
Acta Mechanica 142, 169-193 (2000) 
ACTA MECHANICA 
�9 Springer-Verlag 2000 

Rigid body oscillator: a general model 
and some results 

P. A. Zhilin, St. Petersburg, Russia 

(Received May 14, 1998; revised March 11, 1999) 

Summary. The presented discourse develops a new model named rigid body oscillator. This model plays 
the same role in Eulerian mechanics as the model of nonlinear oscillator in Newtonian mechanics. The 
importance of introducing a rigid body oscillator, or in other words a rigid body on an elastic foundation 
of general kind, was pointed out by many scientists. However, the problem is not formalized up to now. 
In the paper, all concepts necessary for a mathematical description are introduced. Some of them are 
new. The equations of motion are represented in an unusual form for rigid body dynamics, have simple 
structure, but contain a nonlinearity of complicated kind. These equations may be an interesting object 
for the theory of nonlinear differential equations. The solutions of some problems are presented. For the 
simplest case, the exact solution is found by an explicid integration of the basic equations. 

1 Introduction 

The nonlinear (linear) oscillator is the most  important  model of  classical physics. An inves.- 

tigation of  many physical phenomena and a development of  many methods of  nonlinear 

mechanics had arisen due to this model. At  the same time, the necessity of  construction of  

models with new properties was recognized. Especially, it was important  in quantum 

mechanics where many authors pointed out that a new model must be something like a 

rigid body on an elastic foundation. However, such a model was not created up to now. 

At the present time, two huge branches of  mechanics, i.e., continuum mechanics and rigid 

body dynamics, are existing without close contacts. While, maybe, rigid body dynamics 

does not need the methods of  continuum mechanics, the same can not be said with respecr 
to continuum mechanics. This is clear from the end of  the last century. The theories of  

rods and shells, the theory of  Cosserat continuum, the theory of  liquid crystals, the theory 

of  ferromagnetic media, and other theories involve ideas from rigid body dynamics. In the 
theory of  liquid crystals, each point of  the medium is a rigid body. In the theory of  a 

multi-polar continuum, each point is a gyrostat with many rotors inside. Thus, it is clear 

that the theory of  a multi-polar continuum cannot be constructed without basic ideas of  

rigid body dynamics. In linear theories, there is no problem. In this case, continuum 
mechanics and rigid body dynamics use the same language. However, rotations of  particles; 

of  media are not small in many cases. Therefore, we have to use nonlinear dynamics. In 
nonlinear theories, the difference between methods of  rigid body dynamics and continuun~t 
mechanics is essential. Rigid body dynamics uses matrix methods or quaternion methods; 
[13] which are not suited for aims of  continuum mechanics. As a matter of  fact, the only 
language which can be used in continuum mechanics is the tensor calculus. Thus, if we arc.. 
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going to apply the methods of rigid body dynamics to continuum mechanics, it is necessary 
to describe rigid body dynamics in terms of tensors. There are different versions of the 
tensor calculus. In this paper, the direct tensor calculus is used [3], [6], [9]. In Appendix A, 
it is shown how to transform the tensor notation into the matrix notation. 

A rigid body on an elastic foundation ~ t l  be called a rigid body oscillator in the following. 
A general model of such an object can be used in many cases, e.g., in the mechanics of a 
multi-polar contimmm. For  the construction of the model, three new elements are required: 
the turn-vector (see Appendix A for the terminology, explanation), the integrating tensor, and 
the potential moment. Let us briefly discuss these concepts. 

An unusual situation takes place with the turn-vector. On the one side, the well-known 
Euler theorem proves that any turn of the body can be realized as the turn around a unit 
vector _ by an angle 0. Thus, the turn can be described by a vector _0 = 0_n. This fact can be 
tbund in many works on mechanics. On the other side, the same works [1] claim that the 
vector 0n is not a vector, and a description of  a turn in terms of a vector is impossible. Maybe 
by this reason, the turn-vector has not found great acceptance in conventional rigid body 
dynamics. However, namely the turn-vector plays a major role in dynamics of a rigid body on 
an elastic foundation. 

In classical mechanics, the linear differential tbrm L~dt is the total differential of the vector 
of position, i.e., udt = dR. This is not true for rotations. If the vector _ is a vector of angular 
velocity, then the linear differential form _dr is not a total differential of the turn-vector, 
However, it can be proved that there exists an integrating tensor Z that transforms the linear 
differential form ~_dt into the total differential dO of the turn-vector 0 [11]. The integrating 
tensor Z plays the decisive rote for an introduction of a potential moment which expresses an 
action of the elastic foundation on the r ind body. Thus, it is an essential element of a general 
model of  a rigid body oscillator. 

The basic equations of the dynamics of a rigid body oscillator contain a strong nonlinear- 
it"3', but their form is rather simple. These equations give a very interesting object for applying 
methods of nonlinear mechamcs. In the paper, some simple examples are considered. In 
particular, the basic equations are integrated explicitly in the case of the simplest model. 

2 Mathematical preliminaries 

In this Section, certain aspects of  the turn-tensor and the turnwector will be briefly presented, 
Some initial definitions can be found in [10]. 

2.1 Vector of turn 

The turn-vector is a very otd concept. It is difficult to find another concept, for which there 
exist so many inconsistent propositions as for the turn-vector. Because of  this, it seems to be 
necessary to give the strict introduction of the turn-vector and to describe its basic properties. 
The introduction of the turn-vector is determined by the well-known Euler statement: 
any turn can be represented as the turn around some axis ~ by a certain angle 0. The vector 
0 = On, fat = 1, is called a turn-vector, Note that two different mathematical concepts 
correspond m one physical (or geometrical) idea of turn. One of  them is described by a turn- 
tensor, the other is described by a turn-vector. Of course, both of  them are connected 
uniquely, For the turn-tensor we shall use the notation [I0] - see Appendix A for additiona[ 
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explanations of  notations and terminology 

Q(0~_) = (1 - cos 0) n e ~ + cos 0 ~  + sin On x E .  (1") 

An action of  the tensor Q_(0~) on the vector _a can be expressed in the form 

__a' : __Q(0n). a = (_a. n) n + cos 0(a - (a- n) ,_~) + sin On x a .  (2) 

If  n x a = _0, then _W = ft. If  a .  n = 0, then we have 

d = cos 0_a + sin On x a .  

This means that the vector a/represents the vector _a turned around the vector n= by an angle 
0. Representation (1) can be rewritten also as 

sin 0 1 - cos 0 R2 
~(0)  = =E + ~ - -  ~ + ----g~ ..... : = exp ~ ,  (3) 

where 

R = 0 x E ,  R 2 = 0 | 0 - 02E, 0 = I_01. (4) 

Let us show the derivation of  the second equality in (3). By definition we have 

1 kR, R2 ~ _0  2 expR= = ~ :Rk, :R2k+l = ( _ 0  2) = = = ( )~- I_R 2 , k >_ 1 .  
k=0 

From this follows 

( 2 k + l ) !  s (2k)! ] 
]c=O k = l  

If  we take into account the power series for cos 0 and sin 0, we obtain (3), which in matrix 
notations can be found in [1]. Note  that there exists a certain difference between representa- 
tions (l) and (3). In (1) the quantity 0 is the angle of turn and can be both positive and 
negative. In (3) the quantity 0 is the modulus of  the turn-vector, i.e., the modulus of  the angle 
of  turn. Such an interpretation is possible since e.g. sin 0/0 = sin ]01/101. As a rule, representa- 
tion (3) is more convenient for applications then expression (1). Let us consider a super- 
position of  two turns 

~(0):  _Q(~) _~(r (5) 

The vector of  total turn 0 is connected with the turn-vectors s and r by the formulas 

tr  Q(_0) : 1 + 2cos0  -- cosqo + cos r  + c o s ~ c o s r  

- 2  s in~  s i n e  (1 - cos qo) (1 - cos@ 
r _~ "~  + ;~7 -r (~ .  ~)2, (6) 

Q ] sin 0 
- (_0) = 2 - - 0 - - 0  

(Vtx co  t 
/ sin r (1 - cos r sin 

+ ~--~-- (1 + cos ~o) - r ~o 

( sin~sinr (I - ~ (I - co~) 

( 1 -  cos~p) s i n e  ) 
~2 r s s 

s 1 6 3  s 

s162 (7) 
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Note that from expressions (3), (4) follows 

~ .  o = o,  Q(_o). o = o. (s) 

2.2 Integrating tensor 

For rotations the turn-vector 0(t) plays the same role as the vector _R(t) for translations. In 
the latter case, the translation velocity g can be found by means of a simple formula, i.e., 
u = ~ (t). This means that the linear form gdt  is the total differential of the position vector. 
For the rotations the situation is more complicated, since the linear form c q..dt is not the total 
differential of the turn-vector 0, where ~ is the vector of angular velocity. Thus, it is necessary 
to find an integrating factor that transforms the linear form w dt to the total differential d0 of 
the turn-vector. For this end, let us consider the left Poisson equation [10] 

d 
Q = ~ = _ • ~(_o). (9) 

This equation for the turn-tensor Q(_0) is equivalent to a system of nine scalar equations, 
but only three of thena are independent. In order to find these independent equations, it is 
possible to substitute Q(0) in Eq, (9) by equality (3). After some transformations given in 
Appendix B we find 

-o(0 = z(o_). ~ ( t ) ,  ( Io)  

where 

1 1 ~ 9' R2 O sin 0 
Z(0) = ~ - ~ + ~  , 9 -  2 (1_  cos0 ) (11) 

The tensor Z(0) will be called the integrating tensor in the following. The tensor Z has the 
determinant 

0 2 

detZ(._0.) = 2(1 - cos0) r 0. 

Strictly speaking, we must exclude the singular points 0 = 2r&, ~ _> 1, where k is a positive 
integer, from the consideration. However, it seems to be obvious that there exist only the 
following alternatives: eigher co = g and 0 may have an arbitrary value, or w r Q and 0 is 
forced to be less than re. In the first case, we have aJ x 0 = 0 and expression (10) or, what is the 
same, (15) is valid. In the second case, the 0 can not be a singular point. These alternatives are 
obvious from the geometrical point of view, but its strict proof  is unknown, tt can be shown 
It 11 that if 02 >>  1, then the equality 0 x a,, = 0 must be valid. As a matter of fact, we do not 
know problems where the singular points lead to noticeabIe difficulties. 

The integrating tensor has a number of  useful properties. Let us describe some of them. 
First of all, the tensor Z(0) is an isotropic function of the turn-vector 0 which means 

Z (S .  0) = ~ .  ~(_0.) �9 S._ T VS: S .  S T = 4 ,  de tS  = 1. (12) 

If S = Q(0), then it follows from (12) and (8) 

z(0). Q(0) = 9(0). z(0). 
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Further, we can prove the identity 

__zff(O) : s : Z(O). s 

For the right angular velocity ~ = QT(0).w, see 

and (13) 
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(is) 

[10], it follows from expressions (10) 

0"(t) : z__r(0). _n(t). (24) 

This equation is equivalent to the right Poisson equation [10]. In an explicit form, Eqs. (10) 

and (14) can be rewritten as 

= _ - ~ o • ~ + 0 • (0 • @ ,  0(o) : _oo, (m) 

: _~ + ~ 0 x s + o x t0 x @ ,  _o(o) : _Oo. (16) 

In [5] one can find expression (I 5) in terms of a vector of a finite rotation, 

(o) 2 tan~ 0. 1 1 o,(o,  �9 @ ,  o, = ? 

This expression coincides with Eq. (15). Thus, we see that, generally speaking, almost all of 
our expressions are known. However, paper [1] deals with a turn-tensor without a turn-vector, 
book [5] deals with a turn-vector without a turn-tensor. Besides, the vector of  finite rotation 

_0, is not convenient in some cases since it is discontinuous. Problem (15) is called the left 
Darboux problem [10]. I f  the left angular velocity is known, then the turn-vector (and there- 
fore the turn-tensor) can be found as the solution of the differential equation (15). 

Expressions (15) and (16) can also be written in an equivalent form 

-g : g-~ - 5 0 • ~ + 00 ,  (17) 

i !~J_ 
: gn + ~ o x _n + ~o Os) 

by taking into account the identities 

o.~:o.s~=0.~ =o~. 

Sometimes, it is more convenient to use an inverse form of Eqs. (10)-(14), 

n(t) : z-r(o). _~(t), (19) ~(t) : z-~(o) . g_(8 

where 

1 - cos 0 
__Z-~(O) = E + O----V--- 

R + 0 -  s i  R2 (20) 
== 03 = 

according to Appendix B. 

2.3 Potential moment 

Let us introduce a concept of potential moment. This concept is necessary for a statement and 
an analysis of many problems. Nevertheless, a general definition of potential moment is 

absent in the literature. 
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Definition: A moment _A!(t) is called potential, if there exists a scalar function U(_0) depending 
on a turn-vector such that 

dU ~, (21) 
M. ~, = - 5(_0) = ~_o - 

see Appendix C. Making use of Eq. (10), this equality can be rewritten in the form 

-,'~ + ~ _ . 

This equality must be satisfied for any vector N which is possible if and only if 

dU 
M = -Zf f (0 )  - 5 F  + - f ( ~  2 )  • 2 ,  (22) 

where .if_0, ~) is an arbitrary function of vectors 0 and {. 

Dgfinition: A moment M is called positional, if M depends on the turn-vector 0_ only. For  the 
positional moment iV_/(0) we have 

M(O) : -_Zr(_0). dU(0)  (2a) 
- -  - -  - -  d ~  

Let us show two simple examples. If the potential function has a t~rm of an isotropic function 
of the turn-vector 

u(o) = F(0  ~) = F ( 0 .  _0), 

then we find from expressions (23) and (11) 

M(O) = - 2  dF(Os) 
- - -  d(O~) 0_. 

If a potential function has the simplest form U(_0) = Ck. 0 C = eonst., _/!, = eonst., t_kl -- I, 
then we have a rather complicated expression for the moment: 

M M = J C Z  ~ . k = - c  ~ + f f O x ~ +  O_x(Ox~ . 

Definition: The potential U(_0) is called transversally istropic with an axis of  symmetry k, 
if the equality 

holds for any turn-tensor .Q(ak). It can be proved - see [11] and Appendix D - that a general 
form of a transversally isotropic potential can be expressed as a function of two arguments, 

uCo) -- F(~.  o, o~). 

For this potential one can derive the expression 

OF OF 
M(~_) : - 2  ~ ~ -  o~-.  ~) ~ " ~ 

(24) 
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There exists the obvious identity 

( ~ - Q ( 0 ) ) . 0 = ( m E - Q ~ ) . 0 = 0 ~  ( a - ~ ' ) . 0 = 0  

for arbitrary _a, _a ~ = Q - _a. Taking into account this identity, we may obtain from expression 

(25) 

OF 
~_- o=~(o)) . M - O(k_. e_~) k • o .  

Multiplying this equality by the vector _k we obtain 

(_k - _k'). _M_M = O. (26) 

For  the isotropic potential, equality (26) holds for any vector a. Sometimes equality (26) is 

very important  - see, for example, Sect. 4. 

2.4 The perturbation method on the set of properly orthogonal tensors 

Turn-tensors are subjected to restrictions 

Q.QT = QT.  Q =_E_E, d e t Q  = +1 .  (27) 

A perturbed turn-tensor Q must be subjected to these conditions as well. In contrast,  the 

turn-vector has no restrictions like (27). Thus the perturbed turn-vector can be simply defined 

a s  

o~ = _00 + c~  Icl << 1, (28) 

where _0 o is the unperturbed turn-vector and the vector ~ is called the first variation of  the 
turn-vector. The perturbed turn-tensor can be found from (3) and (4), 

Q = e x p R  = e x p ( ~  x E ) .  (29) 

Equations (27) are then satisfied by the tensor Q for arbitrary vectors _0~. We shall consider 
the parameter  e as an independent variable. I ~ s u c h  a case, it is possible to introduce the 
left and the right perturbat ion directions V_~ and ~ ,  respectively, analogously to the angular 
velocities: 

0 ~Q=~•215162 ~ : ~ _  (30) 

The perturbed angular velocities can be found from the Poisson equations (9) 

c}~=~• =Q •  _ < = Q . ~ .  

The conditions ofintegrabil i ty for system (30), (31) can be written in the form 

0 0 
0-2~=_~=+~• o - 2 ~ = ~ = - ~ •  . _ _  _ 

For  the perturbat ion directions we have expressions analogous to Eqs. (19), 

0 

(31) 

(32' 

(33',, 
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According to Eqs. (19), the perturbed angular velocities can be found by 

:~ �9 ~, = Z T. 
-- ~-C =_ C " 

If  the unperturbed vector 00 does not depend on time (state of  equilibrium), then 

= e Z - l . ~ ,  Y?~=eZ  r 0 . ~ .  

Let there be given the function f(c ,  t). The quantity 

f*(~):k o J~=o 

(34) 

(3s) 

is called the first variation of the function f(G, t). For  the first variation of  the turn-tensor and 
of the perturbat ion directions we find from (30), (33), and (34) 

Q* = 20 • (~0' ~]0 : Z0 -1  " ~ '  ix)* = ~0 J- -~0 X ~--0, (36) 

where the subscripts 0 marks the unperturbed state, r/0 = G I~-0- For  the right quantities ana- 
logous relations are valid, 

_Q-* = =Q0 • ;0 ,  . . . .  r : _-z0-~ �9 ~ ,  n*  = ~0 - r • _no. (at)  

Especially, if the perturbations are superposed on a state of  equilibrium, these formulas may 
be simplified by N0 = _no = 0_. Using Eqs. (28), (34)-(37)  the first variation of the modulus of  
the turn-vector may be found from 0fi = _0e �9 _0 c : 

0* ] 1 1 
= ~ _00 ._~ = ~ _00 _~0 = ~ _00 ._%. (as) 

3 The equations of motion of a rigid body oscillator 

Let us consider a rigid body with a fixed point O. The body is supposed to be clamped on an 
elastic foundation, which is resisting to any turn of the body. The position of the body for an 
undeformed elastic foundation is chosen as reference position. The tensor of  inertia of  the 
body with respect to the fixed point O will be denoted as 

_A = Al_d 1 | 1 + A2d 2 | d 2 + Aad 3 | da, (39) 

where A i  > 0 are the principle moments  of  inertia and the vectors _d i are the principal axes of  
the inertia tensor. Of  course, the tensor A can be represented in terms of an arbitrary basis e_~, 

3 
d i a i ~ e _ ~ ,  A = ~ e_~, A ~ _ = __ A e_ m | = a i m o ! i n A i  . 

i=1 

I f  a body has the axis of  symmetry _~, then the inertia tensor will be transversally isotropic, 

A = A I ( E = - I ~ | 1 7 4  d a = k _ ,  A1  = - A 2 .  (40) 

The position of a body at the instant t is called the actual position of a body. The mot ion of 
the body can be defined either by the turn-tensor P( t )  or by the turn-vector _0(t), 

p( t )  = Q ( @ ) ) .  
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The tensor of inertia A (~) in the actual position is determined by 

_A (t) = P ( t )  . A .  P ~ ( t ) .  (41) 

If  the tensor A is transversally isotropic, this results in 

A (t) ~-, A1 (/~7 -- k' | ~t) + A3_~t @ ~/ ~t = ___p. ~:. (42) 

The kinetic moment of  the body can be expressed in two forms. In terms of the left angular 

velocity we obtain 

L = P .  A .  p T .  w = a l ~  + (Aa - A1) (k_'. co) k_', (43 I) 

where the second term of Eq. (43) applies to the transversally isotropic tensor of  inertia only. 

In terms of the right angular velocity the kinetic moment has the form 

L = P .  A- g? = P -  [ d t ~ +  ( g 3 -  A1) (k. ~ ) k ] .  (44) 

Let us note that 

k ' .  a~ = k.  p T .  ~ _- k- f2. (45) 

An external moment M acting on the body can be represented in the form 

M = M~ + _M_M~xt, 

where M~ is a reaction of the elastic foundation and M~xt is an additional external moment. 
The elastic moment M~. is supported to be positional with a potential. In such a case, we may 

write according to (23) 

M ~ = - Z T ( O _ )  dU(O-) (46) 

where the scalar function U(O-) is called the elastic energy. In the following, the elastic founda- 
tion is supposed to be transversally isotropic. Then the elastic moment can be represented in 

the form (25), i.e., 

__Md~) = - c (  o~; k . o) O- - D (  O ~, k . o) S ( o) . k (47) 

where the unit vector k is placed on the axis of  isotropy of the body in the reference position, 

and 

o o u(o ~,k.o). (48) 
c = 2 ~ u ( o  ~, ~ .  ~) ,  D = O(--}. O_--5 - - 

Let us consider a possible expression of an elastic energy, e.g., 

1 a2cO 2 1/3~(d - c) (~.  O_)2 (49) 

u = 5 ~ _ 0~ + (_k._0f ~ 2 ~ - (k .  O_)2 , 

where a 2 > 0,/32 > 0, c > 0 and d > 0 are constant parameters. The parameters c and d are 
the bending stiffness and torsional stiffness of  the elastic foundation, respectively. I f  the 
parameters a 2 and/32 go to infinity, we obtain as simplest form of an elastic potential 

u = ~-~(0 ~ - (k .  0) ~) + ~ d(k .  O_)~ (50) 
2 2 ' 
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In this case, the elastic moment (47) is 

_M~(~) = -~o  - ( ~ -  ~) (k.  0)_zT(0). ~. (51) 

For an external moment M-M-ezt let us accept the expression 

M~t  _ z  r (0  ) dr(O),, 
- ~  = - " - ~ _ 0 -  ~- ~ , 1 ~ ,  (52)  

where the first term describes the potential part of tile external moment according to (23). The 
second law of dynamics by Euler can be represented in two equivalent forms. In terms of the 
left angular velocity we find from L = M 

t~(~) " A ,  P_T(O) . ~_]" + Z~(O) , d(U + V)  = ~A= (53) 

This equation has to be completed by the left Poisson Eq. (15), 

resulting in a general model of a rigid body oscillator. In terms of the right angular velocity, 
the model can be represented by 

A .  ~ + ~? • A .  ~ + Z(O). d(U + V)  _ .pr(0) ' Me,~ (55) 
. . . .  - dO . . . . . . . . . . .  

(_0• _~) (56) 

where Eqs. (lR), (16), (44), (46), (52) and identities 

(~P. A. ~)" = _P- (A_. ~. + ~ • A- ~), ~- (a • b) : (P. ~) • (P- b) 

have been used. It is important that the model of  a rigid body oscillator is represented in 
terms of natural variables: the turn-vector and the vector of angular velocity. A significant 
merit of the equations stated above is that they contain the first derivatives of the unknown 
vectors only. Thus, it is possible to use standard methods for numerical analysis. 

The remainder of the paper deals with applications of the derived equations. 

4 Equilibrium state and stability of a rigid body oscillator under the action of a 
follower moment. Paradox by Nicolai 

Let us consider a classical problem that was investigated by E. L. Nikolai [8]. Later it was 
studied by many other authors - see, for example [14], [2], where other references may be 
found. 

The inertia tensor of the body is supposed to be transversally isotropic as defined by 
expression (40). An external follower moment is defined by 

M=~ = 5 ~  = Mk 2 = ~ ( 0 ) -  =~, M = oonst.,  (57) 

where the unit vector k is placed on the symmetry axis of the body in the reference position. 
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Equations (55), (56) then read 

Alo(} + (A3 - A1) (_k- J}) _k - (Aa - A1) (_k. ~ )  _k x ~ + CO + DZ(0) �9 _k = M_k, (58) 

1 ~ 0 sin 0 
8 = ## + ~ 0 x _~ + _0 • (0 x _~), g - 2(1 - cos 0) ' (59) 

where the functions C and D are defined by expressions (48). It is easy to find the equilibrium 
solution of the system of Eqs. (58), (59): 

_0 = 0k, 0 = const., Y? = 0. (60) 

Substituting Eq. (60) into the system (58), (59), we obtain the scalar equation 

c(o 2, o) o + D(O 2, O) = M .  (61) 

Especially, if the elastic energy has form (50), then Eq. (61) takes a linear form: 

Mk 
c ( o  ~, o) = c ,  D(O ~, O) = (d - c) k .  0 - - ~  0 - d (62) 

In order to investigate the stability of solution (62), we will use the method of superposition of 
small perturbations on the state of equilibrium. Let us consider the perturbed quantities 

M 
= 00k + e_~(t), ~--e = c~(t), 00 = ~ - .  (63) 

The perturbed Eqs. (58), (59) take the form: 

AI~_~ + (A3 - A1) (_k. ~ )  k - (A3 - A1) (~' ~ )  _k • _~o0~ + cOe 

+ ( d -  ~) (_k. 0~) Z(0~) �9 _k = M_k, (64) 

0 @  0~ sin 0c 
#~ = ~ + 1 0~ • ~ + 0~ • ( ~  • ~ ) ,  g~ - 2(1 - cos 0f) (65) 

Substituting expressions (63) and taking into account the unperturbed solution yields 

A ~  + (An - A~)(_k. _~)_k + c~ + ( d -  c)(_k, ._~)_k 

+ M  1 -  k • +-EQ- _, 

1 M  

These equations may be decoupled in torsion and bending perturbations by 

_~=@+_y,  y . k = 0 ;  ~ = ~ k + r  r  0, (681) 

Substituting (58) into (66), (67) and projecting the obtained equations on k and the plane 
orthogonal to _k we have 

d 3 ~ + d 7  = 0, dl#_+[gc+(1-g)d]r 1 -  _ k x ~ = 0 ,  ~ ' = ~ ,  

_~=g_y+Mkx y. 
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Excluding from these equations ~ and _y we obtain 

Aa'y" + d7 = 0, 

A f ,, ( ~/I2 _~I 2 ) ~u 

where 

(69) 

00 sin00 Jq 
9 - - 2 ( 1 _ c o s 0 0 ) ,  0 0 = " ~ - .  

I f the  quantity IMI/d is small, i,e., IM]/d<< 1, then the second term ofEq .  (69) can be rewrit- 
ten as 

Al~. .  + (e + (C-  2d) M2 ) M 
- i ~  -~ + V -~ • -r = 0 .  (70) 

Taking into account that ,~b is orthogonal to k let us look for a particular solution of  this equa- 
tion in the form 

= _a exp(pt) ,  a = const. ,  a .  k = O. 

For  the vector _a we have the system 

Alp 2 + c -t i~j~ ~ ,  + --~ h_ x E=_, .a_ = 0_, ~ ,  = E_ - k | k, (71) 

This equation has the form 

d . ~ = 0 ,  A =  ~ . + f ~ x  E, ,  E = E - k |  ~./,: = 0, 

A = Alp 2 + c + (c - 2d) 2t'f 2 M 
12d z ' # = ~ - .  

We see that 

k. A = A.  k =_0, detAA_ = O. 

In such a case, only the determinant of the plane part  of A is important. It can be defined by 

d~t ~ = ~1 ((trA)~= _ t r ~  ) = ~ ( 4~  _ 2~ ~ + #~) = ~ + #~ 

Thus, nontrRdal solutions of  Eq. (7 I) are obtained for 

( A l p 2 + c +  (c-12d 22d) M2 ) 2 '~ 711//2-0- " (72) 

It is easy to see that at least one root of  this equation has a positive real part  resulting in an 
increasing solution of  Eq. (70) since a total solution of (70) has a form 

4 

~b = E _ a  p ( p t )  ._ k ex k 
k = l  

a k ~ COnSt. 

_%._~=0,  
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where pk are the roots of (72), _a~: are the solutions of (71). Thus, the state of equilibrium (62) 
is unstable for an arbitrarily small external twisting moment M. This phenomenon is well 
known under the name of paradox of Nikotai. 

From the purely theoretical point of view it is no wonder that the state of equilibrium is 
trustable. However, from the practical point of view the situation is very disagreeable. Really, 
if an external moment is small, then it is supposed that the linear theory is valid. In this case, 

Eqs. (58), (59) can be rewritten as: 

A~0" + (A~ - A~) (~. ~") ~+  c0 + ( d -  ~) (~. 0)~ = ~ .  (73) 

Using a decomposition ~ = 7_k + ~, r  k = 0 this equation may be w~'itten as: 

As~: + dT = M ,  A@~ + ~b = O. (T4) 

The solution of this system has a small norm if the moment M and the norm of initial condi- 
tions are small. Namely this is done in most of investigations, and there was no doubt that 
such an approach is quite accurate. However, as shown above, if we take into account second 
order quantities, then the solution will be unstable. Is it really so? It is a well-known fact [7] 
that the equations in terms of variations may give a faulty result in some cases. In such doubt- 
ful cases the nonlinear analysis has to be used. 

5 Nonlinear analysis and rigorous justification of the Nikolai paradox 

Let us consider an external moment of the kind 

~ = ~,M(@ + l~g.  ~),  (75) 
1 ,)~== 

~ l[~t~ + 122 + 2tJ2k. P .  k 

I f h  = 1, t2 = 0, then ~ [~  is a dead moment; i fh  = 0, 12 = t, then ~/e~ is a following (tangen- 
tial) moment; if l~ := 12 = 1, then __M~x is a semitangentiat moment. For the elastic moment let 
us accept expression (47) where C(O 2, k_-O) and D(O 2, k .  O) are fimctions of a general kind. 
The tensor of  inertia is supposed to be transversally isotropic with _k as axis of symmetry. 

Using exwessions (43) and (44) for the kinetic moment, the equations may be derived 

either in form (53) or (55): 

[AI~ § (A3 -- A:, ) (w_ . k') k']" + CO + D Z  T . k = ~/M(llk_ + I~k') , (76) 

[ A ~  + (A3 - .4~) (_~ k)~]" + ( &  - A~) (k-_~) .c~ x k 

-~ ~ + D z .  ~ = z M ( h s  r -  ~ + t~k), (77) 

where ~ = P .  ~. Although Eqs, (76), (77) are equivalent, a nontrivM result can be found 
from a comparison. Subtracting Eq. (77) from Eq. (76) and taking into account c~,~ k} - ~ .  k 
yields 

+ (A3 - A1) (~ ~ )  ~ x ~ + DO x k 7M[(/,~ t2)~:+lok' I1P r .  k], 
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By multiplying this equation by the vector k, we obtain 

[ A I ( ~  - ~ ) .  _~ + (A1 - & )  k -  O ( 1  - c o s t ) I "  = ~ M ( h  - l~) (.t - c o s ~ ) ,  (78) 

where cos tg= k. k r = k. P .  k. Let us note that Eq. (78) does not contain the characteristics 
of the elastic foundation. 

Equations (78) can be rewritten in another form, From Eqs. (19), (20) there follows 

- s? : :  ( z  < - Z - r ) .  ~ = 2 1  - cos 0 _ _ _ ~ O x ~ .  (79) 

The turn-vector _0 can be represented as a composition. 

0 = a:& + y, y_. _k = O, 02 = z2 + y2, (80) 

v_ : v ( t ) Q ( C ( t ) ~ )  . m ,  , ~ .  k = 0 ,  I~I  = 1 .  

One can prove the formulae 

P. A. Zhilin 

1 - c o s ~ =  y2(1 - c o s 0 )  
02 (81) 

Taking into account relations (79), (80) and (81), Eq. (78) can be rewritten as: 

[(1 - cos~  a) F]" = 7 M ( l l  - [2) (1 - c o s ~ ) ,  

where 

(82) 

w 

F = 2A1r + (A1 -- An) k- O .  

Equality (82) was derived in another way and was shown to the author in a private talk by 
Dr. A. Krivtsov. In fact, equality (82) is due to the existence of property (26) for the elastic 
moment. Let us note that the right side of Eq. (82) has a constant sign which is defined by the 
sign of M(li - 12). Let us suppose that M(lt - 12) > 0. In such a case, let us choose the initial 
conditions in such a way that F It=o > 0. Then equality (82) shows to us that the function F(t) 
tends to infinity as t --+ ec which is equivalent to an infinitely big velocity of precession 0, i.e., 
the state of equilibrium (62) is unstable for an arbitrarily small value of twisting moment and 
for any transversally isotropic elastic foundation. Therefore, the analysis on the base of the 
equations in terms of variations gives the right result. The Nikolai paradox is due to an 
accumulation of energy in the system. 

6 T h e  s imples t  r i n d  body  osc i l la tor  and to ta l  integrabi l i ty  o f  the bas ic  equat ions  

Let us consider the simplest case of the rigid body oscillator given by 

d u = 2 du(~ A = d E ,  U = u(02), ~__ ~ 0 = c(O 2) O. (83) 

Further, let us introduce a friction moment 

Mex = -bw,  b --- const. _> 0. (84) 
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In such a case, the basic equations (55), (56) yield 

A ~ _ +  b ~  + c(O ~) O_ = 0_; 

~ = ~ r ~ + ~ O x  o +  __00 x (o x o ) ,  g 
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0sin0 
2(1 - cos0) 

(85) 

It is seen that even in this simplest case the equations of motion are rather complicated, The 
system can be simplified only in the case of plane oscillations, i.e., 

c J = S 2 =  ~ 0 x S 2 = 0  

satisfying Eq. (86). Equation (85) then simplifies to 

A_0"" + b0" + c(02) _0 = _0; 

0(0) = 00 , ~(0) = _00, _00 x ~0 = o. (87) 

This system can be investigated without any problems. Let us discuss the system of Eqs. (85) 
to (86) in a more general case. In order to underline the difference between conventionaI 
approaches and our method, let us consider both of them. 

6.1 Conven t iona l  approach 

Let us try to investigate the system (85), (86) on the basis of the Euler angles. The turn-tensor 
can be represented [10] in the form: 

P(_0) = Q_(r Q ( O ; )  . Q_Q(•k) = Q(Op')  . Q(r . Q(~k_) = Q(O; ' )  . Q ( 3 k )  , (88) 

where 

= ~ + r  p' = Q(~,k) .p ,  k .v = k. p' = o. (89) 

The left angular velocity is determined by [10] 

�9 l 

_~ = (~ + ~ cos o) k + o f  + ~ sin o e' • k. (90) 

Making use of expressions (7), (88), (90) and substituting them into Eq. (93) yields 

c(O 2) o si,/~(~ + cos ~) = 0, A(~; + 4 cosO)" + b(~ + ~ co~ ~) + 

� 9  , . �9 c(O 2) 0 sin'0(t + cos/3) = 0, A(0"" + ~ sm ~) + b0 + 

, c(O 2) 0 
A ((~ sin 0)" - ~ )  + b(p sin 0) + ~ sin fl sin 73 = 0. (91) 

In addition to this system we obtain from (6) and (89) 

1 + 2 cos 0 = cos 0 + cos fl + cos 0 cos 8, fl = g~ + ~.  (92) 

It is not so easy to find the total solution of Eqs. (91). Let us note that representation (88) is 
completely admissible. However, there are many other possibilities, and most of them will 



184 P.A. Zhilin 

lead to complicated equations. I f  we want to find the best representation, then we have to 
look for this representation during the solution process rather than to guess it a priori [10]. 

6.2 The total integrability of the equations of the simplest rigid body oscillator 

Multiplying Eq. (85) by the tensor P(_0) f rom the left., one can obtain 

A_~ + b_~ + 402) 0 = 0, (93) 

where the identity 

~ .h - - (P_ ._~)"  -_~,  n = ~ -  (P • �9 ~Q = ~ 

was taken into account. Equation (93) is equivalent to Eq. (85). However,  f rom (85) and (93) 
a nontriviai result may  be obtained, 

ox, ( -  I941 A(w__- .Q)" + b ( ~ -  ~Q) = O_ 

where ~0 and ~0 are the initial angular velocities. Expression (94) gives to us three integrals. 
Now it is necessary to consider two cases: 

a )  -~0 - -~ 0  = 0_, 

b) ~ 0 -  n0 = 1~0- n0[~ # o .  

In the first case we deal with plane vibrations of  the oscillator. Really, in the first case from 
(94) it follows that  

a.,= ~ ~ s9 x 0 =  0. 

The latter fact follows f rom (15) and (16). This is identical to the case of  Eq. (87). 
It is more  interesting to investigate case b). F rom Eqs. (t7), (18) we find 

1 
9 ( 0 ) ( w - ~ ) = ~ 0 •  

Taking into account integral (94) one can get 

g(0) ~ p  - ( ~  - _no) = ~ ~ • (~ + ~c~). 

Further,  we may  derive f rom (19) and (20) the identity 

1 0 x  ( ~ + ~ )  sin0 
5 -  : - g - 0 •  ~ 

which changes the above relation to 

02 0 x ~ = ( ~ 0 - ~ 0 )  exp - . (95) 

F rom the equation, one more integral follows: 

0( t ) .  (~0 - Qo) = 0 ==~ 0(t) . e  = 0 ,  (96) 
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where e = (~0 - ~q0)/l-w0 - ~'201. This equation shows that the turn-vector 0(~) can be repre- 
sented as 

0(~) = 0(~)9(v/e ) "m,  r~ = 00100, ~ - e  = 0, ~(0) = 0. (97) 

From this representation we can conclude 

0 • ~ = ~02~. (98) 

Substituting this expression in (95) and taking into account the resulting equation for t = 0 
yields 

~b = 1---c~sO(t) ~0exp - , ~0 > 0. (99) 

Thus, if we know the angle of  nutation 0(t) then the angle of  precession can be found from 
(99). Let us derive an equation for the angle 0. For  this end let us calculate the right angular 
velocity from (t 9 ) -  (20) and (97): 

sin0 ~. 
F2 = ~ 0 +  ~-~c,e_ x O - (1 - cos0) ~e_. (100) 

Substituting expression (100) and its derivative into Eq. (85) and projecting the obtained 
equation onto the vectors 0, ~ and e • _0, respectively, we get three scalar equations where two 
of  them (projections on e and e • _0) will be identically fulfilled due to (99). Projection onto 
the vector 0 gives 

[ .s in0 ( l - e o s 0 0 ) 2 ( ~ 0 )  2 ( ~ ) t  AY+b~+ c ( 0 ~ ) - A - -  b -  ~t.~c--~0s0 exp - 0 = 0 .  (101) 

If  the friction is absent (b = 0), then this equation can be solved in terms of quadratures. The 
plane motions of the oscillator can be found from Eq. (101) when ~0 = 0. In a general case, 
Eq. (101) can be studied by conventional methods of  nonlinear mechanics. Let us note that 
even for small 0 Eq. (101) is nonlinear: 

A g +  V~ + ~(0) - A ~0 ~ ~xp - O -- 0 .  (102) 

In contrast with it, the system of Eqs. (85), (86) can be linearized for small turns, i.e., for 
I_01 << 1, and we obtain the linear equation 

A b ' +  b_a + ~(0) e = 0.  (~0a) 

Let us show that the nonlinear Eq. (102) follows from Eq. (103) if one takes into account 
0 = l_0t. If  the turn-vector is represented as _0 = On, 0 = t_0[, In-] = 1, then we have 

Substituting (104) into (103) gives 

(A'O~ b~ +cO)n_+ (2A~ + bO) ~ + AO~~ O. 
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Multiplying this equation by n_ and ~ we obtain 

A~'+ b~ + (c - Ax) 0 = 0, 

! AO,~ + (2A~ + bo) �9 = o 
2 (t05) 

From the second equation of this system it follows 

~ + 4 ~ -b 2 b = o ~ xO4 = xoOo4 exp ( -  ~ ) , 

~:(o) = xo ,  o(o)  = oo. 

Substituting this expression for x into the first Eq. (103) we obtain Eq. (102). Therefore, the 
solution of the linear Eq. (103) gives the exact solution of the nonlinear Eq. (102). In many 
other cases we have the same situation. 

If friction is absent (b = 0), then Eq. (101) has an exact solution 

0 --= Oo = const., 
. 

~/~ = 0 = const., (106) 

(~)~ = c(00~) 0o 
A sin 00 

This solution is called regular precession which will be considered in the next section. If fric- 
tion is present, then for the large times Eq. (101) transforms to Eq. (87). 

Let us compare the two approaches described. The first approach is defined by representa- 
tion (88) of the turn-tensor where k and p are arbitrary orthogonal unit vectors. For the angles 
~, .0, qo and the velocities ~, ~, ~ we may provide arbitrary initial conditions if and only if we 
are able to find a general solution of Eqs. (91). It is not known, if this is possible. 

In the second approach, the representation of the turn-tensor has a special form 

_P = _o(_o) = _O [o2(~_~) �9 .~,] = o(~_~) . _ o ( o ~ ) .  =0~(~_~) (~or) 

due to Eq. (97) for the turn-vector. The unit vectors e and m are very special and found in the 
solution process. The two angles 0 and ga can describe only the special solution we were 
looking for, and which is contained in the first approach. In order to see this, let us accept the 
relation ~ = - ~ ,  i.e., f3 = 0, in representation (88) resulting in 0 = 0. In such a case, the sys- 
tem (91), (92) reduces to 

A(~(1  - oo.~ 0))" + by;(1 - cos0) = 0 ,  

A(O "~ - ~*? sin0) + b~ + c(O 2) 0 = O, 

�9 e A(('~sinO) + ~b~) + b~sin0 = 0. 

The first equation of this system gives to us integral (99). The third equation is an identity, if 
we take into account the first equation. At last, the second equation coincides with Eq. (101). 
Thus, the system (91) has a particular solution coinciding with the solution found above. 
However, when using representation (88) this solution does not allow to satisfy all initial 
conditions since the vectors k and p have preassigned directions and k r _e. 
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7 The regular precession and the equations in terms o f  variations 

Let us consider a body with a transversally isotropic tensor of  inertia. The elastic foundat ion 
is supposed to be transversally isotropic as well. The equations of  mot ion are given by expres- 
sions (53), (54) and expression (47) for the elastic moment:  

[ A l W _ + ( A 3 - A 1 ) ( k I . ~ ) , k t ] ' §  k ' = P . k ,  (108) 

_ 1 0 1 - g (0_0 x w) (109) 

where the functions C and D are defined by (48). We assume a particular solution of system 
(108), (109) to be represented in the form 

= 0 ; ' ,  p'_ = _Q(~k)- .p,_ p .  _k : 0 , _P = Q(v~p'), (110) 

where the mot ion (110) is called a regular precession if 

= co st., : const, g : • 0.  (111:) 

The left angular velocity then follows f rom (19) and is given as 

w : _Q(~k) �9 ~0, w 0 = ~[(1 - cos 0) k + sin v~k x p] = const .  (11211 

We see that  the angular velocity vector _w is a precession of  the vector -~0 around the axis ~ 
or thogonal  to the turn-vector: 

O . w = O . X ? = O ,  k . O = O .  

In addition, let us accept the restriction 

0 
D(O 2, k_. 0_) Ik.0=0 -- 0(_k. _0~ U(02' &" 0_) ]k.0=0 = 0 

which is satisfied for most  kinds of  elastic energy. Then we obtain f rom Eq. (108) for the 
assumed solution 

2, 0) 
~2 = Sill 0 [A3 (1 - cos ~)) + AI cos 0] " (113) 

Especially, if A1 = A3 = A, we find solution (106). 
Now we have to investigate the stability of  solution (110)-(113). In general, it is a rather 

cumbersome process. In order to simplify it, let us accept 

A = A1 = A3, D(O 2, k .  0_) = O, C(O 2,_k. _0) = c = const. (114) 

This means that  the tensor of  inertia and the elastic foundation are supposed to be isotropic. 
Under  these assumptions the perturbed equations of  mot ion (108), (109) take the form 

A_~e +c_0 e = 0,  

i 0  = w ~ - 2 ~  x w ~ +  0 r x (0e • (115) 

The perturbed quantities ~ and 0~ could be represented by 

= _w + er], 0~ = _0 + e~ ,  lel << 1, (116) 
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where -w and 0 are defined by (110)-(113). Such a choice, however, would yield equations for 
_~ and _~ with varying coefficients. Therefore, it will be better to represent the functions o,,~ and 

0 z by 

w e : Q(r �9 (-wo + c_~), 0_ e = Q(,~)_k). (v~/2 - + gqo), (117) 

where the function ~5 is defined by (1 t3). It is easy to calculate 

" (~ -we = _e(r - k • -wo + ~(~  + '~  • ~)), 

Taking into account notation (35), we obtain from these expressions and Eq. (115) 

A(~)* + x_0* = _0, (-w')* : 9 ( r  ' (_~ + ~_k), 0ff = Q(9~) s  

(a)* =-w - ( _ o , • 2 1 5  e~ / ~- (118) 

where the vectors 0 and -w are defined by (110) and (112), respectively. Further,  for any ortho- 
gonal tensor Q and any pair of vectors _a_ and b there exists an identity 

(2 ' - a )  X (Q_- _b_) = (det Q) ~ .  (a X b). 

For  a turn-tensor Q we have det Q. = 1. Using this identity, we obtain from Eq. (118) the 
following equat ionsfor  the variations r] and ~" 

A(~ + j ~  • ~) + ~ s  o, 

v~ sin ~) 0 - sin ~0 1 
-~+ V'~-k • ~-- -- 2(1 - oos~) -~ - 2(1 - cosa) (P" s - ~ s  • -W0 

I ~)p x r]+ 2(1 - cosy q) - ~)sind 
- ~  2~(1 - co s~ )  (s + ~ p . ~ ) p ,  

where "g is determined by (113) and ~ = const. This system of linear differential equations 
with constant coefficients can be further investigated by conventional methods. Our aim was 
only to show the derivation of the equations in terms of variations. 

8 C o n c l u s i o n  

We have presented a general model of a rigid body oscillator given in terms of  Eqs. (53), (54) 
or Eqs. (55), (56), respectively. Using the notation of  a turn-vector for describing rotations of  
rigid bodies we could introduce the integrating tensor Z(_0) and a potential moment  M(0).  In 
order to study the properties of a rigid body oscillator, we may accept _M_M~ t = 0_. In such a 
case, Eqs. (55), (56) take the form 

A-~2+ f2xA.f2+ Z(O) dU _ _ = _ , #  = 0 ,  ( 1 1 9 )  

, 5e• O x (o• (i2o) 
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In this form, the rigid body oscillator has many applications to important technical problems. 
Especially, it will be useful for investigations of the microscale phenomena on the basis of  
principles of classical mechanics. For example in [12], the well-known Klein-Gordon and 
Schr6dinger equations could be derived from an application to Lord Kelvin media. 

Appendix A. Notation and terminology 

In the paper, the direct tensor calculus is used. This approach is introduced by J. Gibbs and 
may be found in the books [3], [5], [6], and in many modern books on differential geometry 
and linear algebra. The direct tensor calculus is widely used in continuum mechanics (see [6], 
[9]). In order to develop multipolar continuum mechanics, it is necessary to use the methods 
of rigid body dynamics. This is a sufficient reason to describe the rigid body dynamics in 
terms of the direct tensor calculus. For readers more familiar with matrix notations, the fol.. 

lowing analogies hold: 

a . n _ ~ a T n ,  a x n ~ n ,  n |  T, 

0 --n 3 ft2 ! 
n •  A= n3 0 --nit " 

- il -n2  na 0 

These analogies are valid if we choose some orthonormal basis. However, the left sides are 
valid in any basis while the right sides depend on a choice of  the basis. 

Now we have to discuss the terminology. In the paper, we use the terms "turn-vector" and 
"turn-tensor" instead of the conventional terms "rotation vector" and "rotation tensor", 
respectively. For this, an explanation may be given. A rotation is a process, a turn is an 
instant action. The turn-tensor is turning a body from the reference position to the actual 
position at each moment of time. The same can be said with respect to a turn-vector. In con- 
trast to this, the vector ~dt r dO is rotating a body from the position at a moment of  time t to 
the body position at the moment of  time t + dr. Really, let d k be a triplet of vectors fixed with 
respect to the body in the reference position, and _D~;(t) is the triplet ~ turned to the actual 

position. Then we have 

D Dk(t) = P=(t)-dk, D_(t + dr) = ~ ( t  + dr). d_h, d_k ---- P=T(t)" D D_~(t). 

From this follows 

_D~(t + dt) = P(t + ~t). ~r(t) .  ~k(t) -- (=P(~) +~(t) dr). P~(t). D(t). 

Making use of the Poisson Eq. (9) we obtain 

~D~(~ + dr) = D_k(t) +~_(t) d~ • ~k( t ) .  

Thus, namely the vector writ rotates the triplet __Dk(t ) into the triplet D~(t + dr) rather than the 
vector d0. The infinitely small vector fiX_ = ~dt may be named the rotation vector. Of  course, 
we are not sure that we select the best terms. However, it is important that we need two diffe- 
rent terms for a rotation, since a body is rotating around one axis and at the same time the 
body is turned around an another axis. The axis of rotation is the line spanned by the vector 
of the left angular velocity while the axis of turn is the line spanned by the turn-vector. For a 
regular precession, these two axes are orthogonal (see Sect. 7). 
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Appendix B. The derivation of the representation for the integrating tensor 

The representation for the integrating tensor may be obtained by many approaches, and all of 
them are rather long. From our point of view, the shortest way is given below. 

Calculating the trace from both sides of the Poisson Eq. (9), one can obtain 

sin 0 
(trQ)~ =- t r y ~  ---- tr(w • 9=) = - 2 ~ -  0-w,  tr(a | = a.  b. 

Taking into account the equality 

t rQ  = 1 + 2 c o s 0  

from the previous equation, it is easy to derive 

0~=0.8--0.~. (121) 

Multiplying Eq. (9) by the vector 0, one can get 

~ 2 . O = w x O = - R . a .  

Making use of the identity 

d._0 = (_e �9 o)" - Q-_8 = - ( o  - z ) .  8 

and Eq. (3), the previous equation can be rewritten as: 

( s in0  1 - c o s 0  ) 
-0 -=R~ -0: R~ ~ = ~ ~  

A general solution of this equation has the form 

w = A O + ( ~ E 4  1-c~ ) . . . .  -g R= �9 J_ , (122 I 

where the scalar function A must be found. Multiplying Eq. (122) by 0 and taking into account 
equality (121) yields 

A 0 -  s i n ~ 0  0. d. 
0 a 

Then Eq. (122) takes a form 

w= ( E d 1 -  cos O 0 - s i n 0  ) 
- = o~ __R+ 0 ~ ~  0 = z  - ~ . o ' ,  (:2a) 

where we use the identity 

R 2 = 0| 0 -  02E. 

Expression (123) gives to us representation (20). Thus we had found the tensor Z -1. Since the 
tensor Z- :  is an isotropic function of the tensor R, we conclude that the tensor Z is the iso- 
tropic tensor function of the tensor R as well: 

Z = c~E + 3_R + ,~R2, Z .  Z- :  = __Z. 
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From this it follows 

1 

which is expression (11). 

1 - 9  
-~ = 02 , 

0 sin 0 
9 -  2(1 -cosO) ' 

19I 

Appendix C. Elastic energy of the foundation 

In the Sect. 3, there was given the definition of an elastic energy in terms of a potential func- 
tion U(_0). This function was interpreted as elastic energy of the foundation. However, in the 
nonlinear theory of elasticity the concept of elastic energy has a uniquely determined meaning. 
Thus, it is necessary to show that there is no contradiction between these two concepts. 

The foundation is supposed to be an elastic body. The boundary of the foundation is the 
surface S = $1 U $2 (J $3 where the part $1 of the surface S is fixed, the part S2 is a free 
surface, and the part Sa is the contact surface between the foundation and the rigid body. Let 
us formulate the energy balance for the system "foundation plus rigid body" 

K +  5 = 0. (124) 

K is only the kinetic energy of the rigid body, since the foundation is supposed to be without 
inertia. U is the total intrinsic energy, i.e. elastic energy or energy of deformation which is con.. 
fined to the elastic foundation, since the intrinsic energy of the rigid body has a constant 
value. The right side of (124) is equal to zero because the power of external forces is absent. 

Now let us write the equation of energy balance for the rigid body only. The externat 
forces acting on the body are generating stresses acting on the part $3 of the boundary. Thus,, 
we can write 

I~= - f N(P) . z (P) .  R_(P) dS(P), (125) 
P~S3 

where R(P) is the position vector of a contact point P on surface $3, the vector N is an exter- 
nal unit normal to the surface $3, and the tensor _T is the Cauchy stress tensor. 

According to the kinematics of a rigid body, we have 

__R(P) = R(Q) + P ( t ) .  (_r(P) - r (Q)) ,  (126) 

where Q is a reference point, '_r(P) and r(Q) are the position vectors of points P and Q in the 
reference position. From Eq. (126) there follows 

z(P) = E(Q) + _w(t) x JR(P) - R(Q)]. (127) 

Substituting_R(P) = _u(P) in Eq. (127) by (I 25) we obtain 

f =  r.e(O) + (128) 

where 

.E = - f z (P)  dS (P) ,  
PeS3 

Mo -- - f JR(P) - _R(Q)] • N ( P )  d S ( ; ) .  
pCS3 
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Making use of  (124), Eq. (128) can be rewritten as 

F_. ~(Q) + M~ . ~ = - 5 ( R ( Q ) ,  0) ,  (129) 

where the vector 0 is the turn-vector of  the rigid body and henceforth of  the surface $3. I f  the 
point Q is fixed, we have definition (21). Thus, the potential U in expression (46) is an elastic 
energy of the foundation. 

Appendix D. Transversally isotropic potential 

Let there be given a scalar function U(_0) of  a vector argument.  This function is called trans- 
versally isotropic with the symmetry axis k if for any turn-tensor Q(a_k) the equality 

u(o) : U[Q_(~k). o] (~3o) 

is valid. Let us consider a continuous set of  tensors _Q(a(T) k). For  any of them Eq. (130) 
must be valid. Note  that  the left side of  (130) is independent of  T. Thus, we have 

d dU d_ O' , 
d--4 U(Q_._ o) = o ~ ~ . ~  _ = o 

where 

o2 = Q(~(~) k). 0. (~3~) 

Making use of  the Poisson Eq. (9) we obtain 

d O' da @ 
d ~ -  = ~ k •  . 

Substituting this expression into (13 l) and accepting 

[d<T)] t0, 
~(o)=o ,  [ & J~o 

we have 

dU dU 
d~ " ( k_ • 00_) = o ~ ~ = ~_ + ~0 , (132) 

where ~ and ~ are some scalar functions. Multiplying this equation by the vector d0 yields 

dU 1 r d U = ~ .  dO= ~d(~ .O)  + ~  . 

From this expression we see that a general form of a transversally isotropic potential may be 
represented as 

U(_0) = F (~ .  _0, 02). 

This is expression (24). 

Acknowledgement 

The author is grateful to Prof. Dr. H. Troger and to the referee for their valuable suggestions and for the 
critical comments on the original manuscript of this paper. 



Rigid body osdllator 193 

References 

[1] Argyris, J.: An excursion into large rotations. Comp. Meth. in Appl. Mech, Engng 32, 85-155 
(1982). 

[2] Bolotin, V. V.: Nonconservative problems of the theory of elastic stability. Oxford London 
New York Paris: Pergamon Press 1963. 

[3] Lagally, M.: Vorlesungen fiber Vektor-Rechnung. Leipzig: Akad. Verlagsgesellschaft M. B. H. 1928. 
[4] Lorentz, H. A.: Aether theories and Aether models. Moskow Leningrad: NTI 1936 (in Russian). 
[5] Lurie, A. I.: Analytical mechanics. Moscow: GIFML 1961 (in Russian). 
[6J Lnrie, A. I.: Nonlinear theory of elasticity. Moscow: Nauka 1980 (in Russian). 
[7] Merkin, D. R.: Introduction to the theory of stability of motiom Moscow: Nauka 1987 (in Russian), 
[8] Nikolai, E. L.: Transactions on mechanics, Moscow: GITTL 1955 (in Russian). 
[9] TruesdeI1, C.: A first course in rational continuum mechanics. Moscow: MIR 1975 (in Russian). 

[101 Zhilin, P. A: A new approach to the analysis of free rotations of rigid bodies. ZAMM 76, 187-204 
(1996). 

[ll] Zhilin, P. A.: Dynamics and stability of equilibrium states of rigid body on a nonlinear elastic 
foundation. Proc. of the XXIV Summer School "Nonlinear Oscillations in Mechanical Systems", 
St.-Petersburg 1997, pp. 90-122 (in Russian). 

[12] Zhilin, P. A.: Reality and mechanics. Proc. of the XXIII Summer School "Nonlinear Oscillations in 
Mechanical Systems", St.-Petersburg 1996, pp. 6-49 (in Russian). 

[13] Zhuravlev, V. F.: Foundations of theoretical mechanics. Moscow: Nauka 1997 (in Russian). 
[14] Ziegler, H.: Principles of structural stability. Waltham Massachusetts Toronto London: BlaisdelI 

1968. 

Author's address: P. A. Zhilin, Department of Theoretical Mechanics, The St. Petersburg State Tech, 
University, Polytechnicheskaya 29, RUS- 195251, St.Petersburg, Russia 


