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Constructing Strongly Convex Approximate Hulls with 
Inaccurate Primitives 

Leonidas Guibas, 1'2 David  Salesin, ~'3 and Jorge Stolfi 2 

Abstract. The first half of this paper introduces Epsilon Geometry, a framework for the development 
of robust geometric algorithms using inaccurate primitives. Epsilon Geometry is based on a very 
general model of imprecise computations, which includes floating-point and rounded-integer arithmetic 
as special cases. The second half of the paper introduces the notion of a (-e)-convex polygon, a polygon 
that remains convex even if its vertices are all arbitrarily displaced by a distance of e of less, and proves 
some interesting properties of such polygons. In particular, we prove that for every point set there 
exists a (-e)-convex polygon H such that every point is at most 4e away from H. Using the tools of 
Epsilon Geometry, we develop robust algorithms for testing whether a polygon is (-s)-convex, for 
testing whether a point is inside a (-e)-convex polygon, and for computing a (-e)-convex approximate 
hull for a set of points. 

Key Words. Computational geometry, Epsilon Geometry, Approximate computations, Robust algo- 
rithms, Strongly convex polygons, Convex hull. 

1. Introduction. Finding the convex hull of a set of points is one of the simplest 
and oldest problems in computa t ional  geometry, and yet is still a surprisingly 
difficult problem to solve in practice. The major  difficulty is that  the basic 
geometric tests needed to solve the problem are unreliable or inconclusive when 
implemented with imprecise computat ions,  such as ordinary floating-point arith- 
metic. This uncertainty makes it extremely difficult to construct  the correct hull, 
the smallest polygon that  is simultaneously convex and that  contains every point  
of the given set. 

The main result of this paper  is a p roof  that for every point  set there exists a 
polygon that  is convex enough to be found with approximate  tests, and that  is 
also very close to containing all the points of  the given set. In addition, we present 
an algori thm for f nd ing  such hulls that  uses inaccurate primitives and that  runs 
in O(n 3 log n) time in the worst case, and in O(n log n) expected time for points 
uniformly distributed in a square. We also give an O(log n)-time algori thm for 
testing whether or  not  a point  lies inside one of these hulls, again using only 
approximate  tests. 

The development of robust  geometric algorithms has been at tracting increasing 
a t ten t ion  in recent years 1,2], 1,3], [53, [9 ] - [19] ,  1-21]-1-23]. Knu th  [13], for 
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example, describes an algorithm for computing the convex hull of a set of 
points whose coordinates have been rounded to a sufficiently small number of 
bits to allow the outcomes of the underlying geometric tests to be determined 
exactly using fixed- or floating-point arithmetic. 

Our algorithm, however, more closely resembles those of Fortune [3], 
Jaromczyk and Wasilkowski [12], and Milenkovic and Li [18], in that all geo- 
metric computations are assumed to be imprecise by nature. The approach in all 
of these works is to compute an exact result for a perturbed version of the input. 

Fortune [3] describes an O(n log n)-time algorithm for computing approximate 
convex hulls using floating-point arithmetic. One drawback of this algorithm is 
that the resulting hulls are only approximately convex, and therefore do not enjoy 
many of the nice properties associated with convexity. By contrast, the hulls 
computed by our algorithm are not only convex, but so convex that many of these 
desirable properties are preserved in some fashion even when they are tested with 
floating-point arithmetic. 

Jaromczyk and Wasilkowski [12] present an O(n)-time algorithm for construct- 
ing the convex hull of a simple polygon, using floating-point arithmetic. As in the 
previous work, the algorithm has the drawback that the resulting hulls are only 
approximately convex. In addition, the algorithm requires that the input polygon 
be sufficiently "well conditioned." 

Recently, Milenkovic and Li [18] have also presented results similar to ours. 
While their algorithm for constructing approximate hulls has a much better 
worst-case performance than the one presented here, the existence proof and 
algorithm in this paper establish tighter bounds on the degree of approximation 
achievable. Moreover, their algorithm assumes certain properties of floating-point 
arithmetic, whereas the results presented here are based on a much more general 
model of imprecise computations. 

In developing our algorithms, we use the Epsilon Geometry framework [7], 
[21], which is described in Section 2. Epsilon Geometry provides a methodology 
for developing, proving, and implementing geometric algorithms based on ap- 
proximate primitives. 

2. Epsilon Geometry 

2.1. Definitions. The Epsilon Geometry framework defines the notion of an 
epsilon predicate as a means for expressing "approximate tests" in a general setting. 
An epsilon predicate is defined as follows: 

Let (9 be a set of geometric objects endowed with some distance metric rl II, Let 
P be a predicate defined on (9. Then, for any X e (9 and any ~ > 0, we define e-P(X) 
as a shorthand for "P(X') is true for some X ' ~  (9 such that I/X, X'rl _< ~." That is, 
X is at most e away from satisfying P(X). The truth-set of z-P, therefore, is that 
of P, "fattened" by e (Figure 1). Note that O-P(X) is the same as P(X). 

In the case of an n-ary predicate P, we define e-P(X o . . . .  , X ,_  1) to mean that 
r P(X'o . . . . .  X',-1) is true for some X~ . . . . .  X,_ 1 with IlXi, X'ill < ~ for all i. 
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Fig. 1. The truth sets of P and ~-P. 

The  following two monoton ic i ty  propert ies  follow immediate ly  f rom the defini- 
t ion of t -P:  

e-P(X) ~ ~'-P(X) for all e' _> e, 

(i) aot(~-P(X)) ~ not(e'-P(X)) for all 8' < e. 

We can extend the definition of e-predicate to negative values of e in such a way 
that  these two monotonic i ty  propert ies  remain  true for all e. If  e > 0, we can define 
(-e)-P(X) as a shor thand  for "P(X ' )  is true for all X'E (9 such that  IIX, X'II < e." 
The  t ruth set of (-e)-P for e > 0, therefore, is that  of P, " t r i m m e d "  by e (Figure 
2). This definition can also be expressed by the identity 

(2) (--~)-P(X) r not(~-(not P(X))). 

Intuitively, an object X that  is (-e)-P is "ex t remely  P," whereas an X that  is e-P 
is only " a lmos t  P." 

Fig. 2. The truth sets of P and (-e)-P. 
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The following lemmas describe some important properties of epsilon predicates: 

LEMMA 1. For any predicates, P and Q, and any e >_ 0, 

e-(P v Q)(X) "r e-P(X) v e-Q(X), 

e-(P A O)(X) ~ e-n(x) A ~-Q(X). 

PROOF.. For  e _> O, the expression e-(P v Q)(X) means 

~x ' :  IIX', Xll < e ^ (P v O)(X'), 

which is equivalent to 

(3x ' :  IIX', Xll _< e ^ P(X')) v (3x': ]IX', Xll _< e ^ Q(x')), 

that is, e-P(X) v e-Q(X). 
Similarly, for e > O, the expression e-(P ^ Q)(X) means 

3X"  IIX', Xll -< e ^ (P A Q)(X'), 

which implies 

O x ' :  IIX', Xll _< e ^ P(X'))/~ (3x': ]IX', Xll -< e A Q(x')), 

that is, e-P(X) A e-Q(X). [] 

Note that in the case of A the implication only works in one direction, because 
even if it is possible to satisfy P(X) and Q(X) separately with t-perturbations to 
X, it may not always be possible to satisfy both constraints at once (Figure 3). 

LEMMA 2. For any predicates, P and Q, and any e < O, 

e-(P v Q)(X) ~ e-P(X) v e-Q(X), 

e-(P /x Q)(X) .~  e-P(X) A e-Q(X). 

PROOF. Follows immediately from Lemma 1 and equation (2). [] 

X 

1 

Fig. 3. X is e-P and e-Q but not e-(P A Q). 
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LEMMA 3. For any e, 6 _> 0, and any predicates P, Q, R, if P(X) implies e-Q(X), 
and Q(X) implies 6-R(X), then P(X) implies (8 + 6)-R(X). 

PROOF. Suppose that P(X) implies e-Q(X), Q(X) implies 6-R(X), and P(X) is true. 
By definition, 8-Q(X) means there exists an object X' such that IIX, X'll < 8 and 
Q(X') is true. Therefore 6-R(X') is true, so there exists an object X" such that 
[IX', X"[] < 6, and R(X") is true. By the triangle inequality, [IX, X"][ < e + 3, which 
proves (8 + 6)-R(X) is true. []  

We define the critical perturbation for a predicate P and an object X to be the 
unique real value g such that z-P(X) is false for e < g, and true for e > g. (In other 
words, g is the distance from X to the closure of the truth set of P if P(X) is false, 
and minus the distance from X to the closure of the falsehood set of P if P(X) is 
true.) 

2.2. Implementing Epsilon Predicates. The epsilon predicates defined above are 
exact mathematical notions that we use in proofs. In programs, we implement a 
geometric predicate by a procedure called an epsilon box. Typically, an epsilon 
box will try to evaluate its geometric predicate using floating-point arithmetic or 
some other approximate methods. An epsilon box may therefore fail to decide 
whether its predicate is true or false. 

We consider here three varieties of epsilon boxes. A T-box for a predicate P(X) 
is a procedure T_P(X)  that computes P(X) and returns either t r u e ,  f a l s e ,  or 
u n k n o w n .  Similarly, an E-box for P(X) is a procedure E_P(e, X) that computes 
e-P(X) and also returns either t r u e ,  f a l s e ,  or u n k n o w n .  Thus, T_P(X) is 
equivalent to E_P(0, X). Finally, an I-box for a predicate P(X) is a procedure 
I_P(X)  that returns an estimate of how far X is from satisfying P. The estimate 
is encoded as an interval e = (e.lo, e.hi) such that e-P(X) is false for e < e.lo and 
true for e > e.hi. An interval e with these properties is called an uncertainty interval 
for P(X) (Figure 4). The monotonicity property of epsilon predicates (1) guarantees 
that we can encode the result of every epsilon-predicate test as a single interval 
in this manner. 

A peculiarity of this encoding is that every I-box must return u n k n o w n  for 
at least one value of e, even in cases when it can determine e-P(X) for all e exactly. 
This problem could be avoided by a more elaborate encoding allowing open and 

8-P(X) I false ~I~ un~kn~uli~ III 
t t 

p.lo p.hi 

Fig. 4. An uncertainty interval for predicate P(X). 

true 
% 
/ 



Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 539 

half-open uncertainty intervals, but we feel that the infinitesimal gain in accuracy 
provided by such a scheme would not be worth the added complexity. 

Occasionally, we use the notation e-P(X) with an interval e to mean n o t  e-P(X) 
for e < e.lo and e-P(X) for e > e.hi. Note that the interval e returned by an I-box 
I_P[X)  should satisfy e-P(X). 

2.3, Accuracy of  Epsilon Boxes. In principle, the Epsilon Geometry framework 
places only very weak constraints on the outputs of epsilon boxes. An epsilon box 
(of any variety) is considered correct as long as it never returns f a 1 s e when the 
predicate is true, or t r u e  when the predicate is false. For  example, the T-box 
that always returns u n k n o w n  and the I-box that always returns ( - o e ,  + oe) 
are correct implementations of any predicate P. 

In practice, of course, an epsilon box will be useful only if it can give a definitive 
t r u e; or f a 1 s e answer for some interesting set of inputs. We say that a T-box 
T_P[X)  for a predicate P(X) is A-accurate (for A _> 0) if for all X the T-box returns 
u n k n o w n ~  only when P(X) is at most A away from changing f romt rue  to false; 
that is, only when the critical perturbation g is at most A in absolute value. 
Similarly, an E-box E P(e, X) is A-accurate if it returns u n k n o w n  only when 
l e - g[ _< A. Finally, an I-box I_P(X)  is A-accurate if it always returns an interval 
e such that e.lo > g - A and e.hi < ~ + A. 

We also say, informally, that an epsilon box is accurate if it is A-accurate for 
some A small enough to be useful. Ideally, every epsilon-box implemented with 
floating-point arithmetic should be A-accurate, with A equal to a small constant 
times the machine's floating-point precision. (Our definitions of correctness and 
accuracy are roughly analogous to Fortune's definitions of "robustness" and 
"stability" [3].) 

2.4. Rules for  Combinin9 Uncertainty Intervals. In order to construct complex 
I-boxes out of simpler ones, we must develop techniques for combining the 
uncertainty intervals that they return. For  example, suppose we manage to prove 
that the predicate e-R(X) is equivalent to e-P(X) v e-Q(X), for all X and all e. 
Then we could implement I_R(X)  from I_P (X )  and I_Q(X) as follows: 

1. p ,~- I_P[X) .  
2. q ~ I_Q(X). 
3. r.lo *-- m i n {p.lo, q.lo}. 
4. r.hi ~ m i n {p.hi, q.hi}. 
5. r e t u r n  r. 

This code may be easier to understand with the help of Figure 5, which shows the 
"graphs" of the predicates e-P(X), e-Q(X), and e-R(X) as a function of e, for a 
particular X. The "fuzzy" portion of each graph represents the uncertainty interval 
returned by the corresponding I-box. 

Note that on most machines the operations required to implement I R can 
be performed without any rounding errors. Note also that if I _ P  and I Q 
are A-accurate and Z-accurate, respectively, then the accuracy of I _ R  is just 
max{A, Z}. Thus, the I-box for R has the nice property that it is at least as 
accurate as the least accurate of the X-boxes it uses. 
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e-Q(x) /~ p~lo p.hi 
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: q . lo  q.hi 

X~ 
r.lo r.hi / 

Fig. 5. Computing I R from I_P and I_Q. 

In generall given uncertainty intervals p and q, we define the following two 
interval operations: 

rain{p, q} = (min{p.lo, q.lo}, min{p.hi, q.hi}), 

max{p, q} = (max {p.lo, q.lo}, max {p.hi, q.hi}). 

We use these operations as follows. Suppose we know that the predicate e-R(X) 
is equivalent to e-P(X)v e-Q(X) for all X and all e. Then a procedure that 
computes the interval m i n{I_P(X), I_Q(X)} is a correct I-box for R. Similarly, if 
we know that e-R(X) is equivalent to e-P(X)A e-Q(X), then max(I_P(X),  
I_Q(X)} is a correct I-box for R. 

The rules above are just two examples of how the results of epsilon boxes can 
be combined. Further examples can be found in our earlier paper [7]. 

2.5. Basic Epsilon Predicates. The algorithms we develop in this paper are built 
on top of a small set of geometric predicates for points in the plane Coincident, 
Collinear, Pos, Neg, and Between--which we define below. We use the standard 
Euclidean metric to measure the size of perturbations for the epsilon versions of 
these predicates. The details of the implementations of these predicates are 
described in our previous paper [7]. 

Coincidence. The predicate Coincident(p, q) merely tests whether the points p and 
q are the same. The derived predicate e-Coincident(p, q) is true if and only if points 
p and q lie within e of a common point, or, equivalently, if and only if liP, qll -< 25. 
A geometric interpretation of this predicate requires that the z-disk of p-- that  is, 
the closed disk of radius e centered on p--touch the z-disk of q (Figure 6). 

Fig. 6. e-Coincident(p, q). 
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- -6  " )  
Fig. 7. The e-butterfly of p and q. 

Collinearity. The predicate CoUinear(p, q, r) tests whether the points p, q, and r 
lie on a common straight line, in any order. Therefore, e-Collinear(p, q, r) is true 
if and only if there exists a line l that passes within e of all three points. The 
predicates Collinear and e-Collinear are obviously symmetric in their three argu- 
ments. 

We can visualize the e-Collinear predicate as follows. Let P and Q be the e-disks 
of p and q, respectively. Then the set of all lines passing through a point of P and 
a point of Q covers a butterfly-shaped region of the plane bounded by the two 
inner and two outer tangents of P and Q. (If P and Q have a point in common, 
then this region degenerates to the entire plane.) We call this region the e-butterfly 
determined by p and q (Figure 7). The three points p, q, and r are e-collinear if 
and only if the e-disk centered at p intersects the e-butterfly of q and r (Figure 8). 
Equivalently, the three points are e-collinear if and only if one of the e-disks 
intersects the e-stroke of the other two points, where the e-stroke is defined as the 
convex hull of the two points' e-disks. 

Orientation. In exact geometry, a triangle T = (p, q, r) whose vertices are not 
collinear can be further classified by its orientation, either positive (counter- 
clockwise) or negative (clockwise). The orientation is the sign of the determinant 

1 p.x r.y 
P.y 

D(p, q, r) = 1 q.x q.y . 

1 r.x 

Fig. 8. e-CoUinear(p, q, r). 
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Fig. 9. e-Pos(p, q, r). 

We define the predicates Pos(p, q, r) and Neg(p, q, r) as meaning D(p, q, r) > 0 and 
D(p, q, r) < 0, respectively. Note that Pos(T) is not the same as n o t  Neg(T); in 
fact, n o  t Neg(r)  =- Pos(T) v Collinear(r). 

By definition then, e-Pos(p, q, r) means that it is possible to make D(p, q, r) > 0 
by displacing the three points by at most e in suitable directions. In graphical 
terms, e-Pos(p, q, r) requires that the e-disk centered at p intersect the interior of 
the left e-basin of q and r, consisting of the e-butterfly of q and r and all points to 
its left (when looking from q toward r). See Figure 9. 

From linear algebra we know that the determinant D changes sign if we swap 
any two of the three points, and remains unchanged if the three points are 
permuted in a cyclic fashion. Thus, 

e-Pos(p, q, r) =- e-Pos(q, r, p) - e-Pos(r, p, q) 

=- e-Neg(q, p, r) =- e-Neg(r, q, p) - e-Neg(p, r, q). 

Note that e-Pos(T) is quite different from n o t  e-Neg(T) and from e - (no t  Neg)(T). 
Instead, the following relationships hold: 

n o t  e-Neg(T) - ( - -e ) - (no t  Neg)(T), 

- ( -e)-(Pos v Collinear)(T). 

Betweenness. We say that a point z lies between two other points p and q if z 
lies on the closed segment pq. We denote this fact by Between(z, pq). It is easy to 
see that e-Between(z, pq) is true if and only if the distance from z to the segment 
pq is at most 2e, or, equivalently, if and only if the e-disk centered at z intersects 
the e-stroke of p and q (Figure 10). 

Note that three points are e-collinear if and only if at least one of the three 
points is e-between the other two: 

e-Collinear(p, q, r) - e-Between(p, qr) v e-Between(q, pr) v e-Between(r, pq). 
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Fig. 10. e-Between(z, pq). 
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The following lemma, which we use later, captures another useful relationship 
between the Between and Collinear predicates: 

LEMMA 4. Let a, b, and x be three points such that x is inside a closed rectangle 
with diagonal ab. Then e-Between(x, ab)r e-Collinear(x, a, b), for all e. 

PROOF. For  e < 0, the predicates e-Between(x, ab) and e-Collinear(x, a, b) are 
both false. For  e > 0, the smallest perturbation needed to make the points a, 
x, and b collinear is half the smallest altitude of the triangle axb. Since x is in- 
side a right triangle with hypotenuse ab, the angle at x is 90 ~ or more, and 
therefore the triangle's shortest altitude is the perpendicular distance from x to 
segment ab. [] 

3. Strongly Convex Polygons 

3.1. Definitions. For  this paper we define a polygon P to be a sequence of vertices 
(Po . . . . .  P , -  1). For  convenience, we let Pl stand for the vertex Pimod, for all integers 
i. The edges of P are the closed segments PiPi + 2. The polygon is simple if two edges 
PiPi+l and PjPj+I intersect only w h e n j  = i - 1, j = i, o r j  = i + 1 (modulo n). 

The external angle of a polygon P = (Po . . . . .  P , -  1) at vertex pi is the angle from 
the vector p ~ -  p~_~ to the vector p~+ ~ -  p~, measured counterclockwise and 
reduced to the interval ( -  n, n). The external angle is undefined if the two vectors 
point in opposite directions, or if one of them is zero. The degree OP of P is the 
sum of its external angles, divided by 2n. It is well known that the degree of a 
polygon (when defined) is an integer, and that the degree of a simple polygon is 
always defined and is either + 1 or - 1  [6], [8]. 

A polygon P is convex if all vertices p~, pj with i < j < i + n are distinct, and 
all triples p~, p j, Pk with i < j < k < i + n are (strictly) positive. Note that by this 
definition a single point, as well as a pair of noncoincident points, qualifies as a 
convex polygon. Note also that every subpolygon of a convex polygon is convex. 

Convex polygons have several useful properties. We say that a periodic sequence 
of real numbers is unimodal if it has at most one ascending run and one descending 
run in one period (allowing for repeated elements), and that a polygon is d-unimodal 
for some direction d if the projection of its vertices on a line parallel to d forms 
a unimodal sequence. We say that a polygon P with three or more vertices is 
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left-turning if all its exterior angles are defined and positive, that is, if every triple 
of consecutive vertices p~_ lP~P~ + 1 is positively oriented. Then the following results 
are well known [g]: 

LEMMA 5. For any polygon P = (Po, . . ., P,-1), with n >_ 3, and any direction d, 
the following statements are equivalent: 

1. P is convex. 
2. P is left-turning and simple. 
3. P is left-turning and has degree + 1. 
4. P is left-turning and d-unimodal. 

3.2. Strong Convexity. According to our definition of epsilon predicates, we say 
that a polygon is ( -0 -convex ,  for some e > 0, if it remains convex under any 
perturbation to its vertices of e or less. Formally, when measuring convexity, we 
define the "distance" between two polygons as the maximum distance between a 
vertex of one polygon and the corresponding vertex of the other. Two polygons 
with a different number of vertices are defined to be infinitely far apart. We 
informally use the t e rm strongly convex to mean (-e)-convex for some ~ > 0 
implied by the context. 

Note that a ( - 0 - c o n v e x  polygon automatically satisfies a kind of "minimum 
feature separation" condition, similar to the explicit conditions required by other 
robust algorithms in the literature [11], [14], [15], [22]. For  example, in a 
( - @ c o n v e x  polygon, no two vertices may be e-coincident, and, as we shall see, 
every vertex must lie more than 2~ away from any diagonal. 

The following theorems characterize strongly convex polygons: 

THEOREM 6. A polygon P = (Po . . . . .  P , -  1) is ( -  O-convex for  some e > 0 if and 
only if no two vertices are o-coincident and all triples P~PjPk with i < j < k < i + n 
are ( -  e)-positive. 

PROOF. The theorem follows directly from the definition of convex polygon and 
Lemma 2. [] 

THEOREM 7. A polygon P = (Po . . . .  , Pn- 1), with n >_ 3, is ( -  O-convex from some 
e > 0 if and only if P is convex and every consecutive triple,of vertices Pi-lPlPi+ 1 
is ( - O-positive. 

PROOF. The forward implication follows immediately from the definition of 
convexity and from Lemma 2. As for the converse; suppose P is convex and all 
consecutive triples of vertices are (-e)-positive. We must prove that any perturbed 
version P' = (p~ . . . . .  P ' , -0  of P, such that ILPl, Pil] < e for all i, is also convex. Note 
that P' is at least left-turning, because every consecutive triple p~_ lP'IP'~+ 1 is still 
positive. Therefore, by Lemma 5, we need only prove that P' has degree + 1. 

Consider the family of polygons P~ = (P~o, --., P,-Z 0, where p/~ = (1 - -  )OPi  -t- ~.Pi;  

for all real ~. in the interval [-0_1]. Note that po = p, p1 = p,, and that the position 
of each vertex pC is a continuous function of 2. Note also that liPS, P~[I < e for all 
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i. Since all consecutive triples p~_ lPiPi+ 1 of P are (-e)-positive, it follows that all 
consecutive triples -~ -z-z 1-'~-lp~t'~+l are positive for any 2 in [0_1]. 

The external angle of Pz at each vertex p~ is therefore a well-defined, continuous 
function of A for all A in [0_1]. The same must therefore be true of the total degree 
t?(PZ). However, we know that 0(P ~ is + 1 since pO = p is a convex polygon, and 
also that 8(P ~) is integral when defined; hence, t?(P 1) = 8(P' i is also + 1. [] 

THEOREM 8. A polygon P = (190 . . . . .  P,-1),  with n > 3, is ( - e ) - convex  for  some 
e >_ 0 i f  and only if  every consecutive triple o f  vertices Pl- lPiPi + 1 is ( -  e)-positive, 
and any o f  the following conditions hold: 

1. P is simple. 
2. P has degree + 1. 
3. P is unimodal in some direction d. 

PROOF. The forward implication follows immediately from Lemmas 2 and 5. The 
converse follows from Lemma 5 and Theorem 7. [] 

Theorem 8 gives us an O(n)-time algorithm for testing whether a polygon is con- 
vex, and if so, for measuring how convex it is. First, we test (using exact com- 
parisons in x) whether the polygon is x-unimodal. If not, we return the uncer- 
tainty interval (0, + oo). Otherwise, we compute d = max~/I_Pos(pi_ 1, Pi, Pi+ 1)" 

If d.hi < 0, then, by Theorem 8, the polygon is d-convex, and we can return d. 
Otherwise, we must return the interval (d.lo, + oo). 

The algorithm is A-accurate, provided the I _ P o s  box it uses is 2-accurate and 
the polygon is (-2)-convex. Note that the algorithm gives no quantitative 
information if the polygon is not convex or is just barely convex, since, as Figure 
11 shows, all consecutive triples may be nearly convex while the  polygon as a 
whole is arbitrarily far from being convex. The best O(2)-accurate algorithm we 
know for measuring the nonconvexity of a nonconvex polygon takes O(n 3) time 
[21]. 

In the following sections we also require the following characterization of 
strongly convex polygons, which is similar to Theorem 7 but with a slightly weaker 
condition: 

LEMMA 9. A polygon P = (Po . . . . .  P,-1)  is ( -  e)-convex for  some ~ > 0 if  and only 
if  P is convex and, if  n > 1, no vertex Pi of  P is e-between its neighbors Pi- 1 and Pi+ a. 

Fig. 11. An extremely nonconvex polygon made of nearly convex triples. 
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Fig. l l ,  Construction for the proof of Lemma 9. 

PROOF. For  n = 1 or n = 2, the lemma follows trivially from the definition of a 
convex polygon. For  n > 3, the forward implication follows immediately from 
Theorem 7. As for the converse, suppose P is convex with no vertex Pl e-between 
its two neighbors; we must prove that P is ( -e)-convex.  Because of Theorem 7, 
it suffices to prove that every consecutive triple of vertices is (-e)-positive.  

Suppose that the opposite were true, namely, that some triple Pi-~P~P~+I is 
not (-e)-positive.  Since P is convex, the triple is at least positive; it follows that 
the triple is actually e-collinear. Therefore, at least one vertex Pi-1, Pi, or p~+ 1 
must lie e-between the other two, and we know by hypothesis it is not p~. Without 
loss of generality, we assume that pi+ 1 lies e-between p~_ 1 and p~. 

Observe that polygon P must have at least four vertices, since otherwise p~+ 1 
would lie e-between its two neighbors. By convexity, the next vertex p~ + 2 must lie 
strictly inside the angle determined by p~_ 1, P~, and p~+ 1 (Figure 12). Now observe 
that the shortest segment from p~+ 1 to the segment p~_ lPi must intersect segment 
Pi+2Pi, since the quadrilateral (Pi-1, Pi, Pi+l, Pi+2) is convex. Thus, vertex Pi+l 
must lie at least as close to segment PiP~+2 as it does to segment pz_ lP~. However, 
by hypothesis p~+ 1 lies e-between the vertices p~_ 1 and p~, so it must also lie 
e-between the vertices pi and P~+2, a contradiction. 

We conclude that all triples of P are (-e)-posit ive,  and therefore P is ( - e ) -  
convex. [] 

Here is another useful property of strongly convex polygons: 

THEOREM 10. Let e and 3 be positive real numbers. For any (-e)-convex polygon 
P and any two points u and v in the plane, there are at most 2F2fi/eq vertices of P 
that are f-between the points u and v. 

PROOF. Consider the infinite strip of width 46 centered on the line uv, together 
with a set of lines parallel to uv lying inside the strip and placed so that every 
point of the strip is at most e away from one of these lines (Figure 13). 

We can always achieve this covering with at most F26/e7 lines. Because the 
polygon P is ( -e)-convex,  each of these lines can intersect at most two of the 
e-disks centered at the vertices of P. On the other hand, if a vertex of P is inside 
the strip, then its e-disk must intersect one of these lines. Therefore, the total 
number of vertices of P that lie inside the strip is at most twice the number of 
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2 51/. 

Fig. 13. Construction for the proof of Theorem 10. 

lines. Since any point of the plane that is f-between points u and v must lie inside 
this strip, we conclude that at most 2[-26/C] vertices of P are f-between the points 
u and v. [] 

As an aside, we note that the number of vertices of any (-e)-convex poly- 
gon contained in a circle of radius R is bounded. A simple geometric argument 
provides an upper bound of 2n/arccos(1-  2e/R) vertices, which reduces to 

n , , / ~ z  + O((e/R) 3/2) for small ~/R. Thus, for example, if e/R = 10 -6, a typical 
uncertainty for floating point operations, then any such polygon is guaranteed to 
have fewer than 3200 vertices. 

4. A Point Inclusion Algorithm. As an application of these theorems, let us 
consider the problem of testing whether a given point z lies inside an n-sided 
convex polygon P. (We consider point z to lie "inside" P if it lies either on the 
interior or on the boundary of P.) 

A classical O(log n)-time algorithm for solving this problem begins by locating 
the point z in the angle between two consecutive diagonals PoPk and PoPk+ 1, using 
binary search, and then testing z against the line PkPk+I [20]. Note that this 
algorithm can be expressed using just the Pos orientation test. 

Unfortunately, this simple algorithm no longer works if the exact Pos test is 
replaced by an approximate one. Figure 14 illustrates the problem: in both cases, 
the point z lies approximately within the angle Pk+ lPoPk and on the positive side 
of edge PkPk+ 1, but in one case it lies inside the polygon and in the other case it 
lies well outside. 

The key idea in the classical point-location algorithm is that if z is found to lie 
on the positive side of a diagonal PoPk, then the subpolygon (Po, Pl . . . . .  Pk) can 
be eliminated from further consideration. We can still use this idea--provided that 
the polygon is sufficiently convex--thanks to the following lemma: 

LEMMA 11. Let  P = (190 . . . . .  P , - O  be a ( - z ) - c o n v e x  polygon for  some e > O. Then 
the vertices pj . . . . .  Pk-~ are more than ( 2 j -  1)e away f rom the left e-basin o f  pop k 

for  any j, k such that 0 < j < k < n. 
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Fig. 14. Two indistinguishable cases. 

PROOF. The case j = 1 follows from the definition of (-e)-convexity. 
We prove the remaining cases by induction on j. Suppose we have already 

proved the lemma for the case j, and we want to prove it for the case j + 1, that 
is, that the vertices Pj+I , " ' ,Pk -~- I  lie more than (2 j+  1)e away from the 
e-butterfly of PoPk" 

We introduce the following notation. Consider the two e-disks centered at points 
p and q. We denote by p+q + the oriented line that is tangent to those two disks 
in the given order and that leaves the two disks to its left. Similarly, we let p +q- 
be the tangent to the disks that leaves p to its left and q to its right, and so on. 
We also denote by L(m) and R(m) the open left and right half-planes of an oriented 
line m. 

Assume that the polygon's vertices are numbered counterclockwise. By the 
definition of (-e)-convexity,  the disks of Pj+I and Pk-j-~ must lie in the 
intersection X of the half-planes R(r), L(s), R(t), where r = p~p~_j, s = p~p j ,  and 
t = p+p+_j (Figure 15). Let Ybe the (open) set of points that are more than (2j - 2)e 
away from the left e-basin of PoPk. We show that X lies inside Y and at least 2e 
from its boundary. 

Without loss of generality, we can assume that the line s coincides with the 
x-axis. Let L be the set of all oriented lines that pass from the e-disk of Po to the 
e-disk of Pk. From the definition of (-e)-convexity we know that the vertex Pk 
must lie at least 3e above the x-axis, so all lines of L are directed upward. Since 
Y is the intersection of the right half-planes of lines that are parallel to lines of L, 
the boundary of Y is a single y-monotone chain. Therefore, since the e-disk of p~ 
ties inside Y, the entire semi-infinite e-stroke starting at pj and extending horizont- 
ally and to the right also lies inside Y By an entirely symmetric argument, the 
semi-infinite e-stroke extending from Pk-~ along the line r must also lie in Y. Finally, 
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Fig. 15. Construction for the proof of Lemma 11. 

since the e-disks of pj and Pk-j lie inside Y, and Y is convex, the entire e-stroke of 
PiPk-j also lies inside Y. The union of these three strokes forms a border around 
the region X that is at least 2e thick and guarantees that every point of X is more 
than 2e away from the boundary of Y. 

Since the e-disks of pj+ 1,. . . ,  Pk-j-1 all lie entirely within X, we conclude that 
each of these points lies more than e + 2e + (2j - 2)e = (2j + 1)e away from the 
e-butterfly of PoPk. [] 

Here, then, is an accurate O(log n)-time T-box for the InStronglyConvex primi- 
tive. In addition to the T _ P o s  box already defined, the algorithm uses the 
accurate epsilon box T I n C o n v e x  (z, D), which tests in O(n) time whether the 
point z lies inside the convex polygon D, and which is described in our previous 
paper I-7]. 

ALGORITHM 1. Given a point z and a ( -e ) -convex  polygon P = (19 0 . . . . .  P,-1), 
for sufficiently large e, determine whether z is e-inside P. 

1. Initialize D ~ P. 
2. While D has 12 or more vertices, do: 

a. Let the vertices of D be (do, dl . . . . .  din- 1). Let k = Im/2_J. 
b. Let t = T _ P o s ( z ,  d o, dk). 
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c. If t is t r u e  or u n k n o w  n, delete the vertices d3,  . . . ,  dk_ 3 from D. 
d. If t is f a l s e  or u n k n o w n ,  delete the vertices dk+ a . . . .  ,d,,_ a from 

D. 
3. Return ~ T _ I n C o n v e x  (z, D). 

Clearly, the algorithm runs in O(log n) time. Note also that the vertices removed 
from P comprise at most two chains o f  consecutive vertices of P, namely 
(P3, . . . ,  Pi- 3) and (p~+ a . . . . .  P, - 3), for some i,j. Thus, polygon D can be represented 
by the original array of vertices, along with the two indices i and j. 

The algorithm requires that e be greater than or equal to the maximum 
uncertainty 2 of the primitive epsilon boxes T P o s  and T _ I  n C o n v e x .  Assum- 
ing this condition is satisfied, the correctness and accuracy of the algorithm are 
implied by the following invariants, which hold at the beginning of step 2a: 

Inside(z, P) ~ Inside(z, D), 

e-Boundary(z, P) r e-Boundary(z, D), 

where Boundary(z, P) means that point z lies on the boundary of P. (Note that 
the predicate e-Boundary(z, P) is equivalent to ~/i e-Between(z, PiPi+l).) These 
invariants are implied by the following lemma: 

LEMMA 12. Let D = (do,. . . ,  din-l) be a (-e)-convex polygon for some e > 0, let 
z be a point such that e-Pos(z, do, dk) for some 5 < k < m - 5, and let D' be the 
subpolygon obtained by deleting the vertices d3 . . . . .  dk- 3 from D. Then 

Inside(z, D) r Inside(z, D'), 

e-Boundary(z, D) r e-Boundary(z, D'). 

PROOF. By hypothesis, the point z must lie less than e away from the left e-basin 
X of dod k. By Lemma 11, the vertices d 2 . . . .  , dk_ 2 are more than 3e away from 
X. By convexity, the same is true for the entire subpolygon D" of D determined 
by these vertices. Therefore, the point z must lie more than 2e away from D". Since 
D = D' u D", it follows that Inside(z, D ) ~  Inside(z, D'). 

Furthermore, note that the only differences between the boundaries of D and 
D' are the edges of D". Since e-Boundary(z, D) means that z lies within 2e of the 
boundary of D, and since all edges of D" lie more than 2e from the boundary of 
D, we conclude that e-Boundary(z, D ) ~  e-Boundary(z, D'). [] 

Note that it is possible to design a simpler point-location algorithm by first 
using exact x-comparisons to locate the point in the vertical slab between 
consecutive vertices of the polygon, and by then using approximate orientation 
tests only to test the point against the two edges of the polygon that enter the 
slab. As this example shows, the use of exact comparisons between real numbers 
often leads to simpler algorithms for solving problems in the plane. One reason 
for this is that k-dimensional geometric problems can often be solved by reducing 
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them to ( k -  1)-dimensional subproblems, and one-dimensional subproblems 
can often be solved exactly using exact comparisons. Indeed, Fortune [3] and 
Milenkovic [15] have chosen to take this approach in their algorithms. 

However, we expect exact comparisons to be less useful for solving problems 
in three or more dimensions. For  instance, the naive three-dimensional generaliza- 
tion of the slab-based algorithm above would not work, because it would require 
locating the point on a two-dimensional subdivision (the projection of the 
polyhedron on some plane), which cannot be performed exactly, even assuming 
exact x- and y-comparisons; and also because there is no three-dimensional analog 
of Lemma 4, which is used implicitly in the slab-based algorithm to guarantee that 
the point is e away from P if and only if it is e away from the tested edges. In 
view of these considerations, we have found it worthwhile to develop a point- 
location algorithm that does not use exact comparisons, in the hope that it may 
be easier to generalize to higher dimensions. 

5. Strongly Convex Hulls. Given a set of points S, we say that P _~ S is a g-hull 
for S if every point of S is g-inside P. This definition agrees with our general notion 
of epsilon predicates if we define the distance between two polygons to be the 
maximum distance between a vertex of one polygon and the nearest point on the 
boundary of the other. Note that this metric is different from the one used for 
measuring convexity, since it does not require vertices to be matched one-to-one. 

5.1. Properties of  Strongly Convex Hul l s . .  The e-convex g-hull of a set S is not 
necessarily unique for g > 0. However, we can at least prove that any two such 
hulls are not very different from one another. The following theorems make this 
notion more precise: 

LEMMA 13. For any four points u, v, u', v' such that Ilu, u'll ~ e and [Iv, v'll < e, and 
for any ~ ~ [0_1], we have 

(3) II(l - ~)u + cev, (i - ~)u' + ~v'll ~ e. 

PROOF. Observe that the distance (3) is the length of the vector (1 - e)(u - u') + 
e(v - v'). We know that the vectors u - u' and v - v' lie inside the e-disk centered 
at the origin of 9~ 2. The result follows from the convexity of the e-disk. [] 

THEOREM 14. I f  G and H are convex g-hulls of S with g >> O, then every point on 
the boundary of G is g-inside H, and vice versa. 

PROOF. By definition, every vertex of G is g-inside H, that is, at most 26 away 
from the boundary of H. Let 9' and g" be two consecutive vertices of G. Let h' 
and h" be the points (not necessarily vertices) of H that are closest to 9' and g", 
respectively. Let 9 be any point on the edge 9'9". By Lemma 13, there is a point 
h on the segment h'h" that is at most 26 away from 9. The point h is inside the 
polygon H by convexity, and therefore the point O is g-inside H. By the same 
argument, every point on the boundary of H is also g-inside G. [] 
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COROLLARY 15. I f  G and H are convex O-hulls of S with 6 > 0, then every point 
on the boundary of G is f-boundary of H, and vice versa. 

The following theorem shows that the number of vertices of any ( -e ) -convex 
(6)-hull of S is within a constant factor of the number of vertices of the smallest 
such hull. 

THEOREM 16. I f  G and H are (-e)-convex 6-hulls of S with e, 6 > O, then 
IGI < 2[-2,~/e-qlH[. 

PROOF. By Corollary 15, every vertex of G is 6-between two consecutive vertices 
of H. By Theorem 10, no more than M = 2F26/e-] of these vertices can be 6-between 
any two given points. The theorem then follows trivially. []  

5.2. Existence of  Strongly Convex Hulls. It is by no means obvious that a 
( -e ) -convex f-hull always exists for an arbitrary set of points S and an arbitrary 
(positive) e and 6. In fact, when 6 < e, there may not exist any such hull. As a 
counterexample, consider a set of four points arranged on the vertices of a square 
so that each point is just barely z-between its two neighbors (Figure 16). In order 
to ensure (-e)-convexity,  only two of the four points can be chosen for the hull, 
leaving the other two points arbitrarily close to lying 2e away. 

On the other hand, we prove here that a ( -e ) -convex f-hull always exists 
whenever 6 > 2e. (The existence question is still open for e < 6 < 2e.) We begin 
with a lemma: 

LEMMA 17. I f  P = (Po . . . . .  P,-1) is a convex polygon, then there exists a sub- 
polygon H of P that is (-e)-convex, and that is a 2e-hull for P. 

PROOF. For  the purposes of this proof, we extend P with an extra vertex p, 
coincident with Po. We say that a vertex Pi of a polygon is z-flat if Pi is e-between 
its two neighbors Pi-1 and Pi+r  We say that  a vertex pj covers a vertex Pk if 
j < k < j + n and, for every i such that j < i < k, the point pl is e-between the 
points pj and Pk" 

We denote by c(k), for 0 < k _< n, the smallest j in {0, . . . ,  k - 1} such that pj 
covers Pk. Note that c(0)= 0 and c(k)< k for all k > 0. Note also that c is 

( ) 
Fig. 16. Counterexample for the existence of a (-e)-convex f-hull for 6 < e. 
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monotonically nondecreasing: k < I implies c(k) < c(1). Furthermore, every vertex 
between Pc~k) and Pk, inclusive, covers Pk" 

We now recursively define a second function s(k), for 0 < k < n, as follows: s(k) 
is 0 if c(k) is 0; otherwise, s(k) is the smallest j such that pj covers Pk, and pj is not 
e-between vertices Pst~) and Pk. Note that s(k) > c(k), and s(k) < k except when k = 0. 

Assuming that s(k) indeed exists for all k, then the function s defines for each 
vertex Pk an implicit chain of vertices H(k) that begin s with Po, ends with Pk, and 
is such that for every vertex p~ except Po the previous vertex in the chain is pstj). 
By construction, the chain H(k) has the property that every interior vertex pj covers 
the next vertex in the chain and is not e-between the two vertices adjacent to it 
in the chain. Therefore, the chain H(n) defines a polygon H that is an e-hull for 
P, and that has no e-flat vertices, with the possible exception of Po. If vertex P0 
is also not e-fiat, then H is (-e)-convex,  and we are done. Otherwise, by removing 
Po from H, we obtain a polygon that is a ( -e)-convex 2e-hull for P, and the lemma 
is still true. 

It remains to prove that the function s is well defined for all k. The proof is by 
induction: s(0) is 0 by definition, and we prove that s(k) exists by assuming that 
s(O) . . . .  , s ( k -  1) exist. It suffices to show that there exists a "good"  index i in 
{c(k), . . . ,  k - 1} such that Pi is not e-between Ps,~ and Pk. 

Let j = c(k). If j = 0, then s(k) = 0 by definition, and we are done. Otherwise, 
the definition of c(k) implies that p j_ 1 does not cover Pk. In other words, there is 
some vertex in {pj , . . . ,  Pk-1} that is not e-between the vertices pj_ 1 and Pk. Let 
Pm be the first such vertex, and let i be s(m). We have two cases (Figure 17): 

If i < j, then m is a good index, since segment p j_ lPk is the diagonal of a convex 
quadrilateral (Pi, P j -  1, Pro, Pk), and therefore the distance from Pm to PiPk is greater 

\ 

\ \ii \ 

\ 

\ 

(a) (b) 

Fig. 17. Construction for the proof of Lemma 17. 
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than the distance from p,, to Pj-lPk, which we already know is greater than 25 
(Figure 17(a)). 

If i > j, then i is a good index, since segment Ps(oPm is the diagonal of a convex 
quadrilateral (Ps,), P~, Pro, Pk), and therefore the distance from p~ to Ps(oPk is greater 
than the distance from p~ to Ps(oP,,, which we already know is greater than 25 
(Figure 17(b)). [] 

THEOREM 18. For any set of points S, there is a subset H of S such that the points 
of H are the vertices of a (-e)-convex 2e-hull of S. 

PROOF. Let P be the ordinary convex hull of S. By Lemma 17, there is a 
subpolygon H of P that is ( -e)-eonvex and is such that every point of P is 2e-inside 
H. However, since every point of S is inside P, every point of S must also lie 
2e-inside H, so H is a ( -e)-convex 2e-hull for S. []  

5.3. Computin9 Strongly Convex Hulls 

ALGORITHM 2. Given a set S of n points in the plane and an e > 0, return a 
(-e)-convex polygon H, and an uncertainty interval d, such that H is a d-hull for 
S. The algorithm guarantees that d.hi < 6e + 72, where 2 is the maximum un- 
certainty of the primitive epsilon boxes called by the algorithm. 

1. Find the x- and y-extremal points of S. Call then t o, t 1, t 2, t 3, in counter- 
clockwise order. 

2. For  each consecutive pair tqtq+l, do: 
a. Let Sq be the set of all points s e S  such that i E _ P o s ( - e ,  tq, s, tq+ 0 = 

true. 
b. Make Sq into an xy-monotone chain Cq by sorting the points in x and y 

and removing all points that are xy-dominated by other points in quadrant q. 
(For example, in the upper right quadrant, a point is xy-dominated if its 
x- and y-coordinates are both less than those of some other point.) Let 
(Co . . . . .  cm-0 be the points of this chain Cq from tq to tq+l,  inclusive. 

c. Build a graph Gq = (N, A) as follows: 

N = {(c,cj):i <j} ,  

A = {((cicj), (C/k)): i < j  < k/x :E P o s ( - e ,  c,, c2, ck) = / t r u e } .  

d. Compute for each node (cic~) in N a penalty f ( c i c j )  , defined as the interval 
max{d/r / i < r < j}, where dir j = I_Neg(c l ,  cr, cj). 

e. Define the penalty f (P)  of any directed path P in this graph to be the 
maximum of the penalties for the nodes of P. Let I (the "initial" nodes) be 
the set of all pairs (CoCi) for all i, and let F (the "final" nodes) be the set of 
all pairs (c / , ,_  1) for allj. Find a directed path P~ from any node in I to any 
node in F for which the penalty f(P~).hi is minimum. 

3. Concatenate the paths Po, P~, Pz, Pa to form a cycle. Let P be the polygon 
described by that cycle, and let d be the interval max  q f(Pq). 
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4. Start with H = P. For each extremal point tq, do the following: Let a, b be 
the current neighbors of t~ in H, and let d' be the interval I B e t w e e n  (t~, ab). 
If d'.lo < e, then remove tq from H, and set d ~ tmax {d.lo, d'.lo}, d.hi + d'.hi). 

5. Output the polygon H, aiong with the interval d, asserting that polygon H is 
a (-e)-convex d-hull for S. 

For simplicity, the description of the algorithm includes exact comparison tests 
in x and y. However, these exact tests can be replaced by approximate ones through 
a straightforward modification of the algorithm (involving a cleanup step to ensure 
that no two points are too close), at the cost of a small increase in the bound on d.hi. 

The running time of the algorithm is dominated by step 2e, which can be 
performed in time O(IZl loglAI) = O(n 3 log n) time and O(INI) = O(n 2) space by 
a standard graph-theoretic algorithm. (The set of arcs A can be generated on the 
fly and does not need to be stored explicitly.) 

Note that if the accuracy ). of all the epsilon boxes used is known in advance, 
then it suffices to find a feasible path rather than an optimal path in step 2e. In 
this case the algorithm's complexity is reduced to O(n3). 

Although these bounds appear extravagant, the algorithm can actually be 
expected to perform quite well in practice because the monotone chains Cq are 
likely to contain only a small subset of the original points S. For points uniformly 
distributed in a square, Barndorff-Nielsen and Sobel [1] show that the expected 
size of the chains Cq is only O(log n). The running time is then dominated by the 
construction of the chains, which takes O(n log n) time. (Actually, in our case the 
analysis is complicated by the imprecise nature of the tests in step 2a; however, 
a more detailed analysis shows that these imprecise tests can affect the expected 
size of the chain Cq by at most an additive constant.) 

Note that for points uniformly distributed in a square, the preprocessing 
technique of Golin and Sedgewick [4] can also be used to reduce the set of points 

to expected size O(x/~ ), which reduces the overall expected running time to O(n). 
The existence of the paths Pq is guaranteed by the following lemma: 

LEMMA 19. Given a set of points S, there exists a convex 2(e + 2)-hull D for S, 
with vertices in S, such that: 

1. The polygon D includes the four extremal points to, tl, t2, t3 of S. 
2. Every point of S not inside D is in the bounding box of some edge of D. 
3. For 0 <_ q <_ 3, the xy-monotone chain Dq = (d o . . . . .  dk) between tq and tq+l 

satisfies 
a. E Pos) ( -e ,  t~, di, t q + l )  = true, and 
b. E _ P o s ( - e ,  di-1, dl, di+l) = t r u e ,  
for O < i < k. 

PROOF. Let a = 2(e + 2). Let Q be the quadrilateral defined by the four extremal 
points to, tl, t2, t3. For each pair of extremal points (tqtq+ 1) of S, consider the set 
S'q consisting of the points tq, tq + 1, and all points s of S that are more than 2a 
away from Q and such that Pos(tq, s, tq+ 1). Let S~ be all points of S', that are not 
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xy-dominated by other points in quadrant q. By Theorem 18, the set S~ has a 
( - e  - ),)-convex a-hull Dq. The polygon Dq must include the extremal points tq 
and tq+l, since these points are more than 2a away from any other point of S~. 

Now consider the polygon D that is the convex hull of the union of the hulls 
Dq. Any consecutive triple in any xy-monotone chain of D is a triple of consecutive 
vertices in some Dq and is therefore ( - e -  22)-positive, so the 22-accurate test 
E _ P o s  ( - e ,  di-1, d~, di+l) is guaranteed to return t r u e .  Furthermore, every 
nonextremal vertex of Dq is more than 2a away from (2, so 

E Pos(-~, tq, d~, tq+1) = true 

by Lemma 4. 
By the arguments above, polygon D satisfies all three conditions of the lemma. 

Furthermore, polygon D is also a a-hull for S since every point of S that is not 
in some S~ is either inside D, or at most 2a away from Q or from some polygon 
D~, both of which are in D. [] 

THEOREM 20. Aloorithm 2 produces a polygon H that is a (-e)-convex f-hull for 
the 9iven set S, where 6 = 6e + 72. 

PROOF. First, we argue that the xy-monotone chains Dq of the polygon D, whose 
existence is proved by Lemma 19, must appear as directed paths in the graphs G~ 
constructed by our algorithm. Condition 3a of the lemma guarantees that the 
vertices of Dq will survive in the set Sq constructed in step 2a, and condition 2 
guarantees that they will be included in the chain Cq constructed in step 2b. Thus, 
all edges of Dq will appear as nodes of Gq. Furthermore, condition 3b guarantees 
that every consecutive triple of vertices of Dq appears as an arc of Gq. Therefore, 
step 2e will always be able to find some path P~. 

Second, we argue that the polygon P computed in step 3 is a d-hull for S, where 
d is the interval computed in that step. Observe that any point s of S that is not 
inside P must lie in the bounding box of an edge cicj of P, because otherwise point 
s would dominate some vertex of P. Moreover, since P is convex, the distance 3 s 
between s and P is the same as the distance between s and edge c:j. Therefore, 
by Lemma 4, the penalty of the node c~cj computed in step 2d is an interval that 
contains 3~. Thus, the interval d computed in step 3 contains the maximum of the 
distances 3s for all points s, so P is a d-hull for S. 

Third, we argue that the interval d computed in step 3 is bounded above by the 
quantity 2e + 322. Since step 2e finds a path with minimal penalty, the path P must 
have a penalty no greater than that of the chains Dq, which have penalty at most 
2(e + 2) by Lemma 19. On the other hand, the penalties assigned to the paths are 
measured by a 22-accurate box, so they could be overestimated by at most 22. 

Finally, we argue that the polygon H computed in step 4 is a (-e)-convex 
(4(e + ).))-hull for the polygon P. For each vertex v of H, denote by h(v) the distance 
between v and the diagonal connecting its two neighboring vertices. By Lemma 
9, the polygon H is ( -  e)-convex if and only if h(v) > 2e for all v. At the beginning 
of step 4, the condition h(v) > 2e is satisfied for all vertices v except for the extremal 
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points tq. Moreover, by convexity, deleting a vertex from H cannot decrease the 
value of h(v) for any other vertex v. Since step 4 deletes all vertices for which 
h(v) < 2e, the final polygon H is (-e)-convex. On the other hand, step 4 only 
deletes a vertex v if h(v) < 2(e + 4). Therefore, the new polygon resulting from each 
deletion is an (e + 2)-hull for the previous one. Since at most four vertices are 
deleted, the final polygon H is a (4(e + 2))-hull for the starting polygon P. 

We conclude that the returned polygon H is a (-e)-convex 6-hull, where 
6 < (2e + 34) + 4(~ + 4) = 6e + 72. [] 
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Appendix. Implementation Results. The point-inclusion algorithm of Section 4 
and the convex-hull algorithm of Section 5.3 have been implemented in Modula- 
2+ on the Firefly workstation 1-24] at the DEC Systems Research Center. A 
package for arbitrary-precision arithmetic [9] was used to verify the correctness 
of these implementations over a variety of input. 

The implementations are built on top of a library of two-dimensional primitives 
(including Coincident, Collinear, Pos, Neg, and Between) and interval arithmetic 
functions (rain, rnax[ II, [7, etc.). This library is about 150 lines of code. The 
point-inclusion algorithm is about 50 lines of code, while the convex-hull algorithm 
is about 200. 

Figure 18 illustrates the different (-e)-convex 6-hulls constructed by the 
convex-hull algorithm for three sets of 512 points, as the input parameter e is 
increased from 0.02 to 0.08 to 0.32. The first set of points is uniformly distributed 
in a square with sides of length 2. The second set is a Gaussian distribution of 
points on a disk of radius 1. The third set has one-third of its points randomly 
distributed on a circle of radius 1, one-third of its points randomly distributed on 
a disk of radius 1, and one-third of its points randomly distributed in very close 
proximity (between 0.001 and 0.033 units) to the chosen points on the circle. 

Below the figures are tables showing the requested value of ~ for each row, the 
actual values of e and 6 (computed using exact arithmetic) for the (-e)-convex 
6-hulls produced, and the value of 6 returned by the algorithm. Note that the 
convex-hull algorithm actually performs quite well in practice--indeed, in every 
case considered here, the algorithm actually computes a (-e)-convex ~-hull with 
6_<e. 

Table 1 summarizes some performance tests on the convex-hull algorithm. In 
each test, (-0.01)-convex 6-hulls were computed for 20 different sets of n points. 
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Fig. 18. Some approximate hulls. 

(requested) e (actual) 6 (actual) 6 (reported) 

0.020 0.024 0.043 0.020 0.019 0.016 0.014 0.063 0.017 0.020 
0.080 0.631 0.103 0.129 0.055 0.075 0.051 0.171 0.075 0.079 
0.320 0.461 0.329 0.506 0.267 0.199 0.158 0.493 0.249 0.158 
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Table 1. Performance statistics for convex-hull algorithm. 

Uniform Gaussian Circular 

n t IC~l t ICql t IC~l 

32 1 15 1 12 2 19 
64 3 18 2 14 4 29 

128 5 21 4 16 14 46 
256 9 23 9 19 39 70 
512 18 27 16 21 111 105 

1024 34 31 33 25 278 144 
2048 66 32 64 25 544 181 
4096 130 33 130 30 1088 227 
8192 262 38 252 32 1818 268 

The value t gives the total number of seconds spent by the algorithm to compute 
the 20 hulls. The value I Cal gives the average number of candidate points in the 
four monotone subchains constructed for each hull by the algorithm. 

The table includes results for uniform, Gaussian, and circular distributions of 
points, as described above. Note that for uniform and Gaussian distributions of 
8000 points or less, the algorithm appears to run in approximately linear time. 
Note also that the size of the monotone subchains I Ca[ appears to be O(log n) for 
these distributions, as expected. For points in a circular distribution, the algor- 
ithm's performance degrades and appears to be about cubic in the size of the 
monotone subchains I Ca[ , which is consistent with the analysis of Section 5.3. 
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