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Abstract. The purpose of this paper is twofold. First we consider a class of 
nondifferentiable penalty functions for constrained Lipschitz programs and then 
we show how these penalty functions can be employed to solve a constrained 
Lipschitz program. The penalty functions considered incorporate a barrier term 
which makes their value go to infinity on the boundary of a perturbation of the 
feasible set. Exploiting this fact it is possible to prove, under mild compactness 
and regularity assumptions, a complete correspondence between the uncon- 
strained minimization of the penalty functions and the solution of the con- 
strained program, thus showing that the penalty functions are exact according to 
the definition introduced in [17]. Motivated by these results, we propose some 
algorithm models and study their convergence properties. We show that, even 
when the assumptions used to establish the exactness of the penalty functions 
are not satisfied, every limit point of  the sequence produced by a basic algorithm 
model is an extended stationary poin t  according to the definition given in [8]. 
Then, based on this analysis and on the one previously carried out on the 
penalty functions, we study the consequence on the convergence properties of  
increasingly demanding assumptions. In particular we show that under the same 
assumptions used to establish the exactness properties of the penalty functions, 
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it is possible to guarantee that a limit point at least exists, and that any such 
limit point is a KKT point for the constrained problem. 
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1. Introduction 

Nondifferentiable penalty functions for smooth nonlinear programming problems 
have been widely investigated, from both the algorithmic and the theoretical point of 
view. In fact, on the one hand, nondifferentiable penalty functions allow a con- 
strained optimization problem to be solved by a single unconstrained minimization 
of the penalty function (see [1]-[3], [10], [11], [13], [16]-[20], [23], [25], [28], [33]-[35], 
[37], and [41]), and, in the sequential quadratic programming approach, are a basic 
tool for establishing global convergence (see, e.g., [24] and [38]). On the other hand 
it has become more and more apparent that nondifferentiable penalty functions 
have strong relationships with the foundation of optimization theory and, in particu- 
lar, With the theory of necessary conditions of optimality (see, e.g., [2], [6], [7], [12], 
[21], [29]-[31], [37], and [39]). More recently these facts have led to the consideration 
of nondifferentiable penalty functions also in connection with nonsmooth programs 
[12], [13], [20], [34], [37], [39]. 

The aim of the paper is twofold. On the one hand we study the properties of a 
class of penalty functions for locally Lipschitz constrained problems. We show that, 
under reasonable assumptions, this class of penalty functions possesses desirable 
properties. On the other hand we show how these penalty functions can be used to 
solve a locally Lipschitz constrained problem. We consider several algorithm models 
and study their convergence properties under increasingly demanding assumptions, 
ranging from the simple local Lipschitzianity of the problem functions to various 
compactness and regularity conditions. 

Considering in more detail the first of the two topics mentioned above, we note 
that most of the literature on nondifferentiable penalty functions is devoted to the 
study of conditions ensuring some kind of correspondence between the local (global) 
minimizers of the penalty function and the local (global) minimum points of the 
constrained problem. In general, these correspondence properties hold, under suit- 
able constraint qualifications, only with reference to some given compact set 2 that 
contains the problem solutions of interest. However, it can happen that the level set 
of the penalty function corresponding to a given value of the penalty parameter and 
to a given point in 2 is not contained in this set. It follows that the sequence 
produced by an unconstrained algorithm in the minimization of the penalty function, 
for a given value of the penalty parameter, can be attracted out of the set where the 
correspondence is established, and this may constitute a limitation to the computa- 
tional use of penalty methods [17]. On the other hand the introduction of an 
adjustment rule for the penalty parameter does not guarantee that the sequence of 
points produced is contained in a compact set, since the adjustment rule could drive 
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the penalty parameter to zero, and unbounded sequences may still be generated. 
The usual way of dealing with this difficulty is simply to avoid it by assuming a priori 
that the sequence of points produced by the algorithm is bounded, or by making 
some equivalent assumption. Note that these kind of assumptions often "hide" 
strong regularity conditions. 

To address these kinds of problems we introduce a class of nondifferentiable 
penalty functions for locally Lipschitz programs which, under suitable assumptions 
of compactness and regularity of the constraints, is proved to be exact according to 
the definition given in [17]. In particular, the functions considered incorporate a 
barrier term which causes the unconstrained minimizers to be located in the interior 
of a compact perturbation of the feasible set for every value of the penalty 
parameter. Exploiting this feature, we can establish a complete correspondeoc,, 
between local (global) minimizers of the penalty function and local (global) solutions 
of the constrained problem. Furthermore, due to the barrier term, the level sets of 
the penalty functions are compact, so that making use of simple devices in the 
unconstrained minimization algorithms, we can avoid unbounded sequences, thus 
overcoming the aforementioned difficulty. To point out the role of the barrier term, 
we call the exact penalty functions introduced in this paper also exact barrier 
functions. Essentially, exact barrier functions are a tool that can be used to reduce a 
constrained optimization problem to a single unconstrained minimization problem. 

The idea of employing barrier terms in an exact penalty framework was first 
proposed in [19], but with a different perspective and with rather different results. 
Much closer to the approach adopted in this paper are [15] and [17], where penalty 
functions (both differentiable and nondifferentiable) for smooth problems,are con- 
sidered. We remark, however, that the results established in this paper with 
reference to Lipschitz programs, are sharper than those given in [17] even if 
specialized to the smooth case. 

In the second part of the paper, instead, we analyze the behavior of algorithms 
for the solution of the constrained problem based on the unconstrained minimiza- 
tion of the barrier functions previously introduced. In particular we propose a very 
general algorithm model and investigate its behavior even when no compactness and 
regularity assumptions are made on the constrained problem (and hence, even when 
the assumptions for the exactness of the barrier functions are not fulfilled). In this 
case it is possible to show that every limit point (if any) of the sequence of points 
produced is a stationary point of the constrained problem in an extended sense that 
has been introduced in [8] and that is explained in the next section. 

This analysis gives a fairly detailed picture of the behavior of the algorithm, and 
also clearly shows when and why certain "pathological" behaviors are possible. 
Based on this analysis it is then possible to add progressively various assumptions 
which rule out the possibility of undesirable behaviors and introduce some variants 
of the basic algorithm. In this stage the analysis of the properties of the barrier 
function carried out in the first part of the paper turns out to be crucial, since the 
structure of the barrier function and the assumptions employed to establish its 
exactness are basic to the analysis of the convergence properties of the algorithms 
considered. In particular, we show that, under the same assumptions used to 
establish the exactness of the barrier functions, it is possible to guarantee that the 
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algorithms considered generate a sequence of points which admits a limit point at 
least, that every such limit point is a Karush-Kuhn-Tucker point of the original 
constrained problem, and that eventually the penalty parameter remains fixed, thus 
avoiding the numerical instabilities usually associated to sequential (interior) barrier 
methods. 

The remainder of this paper is organized as follows. In Section 2 we introduce 
the concept of an extended stationary point of a Lipschitz constrained problem, 
define the class of barrier functions, and recall the notion of exactness adopted. In 
Section 3 we discuss the assumptions employed and give sufficient conditions for 
their fulfillment. In Section 4 we establish the main results concerning the barrier 
functions, by proving that local and global minimizers of the barrier functions are 
local and global solutions of the constrained problem. In Section 5 we give addi- 
tional results concerning the relationships of local solutions and stationary points of 
the constrained problem and the barrier functions. Finally, in Section 6 we describe 
some algorithm models based on unconstrained minimization algorithms, which 
include automatic adjustment rules for the penalty coefficient, and study their 
convergence properties. 

We conclude this section by providing a list of the notation employed: 
Let v be a vector in R s, we denote by v' its transpose and by v+ the vector 

whose ith component is max(O, vi). If K is a subset of {1 . . . . .  s}, we denote by v K the 
subvector with components v i such that i ~ K. Furthermore, for simplicity, we adopt 
the convention that (g, h) stands for (g' ,  h ') '  and analogously for other couples of 
vectors. 

I[" I[q: R s ~ N, for q ~ [1, w] is the/q-norm in ~ ,  while I1" II ~ indicates the dual 
norm. 

Bq(2; 8) := {x ~ Rs: [Ix - 2][q < 6}, while, with obvious notation, B~ 6) .'= 
{x ~ ~s: IIx -~11 ~ _< ~}. 

Let ~ '  be a set of points in Ns. We denote by ~,c its complement in R s, by 
co ~ '  its convex hull, by 0~ '  its boundary, by ~ '  or by cl ~ its closure, and by N~(x) 
it normal cone at x. Furthermore, if ~ '  is closed and convex, Nr ~ '  is its (unique) 
least euclidean norm point; if ~ '  is not convex, the least euclidean norm point is not 
necessarily unique, in this case Nr ~ '  indicates any such point. Finally distq(X[~') 
denotes the distance of the point x from the set ~Y, i.e., 

distq(xl~') .'= inf IIx - zllq. 
z~,~ 

Let q~: ~s ~ N be a locally Lipschitz function. Oqffx) denotes the generalized 
gradient of Clarke. The generalized gradient of q~ relative to a set .~', denoted by 
Ols~q~(x), is defined by 

0l~q~(x) := {ff ~ Rs: ~" is a limit point of ~i ~ c~qo(xi), xi  ----> x ,  x i ~ } .  

We recall that the following relation holds for the Clarke generalized directional 
derivative ~~ d): 

~~ d) = max{d'~, ~ ~ d~(x)}. 
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Analogously, if rb is a vector-valued function, i.e., rb: R s ~ R t, Orb(x) and 01s~rb(x), 
denote, respectively, the generalized jacobian and the generalized jacobian relative 
to ~ '  of rb (see [12], [26], and [27]). 

2. Problem Formulation and ,Basic Definitions 

We consider the following Lipschitz programming problem: 

(P) min f ( x ) ,  

g ( x )  <_ O, 

h ( x )  = O, 

where f :  N" ~ R, g: R" ~ R m, h: N" ~ N p, p _< n, and we assume that f ,  g, and h 
are locally Lipschitz on ~" .  

We denote by 9"  the feasible set of Problem (P): 

~ : =  {x ~ Nn: g ( x )  < O , h ( x )  = 0}; 

moreover,  we define the index sets: 

Io(x) := {i: gi(x) = 0 } ,  I~r(x) := {i: gi(x) >- 0}. 

The algorithms we present in this paper  are designed to locate stationary points of  
Problem (P) in an extended sense, so that, to a certain extent, sensible results can be 
obtained without making any assumption concerning the regularity or feasibility of 
Problem (P), Hence  we adopt  terminology similar to that proposed by Burke (see [5] 
and [8]) and say that 2 ~ R n is an extended stationary po in t  for Problem (P) if either 
of  the following conditions is satisfied: 

(i) .~ ~ o~-and (a , /x )  ~ N m+p exists such that 

0 e Of(2)  + A i Ogi(2) + Y~. ixj Ohj(Yc), 
i=1 j = l  

)t i ~ 0, Aigi(x)  = O, i = 1 . . . .  , m; 

(ii) 2 ~ 9 - a n d  0 v~ (A,/z) ~ ~m+p exists such that 

O ~  
m p 

E ~i Ogi(X) + E [.Lj 6~hj(x), 
i=1 j= l  

'~i ~ 0, )tigi(x) = O, i = 1 . . . . .  m; 

(iii) 2 ~ Nrand 0 ~ dug+(2),  h(2)l[q. 

Points of  type (i) are generally called K a r u s h - K u h n - T u c k e r  (KKT) points, while 
points _of type (ii) are known as Fritz John (FJ) points. It is well known that if 2 is a 
local minimum point of  Problem (P), then it is either a K K T  point or an FJ point. 
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However, FJ points cause much trouble to minimization algorithms, so that often 
suitable conditions (regularity conditions) are assumed to hold in order to exclude 
the existence of FJ points. Actually, if we do not make any regularity assumption on 
Problem (P), we cannot even be sure that a feasible point exists. In this event it may 
be useful to see Problem (P) as composed of two parts: (a) the feasibility problem 
and (b) the minimization problem. The feasibility problem can be written as 

min IIg+ (x), h(x)llq. xE~ n 

Hence,  points satisfying (iii) can be viewed as stationary points for the feasibility 
problem, and are therefore relevant to Problem (P): we call them infeasible 
stationary points (see [5], [9], and [8] for a more  complete discussion on this point of 
view). 

We now introduce the barrier function along with some related definitions. 
Let c~ be a positive constant and consider the set 

:= {x ~ ~n : l l g+ (x ) , h (x ) l l q  < a}.  

Consider the function: 

b ( x )  := a - IIg+(x), h(x)llq. 

We have that b(x)  > 0 for all x E S , ,  and hence, for x ~ 4 / ,  we can define the 
vector functions ~(x)  and/~(x)  with components  given, respectively, by 

gi (x )  
g'i(X) '=  b ( x )  ' i = 1 . . . .  , m ,  (1) 

h i ( x )  
h i (x )  := b ( x )  ' j = 1 , . . . , p .  (2) 

We associate to Problem (P) the following class of  barrier  functions: 

1 
Zq(x; ~) := f (x )  -[- -IIg+(x),/~(x)llq, 

8 

where s > 0. In particular, by choosing q ~ [1, ~), we have 

p ] 1/q 
Zq(x; ~) = f (x )  + 1[  ~ (~+i(x))q ..~.. j~ll~lj(x)lq I , 

8[i=1 

while, for q = ~, we obtain the function 

1 

For any given ~ > 0, consider the essentially unconstrained problem 

(U) min Zq(x;  s ) ,  x ~ X ~ .  
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We say that Zq(x; s)  is an exact barrier function with respect to the set~4r~ if the 
following three properties are satisfied: 

(P1) for all 8 > 0 and all x o ~ ~ ,  the level set 

2 ( x0 ,  Jr~; s)  -'= {x: x c Jr~, Zq(X; s) <_ Zq(xo; s)} 

is compact. 

A threshold value e* > 0 exists such that: 

(P2) For all v ~ (0, s*], any local solution of the unconstrained Problem (U) is a 
local solution of the original constrained Problem (P). 

(P3) For all e ~ (0, e*], any global solution of Problem (P) is a global solution of 
Problem (U), and conversely. 

In particular these properties imply that Z(x; s)  is globally exact according to the 
definition given in [17]. The interested reader should refer to [17] for a thorough 
discussion of this as well as other related definitions. Roughly speaking property (P1) 
excludes the existence of descent paths for Zq(x; ~) originating at some x 0 ~ IY~ 
that either cross 0JY~ or have limit points on 0~r~. This implies that any descent 
method for the solution of Problem (U) generates a sequence with limit points 
belonging t o s s ,  for any given s > 0 and for any given starting point x o ~ JY~. If these 
limit points are local (global) solutions of Problem (U), properties (P2) and (P3) 
ensure that they are also local (global) solutions of Problem (P), provided that e is 
sufficiently small. 

It must be remarked that the notion of exactness, expressed in terms of 
properties (P1)-(P3), does not require that the local solutions of problem (P), which 
are not global solutions, correspond to local minimizers of the exact barrier function. 
In fact this property does not seem to be required, in practice, to give a meaning to 
the notion of exactness, since condition (P3) ensures that the global solutions of 
Problem (P) are preserved. A one-to-one correspondence between local minimizers 
of the two problems is a stronger property which, howeverl will be shown to hold for 
compact sets of local minimizers. To this end we say that Zq(x; s)  is locally exact at 
~, a local minimum point of Problem (P), if for all s sufficiently small, $ is a local 
minimizer of Zq(x; s). 

In Sections 4 and 5 we investigate the properties of the barrier function Z(x; s)  
and show that, under suitable assumptions, it is exact with respect to the set j /r .  

In Section 6, employing the analysis carried out in Sections 4 and 5, we study 
some algorithms which aim at solving the constrained Problem (P) by the uncon- 
strained minimization of the barrier function Z(x; s). First we discuss the behavior 
of a basic algorithm scheme without making any regularity assumptions; then we 
introduce various regularity assumptions and study how they influence the behavior 
of the basic algorithm and of some of its variants. 
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3. Discussion of the Assumptions 

In this section we introduce and comment  on the two main assumptions that are 
invoked to establish some of the results presented later. 

To introduce these assumptions we first need a definition. 

Definition 1. We say that condition CQq is satisfied at x if 

0 ~ 0 ]~ l lg+(x ) ,  h(x)llq. 

This regularity condition, which proved to be very useful in the context of 
penalization methods, was first introduced in [13] and further employed in [14] and 
[21]. We see in this section how conditon CQq relates to other, more  usual, 
regularity conditions for Problem (P). 

We now introduce our assumptions. They are employed in the next section to 
establish the exactness of  Z(x; s), and, in the last section, to ensure some conver- 
gence properties of  the algorithm studied there. 

Assumption A1. The set./V, is compact. 

Assumption A2. Condition CQq is satisfied for all x in J~.  

Regarding Assumption A1, we observe that the existence of a compact  pertur- 
bation of the feasible set is a mild requirement  on the constraint functions; in 
particular the next proposition gives conditions ensuring that Assumption A1 is 
satisfied for any positive a.  

Proposition 1. 

(i) 
(ii) 

(iii) 

Then, for 

Assume that one of the following conditions is satisfied: 

A function gi(x) exists such that limlFxl I _~ ~ gi(x) = oo. 
A function hi(x)  exists such that limllxl I . ~ Ihj(x)l = ~. 
Index sets I and J, not both empty, exist such that the functions gi(x), i ~ I, 
are convex, the functions hi, j ~ J, are affine, and the set {x: gi(x) < O, 
i ~ 1; h(x)  = O, j E J} is compact. 

any c~ > 0, the set ~ is compact. 

Proof. If  either (i) or (ii) holds, the level sets of IIg+(x), h(x)]lq are bounded and 
the assertion follows immediately. With regard to point (iii), note that we can write 

c_ {x ~ ~":l lg,+(x) ,h1(x)l lq < a}, 

where IIgi+(x), h](x)llq is a convex function. Then the assertion is a consequence of 
Theorem 24 of [22], which states the preservation of boundedness of  convex sets 
given by convex inequalities, in correspondence to perturbation of the right-hand 
side. []  
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We now consider Assumption A2. We first state two results that show that the 
condition 0 ~ als~llg(x)+, h(x)llq is "stable." 

Proposition 2. Suppose that Condition CQq holds at a given point X ~ R n. Then 
Condition CQq holds in a neighborhood of  x. 

Proof. The assertion easily follows f rom the upper-semicontinuity of the point-to-set 
map x ~ als~llg+ (x), h(x)llq (see [27]). []  

Proposition 3. Suppose that: 

(i) A n  -6 > 0 exists such that ~ is compact. 
(ii) Condition CQq holds on J .  

Then a positive a, ol <_ -6 exists such that Assumption A2  holds. 

Proof. Let -6 > 0 be such that ~ is compact.  We  observe first that for any positive 
a ,  o~ < -6, the set ~/P, is compact  and 9 - c  IP~. Suppose now that the conclusion is 
false. Then for any k we can find an a k < min[~,  1/k]  and a point x k ~ ~ k  ~ 
such that 0 ~ al~llg+(xk),  h(xk)llq. Since ~ is compact,  we can assume, without 
loss of  generality, that the sequence {x~} admits a limit point i ~ ~/P~; furthermore,  
as we have IIg§ h(xk)ll q < ~k, 2 ~ ~.. However,  then, by (ii) and Proposition 2, 
0 ~ als~llg(x)+, h(x)[Iq in a neighborhood of 2 and this is absurd. []  

Proposition 3 gives a sufficient condition for the existence of a compact  
perturbat ion of the feasible set where Condition CQq is satisfied; now we turn to 
conditions ensuring that  it is satisifed at a given point. We first observe that if 
x ~ ~,, then we always have 0 ~ als~llg(x)+, h(x)llq, in fact, 

al~ l lg+(x ) ,h (x ) l lq  = 0 if x ~ ~ .  

o 

On the contrary, if x ~ ~ ,  this condition is not trivial, however, we can give 
sufficient conditions for its fulfillment. To this end we consider three 
Mangasar ian-Fromovi tz- type  conditions that are strictly related to Condition CQq. 

Condition C1. q ~ (1, oo) and 

0 ~ [ a ( g ( x ) , h ( x ) l ' ( f l ,  y ) ,  

where 

[~i :=g+,(x) (q-l), i = 1 . . . . .  m,  

yj- '= sign(hj(x)) lhy(x)l  (q-l), j = 1 , . . . , p .  
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Condition C2. 

(i) For any (~1 . . . . .  ~m, ~1 . . . . .  ~p)t ~ ~l~[g (x ) ,  h(x)], d exists such that 

~'d < O, i ~ I~(x),  

~ . 'd=O, j = 1 . . . .  ,p .  

(ii) ( ffl . . . . .  ffp) is of maximal rank. 

By alternative theorems Condition C2 can also be rewritten as: 

Condition C2. For any t 1 . . . .  , t e c { -  1, 1} and for any (s . . . .  , ~m,  ~ 1 , ' ' ' ,  ~p)' E 
0 [~ (g (x ) ,  h(x)), 

0 ~ co{~i, i  ~ I ~ ( x ) ; t j ~ . , j  = 1 , . . . , p } .  

Condition C3. d e ~n exists such that 

(i) 
g~ d) < O, i e I~(x),  

h~ d) = O, j = 1 . . . . .  p. 

(ii) Oh(x) is of maximal rank. 

Condition C2 is an extension to possibly infeasible points of  a condition given in 
[26]. If  the constraints are continuously differentiable Conditions C2 and C3 are 
equivalent and, moreover,  on the feasible set, they coincide with the well-known 
Mangasar ian-Fromovi tz  constraint qualification. In the case of  Lipschitz functions it 
is easy to verify, recalling the relationship between the generalized gradient and the 
generalized directional derivative, that Condition C3 implies Condition C2, and that, 
if x is not feasible and q e (1, oa), Condition C2 implies Condition C1. Conditions 
C1-C3,  or similar conditions, have already been used by various authors, see, e.g., [4] 
and [32]. 

In order to establish the relationships between these conditions and Assumption 
A2 we need the following result. 

Proposition 4. Let ~r c R 'n X R p de defined by A := {(g, h) ~ R m • ~P." Jig+, hllq 
> 0}. Then 

(i) For any q ~ (1, ~)  and (g, h) ~ d ,  Ilg+, hllq is continuously differentiable and 

Vllg+, h[lq = ( 13, T), 

x(q - 1) 
g+i) 

/3 i := iig+,hll<qq_l), i = 1 . . . .  , m ,  

sign(h])ihji(q i) 

~/J := [Ig+, h]l(q q-  1) ' j = 1 . . . . .  p .  

where 
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(ii) For any (g, h ) s u c h  that [[g+, hllq = O, we have that 

0 ~ al~,llg+,hllq. 

(iii) For any (g, h) such that []g+, hllq = O, we have that if 

( ~ ) ~ 3 .,g + , h'lq with [3 ~ " m, y ~ R p, 

then [3 i > 0 for every i = 1 . . . . .  m and [3 i = 0 for every i such that gi < O. 

Proof. Points (i) and (ii) have been proved, for example, in [13]. Regarding point 
(iii) we observe t h a t  

Ilg+, hllq = distq{(g, h)lR_ ~ x Op}, 

so that the assertion follows by the known formula 

3 distq{(g, h)[R_ ~ • 0p} = NR~xov(g, h) • B~  h);  1). [] 

In the next two propositions we state the relationships of Conditions C1-C3 
with Condition CQq (and hence with Assumption A2). 

Proposition 5. Let x ~ R n be given, then, if  q ~ (1, ~) and x ~ ~ ,  Condition C1 
implies Condition CQq. 

Proof. If x ~ 3-we have that ~l~llg+(x),  h(x)llq = ~llg+(x), h(x)llq. Furthermore, 
taking into account that q E (1, ~), we have, by Proposition 4(i) and by known 
calculus rules (see e.g., [12]), that the generalized gradient of allg+(x),h(x)Hq is 
given by 

1 
[ a ( g ( x ) ,  h(x) ] ' (  fl, y ) ,  

Ng+ (x ) ,h (x ) l lq  

where 

[ / x x ( q -  1) 
f l i  :=  ~g+ivx)) , i = 1 . . . .  , m,  

3,] .'= sign(h](x)) lhj(x) l  (q-l), j = 1 , . . . , p ,  

from which the assertion follows immediately. [] 

Proposition 6. Let x ~ Rn and q ~ [1, oo] be given, and assume that Condition C2 is 
satisfied at x. Furthermore, let us assume that one of  the following conditions is satisfied: 

(i) q ~ (1, ~). 
(ii) p = 0 (there are onty inequality constraints). 

(iii) g and h are continuously differentiable in a neighborhood of  x. 

Then condition CQq holds at x. 
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Proof. The proposition is proved in [14]. Note that there we assumed x to be 
feasible, but this fact is never used in the proof, so that the stronger version stated 
here holds. [ ]  

Remark 1. It can be easily shown that there are cases where neither Condition C3 
nor Condition C 2 are satisfied and yet 0 ~ c~l:llg(x)+, h(x)[[q. This is proved by the 
following example: Y =  {x ~ R: x 3 < 0, x = 0}. In ff = 0 Conditions C2 and C3 do 
not hold because the gradient of  the inequality constraint vanishes at $. On the 
other hand we have 

l i m V [ ( x 3 ) +  + Ix]] = - l ,  
xt0 

l i m V [ ( x 3 ) +  + [x[] = 1, 
x$0 

so that Condition CQ 1 is satisfied at $. We see, then, that Condition CQq is weaker 
than Conditions C2 and C3, and hence, in particular, if we assume that the problem 
functions are continuously differentiable, it is weaker than the Mangasar ian-  
Fromovitz regularity condition. 

Finally, in the next proposition we give conditions ensuring that Condition CQq 
holds on ~n. 

Proposi t ion 7. Suppose that: 

(i) The functions gi(x), i = 1 . . . . .  m,  are convex and a point Yc ~ 9-  exists such 
that g(Yc) < O. 

(ii) The functions h:(x),  j = 1 , . . . ,  p ,  are affine and Vh(x )  has full rank. 

Then Condition CQq holds for any x ~ R n. 

Proof. It can be easily verified that Ilg+(x), h(x)[[q is convex. Furthermore, its least 
value is 0 and it is attained if and only if x ~ J .  Hence, if x ~ J ,  from the convexity 
assumptions, we have that 0 ~ 0 I I g + (x),  h(x)llq, and the thesis follows from the fact 
that the generalized gradient relative to a set is contained in the generalized 
gradient. 

If  x ~ c~J,, we can write 

~ ( ~  -- X) -t- g i ( x )  ~ g ( 2 )  < O, V~i ~ 3gi (x) ,  

Vh:(xY(~ - x)  = 0, j = 1 , . . . ,  p ,  

and hence, taking into account the definition of  Io(x), 

~: ' ( i  - x)  < 0, V~i E Ogi(x) , i ~ Io(x) ,  

Vh:(x) ' (~  - x)  = 0, j = 1 . . . . .  p .  

i =  1 , . . . , m ,  

(3) 
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By Theorem 1.4 of [27] we have 

al~llg+ (x ) ,  h(x)llq 

t " ___co ~., 13i~i+ ~. ,Ti~j: (~,T)  eal~ellg+,hllqlg=g(x), 
i ~ Iv(x) i =j h = h(x) 

~i �9 O g i ( x ) '  ~J" = Vhj(x) , (4) 

where ~" := {(g, h) �9 ~m X ~P: IIg+, hllq > 0}. The thesis now follows by known 
theorems of alternative, taking into account the definition of convex hull, Proposi- 
tion 4, (3), and (4). []  

We end this section by studying the connections between condition CQq and 
the FJ conditions for Problem (P). 

Proposition 8. 

(i) Let x be a feasible point for Problem (P) such that Condition CQq is not 
satisfied in x, and suppose that the equality constraint h is  continuously 
differentiable around x. Then x is an FJ point of Problem (P). 

(ii) Let x be an infeasible point for Problem (P). Suppose that Condition CQq is 
not satisfied in x, then x is an infeasible stationary point of Problem (P) and 
vice versa. 

Proof. (i) We first note that we can write 

Jig+ (x) ,  h(x)llq = Jig+ (x ) ,  h+ (x) ,  ( - h ) +  (X)Hq = F o w(x) ,  

where w(x): R" ~ R m+zp is defined by 

w(x)  -'= (g(x) ,  h(x) ,  - h ( x ) ) ;  

while F(w): R m+2p ~ R is given by 

F(w) := F(g,  h a, h 2) = IIg+, ha+, hZllq. 

We now show that 

a~llg+ (x),h(x)llq 

{ m 
CC_. T I E ~ n :  TI = E [~i Ol~gi(x) 

i=1  

+ ~ ( T i -  6i)Vhj(x) ,(~i ,T,  6) �9 OL, f ( g ( x ) , h ( x ) , - h ( x ) )  , (5) 
y=l 

where, we recall, .~g indicates the subset of R m+2p where the function F takes 
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positive values, i.e., 

d = {W E ~ m + 2 P : F ( w )  > 0}. 

To prove relation (5) we observe that F(w) is isotone according to the definition 
given in [40] (i.e., F (w 1) < F(w 2) whenever w 1 < w 2) so that we can apply Theorem 
3,17 of [40] to conclude that, for any y ~ ~-~, 

d l lg+(y) ,  h(y)l[q = O(F o w)(y)  

C ?7 ~. ~ n :  9~ = /3i Ogi(Y) + ~-, (3'/ -- 6i)Vhj(x), 
i=1 j = l  

(/3, y, 6) ~ OF(g(y), h ( y ) ,  - h ( y ) ) ) .  (6) 

Hence,  using (6) and the definition of generalized gradient relative to a set, we 
obtain (5). 

Since we are supposing that Condition CQq is not satisfied at x, we have 
0 ~ O~llg+(x), h(x)llq, which in turn, by (5) and by ~ g i ( x )  C_.C__ Og i (x )  , implies 

p 

0 ~ ~. A i 8gi(x) + ~7~ tzjVhj(x), 
i=1 j=l 

where we have set h = / 3  a n d / ,  = (3' - 6). Hence,  to prove that x is an FJ point it 
remains to show that (a) A >_ 0, (b) Aigi(x) = 0 for i = 1 , . . . ,  m, and (c) ( a , / , )  4= 0. 
We then proceed to show that (a)-(e)  hold. (a) and (b) follow immediately by the 
definition of A ( = / 3 )  (see (5) and Proposition 4(iii)). Regarding (c), using the special 
structure of F (more precisely the fact that if h 1 > 0, then h 2 < 0 while if h 2 > 0, 

then h I < 0), the definition of a generalized gradient relative to a set, Proposition 
4(ii), and the explicit expression of the subgradient of  F at points belonging to ae 
(see, e.g., [13]), it can be verified that e i ther /3  -~ 0 or 3' 4= 6, so that (c) follows. 

(ii) This point follows immediately by noting that if x is not feasible, then 

a~ l [g+(x) ,  h(x)llq = ~llg+(x), h(x)llq. []  

Remark  2. Proposition 8 clearly shows that the only feasible points where condition 
CQq can possibly fail are the FJ points. However,  we note that t he  set of  FJ points 
is, in general, strictly larger than the set of points which violate condition CQq. This 
is shown, for example, by the example considered in the Remark  1. This example 
may seem exceptional since the feasible region is made up of just one point (x = 0) 
and, for any objective function, x = 0 is also a KKT point. Hence  we also consider 
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another example: 

min X 2 , 

gl(x)  = x 2 + xzz - 1 <0 ,  

g 2 ( x )  = - - X  2 - -  2x2 2 + 1 < O, 

and the feasible point ff = (1, 0). Obviously ~ is not a minimum point, but the FJ 
conditions are satisfied with A = (1, 1). On the other hand, it can be easily verified 
that o l~llgl+(~), g2+(~)]lq is equal to {(2, 0), ( - 2 ,  0)} and hence Condition CQq is 
satisfied. Note that s is neither a minimum point nor a KKT point. 

4. Exactness of Zq(X; e) 

In this section we show that, under suitable assumptions, the barrier function 
Zq(x; e) is exact, in the sense that properties (P1)-(P3) stated in Section 2 are 
satisfied. More precisely, in this section, and in the following one, we always assume 
that Assumptions A1 and A2 are satisfied. 

With regard to property (P1) it can be easily verified that it is satisfied, by 
construction, by Zq(x; s)  when Assumption A1 holds. Therefore, the main concern 
of this section is that of establishing properties (P2) and (P3). 

In the next proposition we show that a threshold value s* > 0 exists such that, 
for every e ~ (0, s*], the function Zq(x; s)  has no (unconstrained) stationary points 
in ~ \ ~ .  

Proposition 9. A threshold value e* > 0 exists such that, for every e E (0, s*], the 
function Zq(x; e) has no stationary points in ~ \9: .  

Proof. We proceed by contradiction. If the assertion is false, for any integer k an 
e k < 1 / k  and a point x~ ~ ~ \ Y e x i s t  such that 

0 ~ aZq(Xk" ~ 8k).  

Since ~,, is compact, a convergent subsequence (relabel it {Xk}) exists such that 

lim x~ = 2 ~ ~ \f t . .  
k ~  

(7) 

We now show that a constant C > 0 exists such that 

II~/tlq ~ C, V~ ~ all~,+(x),h(x)llq, Vx ~ ~ \ 9 - .  

If (8) were false, sequences {Yk} and {~k} would exist such that 

(8) 

[l~kllq ~ O, ~g ~ 011~+ (Yk), h(y~)llq, Yk ~ ~ \ ~ "  (9) 
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However, by Proposition 2.3.14 of [12] and Theorem 3.2 of [36], 

0r 

allt~+ (y),/~(y)llq _ b-~y)2a[Ig+(y), h(y)llq. (10) 

Since JtT~ is compact, we can assume, without loss of generality, {y~} ~ y ~ ~ .  Now, 
noting that 

a 1 
- - > - - > 0 ,  Vy ~ ~4F, 
b(y)  2 - a 

and noting that (10) implies 

Ot 

~ ~ b(Yk) z allg+ (y~), h(yk)llq, 

we can conclude by (9) that 

0 ~ a[~llg+(p),h(~)llq, 

thus contradicting Assumption A2. Hence (8) holds. 
Recalling that 

1 
CgZq(Xk; 8 k) ~ df(xk) + - -a l l~+(xk) ,  h(xk)llq 

8 k 

and that the generalized gradient of a locally Lipschitz function is bounded on 
bounded sets, we get a contradiction from (7) and (8) for sufficiently large values 
of k. [] 

We can now state the following theorem: 

Theorem 10. A threshold value s* > 0 exists such that the function Zq(x; s) satisfies 
Property (P2). 

Proof. The assertion easily follows from Proposition 9, recalling that any local 
minimum point of Zq(x; s) must be a stationary point of it, and taking into account 
that any local minimum point of Zq(x; s) belonging to 9- is also a local minimum 
point of Problem (P). [] 

Let us denote by W the set of global minimum points of Problem (P), that is, the 
set of points ~ such that 

f (2)  < f (x) ,  Vx ~ ~.. 

Also, we denote by f the value of f(x) on W, that is, 

f : =  f(~),  ~ ~ ~.  

The next two theorems jointly establish property (P3). 
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Theorem 11. A threshold value 8" > 0 exists such that, for every 8 ~ (0, 8"], if 
x~ ~ ~F~ is a global minimum point of Zq(x; e) onJY~, we have x,  ~ ~. 

Proof. We proceed by contradiction. If the assertion is false, for any integer k an 
8 k < 1 / k  and a point Xk, which is a global minimum point of Zq(X; 8 k) on Ar~, but 
does not belong to if, exist. It follows that, for all ~ ~ ~,  we have 

Z q ( X k "  ~ 8 k )  <_~ Zq(x '~ ,~k ) = f ( ~ )  = f .  (11) 

However, the points x k are stationary points of Zq(x; 8g), hence, by Proposition 9, 
we have that, for sufficiently large values of k, 

X k ~ ~ :=~ Zq (Xk"  ~ 8k) = f (xk ) .  

Then, by (11), f (Xk) < f ,  contradicting the assumption x k ~ ft. [] 

Theorem 12. A threshold value 8" > 0 exists such that, for all 8 ~ (0, 8"], any 
~ ~ is a global minimumpoint ofZq(x; 8) on Ar~. 

Proof. By construction of Zq(x; 8), if 2 ~ ff  _ Ar~, we have 

Zq(X'~ ,~) = f ( 2 )  = f .  (12) 

Now let 8* be the number considered in the preceding theorem, and let 8 ~ (0, 8"]. 
Then, by Theorem 11, a global minimizer x~ of Zq(X; 8) on ~ must satisfy x~ ~ g', 
so that Zq(X,, 8) = j~ Therefore (12) implies that ~ is also a global minimizer of 
Zq(x; e) on A~. [] 

5. Further Results 

As already remarked, the notion of exactness introduced in Section 2 by means of 
Properties (P1)-(P3), which has been validated by the results established in the 
preceding section, does not require that local solutions of Problem (P) be local 
solutions of Problem (U). However, under suitable assumptions, this correspondence 
can also be established with respect to compact sets of local minimum points of 
Problem (P). We recall that in this section also we assume that Assumptions A1 and 
A2 hold. 

We first prove this result for a single minimum point, then we extend it to 
compact sets of minimum points. 

Proposition 13. Let Yc be a local minimum point for Problem (P). Then Zq(x; 8) is 
locally exact at Yr 
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Proof. By the assumptions made, we can find a 8 > 0 such that B(s 8) G ~ and 
such that f ( x )  >_f(2) for any point x in B(s 8) N ~.  Consider now the following 
problem: 

4 [ ()] 
(P') m i n f ( x )  d- - ~ ( f ( x )  --f3 (X 1 ---~1 )2q- "'"-}-(X n --Xn)2-3 ~ 2 

+ 

such that g ( x )  < 0, h ( x )  = 0, 

where f is the least value of f over J.. It is easy to verify that 2 is a global solu- 
tion of Problem (P'). We denote by Z'q(x; ~) the barrier function associated to 
Problem (P'). 

By Theorem 12, an 6" exists such that, for all 6 ~ (0, 8*], s is a global solution 
of the following (unconstrained) problem: 

min Z'q ( X ; 6) ,  x ~ ytP~ . 

The thesis then follows observing that, for any x ~ B(2,  6/2), Z'q(X; a )  = Zq(x; a). 
[] 

We can now state the following theorem: 

Theorem 14. Let ~ be a compact set of  local minimum points of  Problem (P) such 
that f ( x )  takes only a finite number of  values on it. Then a threshoM value ~* > 0 exists 
such that: 

(i) For all 6 ~ (0, 6"], if ~ ~ l ,  then ~ is a local minimum point Of Zq(X'~ ~). 
(ii) For all 6 ~ (0, 6*), if s ~ ~ is a strict local minimum point of  Problem (P), 

then ~ is a strict local minimum point of  Zq(X; 6). 

Proof. (i) We proceed by contradiction. If the assertion is false, for any integer k 
an ek < 1 / k  and a point x k ~ • ,  which is not a local minimum point of Zq(X; 6k), 
exist. Since Z( is compact, a convergent subsequence, which we relabel {xk}, exists 
such that 

lim x~ = s ~ ft'. 
k---~ co 

Since Xg ~ s by the assumptions made on Jr" and by the continuity of f(x) ,  a ~: 
exists such that 

Z q ( X k ; S k ) = f ( X k ) = f ( ~ ) = Z q ( Y C ; 8 ) ,  Vk > ~:, V s > 0 ,  (13) 

where the first and last equality follow by the feasibility of x k. However, by 
Proposition 13 ~ and 8 exist such that 

Zq(x; ~) <<_ Zq(x; ~), Vx ~ B(Yc, 6) .  (14) 
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Then, by (13) and (14), we can write, for k > lr large enough so that 6 k < ~, 

Zq(X; 6k) "~ Zq(X; ~) ~ Zq(x; ~) ~_~ Zq(x; 6k) , Vx ~ B(2, 6), 

which implies that x k is a local minimizer of Zq(x; 6,) for all k large enough, thus 
contradicting the assumption made. 

(ii) If  2 is a strict local minimum point of Problem (P), we can find a 0 < 6 '  _< 6 
such that 

f ( x ) > f ( 2 ) ,  V x ~ 9 " N B ( 2 , 6 ' )  and x4=2. 

Assume now that e ~ (0, e*), x ~ B(2, 6% and x 4= 2. If x ~ 9 -we  can write 

Zq(X; 6) = f ( x )  > f ( ~ )  ----- Zq(2; 6); 

if x ~ 9" we can write 

Zq(X'~ 6) > Zq(X; 6*) ~_~ Zq(X; 6*) = f(Yr = Zq(2"~ 6); 

so that the proof is complete. [] 

From the computational point of view we have that unconstrained minimization 
algorithms yield unconstrained stationary points of the function Zq(x; 6). Therefore ,  
it is also of interest to give conditions under which every stationary point of Zq(x; 6) 
is a KKT point of Problem (P). In Proposition 9 it has been shown that there are no 
stationary points of Problem (U) which do not belong to 9-  for sufficiently small 
values of 6. The following proposition gives a condition that ensures that stationary 
points of Problem (U) belonging to 9 -a re  also KKT points of Problem (P). 

Proposition 15. Let 2 be a stationary point of Problem (U) and suppose that 2 ~ ~. 
Then, if h( x ) is continuously differentiable at 2, 2 is a KKT point of Problem (P). 

Proof. By assumption, 

0 ~ o3Zq(2"~ 6). (15) 

However, by Theorem 2.3.9 of [12], we have that 

OZq(2; =) ___ of(~)  + ~ co /3i Ogi(~) § ~ -/jVhj 2) , (16) 
i=1 j = l  

where (/3, y)  ~ allg+, hi[q, with g = g(~) and h = h(2). By (15) and (16), we can say 
that an integer s and s positive numbers t r, r = 1 , . . . ,  s, with E~= 1 tr = 1, exist such 
that 

O= +sb(2)[i=l(~lt~/3[~i~)+ i=l~(~lt~y[Vhj(2)) (17) 
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where q~ ~ ~f($), f i  r E cggi(~), and (/3, 3,) ~ 0[[g+, hi[q, with g = g($) and h = h(2). 
Let I be the index set defined by 

�9 f.'= i ~ { 1  . . . . .  m}: ~_.t~/3[~O , 
r = l  

and let 

q q 
Ri := Etr/3f, sj : =  Etr3,f, i =  1 . . . .  , m ,  j = 1 . . . . .  p .  

r = l  r = l  

By Proposition 4(iii), if i ~ 1, t3[ = O, r = 1 , . . . ,  s, so we can write (17) in the 
following form: 

1 ~ Rir~=l - ~ i ~ i  ] q- E S j V h y ( . ~ )  . (18) 0 = ~ "q- ~ i~[ = j=l 

We now note that, by Proposition 4(ii), Y~r= 1 (tr flir/Ri)~[ ,is a convex combination of 
elements of 8gi(Yc) so that, by the convexity of the generalized gradient, we can write 

' I  ' ] 
0 = q~ + ~ E Ri ~i @ E SjVhj(2)  , (19) 

t i f f  j=l 

where ~i ~ 8gi(2), Vi  ~ I. By Proposition 4, R i > 0, Vi ~ L and f c /o(2) ;  hence 
the thesis follows from (19) taking 

1 
a i Ri,  Vi  ~ f ,  

8b(,~) 

h i = O, Vi  f~ I,  

1 
I*j 6b (2 )  Sj, j = 1 . . . . .  p .  [] 

It does not appear easy to relax the assumption that h be continuously 
differentiable in the preceding proposition. In fact in [35] an example is given 
showing that when nondifferentiable equality constraints are present, arbitrary 
feasible points can become stationary points of the barrier function P(x;  s )  = f ( x )  
+ (1/e) l lg(x)+,  h(x)H= for sufficiently small values of e. It is easy to see, using the 
example of [35], that the same result holds for Zq(x; ~). Hence, if one wants to 
employ Zq(x; ~) to find a solution of Problem (P) numerically, the differentiability 
of the equality constraints must be assumed (see the next section). 

Remark 3. In this section we have assumed, for simplicity, that Assumptions A1 
and A2 hold. However, since the results stated in this section are essentially local, it 
would not be difficult to show that they still hold if we just assume that Condition 
CQq holds in the points considered in the various theorems. 
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6. Globally Convergent Algorithm Models 

In this section we propose some algorithm models which aim at solving the 
constrained Problem (P) by an unconstrained minimization algorithm. In view of the 
discussion made after Proposition 15, in this section we always suppose that h is 
continuously differentiable. 

We assume that an unconstrained iterative minimization algorithm ~/with the 
following characteristics is available. First we suppose that, for every given value of 
the parameter 8 and of the starting point x 0 ~ j/F, algorithm ~/ produces a 
sequence {x k} contained in ~ and such that Zq(xk; 8) < Zq(xo; 8). Recalling that 

At, is an open set, it is easy to see that the preceding requirement Can be satisfied by 
any descent minimization algorithm: it is only necessary to ensure, by simple devices, 
that the trial points produced along the search direction remain in J//'~. 

The remaining requirements on algorithm ~" are standard. We suppose that, at 
each iteration, it is possible to associate to the current point xg a nonnegative 
"stationarity measure" o- k which can be 0 at (unconstrained) stationary points of 
Zq(x; 8) only and such that if {x k} is the sequence of points generated by algorithm 

and for some subsequence K of indexes we have that {Xk}K ~ 2 and {trk} r ~ 0, 
then 2 is an (unconstrained) stationary point of Zq(x; 8). Finally, we assume that 
algorithm ~/ either drives the penalty function valiae to -oo or the stationarity 
measure o- k to 0. 

The purpose of this section is to show that it is possible to use the unconstrained 
minimization algorithm ~/, coupled with the penalty function studied in the previous 
sections, to solve the constrained Problem (P). We introduce a very general algo- 
rithm scheme and study its behavior when no assumptions are made on Problem (P). 
Then, we investigate how this behavior is improved when various, increasingly 
stronger, assumptions on Problem (P) are made. Finally, we also consider two 
variants of the basic algorithm that can be useful in particular cases. 

To state the basic algorithm model more simply, we introduce the following 
notation: 

A~ .'= { 6 ~  R+: 6 = i~v~,s = 0,1 . . . .  } u {0}, 

0 ~ ( x )  := cl[ [, .J 0qffy)]. 

Algorithm Model I. 

Data. x o ~ ,  8 0 > 0 , / ~ > 0 ,  v ~ ( 0 , 1 ) , 0 1  E ( 0 , 1 ) , 0 2 ~ ( 0 1 , 1 ) .  

StepO. Set r = 0 ,  k = 0 .  

Step 1. If []g+(xk) , h(x~)llq = 0 go to Step 2, else go to Step 3. 

Step 2. If o- k = 0 stop, else go to Step 6. 

Step 3. If 0 ~ 8[]g+(xk) , h(xk)ll q stop. 
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Step 4. 

6k 

Step 5. 

Step 6. 
Step 1. 

Compute 

= max{6 ~ A~: 6 < IlNrO~Zq(xk; 8k)llq}. 

If 6k > ~'Skllg+(Xk), h(xk)llq go to Step 6, else go to Step 7. 

Compute Xg+ 1 using algorithm ~, set e~+ 1 = ek, k = k + 1 and go to 

Step 7. Choose gk+l ~ [018k ,  028k], set Xk+ 1 = Xk; set (for future reference pur- 
poses only): w~ =Xk, 6~ = 6k, kr = ek, and r = r + 1, set k = k + 1 and go to 
Step 1. 

Remark 4. Note that Algorithm Model I produces the sequences {x k} and {ek}. At 
each iteration, either xk+ 1 §  k or e~+ 1 < ek, but never both. The first case 
(xk+ 1 r xk) occurs when the penalty parameter is not updated and a new point is 
generated using algorithm ~'. The second case (e~+ 1 < e~), instead, occurs when the 
algorithm model detects the need to reduce the penalty parameter; in this case we 
do not change the current point x k. 

The algorithm model produces also the sequences {Wr}, {er}, and {6~}. These 
sequences are introduced only to facilitate the exposition of some proofs in what 
follows. These sequences keep track of the values of the corresponding quantities at 
the steps where the penalty parameter is updated. 

Proposition 16. Suppose that h is continuously differentiable in an open set containing 
Y and let {x~,} be the sequence produced by Algorithm Model I. 

(1) If  the sequence {x k} is finite with the last point Yc, then ~ is either a KKT point or 
an infeasible stationary point of Problem (P). 

(2) If  {~k} $ 0 (and hence the sequence {w r} is infinite and {kr} $ 0), then every limit 
point Yc of the sequence {Wr}, is such that 

0 ~ a~llg+(~), h(~)llq. 

(3) If  e k = ~ for every k sufficiently large, then every limit point Y~ of {x k} is a KKT 
point for Problem (P). 

Proof. (1) This point easily follows by the stopping criteria of Steps 2 and 3, 
recalling that if we arrive at Step 3 the current point is not feasible, and using 
Proposition 15. 

(2) Suppose the contrary. Then a subsequence of {w~} (which we relabel {w~}) 
exists which converges to a point ~ where 0 ~ al~llg+(~), h(x)l[q. By Step 5 we also 
have a sequence { 6r} of nonnegative numbers such that 

~r < vk~ltg+(wr), h(wr)llq. (20) 

Since (kr)$ 0 and {w r} converges, (20) implies 

~r ~ 0. (21) 
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By the definition of ~ we have 

i, 
- -  > IINr o~gr/vZq(Wr; ~r)[lq, 

that in turn implies, taking into account (21), 

I[Nr cg~jvZq(Wr; kr)[Iq ~ 0. (22) 

NOW, if ~ ~ ~,  we have, 

Ol~[Ig+ (~), h(~)[lq = Ollg+ (~), h(x)]lq. (23) 

However, we also have, recalling (10), 

~rO3gr/~,Zq(Wr'~ kr) C_. ~rOg,/~f(%) + c~g,/~l[~,+ (Wr),h(wr)ll q 

(�9 ~'c 5~Og,/~f(Wr) + Og,/~llg+ (Wr),h(wr)llq, (24) 

that, by the boundedness of the subdifferential mapping, by the fact that a/b(w~) 2 is 
bounded away from Zero in a neighborhood of ~, and by (22), implies 

IlNr Og,/~llg+ (w~), h(wr)llqllq --' O. (25) 

However, then, taking into account the upper semicontinuity of the subdifferential 
mapping and the definition of ag,/~llg+(Wr), h(wr)ll q, we have that (21), (23), and (25) 
contradict 0 ~ ol~llg+(~), h(2)l[q. Hence ~ ~ 9- must hold. By the Lipschitzianity 
of [Ig+(x), h(x)llq we have that a constant L and a neighborhood D of ~ exist such 
that 

IIg+ (w),h(w)llq 
IIg+ (x), h(x)l[q = 0 ~ IIw - Xllq > L , Vw, x ~ 1). 

(26) 

Subsequencing if necessary, two possibilities now arise: for all w r ~ 12, either 
~r)/u < !g+(w~), h(wr)llq/Z or ~ / v  > Ilg+(w~), h(w~)llq/Z. 

If 8 J u  > IIg+(wr); h(w~)llq/L, we have a contradiction to the rule of Step 5. 
Hence, we only need consider the case ~ / u  < IIg+(w), h(wr)llq/t. It is easy to see 
that in this case (21) and (26) imply that, for r sufficiently large, 

B ( w ~ , ~ )  n Y-= | (27) 

It is immediate to see, now, that (25) is still valid in the case $ ~ ~.  Hence, 
since, for r sufficiently large, B(wr, ~ / ~ )  n 8~4r~ = 0 ,  the closure operation in the 
definition of Og,/vllg+(w~), h(%)llq is superfluous, and, recalling also (27), we can 
conclude that 

Nr ag,/~llg+ (wr), h(wr)llq = ~,  
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with 

(r E OHg+ (Yr),h(Yr)[Iq, Yr ~ B(wr,  ~ ), Yr ~ ~" 

Then, taking into account the definition of generalized gradient relative to a set, 
(21), and (25) we have 

{~i r} --> 0 E O[~llg+ (Y~),h(Yc)l]q, 

which again contradicts 0 ~ 0~[Ig+(~), h(~:)Hq, 
(3) If a limit point ~ of the sequence {x~} exists, then, by continuity, {Zq(xk, ~)} 

+, --~. Hence, by the assumptions on the unconstrained algorithm ~', we have 
{o-~} ~ 0, so that ff is a stationary point for Zq(x; ~). This implies {6 k} ~ 0, so that, 
by the rule of Step 5, we also have [[g+(xk), h(xk) l l  q ---) O, that, in turn, imPlies the 
assertion by Proposition 15. [] 

By Propositions 8 and 16 we immediately obtain the following theorem which 
gives a fairly detailed picture of the behavior of the algorithm model. 

Theorem 17. Suppose that h is continuously differentiable in an open set containing N r 
and let {x k} be the sequence produced by Algorithm Model I. 

1. I f  the sequence {x k} is finite with the last point Y~, then ~ is either a KKT point or 
an infeasible stationary point of Problem (P). 

2. I f  {~k}$0 (and hence the sequence {w r} is infinite and {~r} $0), then every limit 
point Yc of the sequence {w r} is either an FJ point or an infeasible stationary point 
of Problem (P). 

3. I f  8~ = ~ for every k sufficiently large, then every limit point Yc of {Xk} is a KKT 
point for Problem (P). 

The preceding theorem is quite interesting, especially because it is proved 
without imposing any regularity assumption on Problem (P). It is obvious, then, that 
it allows possible "pathological" behaviors. For example, it does not exclude that no 
limit points exist at all or that the penalty function value be driven to -oo. It is of 
interest, then, to study under which assumptions these "pathological" behaviors can 
be excluded. 

A first result in this direction is given in the following theorem, where, under 
Assumption A1, it is excluded that unbounded sequences be generated and so the 
existence of at least one-limit point which is an extended stationary point for 
Problem (P) is guaranteed. 

Theorem 18. Suppose that h is continuously differentiable in an open set containing 9- 
and that Assumption A1 /s satisfied. Let {x k} be the sequence produced by Algorithm 
Model I. Then the sequence {x k} is bounded and the sequences {x k} and {w r} admit at 
least a limit point. 

1. I f  the sequence {xg} is finite with the last point Yc, then Yc is either a KKT point or 
an infeasible stationary point of Problem (P). 
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2. If  {ek} $ 0 (and hence the sequence {w r} is infinite and also {k r} $ 0), then every 
�9 limit point 2 of the sequence {wr} is either an FJpoint or an infeasible stationary 
point of Problem (P). 

3. If  8 k = ~ for every k sufficiently large, then every limit point Yc of {x k} is a KKT 
point for Prbblem (P). 

Proof. Since Assumption A1 is satisfied, the set ~r is bounded; but by the 
assumptions made on the unconstrained algorithm ~" we also have that the se- 
quence {x k} is contained in d r ,  so that the thesis follows. []  

We remark that  two elements are essential to the preceding result: Assumption 
A1 and the particular structure of  the barrier  function Zq(x; e). In fact, had we not 
employed the function Zq, but, instead, a more  usual penalty function, for example 
the function 

1 
Pq(x; 8) := f ( x )  + - - I Ig+(x) ,  h(x)llq, 

8 

the result stated in the Theorem 18 would not hold. For instance, consider the 
following simple example: 

min x 3, 

X ~ 0 .  

This is a very well-behaved problem, which satisfies any standard regularity assump- 
tion (included Assumptions A1 and A2) and has the obvious, unique �9 x = 0. 
Nevertheless, if we consider the penalty function Pq(x, 8), it is easily seen that, for 
any value of 8, the  level sets of  the penalty function are unbounded and that the 
value of the penalty function goes to -o~ when x ~ -oo. Hence,  if this penalty 
function is employed for solving the problem, unbounded sequences can be gener- 
ated and the penalty paramete r  can be driven to 0, and there seem to be no simple 
way of avoiding these possibilities. Let  us examine what happens, instead, if the 
barrier  function Zq(x; 8) is employed. Suppose that we start the algorithm with a 
point x 0. It  is sufficient to assume a = Ilx0ll q + 1, to ensure that x 0 ~ ~ so that 
the whole sequence {x k} is " t rapped"  in ~ and at least a limit point exists (actually, 
we prove shortly that convergence occurs to the solution x = 0). 

We now examine the other source of trouble: the possibility that extended 
stationary points other than the KKT points are generated. Thanks to the analysis 
carried out it is now easy to determine the weakest assumption that allows us to rule 
out the possibility of this event. This is done in the next theorem. 

Theorem 19. Suppose that h is continuously differentiable in an open set containing ~,, 
that Assumptions A1 and A2 hold, and let {x k} be the sequence of points produced by 
Algorithm Model I. Then the sequence {x~} is bounded and ek = ~ for every k 
sufficiently large. Furthermore: 

1. I f  the sequence {x~} is finite with the last point Yc, then Yc is a KKT point for 
Problem (P). 
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2. I f  the sequence {x k} is not fnite, it admits a limit point, furthermore any limit 
point Yc of the sequence is a KKT point for Problem (P). 

Proof. The theorem easily follows from Proposition 16 and Theorem 18 taking into 
account that, by Assumption 2 and Proposition 8, case 2 cannot occur in Proposition 
16 (and Theorem 18). [] 

Remark 5. Note that if we assume that Assumption A2 holds, the stopping rule of 
Step 3 can never be satisfied so that Step 3 itself can be suppressed. 

Remark 6. It is interesting to observe that Theorem 19 guarantees the convergence 
toward KKT points of Problem (P), without the need to exclude the existence of FJ 
points (see Remark 2). 

If a feasible point is known in advance, we can modify Algorithm Model I in a 
very simple way, to avoid any assumption on the constraints outside the feasible set 
(see also [18] for a similar result). All we need is that the following assumption holds: 

Assumption A2 bis. Condition CQq is satisfied for all x in J .  

We note that Assumption A2 bis is weaker than Assumption A2, because 3- is 
strictly contained in JV~. 

Algorithm Model II. 

Data. 

Step O. 

Step 1. 

Step 2. 

Step 3. 

6k 

x 0 ~ J ,  2 0 > 0 , / z > 0 ,  v ~ ( 0 , 1 ) ,  01~(0 ,1 ) ,  02~(01,1) :  

Set r = 0 ,  k = 0 .  

If IIg+(xk), h(x~)llq = 0 go to Step 2, else go to Step 3. 

If o- k = 0 stop, else go to Step 5. 

Compute 

= max{6 ~ A~: ]lNrOsZq(xk; ~)[[q > 6}. 

Step 4. If 6~ > vGIIg+(xk), h(xg)llq go to Step 5, else go to Step 6. 

Step 5. Compute xk+ 1 using algorithm ~', set ek+l = 8k, k = k + 1, and go to 
Step 1. 

Step 6. Choose ek+ 1 ~ [018k, Ozek]; if Zq(xk; 8k+ 1) < Zq(xo; 8~+ 1) =f (x0) ,  set 
x k+ 1 = xk, otherwise set xk+ 1 = X0; set (for future reference purposes only)wr = x~, 
6 r= 3~, kr= 8k, a n d r = r +  1; set k = k +  l a n d g o t o S t e p l .  

Remark 7. The main difference between Algorithm Models I and II is in what is 
done when e is updated (Step 7 of Algorithm Model I and Step 6 of Algorithm 
Model II). In the first algorithm, when 8 is updated, the current point is not 
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changed (Xk+ 1 =Xk). In Algorithm Model II, instead, when e is updated, we 
perform a test: we compare the value of the barrier function in x k (with the new 
value of the penalty parameter) to the value of the barrier function in x 0 which, 
since x 0 is feasible, does not depend on e. If  we find that the value of Zq(Xk; ek+ 1) 
is not worse than the value of the barrier function in x 0 we proceed normally setting 
Xk+ 1 = Xkl  However, if we find that the value of  Zq(Xk; ~k+ 1 ) is worse than the value 
of the barrier function in x0, we backtrack and restart from a better point that we 
have at hand (Xk+ 1 = XO)" 

Theorem 20. Suppose that h is continuously differentiable in an open set containing ~,  
and that Assumptions A1 and A2 bis hold. Let {x k} be the sequence of points produced 
by Algorithm Model II. Then the sequence {x k} is bounded. Furthermore: 

(1) I f  the sequence {x k} is finite with the last point Yc, then Yc is a KKT point for 
Problem (P). 

(2) I f  the sequence {x k} is not finite, it admits a limit point, and any limit point Yc of 
the sequence is a KKTpoint for Problem (P). 

Proof. The fact that {x k} admits a limit point at least follows from Assumption A1 
by reasonings that are, by now, standard. 

(1) The assertion follows from Steps 2 and 3 of Algorithm Model II  and from 
Proposition 15. 

(2) We first prove by contradiction that the sequence {w r} is finite. Suppose the 
contrary, then we have, recalling Step 6 and the fact that, by assumption, ~" is a 
descent algorithm, 

Zq(Wr'~ ~r ) ~_~ Zq(xo" ~ ~r ) = f (x0) .  

Since {~r} $0, this implies 

limsupll~+(Wr), fffwr)[I q = 0. (28) 
r 0r 

Now suppose, without loss of generality, that {wr} ~ ~, then (28) implies ~ ~ ~ .  
Then we can complete the proof of the finiteness of the sequence {w r} along the 
same lines adopted in point (2) of Proposition 16, since in that part of the proof the 
condition 0 ~ al~llg+(x), h(x)llq for x ~ ~ \ ~  is not employed. The assertion of 
the theorem can then be proved as in point (3) of Proposition 16. [] 

Remark 8. Theorem 20 makes clear the role of the regularity condition expressed 
by Assumption A2 out of the feasible set. We need it, essentially, to guarantee that 
we can algorithmically find a feasible point (and hence that a feasible point at least 
exists). If  we know a feasible point, globally convergent algorithms can be con- 
structed without the need of any assumption outside the feasible set. 

It should be clear that Algorithm Models I and II are, employing the terminol- 
ogy of [35], "conceptual" algorithms, for some of the calculations required cannot be 
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carried out in a finite number of steps. Nevertheless, they settle a framework within 
which to build and evaluate implementable algorithms that, obviously, must be 
tailored to the particular algorithm ~" employed. We remark, however, that most 
existing algorithms for the minimization of Z will allow us to compute "suitable" 
approximations to the quantities needed in the algorithm models described so far. In 
any case we observe that, in a very important particular case, Algorithm Models I 
and II can be made fully implementable. In fact, most of the difficulties are due to 
the necessity to make up for the lack of continuity of the generalized gradient. If  we 
can somehow ensure "sufficient smoothness," we should expect simpler algorithms. 
To this end, suppose that f ,  g, and h are continuously differentiable, q ~ (1, oo), and 
consider the following implementable simplified version of Algorithm Model I: 

Algorithm Model III. 

Data. x 0 ~ 4 r , e  0 > 0 , p ~ ( 0 , 1 ) .  

StepO. Set k = 0 ,  r = 0 .  

Step 1. If IIg+(xk), h(xg)llq = 0 go to Step 2, else go to Step 3. 

Step 2. If o- k = 0 stop, else go to Step 4. 

Step 3. If 8k][Vf(Xk)]] q > p[lVl]~+ (Xk),[*(Xg)[lqHq, set 

e k =  pmin{ Ilvll +(xk),h(xk)llqllq ) 
IlVf(x~)llq ' ~ ' 

set (for future reference purposes only) kr = ek, wr = x k, and r = r + 1, set Xk+ 1 = 

x k, k = k + 1 and go to Step 1. 

Step 4. Compute xk+ 1 using algorithm ~,  set k = k + 1 and go to Step 1. 

The following theorem holds: 

Theorem 21. Suppose that f ,  g, and h are continuously differentiable, q ~ (1, oo), and 
that Assumptions A1 and A2 hold. Let {x k} be the sequence of points produced by 
Algorithm Model III. Then the sequence {x k} admits a limit point at least. Furthermore: 

(1) If  the sequence {x k} is finite with the last point 2, then Y~ is a KKT point for 
Problem (P). 

(2) If  the sequence {x k} is not finite, any limit point Y~ of the sequence is a KKT 
point for Problem (P). 

Proof. T h e  fact that the sequence {xg} admits a limit point at least follows from 
Assumption A1 by arguments which are, by now, standard. 

(1) The assertion follows from Steps 1 and 2 of the algorithm model and from 
Proposition 15. 
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(2) We first prove by contradiction that the sequence {w,} is finite. Suppose the 
contrary, then we have sequences {w,} and {~} such that 

(~r} '~0, Wr ~ "~a, 

~rllVf(Wr)llq >  llv t + (w,),ft(Wr)llqllq. (29) 

We can suppose, without loss of generality, that {w~} ~ ~ ~ J~.  By Step 1 we also 
have w r r ~,, so that (recall that q ~ (1, ~)) Vll~+('), h(')llq is continuously differen- 
tiable around w r for all r and 

O/ 
VlI~+ (Wr), ft(w,)llq b(wr)2 Vllg+ (w,), h(w~)llq. 

However, then, by (29) and by the boundedness of Vf(Wr), we get 

Vllg+ (Wr), h(wr)tl q ~ 0, 

that, in turn, contradicts Assumption A2. Hence, the sequence {w r} is finite. 
Let ~ be the largest index r produced by the algorithm, and indicate by ~ any 

limit point of the sequence {xk}. Suppose by contradiction that $ ~ ~.  Since by 
assumption ~ is a stationary point for Zq(x; e~) we have 

1 
0 = Vf(~) + --V[[~+(~), h(~)llq. (30) 

e~ 

Since $ ~ , ,  I[~+(~),~t(~)llq=~0, and hence (30) and Assumption A2 imply 
Vll~+(~),/?z(~)llq # 0, so that 

~?[IVf(~7)l]q >  llvrl + (~), fz(~)llqiiq. (31) 

However, then, by continuity, we have that, for some k large enough, the test of Step 
3 is passed and the penalty parameter is reduced. This contradicts the definition of 
and hence ~ ~ ~.. The last assertion of the theorem then follows by Proposition 15, 
taking into account that, by the assumptions made on ~', ff is an unconstrained 
stationary point of Zq(x; ~).  [] 

Obviously a similar modification could be envisaged for Algorithm Model II, it 
is straightforward and we therefore omit it. 
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