DEFINITION 8. Let M be a measure of easiness for the merging problem, and let
T, + m be the set of binary comparison trees that merges any pair of sorted sequences
of total length n + m. Then, for any k _> 0, m > 1, and n > m,

C~t(n, m, k) = rain max
T~ T,~+,~ (A,B)~belowM(n,m,k)

{number of comparisons spent by T to merge A and B}.

For a comparison-based merging algorithm, let the number of steps used on an
input be the time taken to compute a function that can be used to bring the
input sequences into a sorted sequence, without performing any comparisons, and
not the time required to report the output consecutively in an array. The latter
task will always take linear time.

DEFINITION 9. Let M be a measure of easiness for the merging problem, and let
A be a comparison-based merging algorithm that uses TA(X, 19 steps on
inputs X and Y. We say that A is M-optimal, or optimal with respect to M, if
TA(X, I9 = O(CM(IXI, I Y[, M(X, 19)).

The following theorem follows from a straightforward information-theoretic
argument.

THEOREM 8. Let M be a measure of easiness for the merging problem. Then

CM(n, m, k) = f~(logHbelow~t(n, m, k)]]).

3.3. Lower Bounds

LEMMA 9.

C~ta~(n, m, k) = ~O(m log((m + k)/m))

(O(k)
if re<k,

otherwise.

636 S. Carlsson, C. Levcopoulos, and O. Petersson

PROOF. We estimate the cardinality of belowM,x(n, m, k) from below. Partition
C = (1,2 ,n + m) into two subsequences A and B of length n and m,
respectively. We distinguish two cases depending on the relation between m and k.

If m _< k, let B be any subsequence of length rn of the last m + k elements in
C, and A is what remains in C after removing B. Any choice of B
guarantees that Max(A, B) <_ Max(AB) <_ k, and (.4, B) is thus in belowu,~(n, m, k).

Since there are different choices of B, we therefore have

(~
IlbelowM~(n, m, k)ll ->

m

Taking the logarithm and applying Theorem 8 proves the claim.
If rn > k, let B be any subsequence of C constructed as follows. B starts with a

subsequence of length k of

(n - k + l , n - k + 2 n + k - l , n + k) ,

followed by the last m - k elements of C. A is the subsequence left in C after
removing B. Again, we have that M a x (A , B) < M a x (A B) < k , and thus

(A , B) ~ b e l o w u ~ x (n , m , k) . I n t h i s c a s e t h e r e a r e (2 k) d i f f e r e n t w a y s t o c h o o s e B ,

implying

Nbelowu~x(n,m,k),, > (2k),

which, after taking the logarithm, completes the proof by Theorem 8. []

LEMMA 10. CB,o~k(n, m, k) = f~(k log ((n + k)/k)).

PROOF. Again, let C = (1, 2 , n + m). We partition C into two subsequences
A and B of length n and m, respectively, as follows. B consists of the first
m - [k /2l + 1 elements of C followed by any subsequence of length [.k/2] - 1
of the remaining elements, A is the sequence left in C after removing B. The
number of elements from A and B contributing to Block(A, B) is at most
[.k/21 each. Hence, (A, B) ~ belowngock(n, m, k). Counting the number of ways to
choose B gives

logllbelowB~ock(n, m, k)LI > log [_k/21 - 1

which completes the proof. []

Sublinear Merging and Natural Mergesort 637

We note that if the measures are maximized, that is, Max(X, Y)= n and
Block(X, I1)= 2m + 1, the lemmas give the known worst-case lower bound,
that is, f~(m log((m + n)/m)).

4. Adaptmerge

4.1. The Algorithm. At first it may seem that even if we have a merging algorithm
that performs a sublinear number of comparisons on some inputs, a linear
number of assignments is always necessary. This is true if the resulting sequence
is required to be reported consecutively in an array; otherwise, one can do better.
In Adaptmerge no elements are moved and the number of assignments and
comparisons are asymptotically equal.

The input to the algorithm consists of two sorted arrays X and Y of length n
and m, respectively. The output is reported in another array Z of length
Block(X, Y). Each entry in Z corresponds to a Block of X or Y. By reporting the
elements in these blocks in the order given by Z the merged sequence is
obtained. (See Figure 1.) Hence, Adaptmerge outputs a data structure from which
the resulting sequence can be computed in m + n assignments and no com-
parisons. A similar output format turns out to be crucial when a variant of
Adaptmerge is applied in Natural Mergesort in the next section.

Consider the example in Figure 1. To compute the array Z we find the elements
in X and Y that will receive new successors in the resulting sequence, together with
their successors. Now, the intuition behind the algorithm is that if Block(X, Y) is
low, there are large blocks in X and Y, which do not need to be examined entirely.
We therefore apply exponential and binary search [1] to pass these
blocks as fast as possible in our search for the next element that will receive a
new successor.

When merging two sequences X and Y, denote by Xx,)(2 Xp and
Y1, Y2 Yq the blocks of X and Y, respectively. Then we have that p + q =
Block(X, Y) and] p - q] < 1. For simplicity, the following description of
Adaptmerge assumes that xl <Yl- (If xl > y l , just swap X and Y.) Then
Z starts with a block from X, followed by a block from Y, followed by a block
from X, and so on. The first block in X, that is, X1, is X[1, rank(y1, J0]. This
is computed by concurrently performing two exponential and binary searches for
Yl in X; one backward and one forward. Both searches stop once the sought

1 2 3 4 6 6 7 8 9 1 2 3 4 5 6 7 8

1 2 3 4 5

z. I Xtl,41 1 Ytl,3j [xt6,71 1 't4,81 1 xts,91

Fig. 1. Example of input and output of Adaptmerge. Here m = 8, n = 9, Max(X, Y/= 8, and
Brock(X, Y) = 5.

638 s. Carlsson, C. Levcopoulos, and O. Petersson

position has been reached by either of them. The first block in Y, that
is, Ya = t"[1, rank(xlx~l + 1, Y)], is computed by an exponential and binary search
forward in Y. The second block in X, X[IXll + 1, rank(ylr, l+l, X)], is computed
by an exponential and binary search forward in X. In this way we continue to
perform exponential and binary searches, alternating between X and Y. We always
start the search from where the last element found to receive a new successor is
located. When one of the sequences is finished, the remaining block of the
nonempty sequence is returned.

For a slightly less informal description of Adaptmerge, let B o L denote
concatenating a block B to a sequence of blocks L.

function Adaptmerge (X, Y: sequence): sequence of blocks;
if [Y] = 0 then Adaptmerge: = X

else begin
r: = rank(y 1, X);
Adaptmerge : = X[1, r] o Adaptmerge(Y, X[r + 1, [X[]);

endelse;
end;

Here rank is computed by forward exponential and binary searches, except for
the first one, which is two-way.

4.2. Upper Bounds

THEOREM 11. Adaptmerge is optimal with respect to Block.

PROOF. Let Block(X, I1)= k and recall that an exponential and binary search
finds an element located ~ positions away in a sorted array in | ~) time.
The time consumed by Adaptmerge is given by

+ , log)
where the first term corresponds to all searches performed in X and the second
corresponds to all searches performed in Y. Here,

loglX~[= log IX~I _< log
i = 1 i i

because p < Lk/2J. Similarly,

i = 1

Sublinear Merging and Natural Mergesort 639

Hence,

T(X, Y) = O(k log(~) + k log(~)) O(k lo I/m + n ~

which completes the proof, by Lemma 10. []

THEOREM 12. Adaptmerye is optimal with respect to Max.

PROOF. Let I X r = n , I Y [= m , where m_<n, and let Max(X, Y)=k. We
divide the analysis into three different cases:

(a) X and Y do not overlap at all;
(b) J(and Y overlap partially;
(c) one sequence completely overlaps with the other.

(a) If X and Y do not overlap, Adaptmerge completes after the first search,
which takes constant time.

(b) There is a partial overlap between Xand Y. Assume that xl < Yl and x, < ym.
(The case when Yl < x t and Ym < x , is analogous.) Recall that the first
search is done by a two-way exponential and binary search with Yl in X. This
takes time

O(log(min{n - rank(y1, X), rank(y 1, X)})),

which is O(log k) by Lemma 7(b).
Since X will be finished before Y, the last block in Y, that is, Yq, only causes

constant time. The time used by Adaptmerge is therefore

(2) T(X, Y) = O log k + log[Xi[+ log[Y~[.
i = 2

The same calculations as in the proof of Theorem 11 give that the second and
third terms in (2) sum to

0 (p + q-- 2)-log - .
P +

Here ISll = rank(y1, X) and m -[Yq[= rank(x,, Y), and thus

n - IX11 + m - I Yql < n - rank(y1, X) + rank(x,, Y) < 2k,

by Lemma 7(b). Therefore, (2) can be expressed as

(3) T (X , Y) = O (l o g k + (p + q - 2) ' l o g (p k))
+ q -

640 s. Carlsson, C. Levcopoulos, and O. Petersson

Now, as each block has length at least one,

p + q - 2 <__n-lX,[+ m - I Y q l ___2k,

which if inserted into (3) gives that T(X, I0 = O(k). On the other hand,
p + q - 2 = Block(X, Y) - 2, which is at most 2m - 1, since the number of blocks
is at most 2m + 1. In this case (3) becomes O(log k + m log(k/m)), which is
O(m log((m + k)/m)). Hence,

which is Max-optimal, by Lemma 9.
(c) If Y overlaps X completely, that is, if Yl < xl and y , , > x , , then

Max(X, 13 = n. By Lemma 9, we may spend O(m log((m + n)/m)) time in this case.
However, since Adaptmerge is Block-optimal, it is also worst-case optimal, that
is, it merges in O(m log((m + n)/m)) time.

If X overlaps Y completely, that is, if x , < y~ and x n > Ym, we have to be a little
bit careful. As in (b), the first search done by Adaptmerge takes time

O(log(min{n - rank(y l, X), rank(y l, X)})).

Since rank(y1, JO < rank(ym, X), this is bounded by O(log Max(X, t3) by Lemma
7(c).

In this case Y is finished before X so the last block in X, that is, Xp, takes only
constant time to handle. The total time spent by Adaptmerge is therefore

('-' k) T (X , Y) = O l o g k + ~ log lX , [+ log[Y~[
i = 2 i = 1

= O (l o g k + (p + q - 2) l o g (n - l X ' l - l X v l + m))
7+ -2 "

As n - [Xl[= n - rank(yi, X) and n - IX.I = rank(ym, X), we have

n - I S l l -IXpl <- min{n - rank(y l, X), rank(ym, X)},

which is at most Max(X, Y) = k, by Lemma 7(c). It follows that

T(X, I1) = O log k + (t9 + q - 2). log + q .

As in (b), p + q - 2 _< 2m - 1, and thus T(X, 13 = O(m log((m + k)/m)), which is
Max-optimal by Lemma 9, since k > m, by Lemma 7(c). []

Sublinear Merging and Natural Mergesort 641

5. Adaptive Mergesort

5.1. The Algorithm. Natural Mergesort [4] is a sorting algorithm that optimally
adapts to the measure Runs, formally defined as

Runs(X) = 11{i11 ~ i < n and xi > xi+~}[[+ 1.

Presented with a sequence X, Natural Mergesort starts by finding the runs of
the input sequence X in linear time. Then the first run is merged with the
second, the third with the fourth, and so on, resulting in [Runs(x)~2-] longer runs.
These longer runs are then repeatedly merged pairwise until there is just one run
left, which is the sorted sequence. It is easy to see that Natural Mergesort sorts a
sequence X of length n with Runs(X) = k in O(n log k) time. Moreover, Mannila
1-5] proved that this is optimal with respect to Runs.

What differs Adaptive Mergesort from Natural Mergesort is how the merges
are implemented. In Natural Mergesort any linear-time merging algorithm can be
used, while in Adaptive Mergesort we adopt the ideas from the previous section,
and apply an adaptive merging algorithm, similar to Adaptmerge.

Observe that if we want to sort some sequences in o(n log Runs(X)) time, while
sticking to the idea of repeated pairwise merging, we cannot afford to spend
constant time per participating element in the merges. Hence, the merges cannot
return two sorted sequences stored consecutively in order, since that would take
a linear number of assignments in each merging pass.

In Adaptive Mergesort a run is implemented by a doubly linked list Z with
pointers to the first and last elements in the list. Initially, there is one linked
list per run, consisting of one (list) element each, pointing out the run in the input
sequence X. After some merging passes, a (long) run may consist of several list
elements, each corresponding to a consecutive portion of X. The list elements are
linked together in such a way that by concatenating the portions of X in the order
given by Z the actual (long) run is obtained. For example, see Figure 2, which
shows the situation after one merging pass. Note that after [log Runs(X)] passes
we are finished and there is only one long run consisting of Block(X) list elements,
which correspond to the blocks of X.

The result of merging two runs Z 1 and Z 2 is that some list of elements are split
into smaller ones and these appear in their correct positions in the list Z
together with those that are not split. For example, the list element)([9, 14] in

1 2[3 4 5 6 7 8[9 1011121314

Fig. 2. Example of how the runs are implemented in Adaptive Mergesort. Z 1 corresponds to the (long)
run obtained when the run in 1"[1, 2] has been merged with the run in 1"[3, 6].

642 S. Carlsson, C. Levcopoulos, and O. Petersson

Z:

Fig. 3. The result of a merge of Z 1 and Z 2 in Figure 2.

Figure 2 is split into the three new ones X[9, 10], X[l l , 11], and 2"[12, 14],
as shown in Figure 3, while the list element X[3, 4] remains unchanged.

A merge of two runs Z 1 and Z z, where Z1 precedes Z 2 in X, resulting in the
longer run Z, is essentially done list element by list element. To start the merge
we find where in Z~ the first list element of Zz fits by a backward sequential search
in Z~. We then merge the linked lists based on the first and last elements in the
portions of Xwhich correspond to the list elements, in the obvious way, and search
inside some portion only when it has to be split. Whenever splitting a list element,
the position in which to split is sought by a two-way exponential and binary
search, in the same way as the first step of Adaptmerge in Section 4.1. When
one of the runs is finished, we let the output run Z end with the remaining sublist
of the nonfinished run, without visiting the list elements.

The following slightly less informal description of a merge of two long runs
Z~ and Z2 in Adaptive Mergesort is similar to that of Adaptmerge given in
Section 4.1. Let Z 1 o Z2 denote concatenating the linked lists Z 1 and Z 2.
Further, let Split(x, Z, firstZ, lastZ) be a procedure that first performs a se-
quential search forward in Z to find the list element into which x fits. Second, it
splits that list element by a two-way exponential and binary search, and returns
firstZ and lastZ, the sublists of Z preceding and following the splitting position,
respectively.

function Merge(Z 1, Z2 : list of portions): list of portions;
if IZll = 0 then Merge: = Z 2

else begin
Split(rain(Z2), Z 1,firstZi, lastZ1);
Merge: = firstZa o Merge(Z2, lastZi);

endelse;
end;

Recall that the first time Split is invoked, the search for the correct list element is
done backwards and not forwards.

5.2. Upper Bounds

Max-optimality. In the following it is helpful to think of Adaptive Mergesort as
performing the merges in Flog Runs(X)-] passes.

We divide the analysis into two parts; the first Flog Max(X)7 passes, and the
remaining passes. The first Flog Max(X)-] passes take O(n log Max(X)) time, since
at most linear time is spent in each pass. We show that the remaining passes take
linear time altogether. To prove this we need two lemmas.

Sublinear Merging and Natural Mergesort 643

LEMMA 13. Sortin9 a consecutive subsequence of a sequence does not increase the
value of Max.

PROOF. Let X be a sequence with Max(X) = k. Suppose we sort a consecutive
subsequence of a sequence X. Any such sort can be viewed as a sequence of swaps
of pairs of adjacent elements that are unordered (cf. Bubblesort). If we show that no
swap increases the value of Max,.the lemma follows. Assume that we swap the
elements xj and x j+ 1, that is, xj > xj+ 1, and let X ' be the resulting sequence. Since
the swap does not affect other elements than xj and xj+ 1, Definition 1 gives

Max(X') <__ max{k, lJ - ~r(j + 1)1, IJ + 1 -- rc(j)t}.

The only way for Max(X') to exceed k is if one of the last two terms is greater
than k. Without loss of generality, assume that [j + 1 - rc(j)l > k. Since [j - ~(J)[
< k and [j + 1 - zc(j)[> k, [j + 1 - 7z(j)] = j + 1 - re(j), but as xj > xj+l, we
have that 7t(j) > rc(i + 1), and thus

j + 1 -- 7z(j + 1) > j + 1 -- lr(j) > k.

This contradicts that Max(X) = k, because Max(X) >_ j + 1 - 7r(j + 1). []

LEMMA 14. Any merge in Adaptive Mergesort runs in O(Max(X)) time.

PROOF. Let Z1 and Z 2 be two (long) runs that are merged in Adaptive Mergesort.
Let)(1 and X2 be the sorted consecutive subsequences of X corresponding
to Z 1 and Z2, respectively. Then Max(X1X2) < Max(X), by Lemma 13. The lemma
follows if we prove that Z 1 and Z 2 are merged in O(Max(X~Xz)) time.

Let IXll = n~ and IX21 = n2. Further, let Xl(n 0 be the greatest element in X~
and let X2(1) be the smallest element in X2. A merge of Z1 and Z2 starts by finding
the correct position for X2(1) in XI by a backward sequential search in Z1. Once
the correct list element in Z 1 is found, the exact position is found by a two-way
exponential and binary search. In total, this takes O(nl -rank(X2(1), 1(1)) time.
After that, only the last n 1 - rank(X2(1), X1) elements in X~ take part in the merge.
Each following search splits off a portion of either Z 1 or Z 2 in time at most linear
in the number of X-elements split off. Furthermore, the merge stops after having
considered the first rank(Xl(nO, X2) elements in X2, because at that point Z~ is
finished. Hence, the total time spent is

O(nl - rank(Xz(1), Xl) --[- rank(Xl(nO, X2)),

which is O(Max(X1X2)), by Lemma 7(a). []

Now it is easy to prove that all passes in Adaptive Mergesort except the first
I-log Max(X)-] take linear time altogether. If there are no remaining passes, we
are done. Otherwise, since there are at most n/2 j merges performed in thej th pass,

644 S. Carlsson, C. Levcopoulos, and O. Petersson

j > [-log Max(X)q 4- 1, and as each merge takes O(Max(X)) time, by Lemma 14, the
remaining passes run in time

1 / FlogRuns(X)7

o E
t j = Flog Max(X)-[+ 1

--.. M a x (X = 0 2 J j Max(X)" 2 j M a x (X

= o = O (n) .

J

By the above discussion and Lemma 2, we can conclude

THEOREM 15. Adaptive Mergesort sorts a sequence X o f length n for which
Max(X) = k in time O(n log k), which is optimal with respect to Max.

5.2.1. Block-optimality. In order to prove that the time consumed by Adaptive
Mergesort matches Lemma 6 we again divide the analysis into two parts. This
time, however, not by passes, but by different kinds of operations. First, we estimate
the time spent on traversing the linked lists. Second, we examine the time spent
on searches in X, when splitting list elements.

Initially, there are Runs(X) linked lists containing one element each. As the
algorithm proceeds the total length of the linked lists is increasing and reaches
Block(X) when finished. In each merging pass no link in a linked list is traversed
more than twice (once in the initial search backward and once in the following
merge). Hence, even if the total length of the linked lists is Block(x) in the first pass,
the cost for all linked list traversals is bounded by O(Block(x) log Runs(X)).

When analyzing the time spent on searches for splitting list elements, let
Block(x) = k. The number of searches performed is k - Runs(X), since each
initial run, except one, defines a splitting position which we do not have to search
for. As Runs(X) >_ 1, this number is at most k - 1. Note that what the searches
do is splitting an array of length n into k portions. Since the searches are
exponential and binary and both forward and backward, the position sought is
found in O(log f) time if it is within distance { from the left or right boundary of
the portion considered. Since we want an upper bound on the time spent by all
searches, we might as well assume that each search takes exactly c. log ~ time,
for some constant c > 0, although some searches may be faster.

LEMMA 16. For i > 1, let k i denote the number o f searches which take at least
c- log(n/2 ~) time and strictly less than c" log(n/2 ~- 1) time. Then ki < 2 i - 1.

PROOF. A search which takes at least c-log(n/2 i) time and strictly less than
c" log(n/2 i- 1) time cuts off a portion of X of length at least n/2 ~ and less than
n/2 ~- 1. Any future search in this portion runs in time less than c-log(n/21), and
can thus not contribute to k~. We therefore maximize k~ if each search contributing
to it cuts off as small a portion of X as possible, that is, a portion of length n/2 ~.
As this can be done at most 2 i - 1 times, the lemma follows. []

Sublinear Merging and Natural Mergesort 645

The time consumed by all searches is thus bounded from above by

1,,4)
where the upper limit r is chosen so that ~7= 1(2 i - - 1) _> k - 1, which is satisfied
for r -- log k. Now,

c ~ (2 i - 1).log _< c ~ 21.log
i=1 i=1

= ~, ~ ' l o g
j=O

= c Z ~j ' log + c ' k Z 2 j
j=o j = o

fnX~ logk- 1 log~_~- 1
= c ' k l o g [c } ~ 1 j + l

\t~/ j=o ~ + c ' k 2j j=0

which is O(k log(n/k)).
Hence, the time spent on

< 2 c ' k lOg(k) + 4c. k,

splitting list elements in Adaptive Mergesort is
O(Block(X) log(n/Block(X))). If we add the time required for finding the runs and
the time spent on linked list traversals, we have

THEOREM 17. Adaptive Mergesort sorts a sequence X of length n for which
Block(X) = B and Runs(X) = R in time O(n + B log R + B log (n/B)), which is
optimal with respect to Block and Runs.

PROOF. To see that the upper bound matches the lower bound in Lemma 6,
observe that the second term is at most B log B, because Runs(X)< Block(X),
and the third term is at most linear. Furthermore, as Block(X) <_ n, it is bounded
by O(n log R), which is Runs-optimal, as proved by Mannila [5]. []

6. A Comparison with other Measures. We study the relation between the new
measure Block and other measures of presortedness proposed in the literature,
using the framework introduced by Petersson and Moffat [63. They compared
measures based on the relation between the values of CM(n, k), as follows:

LEMMA 18. Let M 1 and m 2 be measures of presortedness. I f

CM,(IX l, M~(X)) = O(CM~(]XI, Me(X))),

then every M l-optimal sorting algorithm is Me-optimal.

646 S. Carlsson, C. Levcopoulos, and O. Petersson

PROOF. Immediate from Definition 4. []

To use this lemma, we need a method to derive upper bounds on CM(n, k),
which can be obtained from upper bounds on sorting algorithms:

LEMMA 19. Let M be a measure of presortedness, for which CM(n, k) = f~(f(n, k)),
where f is nondecreasino on k. I f there exists a comparison-based sortin9 aloorithm
S that sorts a sequence X in Cs(X) = O(f(IXI, M(X))) comparisons, then CM(n, k) =
| (n, k)).

PROOF. As S defines a comparison tree in T,, the definition of C~(n, k) gives

CM(n, k) < max{C~(X)[IXI = n and M(X) <_ k}
X

= O(f(n, k)),

since f is nondecreasing on j. []

In Section 5.2 we showed that Adaptive Mergesort runs in time O(n + Block(X)
log Block(X)). Furthermore, as CBlock(n, k) = f~(n + k log k) by Lemma 6, we con-
clude that Cme~k(n, k) = | + k log k) by Lemma 19. Applying Lemmas 4 and
5 now gives

CB~ock(IXl, Block(X)) = O(IXl + Block(X)log Block(X))

= o (I x l + Rein(X)log Rein(X))

= O(CRem(IXI, Rein(X))),

and hence, by Lemma 18,

THEOREM 20. Every Block-optimal sortin9 algorithm is Rein-optimal.

Consider the sequence

X = + 1,} + 2 , . . . , n, 1, 2,.

for which Rein(X) = n/2 and Block(X) = 2. To sort X, any Rein-optimal sorting
algorithm may use CRem(n, Rein(X)) = f~(n log n) time, while any Block-optimal one
completes in linear time. Hence, a Rem-optimal sorting algorithm is not necessarily
Block-optimal.

Theorem 20 should be interpreted as follows. From a sorting algorithmic point
of view, Block is superior to Rem. That is, instances which are "easy" to sort

Sublinear Merging and Natural Mergesort 647

according to Rein are easy to sort according to Block as well. Therefore, in this
sense Block generalizes Rem.

Next, we take the opportunity to show the relation between Rem and a measure
of presortedness for which until this paper no algorithm was known to be optimal
with respect to, namely, Exc, defined as the minimum number of exchanges of
arbitrary elements needed to bring a sequence into sorted order [5].

LEMMA 21. For any sequence X, Rem(X) <_ 2. Exc(X).

PROOF. Let X be a sequence of length n, and consider a sequence of Exc(X)
exchanges which brings the sorted permutation of X into X. Each exchange
performed removes at most two elements from a longest ascending subsequence
in the current sequence. Since the length of a longest ascending subsequence is
initially n, its length in X is at least n - 2. Exe(X). The definition of Rem now gives
that Rein(X) < 2. Exc(X). []

LEMMA 22. Ce~,c(n, k) = ~(n + k log k).

PROOF. As usual, we estimate the size of belowgxc(n, k) from below. Consider
any sequence of at most k exchanges performed on the first k + 1 elements of the
identity permutation in S,. Each such sequence of exchanges defines a permutation

in belowE~c(n, k). Furthermore, any permutation of the k + 1 elements can be
produced by performing at most k exchanges, and so [IbelowE~c(n, k)[I > (k + 1)!.
Theorem 1 now gives

C~xc(n, k) = f~(n + logj[belowEcx(n, k)ll) : ~ (n + k log k),

which completes the proof. []

An argument analogous to that in the proof of Theorem 20 gives

THEOREM 23. Every Rem-optimal sortin9 algorithm is Exc-optimal.

For the sequence X = (n, 1, 2 n - 1>, Exc(X) = n - 1 and Rem(X) = 1,
showing that Theorem 23 is not true the other way around.

As Mannila's Local Insertion Sort [5] is Rem-optimal, Theorem 23 affirmatively
answers the question of whether Local Insertion Sort is Exc-optimal or not (see
discussion in [5]).

Combining Theorems 15, 17, 20 and 23 gives

COROLLARY 24. Adaptive Mergesort is optimal with respect to the measures Max,
Block, Rein, Exc, and Runs.

7. Concluding Remarks. We would like to mention that the observation that
some instances of the merging problem are easier than others was also made by

648 S. Carlsson, C. Levcopoulos, and O. Petersson

Mannila and Ukkonen [9]. They evaluated the easiness by the number of
inversions in the sequence obtained by concatenating the input sequences.

Results related to those reported in this paper have independently been achieved
by Moffat [10]. However, his algorithm is not Block-optimal.

References

[1] K. Mehlhorn. Data Structures and Algorithms, Vol. 1. Springer-Verlag, Berlin, 1984.
[2] W.H. Burge. Sorting, trees, and measures of order. Information and Control, 1(3):181-197, 1958.
[3] C. R. Cook and D. J. Kim. Best sorting algorithms for nearly sorted lists. Communications of

the ACM, 23(11):620-624, 1980.
[4] D.E. Knuth. The Art of Computer Programming, Vol. 3. Addison-Wesley, Reading, Mass., 1973.
[5] H. Mannila. Measures of presortedness and optimal sorting algorithms. IEEE Transactions on

Computers, 34(4):318-325, 1985.
[6] O. Petersson and A. Moffat. A framework for adaptive sorting. In Proceedings of the Third

Scandinavian Workshop on Algorithm Theory, pp. 422-433. Lecture Notes in Computer Science,
Vol. 621, Springer-Verlag, Berlin, 1992.

[7] M. L. Fredman. How good is the information theory bound in sorting? Theoretical Computer
Science, 1:355-361, 1976.

[8] O. Petersson. Adaptive Sorting. Ph.D. thesis, Department of Computer Science, Lund University,
Lund, 1990.

[9] H. Mannila and E. Ukkonen. A simple linear-time algorithm for in situ merging. Information
Processing Letters, 18(4):203-208, 1984.

[10] A. Moffat. Adaptive merging and a naturally Natural Merge Sort. In Proceedings of the 14th
Australian Computer Science Conference, pp. 08.1-08.8, 1991.

