
CIRCUITS SYSTEMS SIGNAL PROCESS
VOL. 12, NO. 2,1993, PP. 177-210

MORPHOLOGY NEURAL
NETWORKS: AN INTRODUCTION
WITH APPLICATIONS*

Jennifer L. Davidson 1 and Frank Hummer 2

Abstract. The area of artificial neural networks has recently seen an explosion of the-
oretical and practical results. In this paper, we present an artificial neural network that
is algebraically distinct from the classical artificial neural networks, and several applica-
tions which are different from the typical ones. In fact, this new class of networks, called
morphology neural networks, is a special case of a general theory of artificial neural nets,
which includes the classical neural nets. The main difference between a classical neural
net and a morphology neural net lies in the way each node algebraically combines the
numerical information. Each node in a classical neural net combines information by mul-
tiplying output values and corresponding weights and summing, while in a morphology
neural net, the combining operation consists of adding values and corresponding weights,
and taking the maximum value. We lay a theoretical foundation for morphology neural
nets, describe their roots, and give several applications in image processing. In addition,
theoretical results on the convergence issues for two networks are presented.

1. Introduction

Morphology neural nets arose out of an investigation of image algebra and
its relationship to artificial neural networks [10]. Image algebra, developed by
the United States Air Force, can be viewed as a high-level image processing
language, which has applications in algorithm development, optimization, com-
parison, and efficient software and parallel hardware design [13]. Formally, the
image algebra is a heterogeneous algebra in the sense of Birkhoff [1]. Image al-
gebra is capable of describing any image-to-image transform that can be defined
in terms of finite algorithmic procedures [12], as well as those transformations
for which the image has a finite number of gray values [11]. In essence, any

* Received February 2,1992; Accepted May 15, 1992. This research was supported in part by
National Science Foundation, Contract No. ECS-9010403.

I Department of Electrical Engineering, Iowa State University, Ames, IA 50011.
2 Department of Mathematics, Iowa State University, Ames, IA 50011.

178 DAVIDSON AND HUMMER

algorithm which can be implemented on a digital computer can be expressed
in image algebra; this includes most of the typical neural net algorithms. Image
algebra allows a generalized product between an image and a template, which
can be used to describe a generalized neural net node computation. Two spe-
cific cases of this general product give the classical neural computation and the
morphology neural computation. In Section 2 we describe the image algebra
product, and how a generalized neural net architecture and node computation
can be expressed in image algebra. We will assume that the reader is already
familiar with classical neural nets; for a general introduction, see [7]. As will
be seen by the results presented in this paper, morphology neural nets provide
a novel method of solution to a class of pattern recognition problems of a non-
linear type, specifically those following a form as expressed in Equation (1.2)
below. We apply this basic technique to emulate several image processing trans-
formations (Examples 1, 2 and 3), and provide several networks which have
learning rules to three image processing problems.

One main difference between classical nets and morphology nets is the al-
gebraic computation at each node. In classical neural nets, each node gathers
output values a = (a l , . . . , a N) from the previous layer nodes, and multiplies
by the corresponding weights {wji}; these pairs are then summed, and passed
through the present node's activation function f j :

In a morphology neural network, the nodal computation is

b j = f j ai + w j i �9 (1.2)
\ i=1

This algebraically different computation enables a morphology neural net to
perform distinctly different tasks from classical neural nets. The main reason
is the underlying algebraic structure of the values used in the computation.
Classical neural nets use the real (R) or complex (C) numbers to perform the
numerical combination in the network, with the corresponding field (R, + , . , 0, 1)
or (C, +, . ,0 , 1), respectively, providing algebraic structure to the methods of
solutions. Here, 0 is the identity for the addition (+) operation, and 1 is the
identity for the multiplication (*) operation. In morphology neural nets, the
underlying algebraic structure is the lat t ice of extended real numbers,]R+oo =
R U {-cx~, oo). The operation V, maximum or least upper bound, replaces the
+ operation above, and the operation +, real extended addition, replaces the *
operation above. The value -cx~ plays the same role as the value 0 above, and
the value 0 replaces the value 1 above. Thus, the number system is

(ll~+~, V , +, -oo , O) . (1.3)

MORPHOLOGY NEURAL NETWORKS 179

It is possible to describe a transform which has the spirit of a linear trans-
formation by mimicking a linear transformation, substituting the operations in
the linear transform with the corresponding ones from the lattice. The resulting
transform is called a lattice transform, from the study of minimax matrix algebra
[2]. While we will not explicitly be using results from minimax algebra, it is
worthwhile to note that many theoretical aspects of this matrix transformation
theory parallel those established in linear algebra.

The operation inside the brackets of (1.1) is a linear operation. Understand-
ing linear systems and linear functionals has led to a greater understanding of
complex dynamical systems. As it is possible to view a classical neural net as
a complex dynamical system, the analysis of classical neural nets has benefited
from the research in the linear domain. It is highly probable that morphology
neural networks will continue to benefit from the applications of minimax alge-
bra results in a similar way.

In Section 2, we present a more detailed description of how the lattice R+oo
plays a role in the morphology net. In Section 3, the basic underlying theory is
given. In Section 4, we give several examples of morphology neural nets, with
and without learning rules, and for two of them, prove convergence theorems.
The paper concludes with a discussion of future research.

2. Image algebra and its relation to neural nets

This section contains an explanation of the image algebra model which describes
a general neural net [10], and how this gave rise to morphology neural nets.

The image algebra was originally developed for image processing purposes,
although the theory is in the abstract and can be used to express manipulation of
data sets more general than typical one- or two-dimensional signals. The current
morphology nets have applications in image processing, and we will interpret
image algebra in this context. We next describe some operands and operations
in the image algebra which are useful to neural net description.

An image is a function from a subset X of N-dimensional Euclidean space
]R N to a set of values, denoted by F. Thus, a E F x has form {(x, a(x)): x E X,
a(x) E F}, or, if X is finite with q elements, {(i, a(i)): i = 1 , . . . , q, a(i) E F}.
A template is an element of (Fx) v, where X C R N, Y C]iM. Equivalently, a
template t is a function, t: Y ~ F x, having form

{(y, {x, ty(x))): y E Y, {x, ty(x)} E FX},

where we write ty instead of t(y) for notational convenience. Thus, a template
is a function such that for every point y in its domain, it is assigned some image
ty~F x.

An invariant template that is used with linear convolution is often depicted
by drawing the pixel locations and corresponding values where the template has
nonzero values; this is called the support of the template. The pixel locations

180 DAVIDSON AND HUMMER

9 8 7 b! b 2 b7 ba
a= 6 5 4 ~ (~ (~ O (~ C) ~ (~b

.

9 8 7 2 1
Figure 1. Mapping an image a and a template t to a classical neural net architecture.

where the template has zero values do not contribute to the sum and are es-
sentially ignored. For example, the template t in Figure 1 is such a template.
Typically, a two-dimensional template t E (]R~o~) M has as its domain a finite
subset of Z • Z, where Z is the set of integers. I f it is an invariant template,
then it can be represented pictorially by drawing its support and the finite-valued
numbers in its support. The template in Figure 1 "looks the same" no matter
where it is shifted. Variant templates typically do not have that property, and
must be explicitly defined or have their values expressed as equations.

Images are transformed through use of a template and a generalized operation
Q defined between an image and a template. For the remainder of the paper we
will assume that X and Y are finite subsets of ~N and ~ M , respectively. For
a E F x = F N, (Fx) Y = (FN) M, we have

a Q t = b E F Y, b - { (y , b(y)): b(y)

= (a(xloty(Xl))7(a(x2)oty(X2))7 �9 �9 �9 ~/(a(XN)Oty(XN))}
= {(y, b(y)): b(y) = r{(a(xi)oty(Xl)): i = 1 , . . . , N}} . (2.1)

Here, o is a binary operation on F, and 7 is a binary and commutative operation
on F. (For a more general description of image algebra, see [13].) It is this
general operation which allows a variety of different combining operations at
each node in a neural network, giving rise to different types of neural networks.

For example, if we set F = ~ , 3' = + (so 1-' = ~-'~), o = . , then we have a
generalized convolution •:

a ~ t = b E IR Y, b = (y, b(y)): b(y) = E a(xi)ty(Xi), y E Y �9 (2.2)
i=1

The @ operation can express any linear operation, and of course be used to
represent Equation (1.1) in the obvious way. For example, a typical approach to
using neural nets for image processing is to represent an image with N pixels
in its domain as an N-vector, scanning the image from the top-left comer to the
bottom right comer, a = (a l , . . . , aar); these represent the N node values in one
layer of the neural net. I f the image-to-image transformation results in an image
having the same domain as the input image, then the neural net architecture will
have N pixels at each level. The template that maps one image to another is
represented as the weights between successive layers of nodes in the neural net.

MORPHOLOGY NEURAL NETWORKS 181

We denote the weight from lower layer node i to upper layer node j by wji.
The weight wji gets set to template value tj(i). See Figure 1 for an example of
a linear neural network, which has all activation functions f j(x,) = z .

For this particular example, the template t is invariant, its region of support
has two pixels, and (for simplicity) it wraps around the boundary. Also, zero
weights are not displayed. In order not to clutter up the figure, not all nonzero
weights are shown. In the general case for a classical neural network, if each
node j has arbitrary activation function f j , then the output of the upper layer
can be written in image algebra as

f (a | t) = (f l(a * t) , . . . , fN(a * t)). (2.3)

We may view a network as fully connected, that is, all nodes in one layer are
connected to all nodes in the layer above it, or, if the network has zero weights,
then we may view those particular weights as not existing. We say this latter
type of network has limited connections. For various reasons we may wish to
view a fully connected network as a limited connection network, particularly if
many of the weights are not used in the computation of the nodal value.

Now taking different values for the value set and operations, we set F = R + ~ ,
7 = V (so 1 ~ = V), where V is the maximum operation,o = + (real extended
addition). Then we define the additive maximum operation [] :

a [] t = b C ~ , b =-- (y, b(y)): b(y) = V a(xi) + ty(Xi), y �9 Y . (2.4)
i=1

This operation is the one used to describe the combining operation at each
node in a morphology neural net. While for almost all applications in image
processing, the input image a has finite values (that is,it does not have either
value -cx~ or oo), for consistency it is necessary to define the addition operation
between all elements of] ~ i ~ . The operation + in R+oo has been defined in a
consistent manner [2] to be:

a + (- c r = (-cx~) + a = - ~ a �9 l l~_~

a+cx~ = c r = cx~ a �9 IR_~

(- c o) + o o = c ~ + (- o o) = - o o

Here ~ _ ~ =]R U { -c~} . However, for the rest of this paper we will make
the reasonable assumption that all input images a �9] ~ will have only finite
values, that is, a �9 ~x. If a is a boolean image, then a must have only values
of 0 and 1. If t is a boolean template, however, the only values t may assume
are 0 and - c ~ .

As mentioned earlier, the major distinction from the classical nets is the
different value set. Morphology neural nets use the values in R+oo. In image
processing applications, the template values outside its support are ignored. To
accomplish this in context of the value set R + ~ , those values must be set to - c ~ .
Thus, we could construct a simple morphology neural net, with the activation

182 DAVIDSON AND HUMMER

functions being the identity function, using the image a and template t as in
Figure 1, but using Equation (1,2) for the calculation. See Figure 2. In performing
the additive maximum at each node, we force the weights corresponding to
template values outside the region of support to have value -oo . For example,
the seventh node value at the upper layer of the network in Figure 2 can be
found by calculating

9 9

b7 -- V a i + w 7 i = V { a l + WT1, �9 �9 �9 ,a9 +w79 }
i=1 /=1

= V { 9 + (- o o) , . . . , 4 + (- o o) , 3 + 1,2+2, 1 + (-co) }

= V { - o o , . . . , -oo,4,4, -oo} = V { 4 , 4 } = 4.

In general, the basic calculation in a morphology neural net expressed in
image algebra is

f (a [] t) - (f~(a [] t) , . . . , fN(a [] t)). (2.5)

We thus define an artificial morphology neural network to be an artificial neural
network which uses Equation (2.5) as its basic nodal calculation.

When combining an image and a template, the computation needs to take
place only over the support of the template. Formally, the (infinite) support
S-oo(ty) for a template t C (~Noo)M is the set of pixels in X where ty(x) ~ - c o .
Thus,

~q-oo(ty) = {X �9 X: ty(X) ~ - - o o } .

Some typical supports include the von Neumann or 4-neighborhood of the pixel
y; and the Moore or 8-neighborhood. See Figure 3 for the description of the
two neighborhoods.

We will use the image algebra to express the neural net algorithms, as it is
quite efficient in succinctly achieving this. To this end, we next describe several
more necessary operations. Given two images a, b E Rx+oo, we define three
basic pointwise operations between them:

a + b = c - { (x , c(x)): e(x) = a(x) + b(x) , x e X }

a * b = c - { (x , c(x)): c(x) = a(x) �9 b(x) , x E X }

a V b = C - {(x , c(x)): c(x) = a(x) V b(x) , x E X } .

The operations of image subtraction, division, and minimum can be defined
from these operations. We can also define pointwise operations for templates.
Let s, t E (] ~ x)Y . Then we have

s + t = r, ry(X) = Sy(X) + ty(X)

s * t = r, ry(x) = Sy(X) �9 ty(X)

s V t = r, ry(x) = Sy(X) V ty(X).

MORPHOLOGY NEURAL NETWORKS 183

bl b7
9 8 7 (~ C) C) O ~ (D O O C) b

a= 6 5 4

3 2 1 . ~........~

t-- kl,~ 2] 9 8 7 2 1

Figure 2. Mapping an image a and a template t to a morphological neural net architecture.

.(a) (b)

Figure 3. (a) The von Neumann or 4-neighborhood of y; (b) the Moore or 8-neighborhood
of y.

Another useful function is the characterist ic funct ion. While the typical char-
acteristic function X acts on an image (or template) by producing a 0/1 value
output:

1 i f a (x) > 0
X>0(a) = b, b(x) = 0 otherwise,

we will need one that produces a 0 or - c o valued output:

X>~(a) = b, b (x)= (O if fl(X) > 0
oo otherwise.

In a similar manner we can apply X to a template. Also, the comparison > can
be replaced with any other, such as =, _<, etc.

We conclude this section with a short example. We give the algorithm for
the synchronous Hopfield network in image algebra [10]. Let N be the number
of nodes in the Hopfield net, and P be the number of exemplar patterns. Let
X = { 1 , 2 , . . . , N } C Z. The weights are determined by setting

x 5 xi g j w j i = t j (i) = 0 = j '

k is the j th element of the exemplar for the pattern class k. Let e E lt~ x where x j

be a bipolared valued image as input, having values 1 or - 1. Then the Hopfield
algorithm is:

184 DAVIDSON AND HUMMER

repeat

until

a : = c

b : = a @ w

e := X>0(b) - X<o(b) + a �9 x0 (b)

c - - - a

This is a good example of how concise the image algebra can be in expressing
neural net algorithms.

Currently, the investigation of special cases of Equation (2.1) has only cov-
ered classical neural nets and morphology neural nets, described by Equations
(1.1) and (1.2),respectively. However, it can be easily shown that the value set
]F = ~ 0 = {r C]I~: r > 0} U {co}, the set of nonnegative real numbers union
{co}, together with the operation 7 = V and o = . , is a lattice which is isomor-
phic to the lattice of extended real numbers in Equation (1.3). Thus, a neural
net which has the operation

yj a~ �9 w~i
\ i - -1

at each node can be shown to mimic the appropriate morphology neural net.

3. The theory o f m o r p h o l o g y neural networks

Shift-invariant image processing transforms that can be described by Equation
(2.4), where X = Y, are called morphological transforms, and are part of the
area of image processing known as mathematical morphology. Derived from
Minkowski and Hadwiger set theoretic operations, [8] and [6], respectively, and
applied to boolean image processing, the two morphological operations of dila-
tion and erosion were used to perform shape analysis on images [14]: hence the
name morphology. It has also been shown [3] that the image algebra operation
[] operation is a generalization of the morphology dilation operation. Since mor-
phology neural nets use the general [] operation and not the strictly invariant
mathematical morphology dilation, we use the image algebra [] operation to
describe our morphology net operations. Although the image algebra Equation
(2.4) describes a far more general image transformation than invariant ones, we
chose the name morphology to describe our networks to maintain the spirit of
the basic operation of the network.

The erosion operation can be defined in terms of the dilation, and essentially
uses the minimum operation in place of the maximum. For a E R ~ and
t C (~ o o) M, the image algebra additive minimum operation,which generalizes

MORPHOLOGY NEURAL NETWORKS 185

the mathematical morphology erosion, is defined to be

a [] t = b E R ~ o o , b~_ (y ,b(y)) :b(y)= a (x i) + t y (x i) , y E Y . (3.1)
i=l

For a more detailed discussion on boolean and grayscale morphology operations,
see [15]. We remark that an entirely different approach to a morphology network
was presented in [16]. However, that particular model uses the classical neural
net to simulate the nonlinear morphology operations, and so is entirely different
from the morphology neural net in this paper.

The additive maximum and additive minimum operations are dual operations,
and the additive minimum can be expressed in terms of the additive maximum
operation. For a E RNoo, t E (~ o o) M, we have

a [] t = - (- a [] - t). (3.2)

Specifically, the mathematical operation of erosion is expressed in image algebra
where X = Y, and t is an invariant template, t E (R~roo) N, where - t ' replaces
t in Equation (3.2):

a [] (- t ') = - (- a [] t'). (3.3)

Here, the transpose t' of a template t is defined by t~(x) = tx(y). All mathe-
matical morphology operations can be expressed as cascades of dilations and
erosion, so the [] operation is sufficient to describe all mathematical morphology
transformations.

Just as a classical neural net can emulate a linear transform with the appro-
priate choice of architecture and activation function, a morphology neural net
can emulate a transform of type Equation (2.4). If a E R~oo and t E (R~oo) M,
then a morphology neural net which realizes Equation (2.4) has N input nodes
with values a = (a l , . . . ,aN), M output nodes with values b = (bl , . . . ,bM),
has weights wji = tj(i), j = 1 , . . . , M , i = 1 , . . . , N , and has activation func-
tions f j (x) = z, j = 1 , . . . , M. This net is fully interconnected, or, as discussed
above, can be viewed as a limited connection network if for each weight sat-
isfying wji = - c~ , the connection between upper node j and lower node i is
considered not connected. Hence, given any transform of form Equation (2.4)
or (3.1), which includes the boolean and grayscale dilations and erosions, there
exists a morphological neural network which can perform the same calculations,
and it will use only the maximum operation, that is, it will have nodal com-
putation of form Equation (1.2). However, just as the linear neural nets give
us nothing new, neither do the morphology nets which implement the straight
additive maximum transform. The more interesting and complex results arise
from deviating from the well known. In this vein, in Section 4 we show two
morphology neural nets that have learning rules.

186 DAVIDSON AND HUMMER

4. Examples of applications

In this section we describe six examples of specific morphology neural nets.
The first two examples are straightforward realizations of the [] and [] oper-
ations, while the third is the realization of the generalized opening transform
in morphology, which is a cascade of the [] and [] operations. These three
networks have no learning rules associated with them, and all three are valid
for both boolean or grayscale data. The remaining examples are networks with
learning rules. Example 4 describes a boolean dilation network with learning
for an invariant template, and Example 5 a grayscale dilation with learning
for an invariant template. Example 6 is a network which learns the grayscale
additive maximum for the general case of a variant template. Formal proof is
provided for convergence of the weights for Examples 4, 5, and 6. In all three
cases, the algorithm is able to converge to weights which perfectly recall all the
training data. Implementation of the algorithm on image data is also given as a
demonstration.

Example I. Additive maximum or generalized dilation network (without
learning). This network, as the name implies, implements the additive maximum
operation as given in Equation (2.4). This is the network that was described at
the end of the previous section. Figure 2 portrays a specific example.

Example 2. Additive Minimum or Generalized Erosion Network (without
learning). This network implements the additive minimum operation as given in
Equation (3.1). As mentioned previously, the additive minimum can be described
in terms of the additive maximum operation. For purposes of this paper, we will
be most interested in Equation (3.3), which happens to be a true expression re-
gardless of whether t is invariant or not. Equation (3.3), a [] (- t ') = - (- a [] t '),
suggests how to construct our morphology neural net. We note that we will have
an input layer and an output layer of neurons, and one set of weights intercon-
necting them. We will use the accepted convention that the input layer nodes
perform no calculations, while nodes at all other layers do, unless otherwise
noted. We wish to use the additive maximum operation, so the values - a will
be the input, and the weight from input node i to output node j will have value
wj~ = t~(i) = ti(j), where j E Y = { 1 , . . . , M } , and i E X = { 1 , . . . , N } . We
see upon calculating the values in the network we designed thus far that the
expression - a [] t t is the current state of values at the output nodes, Thus, we
need to negate each of these values so that Equation (3.3) will be calculated.
Hence, we choose our activation function to be

f j (z) = - z , j = 1 , . . . , M .

The output of the network will then be

f (- a [] t ') = - (- a [] t '),

as desired.

MORPHOLOGY NEURAL NETWORKS 187

Example 3. Generalized Opening Network (without learning). In mathemat-
ical morphology, the sequence of operations

(a [] (-t')) [] t,

called the opening of a by t, is a well-used technique, and can be applied to
filter out speckle-type noise. Using Equation (3.3) we can also write

(a [] (-t')) [] t = [- (- a [] t')] [] t.

To design a morphology neural net that implements the opening, we first note
that we will need an input layer, a hidden layer h, and an output layer b. Let
w 1 denote the weights between the input and hidden layers, and w 2 denote the
weights between the hidden and output layers. Denote the two activation func-
tions by f l and f2 for the hidden layer and output layer neurons, respectively.
Using the results from Example 2, if we input the values - a and set f~(x) = -a : ,
then the hidden layer values are h = - (- a [] wl) , where wli = t~(i). I f the

upper layer weights are set to the values ,,vii = tj (i), and each activation func-

tion at the output nodes is set to f2(x) = x, then the output neurons will have
values b = y(h [] w 2) = h [] w 2 = [- (- a [] wl)] [] w 2, which is the desired
calculation. See Figure 4 for a pictorial representation of this network.

bt bk

) ' I

wj+

T
at ai ar~

Figure 4. The opening morphology neural network for Example 3.

Note that no assumption was made about whether t was invariant or not, nor
that M = N . Thus, this is a generalized opening network.

Another commonly used mathematical morphology transform is the closing.
The general form is described in image algebra by the equation

(a [] t) [] (-t').

The construction of a morphology neural net to calculate this is straightforward,
and we leave this to the reader as an exercise.

Up to this point we have had no need to make a distinction between boolean
and grayscale nets. Our next example is a net with a learning rule, that is, a
rule for updating weights. This morphology neural net is the dilation neural
net but with a training rule. It is constructed s o t h a t after it is trained on a set

188 DAVIDSON AND HUMMER

of training data consisting of inputs plus their respective dilation, the weights
will closely approximate the template used to originally dilate the inputs. This
algorithm will work only for boolean images and templates. The grayseale case,
given immediately after the boolean network, has a distinctly different learning
rule.

Example 4. The Boolean Dilation Net with Learning. [9] This is a network
which has a training rule, and, once properly trained, will produce at the output
nodes an approximation of the dilated version of the input which is applied to
the input nodes. As its title suggests, this network is applicable only to boolean
data and templates. The network has two layers of nodes, an input and an output
layer. We will give an example for the network where t is invariant, although the
algorithm is general enough to use with any variant template, including cases
where X q Y.

The set of training data for this network consists of P pairs of images, (a k, d k),
k = 0 , . . . , P - l, where a k represents the input image and d k = a k [] t is the
input image dilated with an ideal (invariant) template t, which is the same for
all images. In practical cases, the template t is assumed to be unknown. The
weights are initially set to some values, which may or may not be the template
values, as will be discussed momentarily. Then, the image a is applied to the
input layer, and the output calculated at the output layer using the morphology
neural net calculation as in Equation (2.5). The activation functions for this net
are all

f j (x) = x , j = 1 , . . . , N .

The main goal of this net is to determine a set of weights for the network which
will correctly produce the corresponding output d k when a k is applied to the
input nodes. This is done by changing the weights using a training rule.

For practical considerations, we will assume that the network is a limited-
connection network, and in fact, assume the connections occur over only a
rectangular or square support N ' (j) in the image domain X which includes the
assumed support S_o~(tj) of the template, j = 1 , . . . , N. For example, if we
assume the template t had a 4-neighborhood support, then we might choose the
8-neighborhood to be .hf(j). The other weights into node j are considered to be
disconnected, or, as mentioned above, have value - c~ . This has the effect of
reducing the number of training pairs needed to get a good representation of the
ideal template t.

Data pairs such as these may represent a morphological process taking place
with an unknown ideal template t. Hence, a network such as this and the ones in
Examples 5 and 6 allow for the recovery of a transformation or template from
a set of data where the transform is assumed to be of the form of an additive
maximum. Thus, the weights need to be adjusted via a training rule from their
original values so that they exactly match those from t, or are very close, and
produce correct results on the training data. Since this is a boolean network, it
is necessary to recall that a E {0, l} N, and t E ({0,--o0}N) N. The following

MORPHOLOGY NEURAL NETWORKS 1 8 9

table, given in Figure 5, represents the training rule, or the change of weights
we would like to make. We make use of the fact that if a template has finite
nonnegative values on its support, that is, ty(x) > 0 for x 6 S_o~(ty), we can
easily show a < a [] t. Initially, all values for all weights in the neighborhood
Af(j) are set to 0. Thus, the template corresponding to these weights has perhaps
larger support than the unknown template t. The values in the N-vector c are
the ones calculated after the input is passed through the network is initialized.

new value for wjl is

current value

current value

1 0 0 1

2 0 1 0

3 1 o r 0 1 I

4 1 o r 0 0 0

5 I 0 1

6 1 1 0

current value

current value

- 0 0

0

Figure 5. Table of change-of-weight rules for boolean dilation network.

As an example of how these rules were derived, consider cases 3 and 4. If
the desired output and calculated output at location j have the same value,then
no matter what the input image value a~ is in Af(j), we wish the weight wji
to remain the same, as currently it is producing the correct output. However,
consider case 5: the calculated value is 1, which is greater than a desired value

k has value 1. We know that of 0, and a i

d~ = O = V a~ a~
ies_~(tj)

for all i e S_~(t j) . But

k 1= V a ~ + w j , e j =

ieAr(j)

k = l (a s w j i = 0 , or implies that there exists at least one i 6 .hf(j) such that a i
k = l, we set the corresponding wji = -cx~). So for each value i 6 A/'(j), where a i

weight wji that contributes to calculating e~ to - c ~ , so that the sum a k + wji

does not contribute to calculating the finite value for e k. The remaining roles
were derived similarly. The convergence properties of the grayscale case for
variant templates, Example 6, show that this network will converge to a set of
weights that will always work perfectly on the training data. Also, using these
results, we can say that if the weights are initialized on Af(j) to have values
that are greater than or equal to a fixed threshold T, then those values can only
get changed to -cx~ and never will a value of - o o get changed back to 0.
Hence, case number 6 in Figure 5 will never occur. However, it was included
for completeness in the table.

1 9 0 DAVIDSON AND HUMMER

The algorithm for this network is

INITIALIZE WEIGHTS TO 0 IN JV'(j)
REPEAT

d o k = 0 , P - 1

C calculate output node values for input a k
N

: +,,,j,, j = I , . . . , M
i = l

C adjust weights by learning rule, only changing weights
wji in the neighborhood A/'(j) according to Figure 5.

end do

UNTIL net gives correct response for each training pair
(a k,dk), k ~ 0 , . . . , P - 1.

After it has been trained, then, just as in the classical case, the network can
be used to produce a dilated version of some image not in the training set, with
the hopes that the output produced is close to what the true version would be
if the template were known. Of course, if all possible binary images on the
domain X and their corresponding dilated versions were used to train the net,
then, at the end of the training process, the weights would be exactly equal to
the template values. As in the case with classical nets, the general idea in using
a morphology net to find the weights is that if the training data used is a small
but "good" representation of all possible data, then the final weights will be a
"good" approximation to the template t.

The change-of-weight rule can be expressed algebraically as follows. Let the
value for the weight at iteration k + 1 be denoted by Wk~ I. Then

w t'=

V {(Xo ~176 [a~(d} - e~)]) +w~i}" (4.1)
Note the similarity of Equation (4.1) to the generalized delta learning rule:

It is understood in Equation (4.1) that the superscripts on the input and dilated
training pairs is done modulo P, in the case that k > M.

Expressed in image algebra, the algorithm is:

REPEAT
d o k = 0 , P - 1

C calculate output node values
C k = a k [] w k

C adjust weights by learning rule
= k} v { [Xo~176

MORPHOLOGY NEURAL NETWORKS 191

end do

UNTIL net gives correct response for each training pair
(ak,dk), k = 0 , . . . , P - 1.

Here, the template s is defined by

{ ~k(ccdk -- c~) if i E .A/'(j), s~i= " J , k = 0 , . . . , P - 1 .
otherwise

This network was run on one set of test images. This was not meant to be a
thorough analysis, but a simple demonstration of how the network can perform.
The training data used were 20 randomly generated boolean images, where the
probability of assigning a value of 1 to a pixel location was slightly less than the
probability of assigning a value of 0. This was done to prevent large contiguous
areas of black pixels (value 1) which might not allow the weights to change
to their correct values. The image size was 64 x 64 pixels, and the boolean
template used was the von Neumann with values of 0 on the support. The
neighborhood .A/'(j) used was the Moore neighborhood. The first 10 test images
plus their dilated versions were applied and the learning rule, Equation (4.1),
used to update the weight values in the network. After the first ten test images,
we applied four images of natural scenes to the network, without training, to
determine how well the network produced their correctly dilated versions. The
network was then trained on the remaining ten test images, after which the four
natural scenes were again applied. There were two measures used to determine
the effectiveness of this algorithm on our test data. The first was a measure of the
difference between the ideal template values and the weights determined by the
network. The number of values in each neighborhood .A/'(j), that differed from
the ideal template values were counted and summed up, for all j = 1 , . . . , 64.
Due to the result of Theorem 3 in Example 5, since the neighborhood values
were initialized to 0 and can only change to -o r we need only to count then
number of zeros in the four comers of A/'(j). This gives a rough measure of
how closely the weights matched the ideal template values. The second measure,
which is more data dependent, used the natural scenes. Their perfectly dilated
versions,dilated with the ideal template t, were compared with the output to the
network after the original scene was input. Thus, this is a measure of how well
the net dilated the natural scene with the weight w, versus its perfect dilation
with t. The number of pixel values that differed between the calculated dilation
from the network and the dilation produced with t were counted. In Figure 6 is
a selection of some of the image data used. The pixels that are black in Figure
6 have value 0, while white is value 1. The results of the experiment are shown
in Figure 7. In Figure 7b, column 1 gives a short description of the black and
white image used; column 2 gives the number of test images used to train the
network before the natural scene data was applied; column 3 gives the number
of pixels differing between gi [] t and gi [] w, where gi, i = 1 , . . . ,4, are the
four natural scene data; and column 4 gives the numbers in column 3 calculated

1 9 2 D A V I D S O N A N D H U M M E R

~ ' " ,t ~ "* ":, ~ -: " t . ' l - ' l , " . "
~.,;.,. ::..,..,..,.,..'~. ; , - .~ ;-.
~,.'~, '.,~ ~_~-..-<
, " , ' , : . - ~ ' - �9 - . - , ; ' : . s ' :

�9 ~ . . : . ~ : - , * ' . r

. �9 " : ~ . , - . . . : - " . . - :.
,,,eL - . . . ~ : .t.,- : :,

, - " , ~ " " ,,"1 �9 : . ~ . �9 t . . . " "... , . ~ - . . . "
�9 - ~ " , " : . ' , = ' ~ * , L - . L "
�9 ~ . . � 9 o � 9 | . .

~, ak
�9 ' "ti

.41, 4- m

(a) (b) (c)

iL

f .

j ,

b I i li

(d) (e) (f) (g)

Figure 6. (a) Sample input training data; (b) sample natural scene (panda); (c) image in
(b) dilated with von Neumann template; (d) output of net after X = 5 training images
applied, for input of (b); (e) output of net after X = 10, for input of (b); (f) output of net
after X = 15, for input of (b); (g) output of net after X = 20, for input of (b).

as a percentage of the total possible number of pixels that could differ, which
is 64 x 64 = 4096.

By the nature of the training rules, once a test image a k is applied and the
weights are changed to correct for the error at the net's output, the network
will always subsequently produce the perfectly dilated version, d k at the output
nodes when a k is applied again. Hence, there is no new information that the
network can gain from applying the training pair (a k, d k) more than once. This
network can therefore "learn" the training data perfectly.

Example 5. Grayscale Dilation with Learning for Invariant Templates. This
network trains on training data pairs to learn a grayscale dilation, assuming the
unknown template is invariant. It is a grayscale version of the boolean network
with training as described in the previous example. We present two algorithms:
the first uses simply one training pair, while the second uses a set of P training
data. Both use the typical approach, initializing the weights, then applying the
training data, and finally adjusting the weights according to the training rule.
For the first algorithm where only one training pair is used, (a, d), where a
is the input and d is the corresponding dilated input, the weights converge
after the first iteration. As usual, the learning rule for this net produces an
approximation of t from the input-output pair. The proof of convergence to
weights that give perfect reproduction of d is given below. This result leads in

MORPHOLOGY NEURAL NETWORKS 193

after X number of total number of different values column #2 calculated as a
training images applied between weights and template percentage

values

X = 5 11331 31%

X = 10 9012 24%

X = 15 7418 20%

X = 20 5842 16%

(a)

description of after X number of # of pixels differing column #3 calculated as a
natural scene data training data was between perfect dilation percentage (out of 4096)

applied and net output

town 113 2.8%
ship 36 .9%
panda X = 10 64 1.6%
jet 53 1.3%

town
ship
panda
jet

X = 2 0

74
25
46
29

1.8%
.6%
1.1%
.7%

Co)
F i g u r e 7. (a) Measu re of difference be tween weight values calculated by net and ideal

weight values. (b) Dif ference be tween net output and perfect ly dilated natural scenes.

a natural way to the second algorithm, which uses a set of P training data to
adjust the weights. Convergence for this network is also guaranteed, and the
weights to which the network converges allow perfect recall of all the training
data. In other words, the network learns the training data perfectly. The second
algorithm needs only two passes through the training data set to produce perfect
recall of the training data, where one pass is one application of the entire data
se t { (a 0, dO), (a I , d l) , . . . , (a P - l , d P - l) } .

For the first algorithm, we let a be the input image and d be the corresponding
dilated version, so d = a [] t. Let .Af(j) be a neighborhood of j such that
A/'(j) D S_oo(tj), j = 1 , . . . , N. We assume a limited-connection network where
connections are allowed only in the neighborhood .Af(j). We denote the weight
value from input node i to output node j at iteration k by wji(k). We will
assume that for all i E S_oo(tj) and for all j , tj(i) = tji _> T > 0 for some
nonnegative real constant T.

The weights are initially set to the following values:

A dj+z - ai+z if i E .Af(j)
wj~(O) = {~:i+z~Ar(j+z)} (4.2)

- c o otherwise

194 DAVIDSON AND HUMMER

For k > 1, we use the following two step rule:

1: "r = f Wji(k --1) if wj i (k - 1) _> T Step (- o o if wji(k - 1) < T

Step 2: wji(k) = A r
{z:i+zEX,j+zEX}

Step 2 allows the computation of the minimum value over all corresponding
pixels in the neighborhood.Af(j); this forces the weights to represent an invariant
template after Step 2. Note that this learning rule doesn' t use the computed
output, c = a [] w(0), to calculate the new weight value. To show that the
weights converge to values w such that a [] w = d, the following theorem will
be useful. For the remainder of this example, we will assume that the invariant
template t is the one that gives the dilated version of a, a [] t = d, and that a is
finite-valued. We will also assume that j E Af(j) for all j . We will also use the
fact that if a is finite valued, and t is a template which has no values of cx) and
has nonempty infinite support at each pixel location j , then the image d given
by d = a [] t is also finite-valued.

Theorem 1. Let a [] t = d. Let w be a template such that

tji < wji < dj - a i for all i , j = 1 , . . . , N .

Then a [] w = d .

Proof. Let a [] w = c. Then cj = VieNO) ai + wji for all j . Now,

dj = V ai + tji _< V ai + wji < V ai + dj - ai = dj,
ieAf(j) i~Af(j) i~Jv'r

so cj = dj for all j , and c = d. O

In fact, if we let wji = dj - aj for all / in .Af(j) and for all j , then by
Theorem 1, a [] w = d. Of course w defined in this way is not guaranteed to be
invariant, but the above observation provides the motivation for our initializing
w(0) as above; also, it is clear from Equation (4.2) that w(0) is invariant. Not
surprisingly, w(0) turns out to be a very good initial guess.

Theorem 2. a [] w(0) = d.

In order to prove Theorem 2, we will need the following lemma.

Lemma 1. I f d = a [] t, then tji <_ dj - ai for all i and j .

MORPHOLOGY NEURAL NETWORKS 195

P r o o f of L e m m a 1.

d j = V a m + t j r a > _ a i + t j i ,
mEAr(j)

for all i E A/'(j), and for all j = 1 , . . . , N . f f i r Af(j) , then since tji = - o o and
since dj and ai are each finite-valued, their difference dj - ai is finite-valued
and hence greater than - o o . []

P r o o f of T h e o r e m 2. By Lemma 1, tj+z,/+z _< dj+z - ai+z for each i + z and
j + z E X. Since the template t is invariant, we have tj+z,i+z = tji for all z such
that i + z E N O + z). Thus, tji _< dj+z - ai+= for all z such that i + z E .Af(j + z).
Therefore,

tji <_ A dj+z - ai+z.
{ z:i+ zcAr(j+ z) }

Because 0 E {z : i + z E Af(j + z)}, it follows that

A d j+= - ai+z < dj+o - ai+o = dj - a~.
{z:i+zEAr(j+z)}

We now have that, if i E JV'(j),

b i --< Wji(O) < dj - ai.

I f i 9~ .Af(j), then wji = - o o , but because S _ ~ (t j) C Af(j) , we know that
tji = - o o , and again we have

Thus we have

tji _< wji(O) _< dj - ai.

dj = V ai + wji(O) _< V ai + dj - - ai = dj.
iEAr(j) leAr(j)

Thus, d = a [] w(0). []

Any further iteration of w beyond initializing w(O) essentially makes use
only of information about the threshold T as demonstrated in the proof of the
following theorem.

T h e o r e m 3.
i. w(k) = w(1) f o r all k >_ 1.

ii. wji(1) ~Wji(O) only i f i G N (j) and t j i = -oo .

Proof. Proof of i: It suffices to show that wj i (k) = w j i (k - 1) for k _> 2. I f
i ~ .N'(j), then wji(0) = - o o , and inspection of the learning role shows that
wj i (k) = - o o for all k >_ 2 (in fact, for k _> 0) because - o o < T. So the
claim is true for the case of i r .A/'(j). So let i E .A/'(j). I f w j i (k - 1) < T,
then @ji(k) = - o o , and clearly wj i (k) = - o o _< w j i (k - 1). Therefore, only for

196 DAVIDSON AND HUMMER

k = 1 is it possible that - c o < wj i (k - 1) < T, and so wj i (k) -- - c o for k > 1.
I f wj i (k - 1) > T (and i E Af(j)), then because 0 E {z : i + z E Af(j + z)},

wj i (k) = A fVj+z,~+z(k) = A wj+~,i+~(k-1) = w j i (k - 1).
{z:i+zEX,j+zEX} {z:i+zE.Ikf(j+z)}

The latter equality holds because w j i (k - l) is invariant for every k > 1. Recall
that after Step 2, the weights wj i (k) correspond to an invariant template.

Proof of ii. First we show that i r Af(j) ~ wji(1) = wji(0). We have
i i/ .Af(j) implies wji(0) = - c o (by the learning rule). Because - c o < T,
~vji(1) = - c o . Because 0 E {z : i + z E JV'(j + z)}, wji(1) = - c o , hence
wji(1) = wji(0). Using the contrapositive statement of what we have just proved,
we can say that wji(1) •wj i (0) implies that i E Af(j) . It remains to show that
tji ~r - c o implies wji(1) = wji(0). To this end, we note that tji ~ - c o ~ i E
S _ ~ (t j) C Af(j) , by definition and hypothesis, respectively. Hence, the learning
rules give us

wj , (0) = A dj+z - ai+z.
{z:i+ze~f(j+z)}

By Lemma 1, tj§247 < dj+z - ai+z for all i and j , where z is such that
i + z E .N'(j + z). But t is invariant, so tji = tj§ for each of these z values.
Therefore,

tji <_ A d~+~ - ai+~ = w(O).
{z:i+zeA;O+z)}

Also, tji ~ - -co implies T < tji , so T < wji(O). According to the learning rule,

wji(1) = A ~Vj+z,i+z(1).
{z:i+zEX,j+zEX}

Because w(0) is invariant, T < wj+~,i+~(0) for all z such that i + z E X, and
j + z E X. Therefore, for all such z, ffj+z,i+z(1) = wj+~,i+z(0), and we have

Wji(1) = A Wj+z,i+z(O) = wji(O).
{z:i+zEX,j+zEX}

[]

We can see from the proof of part (i) of Theorem 3 and by inspecting the
learning rule that wji(1) 5 r wji(0) only if wji(1) = - (x) and tji = - c o . This
implies that wji(0) > wji(1) = - c o = tj i , for all i and j . Therefore tji <
wji(1) _< dj - ai for all / and j , and Theorem 1 tells us that a [] w(1) = d.
Thus, the weights reached by this network at iteration k = I will allow the
network to reproduce d when a is input, and no further change of weights will
occur past this iteration. Now, note that the weights w(0) will also reproduce
d when a is input, by Theorem 2. However, it is not necessarily true that the
initial weights w(0) don' t change after another iteration is performed. This is
evidenced by Theorem 3, which gives conditions under which w(1) is not equal

MORPHOLOGY NEURAL NETWORKS 197

to w(0). Theorem 3 says that all weights wji(0) will be the same as wji(1)
except for those values of i where i E A/'(j) and the true template value tji
has value -cr Furthermore, w(1) is invariant and satisfies the property that
wj~(1) _> T for i E S_oo(wj(1)).

Often we have a larger data set than one pair of training images. Without too
much extra work, we can use the results established by the previous algorithm
to show convergence to a set of weights that recall the training data for a set of

f _k'~ P--1 P training pairs. Let t a J'k=0 be the ordered input data, and {dk}ff=~ l be the
corresponding ordered output, where d k = a k g~ t, k = 0 , . . . , P - 1, and t is an
invariant template. The following algorithm arrives at weights w, representing
an invariant template, where d k = a k [] w for k = 0 , . . . , P - 1.

In this algorithm, we apply the training pair one at a time. The pair (a ~ d ~ is
used to initialize the weights as per Equation (4.2), resulting in weights w~ji(0).
Then steps 1 and 2 are applied to these weights as in the first algorithm, resulting
in weights w~ Then the next training pair (a I , dl), is applied (with a slight
modification in the initial part), followed by steps 1 and 2, producing weights
wJi(1). Then the pair (a2,d 2) is used to go through the three-step procedure,
etc.

Specifically, for k = 0 we initialize the weights to

d j + z - a i+ z wOi(o) = A o o if i E .N'(j)
{z:i+z~/q'(j+z)}
--CO if i r Af(j)

f W~ji(0) if W~ji(0) > T
@~

- c ~ if w~ji(0) < T '

and

For k > 1, we have

and

w~ (1) A ^0 = Wj+z,i+z(1).
{z:i+zs+zEX}

{()k k / ~ w ~ (1) w~,(0) = A dJ k+z - ai+z
{z:i+zE/4(j+z)}

- -CO

f wki(0) if W~.i(O) > T
- c o if w~i(0) ~ T ,

if i E .Af(j) (4.3)

if i ~ Af(j)

Wj+z,i+Z"
{z:i+zj+zEX}

It is Equation (4.3) that is a modification of Equation (4.2), which allows infor-
mation from previous data sets to accumulate. Also, note that w~ is identical
to wji(1) in the previous net for the single data set (a ~ d ~ = (a, d). It is clear

198 DAVIDSON AND HUMMER

that w~i(1) _< w~(1) for m _< k, and that q i ~ w~i(1) for all k = 1 , . . . , P - 1.

Also, w~i(1) < d~ - a~ for all k = 1 , . . . , P - 1. Combining these results, and

applying Theorem 1, we have a ~ [] wk(1) = d 'n for m _~ k, and, in particular,
a k [] w P - I (1) = d k for all k = 1 , . . . , P - 1.

Example 6. Grayscale Dilation with Learning for Variant Templates. This
network is a generalization of nets in Examples 4 and 5, and is a more gen-
eral form of the network in [5]. The additive maximum transform that this net
attempts to learn can be any arbitrary grayscale one, including a variant trans-
form. For a given set of P training data pairs, the learning rule needs about
three passes through the data set to guarantee perfect recall o f the P training
images.

l_k~P-1 l d k l P - 1 As before, let t~t 1k=0 and t Jk=o , be ordered sets of P input images and
output images, respectively, where d k = a k [] t for all k = 0 , . . . , P - 1, and
where t is a template that is not presumed to be invariant. As in Examples 4 and
5, the domains of a and d need not be identical. The weights wji are trained
in an iterative fashion where wji(k + 1) is the estimate of tji that results from
training on images a ~ a l , . . . , and a k, in that order.

Let c k = a k [] w(k). For this learning rule, we will reuse training pairs,
but always so as to maintain their original order. We will assume then that
a k = a k mod P and d k = d k mod P for all k = 0, 1 , Note, however, that it is not
generally true that e k = c k mod P . This net, as the ones in Examples 4 and 5, has
a limited connection scheme; it is also assumed that S-oo(t /) C .Af(j) for each
j = 1 , . . . , M. Initially the weights w(0) are randomly selected values from the
set {h : h > T}, where T is a finite number satisfying tji > T, i E S-oo(t j) .
Thus, wji(0) _> T for i E .Af(j), and w/i(0) = - c ~ otherwise. The table in
Figure 8 summarizes the change of weight rules.

Rule #

1

2

3

Condition Satisfied New Value

wji(k) < T wji(k + 1) = - ~

-dr) z0

(e + .j,(k) - dr) (4 - dr) .< 0

wji(k + 1) = d k - al k

wji(k + i) = wji(k)

Figure 8. Table of rules for network in Example 6.

This learning rule is reminiscent of (and motivated by) learning rules for
neural nets which utilize standard linear algebraic operations. The following
lemmas will allow us to give these rules a different expression that is easier to
work with.

k k k Lemma 2. wji(k) ~> d~ - a i ~ cj > dj .

MORPHOLOGY NEURAL NETWORKS

Proof. Fix i E A/'(j).

V k +d~ ~ k c~ = k a .k + wji(k) > a i - a i = dj. am +wj~(k) >
m~AC(j)

199

[]

L e m m a 3. wji(k) -- djk _ a~ =~ c~k > dj.k

The proof of Lemma 3 is similar to the proof of Lemma 2.
If we assume that rule 1 is not used in computing Wji(k + 1), then we can

use these lemmas and the learning rules to consider nine cases:

Conditions Satisfied Action Taken
> k q _ d i wj,(k) > q - 4 m, iy ~," 2
~, d k wji(k) = d~ - ~k apply rule 3

i _> d "kl wji(k) -< d k _ aik apply rule 3

q=d ,

q=d
wii(k) = d~

w~i(k) < d~

wji(k) > d k

wji(k) = d k

w~(k) < d~

- 4
- 4

impossible (l~mm= 2)

apply rule 3

_ ~k apply rule 3

_ a.ik impossible (lemma 2)

_ aik impossible (lemma 3)

_ u k apply rule 2

From this table we can see that only the following three cases are possible,
assuming that rule 1 is not to be used:

Case

1

2

3

Conditions Satisfied Action Taken

q - d k >I 0 and wii(k) ~< d~ - a i k

- d~ <_ O; then wii(k) <. -]dk _ aik must be tree

q - d ~ > O a n d w j i (k) > d k - a i k

apply Rule #3

apply Rule #2

apply Rule #2

With these results we can derive the following equivalent learning rules,
which we use to prove the convergence results in the rest of this example:

Rule #

1

2 i f q - d ~ < O o r w i i (k)>d~-a k

3 otherwise

Conditions Satisfied New Value

wji(k) < T wji(k + 1) = - ~

wj~(k + 11 = d]' - ~k

wji(k + I) --_ wji(k)

Figure 9. Learning rules used for network in Example 6.

200 DAVIDSON AND HUMMER

We will show that number of iterations of the learning rule necessary to
guarantee convergence to a set of weights which gives the correct dilated output

i_klP--I klP--I on all of the input images is 3P-2. That is, given any sets tn J'k=O and {d Jk=O
as described above, then

d k = a k [] w (3 P - 2) for a l l k = O , . . . , P - 1 .

In fact, this result is sharp in that there exist sets of input and dilated output
f_k~P--1 idk~P-1 images t ~. irk= 0 and t Jk=0 such that, for some k �9 {0,. .. , P - 1},

d k ~ a k [] w(3P - 3).

The proof of this result will be made easier by first proving a series of lemmas.

k k L e m m a 4. ej ~< dj ~ wji(k) ~< tji for some i �9 .hf(j).

Proof. If wji(k) >_ tji for all i �9 Af(j), then

'~ V k V k +t im k cj = a m + wj~ (k) _> a ~ = d j .
rn~.~'(j) m~AC(j)

[]

k for some i �9 .hf(j) r c k > d k. Le mma 5. wji (k) > d~ - a i

Proof. (=r This is immediate from Lemmas 2 and 3.
(r c~ = VmeAC(j) a ~ + wire(k). Let i E .hf(j) be such that a/k + w~, = c~.

k k k and w~ > k k [] T h e n a i + w ~ i > d j _ d j - a i .

k k k _ aki for some i e Af(j) r cj >. dj . L e m m a 6. wji (k) >_ dj

Proof. (0) Follows from Lemma 2.
(4::) Proof is similar to that of Lemma 5. []

L e m m a 7. wj i (k + 1) > wi , (k) ~ (c~ < d~ and wji(k) < d k - a/k).

Proof. According to learning rules 1, 2, and 3 (in Figure 9), and under our
hypothesis, rule 2 is applied in computing wji(k + 1). Given that wji(k + 1)

wj~(k), it can't occur that rule 2 was applied due to the condition wji(k) >
d~ - a/k. So if rule 2 was applied it must be that e~ < d~, in which case, by

k D Lemma 5, we must have wji(k) < d~ - a i .

L e m m a 8. For all k >_ O, for all i and j , wj~(k+ 1) 5/wji(k) =r tji <_ wj i (k+ 1).

MORPHOLOGY NEURAL NETWORKS 201

Proof . wji(k + 1) ~ w j i (k) implies that wj i (k + 1) results from either rule 1 or
rule 2. If it is computed by rule 2, then wji(k + 1) = d~ - ai k, and Lemma 1
shows that tji _< wj i (k + 1).

If wj i (k + 1) is computed by rule 1, then wji(k) < T. If i ~ .N'(j) then
tji = - c ~ , and so tji <_ wj i (k + 1). If i �9 Af(j), then wji(0) _ T. Let k' be the
first iteration (strictly) greater than 0 for which wj i (k t) < T. Inspection of the

learning rules clearly shows that wji(k ') = -Jdk'-l --ai-k'--l- t~Ut~ " aj~k'--I _ a ik'-I ~< T,
together with Lemma 1, implies that tji = - c ~ , and again we have tji _<
wj i (k + 1). []

ko ko L e m m a 9. For a given j, there is at most one integer ko such that ej <_ dj .

Proof. Suppose that for some ko > 0, c k~ < d ? . Then by the learning rules,

ko > tjl (because for all / �9 Af(j) such that wji(k0) > T, wji(ko + 1) = d k~ - a i _
rule 2 and not rule 1 will be used for these i values). If {i : wji(ko) > T} is

_ko+l > dko§ by Lemma 5 and the fact, just mentioned, that not empty, then ,.j - -3
ko > tji for some i �9 Af(j). In fact, under the assumption w j i (k o + 1) = d k~ - a i _

that c k~ g d~ ~ for some k0 _> 0, {i : wji(k0) _> T} is not empty. To see
this, use Lemma 8 together with the initialization rule to show that for all j ,
{i : wji(ko) _> T} is empty only if tji = - c ~ for all i �9 Af(j), in which case
d k~ = - c ~ , contradicting our assumption that c k~ <~ d~ ~

Let kl be the smallest integer (strictly) greater than ko+ 1 such that e~ ~ < d~'.

Then by Lemma 4, wji(kl) < tji for some i �9 Af(j). By assumption, c~ > d k
for k = ko + 1 , . . . , k l - 1, so by Lemma 7, wji(k + 1) <_ wji(k) for k =
/co + 1 , . . . , kl - 1 for all i �9 .Af(j). By repeatedly applying Lemma 8 to the cases
k = ko+ 1 , . . . , kl - 1, we see that, for all i �9 .hf(j), tji < wji(kl) <_ wji(ko + 1),
contradicting our earlier claim that Wji(kl) <_ tji for some i �9 Af(j). Therefore,
kl, as described, does not exist. []

It is useful to consider what happens to wji when c k~ < d~ ~ for some j , for
some ko. In this case, wji(k0 + 1) > tji for all i (by rules 1 and 2, and Lemma
1), and inspection of the learning rules, together with Lemma 9, shows that if
wji ever changes after iteration ko + 1 it can only happen by applying rule 2
(wj i (k+ 1) - k k k This gives us the following - dj - a ~) in the case wji(k) < dj - a i .
lemma:

k~ for some ko > O, then for all k > ko + I, and for all i, L e m m a 1 0 . / f c~ ~ < dj _ _
tji <_ wji(k + 1) _< wji(k).

L e m m a 11. If c ? ~ d~ ~ for some ko >_ O, then for all m such that ko <~ m,

m--1

tji _< wj i (m) _< A (d~ - a~) for i �9 Af(j)
k=ko

202 DAVIDSON AND HUMMER

tji = wji(m) = --oo for i r Af (j) .

Proof. The first part of the conclusion follows from Lemma 10 and rules 1 and
2. The second part of the conclusion is clear from rule 1. []

Lemma 12. If e~ ~ < d~ 0 for some ko > O, then for all m such that ko < m,

dk = VieAqj) ai k + wji(m) f o r all k such that]co < k < m - 1.

Proof. Using Lemma 11 we get

m--I /
dj = V a ~ + t j , < V ai

i~Ar(j) icAc(j) i~Af(j)

k
-< V

icAr(j)

[]

By applying Lemma 12 to the special case m =/co+P, we get that for any j ,
d~ = VieAccj) a~ +wji(ko + P) for k = k0,. �9 �9 k0 + P - 1, but because a k = a k+P

and d k = d k+P for all k > 0, this is to say that w j i (k o + P) computes the correct
dilated output on all of the input images. Remember that/Co is just the iteration
such that, for a given j , c~ ~ < d~~ ko might not exist, but, intuitively, we would
like to show that for any j,/co must be less than some fixed value if/co exists,
and that we only need to iterate P times beyond that value in order to assure
convergence to a template which correctly dilates all P of the input images.
Toward that end, we will now consider situations in which c~ _> d~ for values
of k over various ranges.

Lemnm 13. Let c~ >_ d~ for 0 < k < P - 1. Then for any i:

_ _ _ ^ m - l a k - a k i f o r 1 < m < P. (a) / f t j i < wji(O) then tji < wji(m) < t xk=o uj _ _
P--I k (b) l f wji(O) <~ tji, then wji(m) = wji(O) _< Ak=o dj - a~ f o r 0 <_ m < P.

Proof. (a) Lemma 8 gives us the left inequality. To prove the right inequality, let
k k for some k, 0 < k < too. mo be the smallest integer such that wji(m0) > dj - a i

It is important to note that actually 0 < k < m o - 1. To show this we will
suppose that k = m 0 - 1 and arrive at a contradiction, wji(mo) >~ d~ n~ - a ~ ~
implies, by Lemma 1, that wji(m0) was not computed by rule 1. Also, under
our hypothesis that -3e'm~ - - > d~ n~ the fact that wji(mo) >~ d~ n~ - a m~
implies rule 2 was not used to compute wji(mo). But if rule 3 was used to
compute wji(mo), then wji(mo) = wj i (mo - 1) ~ d~ ~ - a~ a~ implying
that rule 2 was used to compute wji(mo), and we have our contradiction. So

MORPHOLOGY NEURAL NETWORKS 203

k is an element of { 0 , . . . , m -- 2). the value of k such that wji(mo) > d~ - a i
By the minimality of too, we have

mo --2

wji(m0 - 1) < A d; - a~" < d~ - a/k < wji(mo).
r=O

But then wji(m0) ~> wji(m0 - 1), and Lemma 7 then implies that e~ n~ <

d~0-1, contrary to our hypothesis. Therefore no such mo exists.
(b) First we'll verify the equality. Suppose there exists some m E {0, 1,

P) such that wji(m) ~t wji(0) and that m is minimal in this respect (m >_ 1).
By Lemma 8, tji <:_ wji(m). Because w j i (m - 1) = wji(0) 5 tji, we know
that rule 2 was not used to compute wji(m), therefore rule 1 was used, but
this implies wji(0) < T, contradicting our initialization rule (because i E Af(j)
implies wji(0) _> T). Therefore, m, as described, does not exist, and we get the
equality.

The inequality in part 0a) follows easily from Lemma 1 and the initialization
rule. []

k > k f o r k = O , . . . , 2 P _ 2 . T h e n w j i (P + m) = w j i (P + l) L e m m a 14. Let cj _ dj
for m = 1 , . . . , P - 1 for all i, and wj i (P + 1) 51 wji(P) only if w j i (P + 1)
results from applying rule 1.

Proof. Let m ' be the smallest element in { 1 , . . . , P - I} such that wj i (P+m') 51
wji(P). Rule 2 was not used to compute wj i (P + ml): to see this, note that

P--1 Lemma 13 implies wji(P) _< /~k---o d~ - a/k, and this fact, together with our

hypothesis that c~ _> d~ for k = 0 , . . . , 2 P - 2, shows that the conditions needed
for applying rule 2 to compute wj i (P+m') does not hold. Therefore rule 1 was
used to compute wj i (P + m') in the case that - c o ~ wj i (P + m' - 1) <~ T.
But this implies that m' = 1. To prove this, note that by the definition of m',
w j i (P + m' - 1) = wji(P). But it is clear from rule 1 that wj i (P + rn ~ - 1) 5t
w j i (P + m ' - 2), so w j i (P + m I - 2) 5~ w j i (P) . N o w by the definition of m',
and because m' - 2 < m', we must have 1 < m' < 2. But m' = 2 is impossible
because wj i (P + m' - 2) 51wji(P), so m I = 1.

Let m" be the smallest integer in { 2 , . . . , P - 1) such that wj i (P + m u) 5t
w j i (P + 1) for any i. The previous argument shows that m" exists only if
wj i (P + 1) actually differs from wji(P) due to the application of rule 1. This
implies that w j i (P + m") is computed by rule 2 because wjh(P + 1) >_ T for
h E S_oo(wj(P + 1)). But the fact that

P--I
k wj i (P + m" - 1) = wj i (P + 1) < A d~ - a i

k=O

together with our hypothesis implies that rule 2 is not used to compute wj i (P +
m"), and we have a contradiction, so m" does not exist. []

204 DAVIDSON AND HUMMER

L e m m a 15. l f e k > dk for k = 0 , . . . , 2 P - 2 , then e'~ = d T for m = P, . . . , 2 P -
1.

Proof. Suppose e ~ > d ? for some m �9 { P , . . . , 2 P - 1}. Then by Lemma 6,
we have w j i (m) > d~ n - a~ n for this m, for some i, which is false by Lemmas
13 and 14, as shown by the following equation:

P--I 2P--1

w j i (Z P - 1) w j , (P + 1) < w j i (P) < A d~ - a~" = A d ; - a~'.

Lemmal4 r=O r= P

Ler~al3

[]

L e m m a 16. I f c k > d~ for k = 0 , . . . , 2 P - 2, then e k > d k fo r all k > O. In

k _ k for k > 2 P _ l. particular, cj - dj

Proof . Lemma 15 says that, under the hypothesis, w j (2 P - 1) (which equals
w j (P + 1)) will produce the correct value d~ for k = P , . . . , 2 P - 1. But this is
to say it works for all of the images, so wj i (k) will never change for k > 2 P - 1
as a result of rule 2. Also, because w j (2 P - 1) > T on its support, wj i (k) will
never change as a result of rule 1. []

L e m m a 17. I f c~ <_ d~ for some k >_ 0 then k E { 0 , . . . , 2 P - 2}.

Proof. Suppose c k < d~ for some k > 0. By Lemma 9, k is unique. I f k

{ 0 , . . . , 2 P - 2} then by Lemma 16, c~ > d~ for all k > 0, contradicting our
supposition. []

ko f o r k L e m m a 1 8 . / f c~ ~ ~< dj some ko > 0 then dj = VieN~) a/k + w j i (3 P - 2)
for all k = O, . . . , P - 1.

Proof. By Lemma 17, 0 < k0 < 2 P - 2 . By Lemma 12, d k = V a ~ + w j i (3 P - 2)

for all k such that ko < k < 3 P - 3. But t'fakt3P-31k0 = t ~l-kl3P-3J*2P-2 = {ak}g -1

and, similarly, l u~ftlk't3P-3jk0 = t u~ftlk)'3P-3J2P-2 = {dk} P-I ' []

k + w j i (3 P - 2) f o r L e m m a 19. I f c~ >_ d~ for all k >_ O, then d~ = VieN'L~) ai
all k = O , . . . , P - 1.

Proof. By the proof of Lemma 16, w j i (3 P - 2) = w # (k) for k > 2 P - 1. Also
Lemma 16 says that d k = VieAct j)ak+wj,(k) (= ck) for k > 2 P - 1. Combining

results we get d~ = VieAco) ak + w j i (3 P - 2) for 2 P - 1 < k < 3 P - 2, but
this is to say that the same holds true for 0 < k < P - 1. []

T h e o r e m 4. d k = a k [] w (3 P - 2) f o r all k = 0 , . . . , P - 1.

MORPHOLOGY NEURAL NETWORKS 205

Proof . For any j , Lemmas 18 and 19 together show that (whether or not e~ < d~

+ w j i (3 P - 2) for all k = 0 , . . , P - 1. This for all k > 0), d f f = Vi~(j)ai
holds for all j , so the conclusion follows. []

In fact, the proof of Lemma 19 shows that if c~ > d~ for all k > 0 for all j ,

then d k = a k [] w (P) because w j i (P) = w j i (3 P - 2) in this case. However, in
actual practice we don' t know that c~ > d~ for all k > 0 for all j until we have

computed w (2 P - 2) and c2P-2; Lemma 16 tells us this. So for a given j , we
can perform the training of wji for all i for only P iterations beyond the time
when cjk < dj,k if there is such a time k such that k <_ 2 P - 2 (see Lemmas 12
and 15). Otherwise, only update wji for 2 P - 2 iterations. Of course this general
strategy can result in our needing to compute w j i (3 P - 2) in some cases.

Our result that d k = a k [] w (3 P - 2) for k = 0 , . . . , P - 1 is sharp in the sense
that d k 5 /a k [] w (3 P - 3) for some k is possible, as shown by the following
example:

In this example we let P = 3 and j =)'3, and X = Y. Recall that each template
t C (~ o o) Y consists of a collection of images on X: ty,,ty~,ty3,ty 4. Thus we
will be looking at the (possibly variant) template t at location Y3, where X is
given below. For notational purposes we denote tr3 by t3, wy3 by w3, dy3 by d3,
and Cy 3 by c3. The neighborhood for each j = Yl,Y2,Y3,Y4, is .A/'(j) = X. Each
input image a ~ a 1, and a 2, and the corresponding output images d ~ d 1, and d 2

at location)'3, are shown below. The * values in the d images represent values
not needed to perform the calculations. The weights are randomly initialized
to values as shown in Figure 10, where the threshold value T is not relevant
as it is not used in these calculations. After 3 P - 3 = 3*3 - 3 = 6 iterations,
the weights used to calculate the output location Y3 do not recall the correct
value for d 6 = d ~ However, at the next iteration, 3 P - 2 = 7, the weights
w3i(7) correctly calculate d3 k for k = 0, 1, and 2. Hence, calculations show that
3 = d 6 ~ c 6 = VicAc~) a6 + w3i(6) = 4 but that d3 k = V i ~ o) ak + w3i(7) for
k = 0 , 1 , 2 .

We should note that although w (3 P - 2) computes correct dilated outputs
for all of the input images, it may not satisfy the condition that w (3 P - 2) >_ T
for i E S_oo(wj (3P - 2)). It may be necessary to apply rule 1 to get weights
w (3 P - 1), which will satisfy the condition (and which also produces correct
dilations).

Intuitively, the proof of the convergence results can be viewed as follows.
We are looking for the worst case which gives us the maximum number of
iterations needed to provide convergence. What occurs in the worst case is that
during the first pass through the data, those values of wji that are clearly too
large (> dj - a 0 , and which are therefore concealing other values wji which are
too small (< tji), are reduced to the smallest values possible (by rule 2). The

k k results of the theorems show that if any j in X and for iteration k, if cj < d j ,
then we need only apply the next P - 1 training images once more to arrive at
weights which recall all training images correctly. Since if any weights change

206 DAVIDSON AND HUMMER

d~
w3(0) =

dl= ~

tY3=

d 2 = ~

Figure 10. Example showing that 3P - 2 is sharp.

during the first pass, then those weights satisfy wji(m) < wji(k), for k < m,
we then have the possibility that ej ~< dj will occur during the second pass
through the data (even though it didn't on the first pass). Thus, the situation
e j < dj could occur for any of the P images during the second pass except the
last image a P-1. This is because (if ej < dj hasn't occurred by that time) the
last time that weights were changed (or not changed), they were changed (or
not changed) so that they would "work" on this very image a P-1. But P - 1
images after a P-1 takes us up to image a 2P-1. So ej < dj can't happen after
iteration 2 P - 2. And if ej < dj does happen as late as iteration 2 P - 2, then
this image data, a 2P-2, is itself used (rule 2) to "kick up" the weights. Going
through the rest of the next P - 1 data pairs, for what is essentially the third
pass, actually only requires us to use data up to 3P - 3 (and not, say, 3 P - 1).
After training on the data a 3P-3, we have weights w(3P - 2), which correctly
recall all training data.

We next present an implementation on data for the network given in Example
6. This network was run on a set of 13 training pairs consisting of 13 natural
grayscale images (with a range of pixel values of 0 to 255) and their dilations
computed by the template t shown below.

1

20

I "" I t = -5 ? 0 / -5

2O

Although the template t happens to be invariant, this fact is not used during
the training of the net. The resulting dilation template w was then used to dilate
a test image. Comparisons were made between the templates t and w and also
between dilations of the test image by t and w. The test image was also a natural

MORPHOLOGY NEURAL NETWORKS 207

grayscale image and was not used for training. The weights w(0) were initialized

as follows: for each j and for each i in the 3 by 3 neighborhood centered at j ,
wji(0) was randomly assigned a value between - 5 and 80. The results of this
implementation are in Figure 11 and displayed in Figure 12; their presentation

is similar to the one given in Example 4.

number of

training

images applied

13

26

37 = 3P-2

number of

pixels out of the

36100 in which

t and w differ

35798

24554

23320

23299

number of pixels

out of the 20224

pixels in the

support of t in

which t and w

differ

19922

11402

10420

10399

column 2 calculated

as a percentage

of the 36100 possible

99%

68%

65%

65%

ave. absolute

difference between

t and w on the

support of t

29.8

14.3

12.2

12.1

(a)

number of training

images applied

0

13

26

37 = 3P-2

number of pixels out of the

4096 in which the net dilation

and the ideal

dilation differ

4079

1728

1430

1413

ave. absolute

difference between

the net dilation and

the ideal dilation

27.9

7.7

6.2

6.1

column 3 as a

percentage of the gray

value range of 255

10.9%

3.0%

2.4%

2.4%

(b)
Figure U. Results of applying the grayseale dilation learning algorithm. (a) Measures
of the difference between weight values calculated by the net and ideal weight values.

(b) Measures of the difference between dilations of the test image by the net and ideal

weight values.

We should note that, although the template w(37) does seem to differ con-
siderably from the template t, it does correctly dilate the 13 training images.
Also, the absolute difference between the dilations of the test image by w(37)

208 DAVIDSON AND HUMMER

(a) Co) (c)

(d) (e) (0 (g)

Figure 12. (a) One of the 13 training input images. (b) Test image. (c) Dilation of the
test image by t. (d) Dilation of the test image by w(0). (e) Dilation of the test image
by w(13). (f) Dilation of the test image by w(26). (g) Dilation of the test image by
w(37) = w(3P - 2).

and t is smaller than the difference between the templates. This is not surprising
considering the mathematical properties of the dilation operation.

Some general remarks.

The first three examples represent a straightforward implementation of the addi-
tive maximum rule and as such provide nothing new. The last three Examples,
4, 5 and 6, each have a learning rule, It is the neighborhood ./V'(j) from which
the approximation of the template and its weights is made. Due to the nature
of the learning rules and the fact that .)V'(j) always at least contains the sup-
port of the template t, the weights determined by the network may be greater
than or equal to the values that the ideal template t has. In particular, on the
pixels lying outside the support of t but still in .A/'(j), the weights wji(k) may
be finite while the template values are - ~ . Nonetheless, the weights to which
these networks converge will still allow perfect recall of the training data. In
this sense, the learning rules presented here allow a very good approximation
of the template t to be recovered. But just as in the case for classical neural
networks, these morphology nets cannot generalize to include recovery of in-
formation which is not present in the data. Different data sets may converge to

MORPHOLOGY No.ORAL NETWORKS 209

different sets of weights, especially for the network of Example 6 which recov-
ers a variant template. Also, the convergence results produce weights based on
a particular ordering of the data. A different ordering would most likely produce
convergence at a different iteration number, and perhaps slightly different weight
values. Thus this network, like many classical ones, will most likely produce
data-dependent results.

Practical applications of these networks include the modeling of a template
or structuring element which produced input-output pairs having a nonlinear
underlying transformation similar to the additive maximum. A demonstration of
this type of application to image data was shown in Example 4. Other networks
remain to be developed which use the additive maximum but perhaps a different
activation function, and a cascade of the additive maximum and minimum. This
would allow the modeling of a more complex nonlinear process. The mathemat-
ical morphology opening operation is an example of a cascade of operations; see
[5] for a learning rule for that particular network. Convergence for that network
has not been proven, although all experimental results on data have produced a
set of converged weights.

5. Conclusions

The research presented in this paper has laid the fundamental theoretical foun-
dations of the theory of artificial morphology neural networks. The origins of
morphology neural nets, which lie in image algebra, have intrinsic ties to the
image processing tool called mathematical morphology, and, more generally, to
the algebra of minimax matrix theory. Several applications in image processing
have been presented, including three networks (Examples 4, 5, and 6) which
have learning rules. Convergence of these learning rules to a set of weights has
been proven mathematically, and the weight values allow perfect recall of any
of the training data. These results may be very useful for solving additional
image processing problems; investigation into this area of research is currently
being pursued.

References

[1] G. Birkhoff and J. Lipson, Heterogeneous algebras, J. Combinatorial Theory, vol. 8, pp. 115-
133, 1970.

[2] R. Cuninghame-Green, Minimax Algebra: Lecture Notes in Economics and Mathematical Sys-
tems 166, New York: Springer-Verlag, 1979.

[3] J. Davidson, Lattices Structures in the Image Algebra and Applications to Image Processing,
Ph.D. thesis, Department of Mathematics, University of Florida, Gainesville, FL, August 1989.

[4] J. Davidson and K. Sun, Template learning in morphological neural nets, SPIE - Proc. Soc.
Photo-Optical Instr. Eng., vol. 1568, pp. 176-187, July 1991.

210 DAVIDSON AND HUMMER

[5] J. Davidson and K. Sun, Opening template learning in morphological neural nets, Heuristics,
The Journal of Knowledge Engineering, vol. 5 No. 2, pp. 28-36, Summer 1992.

[6] H. Hadwiger, Minkowsldsche addition und subtraktion beliebiger punktmengen und die theo-
reme yon Erhard Schmidt, Mathematische Zeitschrifl, vol. 53, pp. 210-218, 1950.

[7] R. E Lippmann, An introduction to computing with neural nets, IEEE Magazine on Acoust.
Speech Signal Proc., vol. ASSP-4, pp. 4--22, 1987.

[8] H. Minkowsld, Volumen und oberfl~iche, Mathematische Annalen, vol. 57, pp. 447--495, 1903.
[9] G. Ritter and J. Davidson, Reeursion and feedback in image algebra, SPIE 19th AIpR Wkshp

Image Understanding in the 90's, vol. 1406, pp. 74-86, October 1990.
[10] G. Ritter, D. Li, and J. Wilson, Image algebra and its relationship to neural networks, Proc.

1989 SPIE Tech. Syrup. Optics, Elec.-Opt. Sensors, March 1989.
[11] G. Ritter, M. Shrader-Frechette, and J. Wilson, Image algebra: A rigorous and translucent way

of expressing all image processing operations, Proc. 1987 SPIE Tech. Symp. Optics, Elec.-Opt.
Sensors, pp. 116-121, May 1987.

[12] G. Ritter and J. Wilson, Image algebra: A unified approach to image processing, Proc. SPIE
Med. lmag. Conf.; vol. 767, pp. 338-345, February 1987o

[13] G. Ritter, J. Wilson, and J. Davidson, Image algebra: An overview, Comp. Vis., Graphics,
Image Proc., vol. 49, pp. 297-331, March 1990.

[14] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982.
[15] S. Sternberg, Grayscale morphology, Comp. l/is., Graph, Image Proc., vol. 35, pp. 333-355,

1986.
[16] S. Wilson, Morphological networks, Proc. 1989 SPIE Vis. Comm. Image Proc., IV, November

1989.

