
Algorithmica (1993) 9:534-560 Algorithmica
�9 1993 Springer-Verlag New York Inc.

Constructing Strongly Convex Approximate Hulls with
Inaccurate Primitives

Leonidas Guibas, 1'2 David Salesin, ~'3 and Jorge Stolfi 2

Abstract. The first half of this paper introduces Epsilon Geometry, a framework for the development
of robust geometric algorithms using inaccurate primitives. Epsilon Geometry is based on a very
general model of imprecise computations, which includes floating-point and rounded-integer arithmetic
as special cases. The second half of the paper introduces the notion of a (-e)-convex polygon, a polygon
that remains convex even if its vertices are all arbitrarily displaced by a distance of e of less, and proves
some interesting properties of such polygons. In particular, we prove that for every point set there
exists a (-e)-convex polygon H such that every point is at most 4e away from H. Using the tools of
Epsilon Geometry, we develop robust algorithms for testing whether a polygon is (-s)-convex, for
testing whether a point is inside a (-e)-convex polygon, and for computing a (-e)-convex approximate
hull for a set of points.

Key Words. Computational geometry, Epsilon Geometry, Approximate computations, Robust algo-
rithms, Strongly convex polygons, Convex hull.

1. Introduction. Finding the convex hull of a set of points is one of the simplest
and oldest problems in computa t ional geometry, and yet is still a surprisingly
difficult problem to solve in practice. The major difficulty is that the basic
geometric tests needed to solve the problem are unreliable or inconclusive when
implemented with imprecise computat ions, such as ordinary floating-point arith-
metic. This uncertainty makes it extremely difficult to construct the correct hull,
the smallest polygon that is simultaneously convex and that contains every point
of the given set.

The main result of this paper is a p roof that for every point set there exists a
polygon that is convex enough to be found with approximate tests, and that is
also very close to containing all the points of the given set. In addition, we present
an algori thm for f nd ing such hulls that uses inaccurate primitives and that runs
in O(n 3 log n) time in the worst case, and in O(n log n) expected time for points
uniformly distributed in a square. We also give an O(log n)-time algori thm for
testing whether or not a point lies inside one of these hulls, again using only
approximate tests.

The development of robust geometric algorithms has been at tracting increasing
a t ten t ion in recent years 1,2], 1,3], [53, [9] - [19] , 1-21]-1-23]. Knu th [13], for

1 Computer Science Department, Stanford University, Stanford, CA 94305, USA.
2 DEC Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA.
3 Current address: Program of Computer Graphics, Cornell University, Ithaca, NY 14853, USA.

Received November 6, 1990; revised December 19, 1991. Communicated by Takao Asano.

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 535

example, describes an algorithm for computing the convex hull of a set of
points whose coordinates have been rounded to a sufficiently small number of
bits to allow the outcomes of the underlying geometric tests to be determined
exactly using fixed- or floating-point arithmetic.

Our algorithm, however, more closely resembles those of Fortune [3],
Jaromczyk and Wasilkowski [12], and Milenkovic and Li [18], in that all geo-
metric computations are assumed to be imprecise by nature. The approach in all
of these works is to compute an exact result for a perturbed version of the input.

Fortune [3] describes an O(n log n)-time algorithm for computing approximate
convex hulls using floating-point arithmetic. One drawback of this algorithm is
that the resulting hulls are only approximately convex, and therefore do not enjoy
many of the nice properties associated with convexity. By contrast, the hulls
computed by our algorithm are not only convex, but so convex that many of these
desirable properties are preserved in some fashion even when they are tested with
floating-point arithmetic.

Jaromczyk and Wasilkowski [12] present an O(n)-time algorithm for construct-
ing the convex hull of a simple polygon, using floating-point arithmetic. As in the
previous work, the algorithm has the drawback that the resulting hulls are only
approximately convex. In addition, the algorithm requires that the input polygon
be sufficiently "well conditioned."

Recently, Milenkovic and Li [18] have also presented results similar to ours.
While their algorithm for constructing approximate hulls has a much better
worst-case performance than the one presented here, the existence proof and
algorithm in this paper establish tighter bounds on the degree of approximation
achievable. Moreover, their algorithm assumes certain properties of floating-point
arithmetic, whereas the results presented here are based on a much more general
model of imprecise computations.

In developing our algorithms, we use the Epsilon Geometry framework [7],
[21], which is described in Section 2. Epsilon Geometry provides a methodology
for developing, proving, and implementing geometric algorithms based on ap-
proximate primitives.

2. Epsilon Geometry

2.1. Definitions. The Epsilon Geometry framework defines the notion of an
epsilon predicate as a means for expressing "approximate tests" in a general setting.
An epsilon predicate is defined as follows:

Let (9 be a set of geometric objects endowed with some distance metric rl II, Let
P be a predicate defined on (9. Then, for any X e (9 and any ~ > 0, we define e-P(X)
as a shorthand for "P(X') is true for some X ' ~ (9 such that I/X, X'rl _< ~." That is,
X is at most e away from satisfying P(X). The truth-set of z-P, therefore, is that
of P, "fattened" by e (Figure 1). Note that O-P(X) is the same as P(X).

In the case of an n-ary predicate P, we define e-P(X o , X ,_ 1) to mean that
r P(X'o X',-1) is true for some X~ X,_ 1 with IlXi, X'ill < ~ for all i.

~-P

536 L. Guibas, D. Salesin, and J. Stolfi

Fig. 1. The truth sets of P and ~-P.

The following two monoton ic i ty propert ies follow immediate ly f rom the defini-
t ion of t -P:

e-P(X) ~ ~'-P(X) for all e' _> e,

(i) aot(~-P(X)) ~ not(e'-P(X)) for all 8' < e.

We can extend the definition of e-predicate to negative values of e in such a way
that these two monotonic i ty propert ies remain true for all e. If e > 0, we can define
(-e)-P(X) as a shor thand for "P(X ') is true for all X'E (9 such that IIX, X'II < e."
The t ruth set of (-e)-P for e > 0, therefore, is that of P, " t r i m m e d " by e (Figure
2). This definition can also be expressed by the identity

(2) (--~)-P(X) r not(~-(not P(X))).

Intuitively, an object X that is (-e)-P is "ex t remely P," whereas an X that is e-P
is only " a lmos t P."

Fig. 2. The truth sets of P and (-e)-P.

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 537

The following lemmas describe some important properties of epsilon predicates:

LEMMA 1. For any predicates, P and Q, and any e >_ 0,

e-(P v Q)(X) "r e-P(X) v e-Q(X),

e-(P A O)(X) ~ e-n(x) A ~-Q(X).

PROOF.. For e _> O, the expression e-(P v Q)(X) means

~x ' : IIX', Xll < e ^ (P v O)(X'),

which is equivalent to

(3x ' : IIX', Xll _< e ^ P(X')) v (3x':]IX', Xll _< e ^ Q(x')),

that is, e-P(X) v e-Q(X).
Similarly, for e > O, the expression e-(P ^ Q)(X) means

3X" IIX', Xll -< e ^ (P A Q)(X'),

which implies

O x ' : IIX', Xll _< e ^ P(X'))/~ (3x':]IX', Xll -< e A Q(x')),

that is, e-P(X) A e-Q(X). []

Note that in the case of A the implication only works in one direction, because
even if it is possible to satisfy P(X) and Q(X) separately with t-perturbations to
X, it may not always be possible to satisfy both constraints at once (Figure 3).

LEMMA 2. For any predicates, P and Q, and any e < O,

e-(P v Q)(X) ~ e-P(X) v e-Q(X),

e-(P /x Q)(X) .~ e-P(X) A e-Q(X).

PROOF. Follows immediately from Lemma 1 and equation (2). []

X

1

Fig. 3. X is e-P and e-Q but not e-(P A Q).

538 L. Guibas, D. Salesin, and J. Stolfi

LEMMA 3. For any e, 6 _> 0, and any predicates P, Q, R, if P(X) implies e-Q(X),
and Q(X) implies 6-R(X), then P(X) implies (8 + 6)-R(X).

PROOF. Suppose that P(X) implies e-Q(X), Q(X) implies 6-R(X), and P(X) is true.
By definition, 8-Q(X) means there exists an object X' such that IIX, X'll < 8 and
Q(X') is true. Therefore 6-R(X') is true, so there exists an object X" such that
[IX', X"[] < 6, and R(X") is true. By the triangle inequality, [IX, X"][< e + 3, which
proves (8 + 6)-R(X) is true. []

We define the critical perturbation for a predicate P and an object X to be the
unique real value g such that z-P(X) is false for e < g, and true for e > g. (In other
words, g is the distance from X to the closure of the truth set of P if P(X) is false,
and minus the distance from X to the closure of the falsehood set of P if P(X) is
true.)

2.2. Implementing Epsilon Predicates. The epsilon predicates defined above are
exact mathematical notions that we use in proofs. In programs, we implement a
geometric predicate by a procedure called an epsilon box. Typically, an epsilon
box will try to evaluate its geometric predicate using floating-point arithmetic or
some other approximate methods. An epsilon box may therefore fail to decide
whether its predicate is true or false.

We consider here three varieties of epsilon boxes. A T-box for a predicate P(X)
is a procedure T_P(X) that computes P(X) and returns either t r u e , f a l s e , or
u n k n o w n . Similarly, an E-box for P(X) is a procedure E_P(e, X) that computes
e-P(X) and also returns either t r u e , f a l s e , or u n k n o w n . Thus, T_P(X) is
equivalent to E_P(0, X). Finally, an I-box for a predicate P(X) is a procedure
I_P(X) that returns an estimate of how far X is from satisfying P. The estimate
is encoded as an interval e = (e.lo, e.hi) such that e-P(X) is false for e < e.lo and
true for e > e.hi. An interval e with these properties is called an uncertainty interval
for P(X) (Figure 4). The monotonicity property of epsilon predicates (1) guarantees
that we can encode the result of every epsilon-predicate test as a single interval
in this manner.

A peculiarity of this encoding is that every I-box must return u n k n o w n for
at least one value of e, even in cases when it can determine e-P(X) for all e exactly.
This problem could be avoided by a more elaborate encoding allowing open and

8-P(X) I false ~I~ un~kn~uli~ III
t t

p.lo p.hi

Fig. 4. An uncertainty interval for predicate P(X).

true
%
/

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 539

half-open uncertainty intervals, but we feel that the infinitesimal gain in accuracy
provided by such a scheme would not be worth the added complexity.

Occasionally, we use the notation e-P(X) with an interval e to mean n o t e-P(X)
for e < e.lo and e-P(X) for e > e.hi. Note that the interval e returned by an I-box
I_P[X) should satisfy e-P(X).

2.3, Accuracy of Epsilon Boxes. In principle, the Epsilon Geometry framework
places only very weak constraints on the outputs of epsilon boxes. An epsilon box
(of any variety) is considered correct as long as it never returns f a 1 s e when the
predicate is true, or t r u e when the predicate is false. For example, the T-box
that always returns u n k n o w n and the I-box that always returns (- o e , + oe)
are correct implementations of any predicate P.

In practice, of course, an epsilon box will be useful only if it can give a definitive
t r u e; or f a 1 s e answer for some interesting set of inputs. We say that a T-box
T_P[X) for a predicate P(X) is A-accurate (for A _> 0) if for all X the T-box returns
u n k n o w n ~ only when P(X) is at most A away from changing f romt rue to false;
that is, only when the critical perturbation g is at most A in absolute value.
Similarly, an E-box E P(e, X) is A-accurate if it returns u n k n o w n only when
l e - g[_< A. Finally, an I-box I_P(X) is A-accurate if it always returns an interval
e such that e.lo > g - A and e.hi < ~ + A.

We also say, informally, that an epsilon box is accurate if it is A-accurate for
some A small enough to be useful. Ideally, every epsilon-box implemented with
floating-point arithmetic should be A-accurate, with A equal to a small constant
times the machine's floating-point precision. (Our definitions of correctness and
accuracy are roughly analogous to Fortune's definitions of "robustness" and
"stability" [3].)

2.4. Rules for Combinin9 Uncertainty Intervals. In order to construct complex
I-boxes out of simpler ones, we must develop techniques for combining the
uncertainty intervals that they return. For example, suppose we manage to prove
that the predicate e-R(X) is equivalent to e-P(X) v e-Q(X), for all X and all e.
Then we could implement I_R(X) from I_P (X) and I_Q(X) as follows:

1. p ,~- I_P[X) .
2. q ~ I_Q(X).
3. r.lo *-- m i n {p.lo, q.lo}.
4. r.hi ~ m i n {p.hi, q.hi}.
5. r e t u r n r.

This code may be easier to understand with the help of Figure 5, which shows the
"graphs" of the predicates e-P(X), e-Q(X), and e-R(X) as a function of e, for a
particular X. The "fuzzy" portion of each graph represents the uncertainty interval
returned by the corresponding I-box.

Note that on most machines the operations required to implement I R can
be performed without any rounding errors. Note also that if I _ P and I Q
are A-accurate and Z-accurate, respectively, then the accuracy of I _ R is just
max{A, Z}. Thus, the I-box for R has the nice property that it is at least as
accurate as the least accurate of the X-boxes it uses.

540 L. Guibas, D. Salesin, and J. Stolfi

 UN|NWH
e-Q(x) /~ p~lo p.hi

!

: q . lo q.hi

X~
r.lo r.hi /

Fig. 5. Computing I R from I_P and I_Q.

In generall given uncertainty intervals p and q, we define the following two
interval operations:

rain{p, q} = (min{p.lo, q.lo}, min{p.hi, q.hi}),

max{p, q} = (max {p.lo, q.lo}, max {p.hi, q.hi}).

We use these operations as follows. Suppose we know that the predicate e-R(X)
is equivalent to e-P(X)v e-Q(X) for all X and all e. Then a procedure that
computes the interval m i n{I_P(X), I_Q(X)} is a correct I-box for R. Similarly, if
we know that e-R(X) is equivalent to e-P(X)A e-Q(X), then max(I_P(X),
I_Q(X)} is a correct I-box for R.

The rules above are just two examples of how the results of epsilon boxes can
be combined. Further examples can be found in our earlier paper [7].

2.5. Basic Epsilon Predicates. The algorithms we develop in this paper are built
on top of a small set of geometric predicates for points in the plane Coincident,
Collinear, Pos, Neg, and Between--which we define below. We use the standard
Euclidean metric to measure the size of perturbations for the epsilon versions of
these predicates. The details of the implementations of these predicates are
described in our previous paper [7].

Coincidence. The predicate Coincident(p, q) merely tests whether the points p and
q are the same. The derived predicate e-Coincident(p, q) is true if and only if points
p and q lie within e of a common point, or, equivalently, if and only if liP, qll -< 25.
A geometric interpretation of this predicate requires that the z-disk of p-- that is,
the closed disk of radius e centered on p--touch the z-disk of q (Figure 6).

Fig. 6. e-Coincident(p, q).

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 541

- -6 ")
Fig. 7. The e-butterfly of p and q.

Collinearity. The predicate CoUinear(p, q, r) tests whether the points p, q, and r
lie on a common straight line, in any order. Therefore, e-Collinear(p, q, r) is true
if and only if there exists a line l that passes within e of all three points. The
predicates Collinear and e-Collinear are obviously symmetric in their three argu-
ments.

We can visualize the e-Collinear predicate as follows. Let P and Q be the e-disks
of p and q, respectively. Then the set of all lines passing through a point of P and
a point of Q covers a butterfly-shaped region of the plane bounded by the two
inner and two outer tangents of P and Q. (If P and Q have a point in common,
then this region degenerates to the entire plane.) We call this region the e-butterfly
determined by p and q (Figure 7). The three points p, q, and r are e-collinear if
and only if the e-disk centered at p intersects the e-butterfly of q and r (Figure 8).
Equivalently, the three points are e-collinear if and only if one of the e-disks
intersects the e-stroke of the other two points, where the e-stroke is defined as the
convex hull of the two points' e-disks.

Orientation. In exact geometry, a triangle T = (p, q, r) whose vertices are not
collinear can be further classified by its orientation, either positive (counter-
clockwise) or negative (clockwise). The orientation is the sign of the determinant

1 p.x r.y
P.y

D(p, q, r) = 1 q.x q.y .

1 r.x

Fig. 8. e-CoUinear(p, q, r).

542 L. Guibas, D. Salesin, and J. Stolfi

/
/

/
/ ,

Fig. 9. e-Pos(p, q, r).

We define the predicates Pos(p, q, r) and Neg(p, q, r) as meaning D(p, q, r) > 0 and
D(p, q, r) < 0, respectively. Note that Pos(T) is not the same as n o t Neg(T); in
fact, n o t Neg(r) =- Pos(T) v Collinear(r).

By definition then, e-Pos(p, q, r) means that it is possible to make D(p, q, r) > 0
by displacing the three points by at most e in suitable directions. In graphical
terms, e-Pos(p, q, r) requires that the e-disk centered at p intersect the interior of
the left e-basin of q and r, consisting of the e-butterfly of q and r and all points to
its left (when looking from q toward r). See Figure 9.

From linear algebra we know that the determinant D changes sign if we swap
any two of the three points, and remains unchanged if the three points are
permuted in a cyclic fashion. Thus,

e-Pos(p, q, r) =- e-Pos(q, r, p) - e-Pos(r, p, q)

=- e-Neg(q, p, r) =- e-Neg(r, q, p) - e-Neg(p, r, q).

Note that e-Pos(T) is quite different from n o t e-Neg(T) and from e - (no t Neg)(T).
Instead, the following relationships hold:

n o t e-Neg(T) - (- -e) - (no t Neg)(T),

- (-e)-(Pos v Collinear)(T).

Betweenness. We say that a point z lies between two other points p and q if z
lies on the closed segment pq. We denote this fact by Between(z, pq). It is easy to
see that e-Between(z, pq) is true if and only if the distance from z to the segment
pq is at most 2e, or, equivalently, if and only if the e-disk centered at z intersects
the e-stroke of p and q (Figure 10).

Note that three points are e-collinear if and only if at least one of the three
points is e-between the other two:

e-Collinear(p, q, r) - e-Between(p, qr) v e-Between(q, pr) v e-Between(r, pq).

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives

Fig. 10. e-Between(z, pq).

543

The following lemma, which we use later, captures another useful relationship
between the Between and Collinear predicates:

LEMMA 4. Let a, b, and x be three points such that x is inside a closed rectangle
with diagonal ab. Then e-Between(x, ab)r e-Collinear(x, a, b), for all e.

PROOF. For e < 0, the predicates e-Between(x, ab) and e-Collinear(x, a, b) are
both false. For e > 0, the smallest perturbation needed to make the points a,
x, and b collinear is half the smallest altitude of the triangle axb. Since x is in-
side a right triangle with hypotenuse ab, the angle at x is 90 ~ or more, and
therefore the triangle's shortest altitude is the perpendicular distance from x to
segment ab. []

3. Strongly Convex Polygons

3.1. Definitions. For this paper we define a polygon P to be a sequence of vertices
(Po P , - 1). For convenience, we let Pl stand for the vertex Pimod, for all integers
i. The edges of P are the closed segments PiPi + 2. The polygon is simple if two edges
PiPi+l and PjPj+I intersect only w h e n j = i - 1, j = i, o r j = i + 1 (modulo n).

The external angle of a polygon P = (Po P , - 1) at vertex pi is the angle from
the vector p ~ - p~_~ to the vector p~+ ~ - p~, measured counterclockwise and
reduced to the interval (- n, n). The external angle is undefined if the two vectors
point in opposite directions, or if one of them is zero. The degree OP of P is the
sum of its external angles, divided by 2n. It is well known that the degree of a
polygon (when defined) is an integer, and that the degree of a simple polygon is
always defined and is either + 1 or - 1 [6], [8].

A polygon P is convex if all vertices p~, pj with i < j < i + n are distinct, and
all triples p~, p j, Pk with i < j < k < i + n are (strictly) positive. Note that by this
definition a single point, as well as a pair of noncoincident points, qualifies as a
convex polygon. Note also that every subpolygon of a convex polygon is convex.

Convex polygons have several useful properties. We say that a periodic sequence
of real numbers is unimodal if it has at most one ascending run and one descending
run in one period (allowing for repeated elements), and that a polygon is d-unimodal
for some direction d if the projection of its vertices on a line parallel to d forms
a unimodal sequence. We say that a polygon P with three or more vertices is

544 L. Guibas, D. Salesin, and J. Stolfi

left-turning if all its exterior angles are defined and positive, that is, if every triple
of consecutive vertices p~_ lP~P~ + 1 is positively oriented. Then the following results
are well known [g]:

LEMMA 5. For any polygon P = (Po, . . ., P,-1), with n >_ 3, and any direction d,
the following statements are equivalent:

1. P is convex.
2. P is left-turning and simple.
3. P is left-turning and has degree + 1.
4. P is left-turning and d-unimodal.

3.2. Strong Convexity. According to our definition of epsilon predicates, we say
that a polygon is (-0 -convex , for some e > 0, if it remains convex under any
perturbation to its vertices of e or less. Formally, when measuring convexity, we
define the "distance" between two polygons as the maximum distance between a
vertex of one polygon and the corresponding vertex of the other. Two polygons
with a different number of vertices are defined to be infinitely far apart. We
informally use the t e rm strongly convex to mean (-e)-convex for some ~ > 0
implied by the context.

Note that a (- 0 - c o n v e x polygon automatically satisfies a kind of "minimum
feature separation" condition, similar to the explicit conditions required by other
robust algorithms in the literature [11], [14], [15], [22]. For example, in a
(- @ c o n v e x polygon, no two vertices may be e-coincident, and, as we shall see,
every vertex must lie more than 2~ away from any diagonal.

The following theorems characterize strongly convex polygons:

THEOREM 6. A polygon P = (Po P , - 1) is (- O-convex for some e > 0 if and
only if no two vertices are o-coincident and all triples P~PjPk with i < j < k < i + n
are (- e)-positive.

PROOF. The theorem follows directly from the definition of convex polygon and
Lemma 2. []

THEOREM 7. A polygon P = (Po , Pn- 1), with n >_ 3, is (- O-convex from some
e > 0 if and only if P is convex and every consecutive triple,of vertices Pi-lPlPi+ 1
is (- O-positive.

PROOF. The forward implication follows immediately from the definition of
convexity and from Lemma 2. As for the converse; suppose P is convex and all
consecutive triples of vertices are (-e)-positive. We must prove that any perturbed
version P' = (p~ P ' , -0 of P, such that ILPl, Pil] < e for all i, is also convex. Note
that P' is at least left-turning, because every consecutive triple p~_ lP'IP'~+ 1 is still
positive. Therefore, by Lemma 5, we need only prove that P' has degree + 1.

Consider the family of polygons P~ = (P~o, --., P,-Z 0, where p/~ = (1 - -)OPi -t- ~.Pi;

for all real ~. in the interval [-0_1]. Note that po = p, p1 = p,, and that the position
of each vertex pC is a continuous function of 2. Note also that liPS, P~[I < e for all

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 545

i. Since all consecutive triples p~_ lPiPi+ 1 of P are (-e)-positive, it follows that all
consecutive triples -~ -z-z 1-'~-lp~t'~+l are positive for any 2 in [0_1].

The external angle of Pz at each vertex p~ is therefore a well-defined, continuous
function of A for all A in [0_1]. The same must therefore be true of the total degree
t?(PZ). However, we know that 0(P ~ is + 1 since pO = p is a convex polygon, and
also that 8(P ~) is integral when defined; hence, t?(P 1) = 8(P' i is also + 1. []

THEOREM 8. A polygon P = (190 P,-1), with n > 3, is (- e) - convex for some
e >_ 0 i f and only if every consecutive triple o f vertices Pl- lPiPi + 1 is (- e)-positive,
and any o f the following conditions hold:

1. P is simple.
2. P has degree + 1.
3. P is unimodal in some direction d.

PROOF. The forward implication follows immediately from Lemmas 2 and 5. The
converse follows from Lemma 5 and Theorem 7. []

Theorem 8 gives us an O(n)-time algorithm for testing whether a polygon is con-
vex, and if so, for measuring how convex it is. First, we test (using exact com-
parisons in x) whether the polygon is x-unimodal. If not, we return the uncer-
tainty interval (0, + oo). Otherwise, we compute d = max~/I_Pos(pi_ 1, Pi, Pi+ 1)"

If d.hi < 0, then, by Theorem 8, the polygon is d-convex, and we can return d.
Otherwise, we must return the interval (d.lo, + oo).

The algorithm is A-accurate, provided the I _ P o s box it uses is 2-accurate and
the polygon is (-2)-convex. Note that the algorithm gives no quantitative
information if the polygon is not convex or is just barely convex, since, as Figure
11 shows, all consecutive triples may be nearly convex while the polygon as a
whole is arbitrarily far from being convex. The best O(2)-accurate algorithm we
know for measuring the nonconvexity of a nonconvex polygon takes O(n 3) time
[21].

In the following sections we also require the following characterization of
strongly convex polygons, which is similar to Theorem 7 but with a slightly weaker
condition:

LEMMA 9. A polygon P = (Po P,-1) is (- e)-convex for some ~ > 0 if and only
if P is convex and, if n > 1, no vertex Pi of P is e-between its neighbors Pi- 1 and Pi+ a.

Fig. 11. An extremely nonconvex polygon made of nearly convex triples.

546 L. Guibas, D. Salesin, and J. Stolfi

\
\

\
\ ~ <2e

Fig. l l , Construction for the proof of Lemma 9.

PROOF. For n = 1 or n = 2, the lemma follows trivially from the definition of a
convex polygon. For n > 3, the forward implication follows immediately from
Theorem 7. As for the converse, suppose P is convex with no vertex Pl e-between
its two neighbors; we must prove that P is (-e)-convex. Because of Theorem 7,
it suffices to prove that every consecutive triple of vertices is (-e)-positive.

Suppose that the opposite were true, namely, that some triple Pi-~P~P~+I is
not (-e)-positive. Since P is convex, the triple is at least positive; it follows that
the triple is actually e-collinear. Therefore, at least one vertex Pi-1, Pi, or p~+ 1
must lie e-between the other two, and we know by hypothesis it is not p~. Without
loss of generality, we assume that pi+ 1 lies e-between p~_ 1 and p~.

Observe that polygon P must have at least four vertices, since otherwise p~+ 1
would lie e-between its two neighbors. By convexity, the next vertex p~ + 2 must lie
strictly inside the angle determined by p~_ 1, P~, and p~+ 1 (Figure 12). Now observe
that the shortest segment from p~+ 1 to the segment p~_ lPi must intersect segment
Pi+2Pi, since the quadrilateral (Pi-1, Pi, Pi+l, Pi+2) is convex. Thus, vertex Pi+l
must lie at least as close to segment PiP~+2 as it does to segment pz_ lP~. However,
by hypothesis p~+ 1 lies e-between the vertices p~_ 1 and p~, so it must also lie
e-between the vertices pi and P~+2, a contradiction.

We conclude that all triples of P are (-e)-posit ive, and therefore P is (- e) -
convex. []

Here is another useful property of strongly convex polygons:

THEOREM 10. Let e and 3 be positive real numbers. For any (-e)-convex polygon
P and any two points u and v in the plane, there are at most 2F2fi/eq vertices of P
that are f-between the points u and v.

PROOF. Consider the infinite strip of width 46 centered on the line uv, together
with a set of lines parallel to uv lying inside the strip and placed so that every
point of the strip is at most e away from one of these lines (Figure 13).

We can always achieve this covering with at most F26/e7 lines. Because the
polygon P is (-e)-convex, each of these lines can intersect at most two of the
e-disks centered at the vertices of P. On the other hand, if a vertex of P is inside
the strip, then its e-disk must intersect one of these lines. Therefore, the total
number of vertices of P that lie inside the strip is at most twice the number of

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 547

2 51/.

Fig. 13. Construction for the proof of Theorem 10.

lines. Since any point of the plane that is f-between points u and v must lie inside
this strip, we conclude that at most 2[-26/C] vertices of P are f-between the points
u and v. []

As an aside, we note that the number of vertices of any (-e)-convex poly-
gon contained in a circle of radius R is bounded. A simple geometric argument
provides an upper bound of 2n/arccos(1- 2e/R) vertices, which reduces to

n , , / ~ z + O((e/R) 3/2) for small ~/R. Thus, for example, if e/R = 10 -6, a typical
uncertainty for floating point operations, then any such polygon is guaranteed to
have fewer than 3200 vertices.

4. A Point Inclusion Algorithm. As an application of these theorems, let us
consider the problem of testing whether a given point z lies inside an n-sided
convex polygon P. (We consider point z to lie "inside" P if it lies either on the
interior or on the boundary of P.)

A classical O(log n)-time algorithm for solving this problem begins by locating
the point z in the angle between two consecutive diagonals PoPk and PoPk+ 1, using
binary search, and then testing z against the line PkPk+I [20]. Note that this
algorithm can be expressed using just the Pos orientation test.

Unfortunately, this simple algorithm no longer works if the exact Pos test is
replaced by an approximate one. Figure 14 illustrates the problem: in both cases,
the point z lies approximately within the angle Pk+ lPoPk and on the positive side
of edge PkPk+ 1, but in one case it lies inside the polygon and in the other case it
lies well outside.

The key idea in the classical point-location algorithm is that if z is found to lie
on the positive side of a diagonal PoPk, then the subpolygon (Po, Pl Pk) can
be eliminated from further consideration. We can still use this idea--provided that
the polygon is sufficiently convex--thanks to the following lemma:

LEMMA 11. Let P = (190 P , - O be a (- z) - c o n v e x polygon for some e > O. Then
the vertices pj Pk-~ are more than (2 j - 1)e away f rom the left e-basin o f pop k

for any j, k such that 0 < j < k < n.

548 L. Guibas, D. Salesin, and J. Stolfi

\

Pk+ l

/

/
/

P k + ~

Fig. 14. Two indistinguishable cases.

PROOF. The case j = 1 follows from the definition of (-e)-convexity.
We prove the remaining cases by induction on j. Suppose we have already

proved the lemma for the case j, and we want to prove it for the case j + 1, that
is, that the vertices Pj+I , " ' ,Pk -~- I lie more than (2 j+ 1)e away from the
e-butterfly of PoPk"

We introduce the following notation. Consider the two e-disks centered at points
p and q. We denote by p+q + the oriented line that is tangent to those two disks
in the given order and that leaves the two disks to its left. Similarly, we let p +q-
be the tangent to the disks that leaves p to its left and q to its right, and so on.
We also denote by L(m) and R(m) the open left and right half-planes of an oriented
line m.

Assume that the polygon's vertices are numbered counterclockwise. By the
definition of (-e)-convexity, the disks of Pj+I and Pk-j-~ must lie in the
intersection X of the half-planes R(r), L(s), R(t), where r = p~p~_j, s = p~p j , and
t = p+p+_j (Figure 15). Let Ybe the (open) set of points that are more than (2j - 2)e
away from the left e-basin of PoPk. We show that X lies inside Y and at least 2e
from its boundary.

Without loss of generality, we can assume that the line s coincides with the
x-axis. Let L be the set of all oriented lines that pass from the e-disk of Po to the
e-disk of Pk. From the definition of (-e)-convexity we know that the vertex Pk
must lie at least 3e above the x-axis, so all lines of L are directed upward. Since
Y is the intersection of the right half-planes of lines that are parallel to lines of L,
the boundary of Y is a single y-monotone chain. Therefore, since the e-disk of p~
ties inside Y, the entire semi-infinite e-stroke starting at pj and extending horizont-
ally and to the right also lies inside Y By an entirely symmetric argument, the
semi-infinite e-stroke extending from Pk-~ along the line r must also lie in Y. Finally,

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 549

\ /
\ /

/// .;~

/
/

/
/

S

I
I
I
/

I

\

/ \
r / \

-~' /
/

Fig. 15. Construction for the proof of Lemma 11.

since the e-disks of pj and Pk-j lie inside Y, and Y is convex, the entire e-stroke of
PiPk-j also lies inside Y. The union of these three strokes forms a border around
the region X that is at least 2e thick and guarantees that every point of X is more
than 2e away from the boundary of Y.

Since the e-disks of pj+ 1,. . . , Pk-j-1 all lie entirely within X, we conclude that
each of these points lies more than e + 2e + (2j - 2)e = (2j + 1)e away from the
e-butterfly of PoPk. []

Here, then, is an accurate O(log n)-time T-box for the InStronglyConvex primi-
tive. In addition to the T _ P o s box already defined, the algorithm uses the
accurate epsilon box T I n C o n v e x (z, D), which tests in O(n) time whether the
point z lies inside the convex polygon D, and which is described in our previous
paper I-7].

ALGORITHM 1. Given a point z and a (-e) -convex polygon P = (19 0 P,-1),
for sufficiently large e, determine whether z is e-inside P.

1. Initialize D ~ P.
2. While D has 12 or more vertices, do:

a. Let the vertices of D be (do, dl din- 1). Let k = Im/2_J.
b. Let t = T _ P o s (z , d o, dk).

550 L. Guibas, D. Salesin, and J. Stolfi

c. If t is t r u e or u n k n o w n, delete the vertices d3, . . . , dk_ 3 from D.
d. If t is f a l s e or u n k n o w n , delete the vertices dk+ a ,d,,_ a from

D.
3. Return ~ T _ I n C o n v e x (z, D).

Clearly, the algorithm runs in O(log n) time. Note also that the vertices removed
from P comprise at most two chains o f consecutive vertices of P, namely
(P3, . . . , Pi- 3) and (p~+ a P, - 3), for some i,j. Thus, polygon D can be represented
by the original array of vertices, along with the two indices i and j.

The algorithm requires that e be greater than or equal to the maximum
uncertainty 2 of the primitive epsilon boxes T P o s and T _ I n C o n v e x . Assum-
ing this condition is satisfied, the correctness and accuracy of the algorithm are
implied by the following invariants, which hold at the beginning of step 2a:

Inside(z, P) ~ Inside(z, D),

e-Boundary(z, P) r e-Boundary(z, D),

where Boundary(z, P) means that point z lies on the boundary of P. (Note that
the predicate e-Boundary(z, P) is equivalent to ~/i e-Between(z, PiPi+l).) These
invariants are implied by the following lemma:

LEMMA 12. Let D = (do,. . . , din-l) be a (-e)-convex polygon for some e > 0, let
z be a point such that e-Pos(z, do, dk) for some 5 < k < m - 5, and let D' be the
subpolygon obtained by deleting the vertices d3 dk- 3 from D. Then

Inside(z, D) r Inside(z, D'),

e-Boundary(z, D) r e-Boundary(z, D').

PROOF. By hypothesis, the point z must lie less than e away from the left e-basin
X of dod k. By Lemma 11, the vertices d 2 , dk_ 2 are more than 3e away from
X. By convexity, the same is true for the entire subpolygon D" of D determined
by these vertices. Therefore, the point z must lie more than 2e away from D". Since
D = D' u D", it follows that Inside(z, D) ~ Inside(z, D').

Furthermore, note that the only differences between the boundaries of D and
D' are the edges of D". Since e-Boundary(z, D) means that z lies within 2e of the
boundary of D, and since all edges of D" lie more than 2e from the boundary of
D, we conclude that e-Boundary(z, D) ~ e-Boundary(z, D'). []

Note that it is possible to design a simpler point-location algorithm by first
using exact x-comparisons to locate the point in the vertical slab between
consecutive vertices of the polygon, and by then using approximate orientation
tests only to test the point against the two edges of the polygon that enter the
slab. As this example shows, the use of exact comparisons between real numbers
often leads to simpler algorithms for solving problems in the plane. One reason
for this is that k-dimensional geometric problems can often be solved by reducing

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 551

them to (k - 1)-dimensional subproblems, and one-dimensional subproblems
can often be solved exactly using exact comparisons. Indeed, Fortune [3] and
Milenkovic [15] have chosen to take this approach in their algorithms.

However, we expect exact comparisons to be less useful for solving problems
in three or more dimensions. For instance, the naive three-dimensional generaliza-
tion of the slab-based algorithm above would not work, because it would require
locating the point on a two-dimensional subdivision (the projection of the
polyhedron on some plane), which cannot be performed exactly, even assuming
exact x- and y-comparisons; and also because there is no three-dimensional analog
of Lemma 4, which is used implicitly in the slab-based algorithm to guarantee that
the point is e away from P if and only if it is e away from the tested edges. In
view of these considerations, we have found it worthwhile to develop a point-
location algorithm that does not use exact comparisons, in the hope that it may
be easier to generalize to higher dimensions.

5. Strongly Convex Hulls. Given a set of points S, we say that P _~ S is a g-hull
for S if every point of S is g-inside P. This definition agrees with our general notion
of epsilon predicates if we define the distance between two polygons to be the
maximum distance between a vertex of one polygon and the nearest point on the
boundary of the other. Note that this metric is different from the one used for
measuring convexity, since it does not require vertices to be matched one-to-one.

5.1. Properties of Strongly Convex Hul l s . . The e-convex g-hull of a set S is not
necessarily unique for g > 0. However, we can at least prove that any two such
hulls are not very different from one another. The following theorems make this
notion more precise:

LEMMA 13. For any four points u, v, u', v' such that Ilu, u'll ~ e and [Iv, v'll < e, and
for any ~ ~ [0_1], we have

(3) II(l - ~)u + cev, (i - ~)u' + ~v'll ~ e.

PROOF. Observe that the distance (3) is the length of the vector (1 - e)(u - u') +
e(v - v'). We know that the vectors u - u' and v - v' lie inside the e-disk centered
at the origin of 9~ 2. The result follows from the convexity of the e-disk. []

THEOREM 14. I f G and H are convex g-hulls of S with g >> O, then every point on
the boundary of G is g-inside H, and vice versa.

PROOF. By definition, every vertex of G is g-inside H, that is, at most 26 away
from the boundary of H. Let 9' and g" be two consecutive vertices of G. Let h'
and h" be the points (not necessarily vertices) of H that are closest to 9' and g",
respectively. Let 9 be any point on the edge 9'9". By Lemma 13, there is a point
h on the segment h'h" that is at most 26 away from 9. The point h is inside the
polygon H by convexity, and therefore the point O is g-inside H. By the same
argument, every point on the boundary of H is also g-inside G. []

552 L. Guibas, D. Salesin, and J. Stolfi

COROLLARY 15. I f G and H are convex O-hulls of S with 6 > 0, then every point
on the boundary of G is f-boundary of H, and vice versa.

The following theorem shows that the number of vertices of any (-e) -convex
(6)-hull of S is within a constant factor of the number of vertices of the smallest
such hull.

THEOREM 16. I f G and H are (-e)-convex 6-hulls of S with e, 6 > O, then
IGI < 2[-2,~/e-qlH[.

PROOF. By Corollary 15, every vertex of G is 6-between two consecutive vertices
of H. By Theorem 10, no more than M = 2F26/e-] of these vertices can be 6-between
any two given points. The theorem then follows trivially. []

5.2. Existence of Strongly Convex Hulls. It is by no means obvious that a
(-e) -convex f-hull always exists for an arbitrary set of points S and an arbitrary
(positive) e and 6. In fact, when 6 < e, there may not exist any such hull. As a
counterexample, consider a set of four points arranged on the vertices of a square
so that each point is just barely z-between its two neighbors (Figure 16). In order
to ensure (-e)-convexity, only two of the four points can be chosen for the hull,
leaving the other two points arbitrarily close to lying 2e away.

On the other hand, we prove here that a (-e) -convex f-hull always exists
whenever 6 > 2e. (The existence question is still open for e < 6 < 2e.) We begin
with a lemma:

LEMMA 17. I f P = (Po P,-1) is a convex polygon, then there exists a sub-
polygon H of P that is (-e)-convex, and that is a 2e-hull for P.

PROOF. For the purposes of this proof, we extend P with an extra vertex p,
coincident with Po. We say that a vertex Pi of a polygon is z-flat if Pi is e-between
its two neighbors Pi-1 and Pi+r We say that a vertex pj covers a vertex Pk if
j < k < j + n and, for every i such that j < i < k, the point pl is e-between the
points pj and Pk"

We denote by c(k), for 0 < k _< n, the smallest j in {0, . . . , k - 1} such that pj
covers Pk. Note that c(0)= 0 and c(k)< k for all k > 0. Note also that c is

()
Fig. 16. Counterexample for the existence of a (-e)-convex f-hull for 6 < e.

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 553

monotonically nondecreasing: k < I implies c(k) < c(1). Furthermore, every vertex
between Pc~k) and Pk, inclusive, covers Pk"

We now recursively define a second function s(k), for 0 < k < n, as follows: s(k)
is 0 if c(k) is 0; otherwise, s(k) is the smallest j such that pj covers Pk, and pj is not
e-between vertices Pst~) and Pk. Note that s(k) > c(k), and s(k) < k except when k = 0.

Assuming that s(k) indeed exists for all k, then the function s defines for each
vertex Pk an implicit chain of vertices H(k) that begin s with Po, ends with Pk, and
is such that for every vertex p~ except Po the previous vertex in the chain is pstj).
By construction, the chain H(k) has the property that every interior vertex pj covers
the next vertex in the chain and is not e-between the two vertices adjacent to it
in the chain. Therefore, the chain H(n) defines a polygon H that is an e-hull for
P, and that has no e-flat vertices, with the possible exception of Po. If vertex P0
is also not e-fiat, then H is (-e)-convex, and we are done. Otherwise, by removing
Po from H, we obtain a polygon that is a (-e)-convex 2e-hull for P, and the lemma
is still true.

It remains to prove that the function s is well defined for all k. The proof is by
induction: s(0) is 0 by definition, and we prove that s(k) exists by assuming that
s(O) , s (k - 1) exist. It suffices to show that there exists a "good" index i in
{c(k), . . . , k - 1} such that Pi is not e-between Ps,~ and Pk.

Let j = c(k). If j = 0, then s(k) = 0 by definition, and we are done. Otherwise,
the definition of c(k) implies that p j_ 1 does not cover Pk. In other words, there is
some vertex in {pj , . . . , Pk-1} that is not e-between the vertices pj_ 1 and Pk. Let
Pm be the first such vertex, and let i be s(m). We have two cases (Figure 17):

If i < j, then m is a good index, since segment p j_ lPk is the diagonal of a convex
quadrilateral (Pi, P j - 1, Pro, Pk), and therefore the distance from Pm to PiPk is greater

\

\ \ii \

\

\

(a) (b)

Fig. 17. Construction for the proof of Lemma 17.

554 L. Guibas, D. Salesin, and J. Stolfi

than the distance from p,, to Pj-lPk, which we already know is greater than 25
(Figure 17(a)).

If i > j, then i is a good index, since segment Ps(oPm is the diagonal of a convex
quadrilateral (Ps,), P~, Pro, Pk), and therefore the distance from p~ to Ps(oPk is greater
than the distance from p~ to Ps(oP,,, which we already know is greater than 25
(Figure 17(b)). []

THEOREM 18. For any set of points S, there is a subset H of S such that the points
of H are the vertices of a (-e)-convex 2e-hull of S.

PROOF. Let P be the ordinary convex hull of S. By Lemma 17, there is a
subpolygon H of P that is (-e)-eonvex and is such that every point of P is 2e-inside
H. However, since every point of S is inside P, every point of S must also lie
2e-inside H, so H is a (-e)-convex 2e-hull for S. []

5.3. Computin9 Strongly Convex Hulls

ALGORITHM 2. Given a set S of n points in the plane and an e > 0, return a
(-e)-convex polygon H, and an uncertainty interval d, such that H is a d-hull for
S. The algorithm guarantees that d.hi < 6e + 72, where 2 is the maximum un-
certainty of the primitive epsilon boxes called by the algorithm.

1. Find the x- and y-extremal points of S. Call then t o, t 1, t 2, t 3, in counter-
clockwise order.

2. For each consecutive pair tqtq+l, do:
a. Let Sq be the set of all points s e S such that i E _ P o s (- e , tq, s, tq+ 0 =

true.
b. Make Sq into an xy-monotone chain Cq by sorting the points in x and y

and removing all points that are xy-dominated by other points in quadrant q.
(For example, in the upper right quadrant, a point is xy-dominated if its
x- and y-coordinates are both less than those of some other point.) Let
(Co cm-0 be the points of this chain Cq from tq to tq+l, inclusive.

c. Build a graph Gq = (N, A) as follows:

N = {(c,cj):i <j} ,

A = {((cicj), (C/k)): i < j < k/x :E P o s (- e , c,, c2, ck) = / t r u e } .

d. Compute for each node (cic~) in N a penalty f (c i c j) , defined as the interval
max{d/r / i < r < j}, where dir j = I_Neg(c l , cr, cj).

e. Define the penalty f (P) of any directed path P in this graph to be the
maximum of the penalties for the nodes of P. Let I (the "initial" nodes) be
the set of all pairs (CoCi) for all i, and let F (the "final" nodes) be the set of
all pairs (c / , ,_ 1) for allj. Find a directed path P~ from any node in I to any
node in F for which the penalty f(P~).hi is minimum.

3. Concatenate the paths Po, P~, Pz, Pa to form a cycle. Let P be the polygon
described by that cycle, and let d be the interval max q f(Pq).

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 555

4. Start with H = P. For each extremal point tq, do the following: Let a, b be
the current neighbors of t~ in H, and let d' be the interval I B e t w e e n (t~, ab).
If d'.lo < e, then remove tq from H, and set d ~ tmax {d.lo, d'.lo}, d.hi + d'.hi).

5. Output the polygon H, aiong with the interval d, asserting that polygon H is
a (-e)-convex d-hull for S.

For simplicity, the description of the algorithm includes exact comparison tests
in x and y. However, these exact tests can be replaced by approximate ones through
a straightforward modification of the algorithm (involving a cleanup step to ensure
that no two points are too close), at the cost of a small increase in the bound on d.hi.

The running time of the algorithm is dominated by step 2e, which can be
performed in time O(IZl loglAI) = O(n 3 log n) time and O(INI) = O(n 2) space by
a standard graph-theoretic algorithm. (The set of arcs A can be generated on the
fly and does not need to be stored explicitly.)

Note that if the accuracy). of all the epsilon boxes used is known in advance,
then it suffices to find a feasible path rather than an optimal path in step 2e. In
this case the algorithm's complexity is reduced to O(n3).

Although these bounds appear extravagant, the algorithm can actually be
expected to perform quite well in practice because the monotone chains Cq are
likely to contain only a small subset of the original points S. For points uniformly
distributed in a square, Barndorff-Nielsen and Sobel [1] show that the expected
size of the chains Cq is only O(log n). The running time is then dominated by the
construction of the chains, which takes O(n log n) time. (Actually, in our case the
analysis is complicated by the imprecise nature of the tests in step 2a; however,
a more detailed analysis shows that these imprecise tests can affect the expected
size of the chain Cq by at most an additive constant.)

Note that for points uniformly distributed in a square, the preprocessing
technique of Golin and Sedgewick [4] can also be used to reduce the set of points

to expected size O(x/~), which reduces the overall expected running time to O(n).
The existence of the paths Pq is guaranteed by the following lemma:

LEMMA 19. Given a set of points S, there exists a convex 2(e + 2)-hull D for S,
with vertices in S, such that:

1. The polygon D includes the four extremal points to, tl, t2, t3 of S.
2. Every point of S not inside D is in the bounding box of some edge of D.
3. For 0 <_ q <_ 3, the xy-monotone chain Dq = (d o dk) between tq and tq+l

satisfies
a. E Pos) (-e , t~, di, t q + l) = true, and
b. E _ P o s (- e , di-1, dl, di+l) = t r u e ,
for O < i < k.

PROOF. Let a = 2(e + 2). Let Q be the quadrilateral defined by the four extremal
points to, tl, t2, t3. For each pair of extremal points (tqtq+ 1) of S, consider the set
S'q consisting of the points tq, tq + 1, and all points s of S that are more than 2a
away from Q and such that Pos(tq, s, tq+ 1). Let S~ be all points of S', that are not

556 L. Guibas, D. Salesin, and J. Stolfi

xy-dominated by other points in quadrant q. By Theorem 18, the set S~ has a
(- e -),)-convex a-hull Dq. The polygon Dq must include the extremal points tq
and tq+l, since these points are more than 2a away from any other point of S~.

Now consider the polygon D that is the convex hull of the union of the hulls
Dq. Any consecutive triple in any xy-monotone chain of D is a triple of consecutive
vertices in some Dq and is therefore (- e - 22)-positive, so the 22-accurate test
E _ P o s (- e , di-1, d~, di+l) is guaranteed to return t r u e . Furthermore, every
nonextremal vertex of Dq is more than 2a away from (2, so

E Pos(-~, tq, d~, tq+1) = true

by Lemma 4.
By the arguments above, polygon D satisfies all three conditions of the lemma.

Furthermore, polygon D is also a a-hull for S since every point of S that is not
in some S~ is either inside D, or at most 2a away from Q or from some polygon
D~, both of which are in D. []

THEOREM 20. Aloorithm 2 produces a polygon H that is a (-e)-convex f-hull for
the 9iven set S, where 6 = 6e + 72.

PROOF. First, we argue that the xy-monotone chains Dq of the polygon D, whose
existence is proved by Lemma 19, must appear as directed paths in the graphs G~
constructed by our algorithm. Condition 3a of the lemma guarantees that the
vertices of Dq will survive in the set Sq constructed in step 2a, and condition 2
guarantees that they will be included in the chain Cq constructed in step 2b. Thus,
all edges of Dq will appear as nodes of Gq. Furthermore, condition 3b guarantees
that every consecutive triple of vertices of Dq appears as an arc of Gq. Therefore,
step 2e will always be able to find some path P~.

Second, we argue that the polygon P computed in step 3 is a d-hull for S, where
d is the interval computed in that step. Observe that any point s of S that is not
inside P must lie in the bounding box of an edge cicj of P, because otherwise point
s would dominate some vertex of P. Moreover, since P is convex, the distance 3 s
between s and P is the same as the distance between s and edge c:j. Therefore,
by Lemma 4, the penalty of the node c~cj computed in step 2d is an interval that
contains 3~. Thus, the interval d computed in step 3 contains the maximum of the
distances 3s for all points s, so P is a d-hull for S.

Third, we argue that the interval d computed in step 3 is bounded above by the
quantity 2e + 322. Since step 2e finds a path with minimal penalty, the path P must
have a penalty no greater than that of the chains Dq, which have penalty at most
2(e + 2) by Lemma 19. On the other hand, the penalties assigned to the paths are
measured by a 22-accurate box, so they could be overestimated by at most 22.

Finally, we argue that the polygon H computed in step 4 is a (-e)-convex
(4(e +).))-hull for the polygon P. For each vertex v of H, denote by h(v) the distance
between v and the diagonal connecting its two neighboring vertices. By Lemma
9, the polygon H is (- e)-convex if and only if h(v) > 2e for all v. At the beginning
of step 4, the condition h(v) > 2e is satisfied for all vertices v except for the extremal

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 557

points tq. Moreover, by convexity, deleting a vertex from H cannot decrease the
value of h(v) for any other vertex v. Since step 4 deletes all vertices for which
h(v) < 2e, the final polygon H is (-e)-convex. On the other hand, step 4 only
deletes a vertex v if h(v) < 2(e + 4). Therefore, the new polygon resulting from each
deletion is an (e + 2)-hull for the previous one. Since at most four vertices are
deleted, the final polygon H is a (4(e + 2))-hull for the starting polygon P.

We conclude that the returned polygon H is a (-e)-convex 6-hull, where
6 < (2e + 34) + 4(~ + 4) = 6e + 72. []

Acknowledgments. The Epsilon Geometry framework was inspired by a dis-
cussion with Bernard Chazelle, Herbert Edelsbrunner, Michel Gangnet, Ricky
Pollack, Franco Preparata, and Micha Sharir. Some of the key ideas used in the
convex-hull algorithm (in particular, the idea to start with xy-monotone chains
of nondominated points) were suggested by Victor Milenkovic. We would like to
thank John Hershberger for this comments on earlier versions of this work. We
are grateful to DEC Systems Research Center and the AT&T Foundation for their
financial support.

Appendix. Implementation Results. The point-inclusion algorithm of Section 4
and the convex-hull algorithm of Section 5.3 have been implemented in Modula-
2+ on the Firefly workstation 1-24] at the DEC Systems Research Center. A
package for arbitrary-precision arithmetic [9] was used to verify the correctness
of these implementations over a variety of input.

The implementations are built on top of a library of two-dimensional primitives
(including Coincident, Collinear, Pos, Neg, and Between) and interval arithmetic
functions (rain, rnax[II, [7, etc.). This library is about 150 lines of code. The
point-inclusion algorithm is about 50 lines of code, while the convex-hull algorithm
is about 200.

Figure 18 illustrates the different (-e)-convex 6-hulls constructed by the
convex-hull algorithm for three sets of 512 points, as the input parameter e is
increased from 0.02 to 0.08 to 0.32. The first set of points is uniformly distributed
in a square with sides of length 2. The second set is a Gaussian distribution of
points on a disk of radius 1. The third set has one-third of its points randomly
distributed on a circle of radius 1, one-third of its points randomly distributed on
a disk of radius 1, and one-third of its points randomly distributed in very close
proximity (between 0.001 and 0.033 units) to the chosen points on the circle.

Below the figures are tables showing the requested value of ~ for each row, the
actual values of e and 6 (computed using exact arithmetic) for the (-e)-convex
6-hulls produced, and the value of 6 returned by the algorithm. Note that the
convex-hull algorithm actually performs quite well in practice--indeed, in every
case considered here, the algorithm actually computes a (-e)-convex ~-hull with
6_<e.

Table 1 summarizes some performance tests on the convex-hull algorithm. In
each test, (-0.01)-convex 6-hulls were computed for 20 different sets of n points.

558 L. Guibas, D. Salesiu, and J. Stolfi

Accurate Hiill Test Accurate Hull Test Accurate Hull Test I
I �9 1 ~ll

],-: .:.!
i - . . . " . - - . . , ' , : . - " ". / /~:.:: '~:.-.".::.. . .~-:,-. �9 . . / /

�9 : . i : . . ;.:"..-:". ;t
I I �9 �9

Accurate Hull Test �9 Accurate Hull Test Accur~}te Ht}lj Test

i t �9
Accurate Hull Test / Accurate Hull Test n

~/ / / ; � 9 . �9 �9 .
. . ~ . �9 ~ �9 �9

. . . - �9

o , - ' ~ �9 �9 . . .

I
m

I

I

Accurate Hull Test t_

�9 i i

�9 g " . . . - . "

""* 0 * , " " " ~ ~ 4~ 5'

�9 �9 []

Fig. 18. Some approximate hulls.

(requested) e (actual) 6 (actual) 6 (reported)

0.020 0.024 0.043 0.020 0.019 0.016 0.014 0.063 0.017 0.020
0.080 0.631 0.103 0.129 0.055 0.075 0.051 0.171 0.075 0.079
0.320 0.461 0.329 0.506 0.267 0.199 0.158 0.493 0.249 0.158

Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives 559

Table 1. Performance statistics for convex-hull algorithm.

Uniform Gaussian Circular

n t IC~l t ICql t IC~l

32 1 15 1 12 2 19
64 3 18 2 14 4 29

128 5 21 4 16 14 46
256 9 23 9 19 39 70
512 18 27 16 21 111 105

1024 34 31 33 25 278 144
2048 66 32 64 25 544 181
4096 130 33 130 30 1088 227
8192 262 38 252 32 1818 268

The value t gives the total number of seconds spent by the algorithm to compute
the 20 hulls. The value I Cal gives the average number of candidate points in the
four monotone subchains constructed for each hull by the algorithm.

The table includes results for uniform, Gaussian, and circular distributions of
points, as described above. Note that for uniform and Gaussian distributions of
8000 points or less, the algorithm appears to run in approximately linear time.
Note also that the size of the monotone subchains I Ca[appears to be O(log n) for
these distributions, as expected. For points in a circular distribution, the algor-
ithm's performance degrades and appears to be about cubic in the size of the
monotone subchains I Ca[, which is consistent with the analysis of Section 5.3.

R e f e r e n c e s

[1] O. Barndorff-Nielsen and M. Sobel, On the Distribution of the Number of Admissible Points
in a Vector Sample. Theory of Probability and Its Applications, XI(2) (1966), 249-269.

[2] D. Dobkin and D. Silver, Recipes for Geometry and Numerical Analysis--Part I: An Empiricial
Study. Proceedinos of the 4th Annual ACM Symposium on Computational Geometry, 1988,
pp. 93-105.

I-3] S. Fortune, Stable Maintenance of Point Set Triangulations in Two Dimensions. Proceedings
of the 30th Annual Symposium on Foundations of Computer Science, 1989, pp. 494-499.

[4] M. Golin and R. Sedgewick, Analysis of a Simple Yet Efficient Convex Hull Algorithm.
Proceedings of the 4th Annual A CM Symposium on Computational Geometry, 1988, pp. 153-163.

[5] D.H. Greene and F. F. Yao, Finite-Resolution Computational Geometry. Proceedings of the
27th IEEE Symposium on the Foundations of Computer Science, 1986, pp. 143-152.

I-6] L. Guibas, L. Ramshaw, and J. Stolfi, A Kinetic Framework for Computational Geometry.
Proceedings of the 24th IEEE Annual Symposium on Foundations of Computer Science, 1983,
pp. 100-111.

I-7] L. Guibas, D. Salesin, and J. Stolfi, Epsilon Geometry: Building Robust Algorithms from
Imprecise Computations. Proceedinos of the 5th Annual ACM Symposium on Computational
Geometry, 1989, pp. 208-217.,

I-8] L. Guibas and J. Stolfi, CS445 Computational Geometry Lecture Notes, Computer Science
Department, Stanford University, Winter 1983.

[9] J.C. Herve, F. Morain, D. Salesin, B. P. Serpette, J. Vuillemin, and P. Zimmermann, BigNum:
A Portable and Efficient Package for Arbitrary-Precision Arithmetic. Research Report No. 1016,

560 L. Guibas, D. Salesin, and J. Stolfi

Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt,
1989.

[10] C. Hoffman, The Problems of Accuracy and Robustness in Geometric Computation. Computer,
22 (1989), 3142.

[11] C.M. Hoffman, J. E. Hopcroft, and M. S. Karasick, Towards Implementing Robust Geometric
Computations. Proceedings of the 4th Annual ACM Symposium on Computational Geometry,
1988, pp. 106-117.

[12] J.W. Jaromczyk and G. W. Wasilkowski, Numerical Stability of a Convex Hull Algorithm for
Simple Polygons. Technical Report No. 177-90, University of Kentucky, 1990.

[13] D. E. Knuth, Axioms and Hulls. Manuscript, Stanford University, 1991. To appear as a
Springer-Verlag Monograph.

[14] V.J. Milenkovic, Verifiable Implementations of Geometric Algorithms Using Finite Precision
Arithmetic. Artificial Intelligence, 37 (1988), 377401.

[15] V.J. Milenkovic, Verifiable Implementations of Geometric Algorithms Using Finite Precision
Arithmetic. Ph.D. thesis, Carnegie-Mellon, 1988. Available as CMU Report CMU-CS-88-168.

[16] V.J. Milenkovic, Calculating Approximate Curve Arrangements Using Rounded Arithmetic.
Proceedings of the 5 th Annual A CM Symposium on Computational Geometry, 1989, pp. 197-207.

[17] V.J. Milenkovic, Double Precision Geometry: A General Technique for Calculating Line and
Segment Intersections Using Rounded Arithmetic. Proceedings of the 30th Annual Symposium
on Foundations of Computer Science, 1989, pp. 500-505.

[18] V.J. Milenkovic and Z. Li, Constructing Strongly Convex Hulls Using Exact or Rounded
Arithmetic. Proceedings of the 6th Annual ACM Symposium on Computational Geometry, 1990,
pp. 235-243.

[19] T. Ottmann, G. Thiemt, and C. Ullrich, Numerical Stability of Geometric Algorithms. Proceed-
ings of the 3rd Annual ACM Symposium on Computational Geometry, 1987, pp. 119-125.

[20] F. Preparata and M. Shamos, Computational Geometry: An Introduction. Springer-Verlag,
New York, 1985.

[21] D. Salesin, Epsilon Geometry: Building Robust Algorithms from Imprecise Computations.
Ph.D. thesis, Stanford University, 1991. Available as Report STAN-CS-91-1398, Stanford, CA.

[22] M. Segal and C. Srquin, Consistent Calculations for Solids Modeling. Proceedings of the 1st
Annual ACM Symposium on Computational Geometry, 1985, pp. 29-38.

[23] K. Sugihara and M. Iri, Geometric Algorithms in Finite-Precision Arithmetic. Research
Memorandum RMI 88-10, University of Tokyo, September 1988.

[24] C.P. Thacker, L. C. Stewart, and E. H. Satterthwaite, Jr., Firefly: A Multiprocessor Workstation.
Research Report no. 23, DEC Systems Research Center, Palo Alto, CA, 1987.

