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MORPHOLOGY NEURAL 
NETWORKS: AN INTRODUCTION 
WITH APPLICATIONS* 

Jennifer L. Davidson 1 and Frank Hummer 2 

Abstract. The area of artificial neural networks has recently seen an explosion of the- 
oretical and practical results. In this paper, we present an artificial neural network that 
is algebraically distinct from the classical artificial neural networks, and several applica- 
tions which are different from the typical ones. In fact, this new class of networks, called 
morphology neural networks, is a special case of a general theory of artificial neural nets, 
which includes the classical neural nets. The main difference between a classical neural 
net and a morphology neural net lies in the way each node algebraically combines the 
numerical information. Each node in a classical neural net combines information by mul- 
tiplying output values and corresponding weights and summing, while in a morphology 
neural net, the combining operation consists of adding values and corresponding weights, 
and taking the maximum value. We lay a theoretical foundation for morphology neural 
nets, describe their roots, and give several applications in image processing. In addition, 
theoretical results on the convergence issues for two networks are presented. 

1. Introduction 

Morphology neural nets arose out of  an investigation of  image algebra and 
its relationship to artificial neural networks [10]. Image algebra, developed by 
the United States Air  Force,  can be viewed as a high-level image processing 
language, which has applications in algorithm development,  optimization, com- 
parison, and efficient software and parallel  hardware design [13]. Formally,  the 
image algebra is a heterogeneous algebra in the sense of  Birkhoff  [1]. Image al- 
gebra is capable of  describing any image-to-image transform that can be defined 
in terms of  finite algorithmic procedures [12], as well  as those transformations 
for which the image has a finite number of  gray values [11]. In essence, any 
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algorithm which can be implemented on a digital computer can be expressed 
in image algebra; this includes most of the typical neural net algorithms. Image 
algebra allows a generalized product between an image and a template, which 
can be used to describe a generalized neural net node computation. Two spe- 
cific cases of this general product give the classical neural computation and the 
morphology neural computation. In Section 2 we describe the image algebra 
product, and how a generalized neural net architecture and node computation 
can be expressed in image algebra. We will assume that the reader is already 
familiar with classical neural nets; for a general introduction, see [7]. As will 
be seen by the results presented in this paper, morphology neural nets provide 
a novel method of solution to a class of pattern recognition problems of a non- 
linear type, specifically those following a form as expressed in Equation (1.2) 
below. We apply this basic technique to emulate several image processing trans- 
formations (Examples 1, 2 and 3), and provide several networks which have 
learning rules to three image processing problems. 

One main difference between classical nets and morphology nets is the al- 
gebraic computation at each node. In classical neural nets, each node gathers 
output values a = ( a l , . . . ,  a N )  from the previous layer nodes, and multiplies 
by the corresponding weights {wji}; these pairs are then summed, and passed 
through the present node's activation function f j :  

In a morphology neural network, the nodal computation is 

b j  = f j  ai + w j i  �9 (1.2) 
\ i=1 

This algebraically different computation enables a morphology neural net to 
perform distinctly different tasks from classical neural nets. The main reason 
is the underlying algebraic structure of the values used in the computation. 
Classical neural nets use the real (R) or complex (C) numbers to perform the 
numerical combination in the network, with the corresponding field (R, + , . ,  0, 1) 
or (C, +, . ,0 ,  1), respectively, providing algebraic structure to the methods of 
solutions. Here, 0 is the identity for the addition (+) operation, and 1 is the 
identity for the multiplication (*) operation. In morphology neural nets, the 
underlying algebraic structure is the lat t ice of extended real numbers, ]R+oo = 
R U {-cx~, oo). The operation V, maximum or least upper bound, replaces the 
+ operation above, and the operation +, real extended addition, replaces the * 
operation above. The value -cx~ plays the same role as the value 0 above, and 
the value 0 replaces the value 1 above. Thus, the number system is 

(ll~+~, V ,  +, -oo ,  O ) . (1.3) 
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It is possible to describe a transform which has the spirit of a linear trans- 
formation by mimicking a linear transformation, substituting the operations in 
the linear transform with the corresponding ones from the lattice. The resulting 
transform is called a lattice transform, from the study of minimax matrix algebra 
[2]. While we will not explicitly be using results from minimax algebra, it is 
worthwhile to note that many theoretical aspects of this matrix transformation 
theory parallel those established in linear algebra. 

The operation inside the brackets of (1.1) is a linear operation. Understand- 
ing linear systems and linear functionals has led to a greater understanding of 
complex dynamical systems. As it is possible to view a classical neural net as 
a complex dynamical system, the analysis of classical neural nets has benefited 
from the research in the linear domain. It is highly probable that morphology 
neural networks will continue to benefit from the applications of minimax alge- 
bra results in a similar way. 

In Section 2, we present a more detailed description of how the lattice R+oo 
plays a role in the morphology net. In Section 3, the basic underlying theory is 
given. In Section 4, we give several examples of morphology neural nets, with 
and without learning rules, and for two of them, prove convergence theorems. 
The paper concludes with a discussion of future research. 

2. Image algebra and its relation to neural nets 

This section contains an explanation of the image algebra model which describes 
a general neural net [ 10], and how this gave rise to morphology neural nets. 

The image algebra was originally developed for image processing purposes, 
although the theory is in the abstract and can be used to express manipulation of 
data sets more general than typical one- or two-dimensional signals. The current 
morphology nets have applications in image processing, and we will interpret 
image algebra in this context. We next describe some operands and operations 
in the image algebra which are useful to neural net description. 

An image is a function from a subset X of N-dimensional Euclidean space 
]R N to a set of values, denoted by F. Thus, a E F x has form {(x, a(x)): x E X, 
a(x) E F}, or, if X is finite with q elements, {(i, a(i)): i = 1 , . . . ,  q, a(i) E F}. 
A template is an element of (Fx) v, where X C R N, Y C ]iM. Equivalently, a 
template t is a function, t: Y ~ F x, having form 

{(y, {x, ty(x))): y E Y, {x, ty(x)} E FX}, 

where we write ty instead of t(y) for notational convenience. Thus, a template 
is a function such that for every point y in its domain, it is assigned some image 
ty~F x. 

An invariant template that is used with linear convolution is often depicted 
by drawing the pixel locations and corresponding values where the template has 
nonzero values; this is called the support of the template. The pixel locations 
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Figure 1. Mapping an image a and a template t to a classical neural net architecture. 

where the template has zero values do not contribute to the sum and are es- 
sentially ignored. For example, the template t in Figure 1 is such a template. 
Typically, a two-dimensional template t E (]R~o~) M has as its domain a finite 
subset of  Z • Z, where Z is the set of  integers. I f  it is an invariant template, 
then it can be represented pictorially by drawing its support and the finite-valued 
numbers in its support. The template in Figure 1 "looks the same" no matter 
where it is shifted. Variant templates typically do not have that property, and 
must be explicitly defined or have their values expressed as equations. 

Images are transformed through use of  a template and a generalized operation 
Q defined between an image and a template. For the remainder of  the paper we 
will assume that X and Y are finite subsets of  ~N and ~ M ,  respectively. For 
a E F x = F N, (Fx) Y = (FN) M, we have 

a Q t  = b E F Y, b - { (y ,  b(y)):  b(y)  

= (a(xloty(Xl))7(a(x2)oty(X2))7 �9 �9 �9 ~/(a(XN)Oty(XN))} 
= {(y, b(y)): b(y) = r{(a(xi)oty(Xl)): i = 1 , . . . ,  N}} .  (2.1) 

Here, o is a binary operation on F, and 7 is a binary and commutative operation 
on F. (For a more general description of image algebra, see [13].) It is this 
general operation which allows a variety of  different combining operations at 
each node in a neural network, giving rise to different types of  neural networks. 

For example, if  we set F = ~ ,  3' = + (so 1-' = ~-'~), o = . ,  then we have a 
generalized convolution •: 

a ~ t = b E IR Y, b = (y, b(y)): b(y) = E a(xi)ty(Xi), y E Y �9 (2.2) 
i=1 

The @ operation can express any linear operation, and of course be used to 
represent Equation (1.1) in the obvious way. For example, a typical approach to 
using neural nets for image processing is to represent an image with N pixels 
in its domain as an N-vector,  scanning the image from the top-left comer  to the 
bottom right comer, a = ( a l , . . . ,  aar); these represent the N node values in one 
layer of  the neural net. I f  the image-to-image transformation results in an image 
having the same domain as the input image, then the neural net architecture will 
have N pixels at each level. The template that maps one image to another is 
represented as the weights between successive layers of  nodes in the neural net. 
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We denote the weight from lower layer node i to upper layer node j by wji. 
The weight wji gets set to template value tj(i). See Figure 1 for an example of 
a linear neural network, which has all activation functions f j(x,)  = z .  

For this particular example, the template t is invariant, its region of support 
has two pixels, and (for simplicity) it wraps around the boundary. Also, zero 
weights are not displayed. In order not to clutter up the figure, not all nonzero 
weights are shown. In the general case for a classical neural network, if each 
node j has arbitrary activation function f j ,  then the output of the upper layer 
can be written in image algebra as 

f (a  | t) = (f l(a * t ) , . . . ,  fN(a * t)). (2.3) 

We may view a network as fully connected, that is, all nodes in one layer are 
connected to all nodes in the layer above it, or, if the network has zero weights, 
then we may view those particular weights as not existing. We say this latter 
type of network has limited connections. For various reasons we may wish to 
view a fully connected network as a limited connection network, particularly if 
many of the weights are not used in the computation of the nodal value. 

Now taking different values for the value set and operations, we set F = R + ~ ,  
7 = V (so 1 ~ = V), where V is the maximum operation,o = + (real extended 
addition). Then we define the additive maximum operation [] : 

a [ ]  t = b C ~ ,  b =-- (y, b(y)):  b(y)  = V a(xi)  + ty(Xi), y �9 Y . (2.4)  
i=1 

This operation is the one used to describe the combining operation at each 
node in a morphology neural net. While for almost all applications in image 
processing, the input image a has finite values (that is,it does not have either 
value -cx~ or oo), for consistency it is necessary to define the addition operation 
between all elements of ] ~ i ~ .  The operation + in R+oo has been defined in a 
consistent manner [2] to be: 

a + ( - c r  = (-cx~) + a = - ~  a �9 l l~_~  

a+cx~ = c r  = cx~ a �9 IR_~ 

( - c o )  + o o  = c ~  + ( - o o )  = - o o  

Here ~ _ ~  = ]R U { -c~} .  However, for the rest of this paper we will make 
the reasonable assumption that all input images a �9 ] ~  will have only finite 
values, that is, a �9 ~x.  If a is a boolean image, then a must have only values 
of 0 and 1. If  t is a boolean template, however, the only values t may assume 
are 0 and - c ~ .  

As mentioned earlier, the major distinction from the classical nets is the 
different value set. Morphology neural nets use the values in R+oo. In image 
processing applications, the template values outside its support are ignored. To 
accomplish this in context of the value set R + ~ ,  those values must be set to - c ~ .  
Thus, we could construct a simple morphology neural net, with the activation 
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functions being the identity function, using the image a and template t as in 
Figure 1, but using Equation (1,2) for the calculation. See Figure 2. In performing 
the additive maximum at each node, we force the weights corresponding to 
template values outside the region of support to have value -oo .  For example, 
the seventh node value at the upper layer of the network in Figure 2 can be 
found by calculating 

9 9 

b7 -- V a i  + w 7 i  = V { a l  + WT1, �9 �9 �9 ,a9 +w79 } 
i=1 /=1 

= V { 9 + ( - o o ) , . . . , 4 + ( - o o ) , 3 +  1,2+2, 1 + ( -co ) }  

= V { - o o , . . . ,  -oo,4,4, -oo}  = V { 4 , 4 }  = 4. 

In general, the basic calculation in a morphology neural net expressed in 
image algebra is 

f ( a  [] t) - (f~(a [] t ) , . . . ,  fN(a [] t)). (2.5) 

We thus define an artificial morphology neural network to be an artificial neural 
network which uses Equation (2.5) as its basic nodal calculation. 

When combining an image and a template, the computation needs to take 
place only over the support of the template. Formally, the (infinite) support 
S-oo(ty) for a template t C (~Noo)M is the set of pixels in X where ty(x) ~ - c o .  
Thus, 

~q-oo(ty) = {X �9 X: ty(X) ~ - - o o } .  

Some typical supports include the von Neumann or 4-neighborhood of the pixel 
y; and the Moore or 8-neighborhood. See Figure 3 for the description of the 
two neighborhoods. 

We will use the image algebra to express the neural net algorithms, as it is 
quite efficient in succinctly achieving this. To this end, we next describe several 
more necessary operations. Given two images a, b E Rx+oo, we define three 
basic pointwise operations between them: 

a + b = c - { (x ,  c(x)): e(x)  = a(x)  + b(x) ,  x e X }  

a * b = c - { (x ,  c(x)): c(x)  = a(x)  �9 b(x) ,  x E X }  

a V b = C - {(x ,  c(x)): c(x)  = a(x)  V b(x) ,  x E X } .  

The operations of image subtraction, division, and minimum can be defined 
from these operations. We can also define pointwise operations for templates. 
Let s, t E ( ] ~ x )Y .  Then we have 

s + t = r, ry(X) = Sy(X) + ty(X) 

s * t = r, ry(x) = Sy(X) �9 ty(X) 

s V t = r, ry(x) = Sy(X) V ty(X). 
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Figure 2. Mapping an image a and a template t to a morphological neural net architecture. 

.(a) (b) 

Figure 3. (a) The von Neumann or 4-neighborhood of y; (b) the Moore or 8-neighborhood 
of y. 

Another useful function is the characterist ic funct ion.  While the typical char- 
acteristic function X acts on an image (or template) by producing a 0/1 value 
output: 

1 i f a ( x ) > 0  
X>0(a) = b, b(x) = 0 otherwise, 

we will need one that produces a 0 or - c o  valued output: 

X>~(a)  = b, b (x )=  ( O if fl(X) > 0 
oo otherwise. 

In a similar manner we can apply X to a template. Also, the comparison > can 
be replaced with any other, such as =, _<, etc. 

We conclude this section with a short example. We give the algorithm for 
the synchronous Hopfield network in image algebra [10]. Let N be the number 
of nodes in the Hopfield net, and P be the number of exemplar patterns. Let 
X = { 1 , 2 , . . .  , N }  C Z. The weights are determined by setting 

x 5 xi g j w j i  = t j ( i )  = 0 = j ' 

k is the j th  element of the exemplar for the pattern class k. Let e E lt~ x where x j  

be a bipolared valued image as input, having values 1 or - 1. Then the Hopfield 
algorithm is: 
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repeat 

until 

a : = c  

b : = a @ w  

e := X>0(b) - X<o(b)  + a �9 x0 (b)  

c - - - a  

This is a good example of how concise the image algebra can be in expressing 
neural net algorithms. 

Currently, the investigation of special cases of Equation (2.1) has only cov- 
ered classical neural nets and morphology neural nets, described by Equations 
(1.1) and (1.2),respectively. However, it can be easily shown that the value set 
]F = ~ 0  = {r C ]I~: r > 0} U {co}, the set of nonnegative real numbers union 
{co}, together with the operation 7 = V and o = . ,  is a lattice which is isomor- 
phic to the lattice of extended real numbers in Equation (1.3). Thus, a neural 
net which has the operation 

yj a~ �9 w~i 
\ i - -1  

at each node can be shown to mimic the appropriate morphology neural net. 

3. The theory o f  m o r p h o l o g y  neural networks 

Shift-invariant image processing transforms that can be described by Equation 
(2.4), where X = Y, are called morphological transforms, and are part of the 
area of image processing known as mathematical morphology. Derived from 
Minkowski and Hadwiger set theoretic operations, [8] and [6], respectively, and 
applied to boolean image processing, the two morphological operations of dila- 
tion and erosion were used to perform shape analysis on images [14]: hence the 
name morphology. It has also been shown [3] that the image algebra operation 
[] operation is a generalization of the morphology dilation operation. Since mor- 
phology neural nets use the general [] operation and not the strictly invariant 
mathematical morphology dilation, we use the image algebra [] operation to 
describe our morphology net operations. Although the image algebra Equation 
(2.4) describes a far more general image transformation than invariant ones, we 
chose the name morphology to describe our networks to maintain the spirit of 
the basic operation of the network. 

The erosion operation can be defined in terms of the dilation, and essentially 
uses the minimum operation in place of the maximum. For a E R ~  and 
t C ( ~ o o )  M, the image algebra additive minimum operation,which generalizes 
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the mathematical morphology erosion, is defined to be 

a [ ] t = b E R ~ o o ,  b~_ (y ,b(y)) :b(y)= a ( x i ) + t y ( x i ) , y E Y  . (3.1) 
i=l 

For a more detailed discussion on boolean and grayscale morphology operations, 
see [15]. We remark that an entirely different approach to a morphology network 
was presented in [16]. However, that particular model uses the classical neural 
net to simulate the nonlinear morphology operations, and so is entirely different 
from the morphology neural net in this paper. 

The additive maximum and additive minimum operations are dual operations, 
and the additive minimum can be expressed in terms of the additive maximum 
operation. For a E RNoo, t E ( ~ o o )  M, we have 

a []  t = - ( - a  [ ]  - t). (3.2) 

Specifically, the mathematical operation of erosion is expressed in image algebra 
where X = Y, and t is an invariant template, t E (R~roo) N, where - t '  replaces 
t in Equation (3.2): 

a [ ]  ( - t ' )  = - ( - a  [ ]  t'). (3.3)  

Here, the transpose t' of a template t is defined by t~(x) = tx(y). All mathe- 
matical morphology operations can be expressed as cascades of dilations and 
erosion, so the [] operation is sufficient to describe all mathematical morphology 
transformations. 

Just as a classical neural net can emulate a linear transform with the appro- 
priate choice of architecture and activation function, a morphology neural net 
can emulate a transform of type Equation (2.4). If a E R~oo and t E (R~oo) M, 
then a morphology neural net which realizes Equation (2.4) has N input nodes 
with values a = ( a l , . . .  ,aN), M output nodes with values b = (bl , . . .  ,bM), 
has weights wji = tj(i), j = 1 , . . . , M ,  i = 1 , . . . , N ,  and has activation func- 
tions f j ( x )  = z, j = 1 , . . . ,  M. This net is fully interconnected, or, as discussed 
above, can be viewed as a limited connection network if for each weight sat- 
isfying wji = - c~ ,  the connection between upper node j and lower node i is 
considered not connected. Hence, given any transform of form Equation (2.4) 
or (3.1), which includes the boolean and grayscale dilations and erosions, there 
exists a morphological neural network which can perform the same calculations, 
and it will use only the maximum operation, that is, it will have nodal com- 
putation of form Equation (1.2). However, just as the linear neural nets give 
us nothing new, neither do the morphology nets which implement the straight 
additive maximum transform. The more interesting and complex results arise 
from deviating from the well known. In this vein, in Section 4 we show two 
morphology neural nets that have learning rules. 
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4. Examples of applications 

In this section we describe six examples of specific morphology neural nets. 
The first two examples are straightforward realizations of the [] and [] oper- 
ations, while the third is the realization of the generalized opening transform 
in morphology, which is a cascade of the [] and [] operations. These three 
networks have no learning rules associated with them, and all three are valid 
for both boolean or grayscale data. The remaining examples are networks with 
learning rules. Example 4 describes a boolean dilation network with learning 
for an invariant template, and Example 5 a grayscale dilation with learning 
for an invariant template. Example 6 is a network which learns the grayscale 
additive maximum for the general case of a variant template. Formal proof is 
provided for convergence of the weights for Examples 4, 5, and 6. In all three 
cases, the algorithm is able to converge to weights which perfectly recall all the 
training data. Implementation of the algorithm on image data is also given as a 
demonstration. 

Example I. Additive maximum or generalized dilation network (without 
learning). This network, as the name implies, implements the additive maximum 
operation as given in Equation (2.4). This is the network that was described at 
the end of the previous section. Figure 2 portrays a specific example. 

Example 2. Additive Minimum or Generalized Erosion Network (without 
learning). This network implements the additive minimum operation as given in 
Equation (3.1). As mentioned previously, the additive minimum can be described 
in terms of the additive maximum operation. For purposes of this paper, we will 
be most interested in Equation (3.3), which happens to be a true expression re- 
gardless of whether t is invariant or not. Equation (3.3), a [] ( - t ' )  = - ( - a  [] t '), 
suggests how to construct our morphology neural net. We note that we will have 
an input layer and an output layer of neurons, and one set of weights intercon- 
necting them. We will use the accepted convention that the input layer nodes 
perform no calculations, while nodes at all other layers do, unless otherwise 
noted. We wish to use the additive maximum operation, so the values - a  will 
be the input, and the weight from input node i to output node j will have value 
wj~ = t~(i) = ti(j), where j E Y = { 1 , . . . , M } ,  and i E X = { 1 , . . . , N } .  We 
see upon calculating the values in the network we designed thus far that the 
expression - a  [] t t is the current state of values at the output nodes, Thus, we 
need to negate each of these values so that Equation (3.3) will be calculated. 
Hence, we choose our activation function to be 

f j ( z )  = - z ,  j = 1 , . . . ,  M .  

The output of the network will then be 

f ( - a  [] t ')  = - ( - a  [] t '), 

as desired. 
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Example 3. Generalized Opening Network (without learning).  In mathemat- 
ical morphology, the sequence of operations 

(a [] (-t')) [] t, 

called the opening of  a by t, is a well-used technique, and can be applied to 
filter out speckle-type noise. Using Equation (3.3) we can also write 

(a [] (-t')) [] t = [ - ( - a  [] t')] [] t. 

To design a morphology neural net that implements the opening, we first note 
that we will need an input layer, a hidden layer h, and an output layer b. Let 
w 1 denote the weights between the input and hidden layers, and w 2 denote the 
weights between the hidden and output layers. Denote the two activation func- 
tions by f l  and f2  for the hidden layer and output layer neurons, respectively. 
Using the results from Example 2, if  we input the values - a  and set f~(x)  = -a : ,  
then the hidden layer values are h = - ( - a  [] wl) ,  where wli  = t~(i). I f  the 

upper layer weights are set to the values ,,vii = tj  (i), and each activation func- 

tion at the output nodes is set to f2(x)  = x, then the output neurons will have 
values b = y(h [] w 2) = h [] w 2 = [ - ( - a  [] wl)]  [] w 2, which is the desired 
calculation. See Figure 4 for a pictorial representation of  this network. 

bt bk 

) ' I 

wj+ 

T 
at ai ar~ 

Figure 4. The opening morphology neural network for Example 3. 

Note that no assumption was made about whether t was invariant or not, nor 
that M = N .  Thus, this is a generalized opening network. 

Another commonly  used mathematical morphology transform is the closing. 
The general form is described in image algebra by the equation 

(a [] t) [] (-t'). 

The construction of  a morphology neural net to calculate this is straightforward, 
and we leave this to the reader as an exercise. 

Up to this point we have had no need to make a distinction between boolean 
and grayscale nets. Our next example is a net with a learning rule, that is, a 
rule for updating weights. This morphology neural net is the dilation neural 
net but with a training rule. It is constructed s o t h a t  after it is trained on a set 
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of training data consisting of inputs plus their respective dilation, the weights 
will closely approximate the template used to originally dilate the inputs. This 
algorithm will work only for boolean images and templates. The grayseale case, 
given immediately after the boolean network, has a distinctly different learning 
rule. 

Example 4. The Boolean Dilation Net with Learning. [9] This is a network 
which has a training rule, and, once properly trained, will produce at the output 
nodes an approximation of the dilated version of the input which is applied to 
the input nodes. As its title suggests, this network is applicable only to boolean 
data and templates. The network has two layers of nodes, an input and an output 
layer. We will give an example for the network where t is invariant, although the 
algorithm is general enough to use with any variant template, including cases 
where X q Y. 

The set of training data for this network consists of P pairs of images, (a k, d k), 
k = 0 , . . . ,  P - l, where a k represents the input image and d k = a k [] t is the 
input image dilated with an ideal (invariant) template t, which is the same for 
all images. In practical cases, the template t is assumed to be unknown. The 
weights are initially set to some values, which may or may not be the template 
values, as will be discussed momentarily. Then, the image a is applied to the 
input layer, and the output calculated at the output layer using the morphology 
neural net calculation as in Equation (2.5). The activation functions for this net 
are all 

f j ( x )  = x ,  j = 1 , . . . , N .  

The main goal of this net is to determine a set of weights for the network which 
will correctly produce the corresponding output d k when a k is applied to the 
input nodes. This is done by changing the weights using a training rule. 

For practical considerations, we will assume that the network is a limited- 
connection network, and in fact, assume the connections occur over only a 
rectangular or square support N ' ( j )  in the image domain X which includes the 
assumed support S_o~(tj) of the template, j = 1 , . . . ,  N.  For example, if we 
assume the template t had a 4-neighborhood support, then we might choose the 
8-neighborhood to be .hf(j). The other weights into node j are considered to be 
disconnected, or, as mentioned above, have value - c~ .  This has the effect of 
reducing the number of training pairs needed to get a good representation of the 
ideal template t. 

Data pairs such as these may represent a morphological process taking place 
with an unknown ideal template t. Hence, a network such as this and the ones in 
Examples 5 and 6 allow for the recovery of a transformation or template from 
a set of data where the transform is assumed to be of the form of an additive 
maximum. Thus, the weights need to be adjusted via a training rule from their 
original values so that they exactly match those from t, or are very close, and 
produce correct results on the training data. Since this is a boolean network, it 
is necessary to recall that a E {0, l}  N, and t E ({0,--o0}N) N. The  following 
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table, given in Figure 5, represents the training rule, or the change of weights 
we would like to make. We make use of the fact that if a template has finite 
nonnegative values on its support, that is, ty(x) > 0 for x 6 S_o~(ty), we can 
easily show a < a [] t. Initially, all values for all weights in the neighborhood 
Af(j) are set to 0. Thus, the template corresponding to these weights has perhaps 
larger support than the unknown template t. The values in the N-vector c are 
the ones calculated after the input is passed through the network is initialized. 

new value for  wjl is 

current value 

current value 

1 0 0 1 

2 0 1 0 

3 1 o r 0  1 I 

4 1 o r 0  0 0 

5 I 0 1 

6 1 1 0 

current value 

current value 

- 0 0  

0 

Figure 5. Table of change-of-weight rules for boolean dilation network. 

As an example of how these rules were derived, consider cases 3 and 4. If  
the desired output and calculated output at location j have the same value,then 
no matter what the input image value a~ is in Af(j), we wish the weight wji 
to remain the same, as currently it is producing the correct output. However, 
consider case 5: the calculated value is 1, which is greater than a desired value 

k has value 1. We know that of 0, and a i 

d~ = O = V a~ a~ 
ies_~(tj) 

for all i e S_~( t j ) .  But 

k 1=  V a ~ + w j ,  e j  = 

ieAr(j) 

k = l  ( a s w j i = 0 ,  or implies that there exists at least one i 6 .hf(j) such that a i 
k = l, we set the corresponding wji = -cx~). So for each value i 6 A/'(j), where a i 

weight wji that contributes to calculating e~ to - c ~ ,  so that the sum a k + wji 

does not contribute to calculating the finite value for e k. The remaining roles 
were derived similarly. The convergence properties of the grayscale case for 
variant templates, Example 6, show that this network will converge to a set of 
weights that will always work perfectly on the training data. Also, using these 
results, we can say that if the weights are initialized on Af(j) to have values 
that are greater than or equal to a fixed threshold T, then those values can only 
get changed to -cx~ and never will a value of - o o  get changed back to 0. 
Hence, case number 6 in Figure 5 will never occur. However, it was included 
for completeness in the table. 
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The algorithm for this network is 

INITIALIZE WEIGHTS TO 0 IN JV'(j) 
REPEAT 

d o k = 0 ,  P - 1  

C calculate output node values for input a k 
N 

: +,,,j,, j = I , . . . , M  
i = l  

C adjust weights by learning rule, only changing weights 
wji in the neighborhood A/'(j) according to Figure 5. 

end do 

UNTIL net gives correct response for each training pair 
(a k,dk), k ~ 0 , . . . , P -  1. 

After it has been trained, then, just as in the classical case, the network can 
be used to produce a dilated version of some image not in the training set, with 
the hopes that the output produced is close to what the true version would be 
if the template were known. Of course, if all possible binary images on the 
domain X and their corresponding dilated versions were used to train the net, 
then, at the end of the training process, the weights would be exactly equal to 
the template values. As in the case with classical nets, the general idea in using 
a morphology net to find the weights is that if the training data used is a small 
but "good" representation of all possible data, then the final weights will be a 
"good" approximation to the template t. 

The change-of-weight rule can be expressed algebraically as follows. Let the 
value for the weight at iteration k + 1 be denoted by Wk~ I. Then 

w t'= 

V {(Xo ~176 [a~(d} - e~)]) +w~i}" (4.1) 
Note the similarity of Equation (4.1) to the generalized delta learning rule: 

It is understood in Equation (4.1) that the superscripts on the input and dilated 
training pairs is done modulo P, in the case that k > M. 

Expressed in image algebra, the algorithm is: 

REPEAT 
d o k = 0 ,  P - 1  

C calculate output node values 
C k = a k [ ]  w k 

C adjust weights by learning rule 
= k} v { [Xo~176 
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end do 

UNTIL net gives correct response for each training pair 
(ak,dk), k = 0 , . . . , P -  1. 

Here, the template s is defined by 

{ ~k(ccdk -- c~) if i E .A/'(j), s~i= " J , k = 0 , . . . , P - 1 .  
otherwise 

This network was run on one set of test images. This was not meant to be a 
thorough analysis, but a simple demonstration of how the network can perform. 
The training data used were 20 randomly generated boolean images, where the 
probability of assigning a value of 1 to a pixel location was slightly less than the 
probability of assigning a value of 0. This was done to prevent large contiguous 
areas of black pixels (value 1) which might not allow the weights to change 
to their correct values. The image size was 64 x 64 pixels, and the boolean 
template used was the von Neumann with values of 0 on the support. The 
neighborhood .A/'(j) used was the Moore neighborhood. The first 10 test images 
plus their dilated versions were applied and the learning rule, Equation (4.1), 
used to update the weight values in the network. After the first ten test images, 
we applied four images of natural scenes to the network, without training, to 
determine how well the network produced their correctly dilated versions. The 
network was then trained on the remaining ten test images, after which the four 
natural scenes were again applied. There were two measures used to determine 
the effectiveness of this algorithm on our test data. The first was a measure of the 
difference between the ideal template values and the weights determined by the 
network. The number of values in each neighborhood .A/'(j), that differed from 
the ideal template values were counted and summed up, for all j = 1 , . . . ,  64. 
Due to the result of Theorem 3 in Example 5, since the neighborhood values 
were initialized to 0 and can only change to -o r  we need only to count then 
number of zeros in the four comers of A/'(j). This gives a rough measure of 
how closely the weights matched the ideal template values. The second measure, 
which is more data dependent, used the natural scenes. Their perfectly dilated 
versions,dilated with the ideal template t, were compared with the output to the 
network after the original scene was input. Thus, this is a measure of how well 
the net dilated the natural scene with the weight w, versus its perfect dilation 
with t. The number of pixel values that differed between the calculated dilation 
from the network and the dilation produced with t were counted. In Figure 6 is 
a selection of some of the image data used. The pixels that are black in Figure 
6 have value 0, while white is value 1. The results of the experiment are shown 
in Figure 7. In Figure 7b, column 1 gives a short description of the black and 
white image used; column 2 gives the number of test images used to train the 
network before the natural scene data was applied; column 3 gives the number 
of pixels differing between gi [] t and gi [] w, where gi, i = 1 , . . .  ,4, are the 
four natural scene data; and column 4 gives the numbers in column 3 calculated 
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Figure 6. (a) Sample input training data; (b) sample natural scene (panda); (c) image in 
(b) dilated with von Neumann template; (d) output of net after X = 5 training images 
applied, for input of (b); (e) output of net after X = 10, for input of (b); (f) output of net 
after X = 15, for input of (b); (g) output of net after X = 20, for input of (b). 

as a percentage of the total possible number of pixels that could differ, which 
is 64 x 64 = 4096. 

By the nature of the training rules, once a test image a k is applied and the 
weights are changed to correct for the error at the net's output, the network 
will always subsequently produce the perfectly dilated version, d k at the output 
nodes when a k is applied again. Hence, there is no new information that the 
network can gain from applying the training pair (a k, d k) more than once. This 
network can therefore "learn" the training data perfectly. 

Example 5. Grayscale Dilation with Learning for Invariant Templates. This 
network trains on training data pairs to learn a grayscale dilation, assuming the 
unknown template is invariant. It is a grayscale version of the boolean network 
with training as described in the previous example. We present two algorithms: 
the first uses simply one training pair, while the second uses a set of P training 
data. Both use the typical approach, initializing the weights, then applying the 
training data, and finally adjusting the weights according to the training rule. 
For the first algorithm where only one training pair is used, (a, d), where a 
is the input and d is the corresponding dilated input, the weights converge 
after the first iteration. As usual, the learning rule for this net produces an 
approximation of t from the input-output pair. The proof of convergence to 
weights that give perfect reproduction of d is given below. This result leads in 
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after X number of total number of different values column #2 calculated as a 
training images applied between weights and template percentage 

values 

X = 5 11331 31% 

X = 10 9012 24% 

X = 15 7418 20% 

X = 20 5842 16% 

(a) 

description of after X number of # of pixels differing column #3 calculated as a 
natural scene data training data was between perfect dilation percentage (out of 4096) 

applied and net output 

town 113 2.8% 
ship 36 .9% 
panda X = 10 64 1.6% 
jet 53 1.3% 

town 
ship 
panda 
jet 

X = 2 0  

74 
25 
46 
29 

1.8% 
.6% 
1.1% 
.7% 

Co) 
F i g u r e  7. (a) Measu re  of  difference be tween  weight  values  calculated by  net  and ideal 

weight  values.  (b) Dif ference  be tween  net  output  and perfect ly dilated natural  scenes.  

a natural way to the second algorithm, which uses a set of P training data to 
adjust the weights. Convergence for this network is also guaranteed, and the 
weights to which the network converges allow perfect recall of all the training 
data. In other words, the network learns the training data perfectly. The second 
algorithm needs only two passes through the training data set to produce perfect 
recall of the training data, where one pass is one application of the entire data 
se t  { ( a  0, dO), ( a  I , d l ) , . . . ,  ( a  P - l ,  d P - l ) } .  

For the first algorithm, we let a be the input image and d be the corresponding 
dilated version, so d = a [] t. Let .Af(j) be a neighborhood of j such that 
A/'(j) D S_oo(tj), j = 1 , . . . ,  N. We assume a limited-connection network where 
connections are allowed only in the neighborhood .Af(j). We denote the weight 
value from input node i to output node j at iteration k by wji(k). We will 
assume that for all i E S_oo(tj) and for all j ,  tj(i) = tji _> T > 0 for some 
nonnegative real constant T. 

The weights are initially set to the following values: 

A dj+z - ai+z if i E .Af(j) 
wj~(O) = {~:i+z~Ar(j+z)} (4.2) 

- c o  otherwise 
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For k > 1, we use the following two step rule: 

1: "r = f Wji(k --1) if wj i ( k  - 1 )  _> T Step ( - o o  if wji(k - 1) < T 

Step 2: wji(k) = A r 
{z:i+zEX,j+zEX} 

Step 2 allows the computation of  the minimum value over all corresponding 
pixels in the neighborhood.Af(j); this forces the weights to represent an invariant 
template after Step 2. Note that this learning rule doesn' t  use the computed 
output, c = a []  w(0), to calculate the new weight value. To show that the 
weights converge to values w such that a []  w = d, the following theorem will 
be useful. For the remainder of  this example, we will assume that the invariant 
template t is the one that gives the dilated version of  a, a []  t = d, and that a is 
finite-valued. We will also assume that j E Af(j)  for all j .  We will also use the 
fact that if a is finite valued, and t is a template which has no values of  cx) and 
has nonempty infinite support at each pixel location j ,  then the image d given 
by d = a []  t is also finite-valued. 

Theorem 1. Let a [] t = d. Let w be a template such that 

tji  < wji  < dj - a i  for  all i , j =  1 , . . . , N .  

Then a [ ] w = d .  

Proof.  Let a []  w = c. Then cj = VieNO) ai + wji for all j .  Now, 

dj = V ai + tji _< V ai + wji < V ai + dj - ai = dj, 
ieAf(j) i~Af(j) i~Jv'r 

so cj = dj for all j ,  and c = d. O 

In fact, if we let wji = dj  - aj for all / in .Af(j) and for all j ,  then by 
Theorem 1, a []  w = d. Of course w defined in this way is not guaranteed to be 
invariant, but the above observation provides the motivation for our initializing 
w(0) as above; also, it is clear from Equation (4.2) that w(0) is invariant. Not 
surprisingly, w(0) turns out to be a very good initial guess. 

Theorem 2. a [] w(0) = d. 

In order to prove Theorem 2, we will need the following lemma. 

Lemma 1. I f  d = a [] t, then tji <_ dj - ai for  all i and j .  
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P r o o f  of  L e m m a  1. 

d j =  V a m + t j r a > _ a i + t j i ,  
mEAr(j) 

for all i E A/'(j), and for all j = 1 , . . . ,  N .  f f  i r Af(j) ,  then since tji  = - o o  and 
since dj  and ai are each finite-valued, their difference dj  - ai is finite-valued 
and hence greater than - o o .  [] 

P r o o f  of  T h e o r e m  2. By Lemma 1, tj+z,/+z _< dj+z - ai+z for each i + z and 
j + z E X. Since the template t is invariant, we have tj+z,i+z = tji for all z such 
that i + z E N O  + z). Thus, tji _< dj+z - ai+= for all z such that i + z E .Af(j + z). 
Therefore, 

tji  <_ A dj+z - ai+z. 
{ z:i+ zcAr(j+ z) } 

Because 0 E {z : i + z E Af(j  + z)}, it follows that 

A d j+= - ai+z < dj+o - ai+o = dj - a~. 
{z:i+zEAr(j+z)} 

We now have that, if i E JV'(j), 

b i  --< Wji(O) < dj  - ai. 

I f  i 9~ .Af(j), then wji  = - o o ,  but because S _ ~ ( t j )  C Af(j) ,  we know that 
tji = - o o ,  and again we have 

Thus we have 

tji _< wji(O) _< dj  - ai. 

dj  = V ai + wji(O) _< V ai + dj - -  ai = dj.  
iEAr(j) leAr(j) 

Thus, d = a [] w(0). [] 

Any further iteration of  w beyond initializing w(O) essentially makes use 
only of  information about the threshold T as demonstrated in the proof  of  the 
following theorem. 

T h e o r e m  3. 
i. w(k) = w(1) f o r  all k >_ 1. 

ii. wji(1)  ~Wji(O) only i f  i G N ( j )  and t j i  = -oo .  

Proof.  Proof  of  i: It suffices to show that wj i ( k )  = w j i ( k  - 1) for k _> 2. I f  
i ~ .N'(j), then wji(0) = - o o ,  and inspection of the learning role shows that 
wj i ( k )  = - o o  for all k >_ 2 (in fact, for k _> 0) because - o o  < T.  So the 
claim is true for the case of  i r .A/'(j). So let i E .A/'(j). I f  w j i ( k  - 1) < T,  
then @ji(k) = - o o ,  and clearly wj i (k)  = - o o  _< w j i ( k  - 1). Therefore, only for 
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k = 1 is it possible that - c o  < wj i (k  - 1) < T,  and so wj i (k)  -- - c o  for k > 1. 
I f  wj i (k  - 1) > T (and i E Af(j)),  then because 0 E {z : i + z E Af(j  + z)}, 

wj i (k)  = A fVj+z,~+z(k) = A wj+~,i+~(k-1) = w j i ( k -  1). 
{z:i+zEX,j+zEX} {z:i+zE.Ikf(j+z)} 

The latter equality holds because w j i ( k  - l) is invariant for every k > 1. Recall 
that after Step 2, the weights wj i (k)  correspond to an invariant template. 

Proof  of  ii. First we show that i r Af( j )  ~ wji(1) = wji(0). We have 
i i/ .Af(j) implies wji(0)  = - c o  (by the learning rule). Because - c o  < T,  
~vji(1) = - c o .  Because 0 E {z : i + z E JV'(j + z)}, wji(1) = - c o ,  hence 
wji(1)  = wji(0). Using the contrapositive statement of  what we have just proved, 
we can say that wji(1) •wj i (0)  implies that i E Af(j) .  It remains to show that 
tji ~r - c o  implies wji(1) = wji(0). To this end, we note that tji  ~ - c o  ~ i E 
S _ ~ ( t j )  C Af(j) ,  by definition and hypothesis, respectively. Hence, the learning 
rules give us 

wj , (0)  = A dj+z - ai+z. 
{z:i+ze~f(j+z)} 

By Lemma  1, tj§247 < dj+z - ai+z for all i and j ,  where z is such that 
i + z E .N'(j + z). But t is invariant, so tji  = tj§ for each of these z values. 
Therefore, 

tji  <_ A d~+~ - ai+~ = w(O). 
{z:i+zeA;O+z)} 

Also, tji ~ - -co implies T < tji ,  so T < wji(O). According to the learning rule, 

wji(1) = A ~Vj+z,i+z(1). 
{z:i+zEX,j+zEX} 

Because w(0) is invariant, T < wj+~,i+~(0) for all z such that i + z E X, and 
j + z E X. Therefore, for all such z, ffj+z,i+z(1) = wj+~,i+z(0), and we have 

Wji(1) = A Wj+z,i+z(O) = wji(O). 
{z:i+zEX,j+zEX} 

[] 

We can see from the proof  of  part (i) of  Theorem 3 and by inspecting the 
learning rule that wji(1) 5 r wji(0) only if wji(1) = - (x)  and tji = - c o .  This 
implies that wji(0)  > wji(1) = - c o  = tj i ,  for all i and j .  Therefore tji  < 
wji(1) _< dj  - ai for all / and j ,  and Theorem 1 tells us that a [] w(1) = d. 
Thus, the weights reached by this network at iteration k = I will allow the 
network to reproduce d when a is input, and no  further change of weights will 
occur past this iteration. Now, note that the weights w(0) will also reproduce 
d when a is input, by Theorem 2. However, it is not necessarily true that the 
initial weights w(0) don' t  change after another iteration is performed. This is 
evidenced by Theorem 3, which gives conditions under which w(1) is not equal 
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to w(0). Theorem 3 says that all weights wji(0) will be the same as wji(1) 
except for those values of i where i E A/'(j) and the true template value tji 
has value -cr  Furthermore, w(1) is invariant and satisfies the property that 
wj~(1) _> T for i E S_oo(wj(1)). 

Often we have a larger data set than one pair of training images. Without too 
much extra work, we can use the results established by the previous algorithm 
to show convergence to a set of weights that recall the training data for a set of 

f _k'~ P--1  P training pairs. Let t a  J'k=0 be the ordered input data, and {dk}ff=~ l be the 
corresponding ordered output, where d k = a k g~ t, k = 0 , . . . ,  P - 1, and t is an 
invariant template. The following algorithm arrives at weights w, representing 
an invariant template, where d k = a k [] w for k = 0 , . . . ,  P - 1. 

In this algorithm, we apply the training pair one at a time. The pair (a ~ d ~ is 
used to initialize the weights as per Equation (4.2), resulting in weights w~ji(0). 
Then steps 1 and 2 are applied to these weights as in the first algorithm, resulting 
in weights w~ Then the next training pair (a I , dl), is applied (with a slight 
modification in the initial part), followed by steps 1 and 2, producing weights 
wJi(1). Then the pair (a2,d 2) is used to go through the three-step procedure, 
etc. 

Specifically, for k = 0 we initialize the weights to 

d j + z  - a i+  z wOi(o) = A o o if i E .N'(j) 
{z:i+z~/q'(j+z)} 
--CO if i r Af(j) 

f W~ji(0) if W~ji(0) > T 
@~ 

- c ~  if w~ji(0) < T '  

and 

For k > 1, we have 

and 

w~ (1) A ^0 = Wj+z,i+z(1). 
{z:i+zs+zEX} 

{( )k k / ~ w ~  (1) w~,(0) = A dJ k+z - ai+z 
{z:i+zE/4(j+z)} 

- -CO 

f wki(0) if W~.i(O) > T 
- c o  if w~i(0) ~ T ,  

if i E .Af(j) (4.3) 

if i ~ Af(j) 

Wj+z,i+Z" 
{z:i+zj+zEX} 

It is Equation (4.3) that is a modification of Equation (4.2), which allows infor- 
mation from previous data sets to accumulate. Also, note that w~ is identical 
to wji(1) in the previous net for the single data set (a ~ d ~ = (a, d). It is clear 
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that w~i(1) _< w~(1)  for m _< k, and that q i  ~ w~i(1) for all k = 1 , . . . ,  P - 1. 

Also, w~i(1) < d~ - a~ for all k = 1 , . . . ,  P - 1. Combining these results, and 

applying Theorem 1, we have a ~ [] wk(1) = d 'n for m _~ k, and, in particular, 
a k []  w P - I ( 1 )  = d k for all k = 1 , . . . ,  P - 1. 

Example 6. Grayscale Dilation with Learning for Variant Templates. This 
network is a generalization of  nets in Examples 4 and 5, and is a more gen- 
eral form of the network in [5]. The additive maximum transform that this net 
attempts to learn can be any arbitrary grayscale one, including a variant trans- 
form. For a given set of  P training data pairs, the learning rule needs about 
three passes through the data set to guarantee perfect recall o f  the P training 
images. 

l_k~P-1 l d k l P - 1  As before, let t~t 1k=0 and t Jk=o , be ordered sets of  P input images and 
output images, respectively, where d k = a k []  t for all k = 0 , . . . ,  P - 1, and 
where t is a template that is not presumed to be invariant. As in Examples 4 and 
5, the domains of  a and d need not be identical. The weights wji are trained 
in an iterative fashion where wji(k + 1) is the estimate of  tji that results from 
training on images a ~ a l , . . . ,  and a k, in that order. 

Let c k = a k []  w(k). For this learning rule, we will reuse training pairs, 
but always so as to maintain their original order. We will assume then that 
a k = a k mod P and d k = d k mod P for all k = 0, 1 , . . . .  Note, however, that it is not 
generally true that e k = c k mod P .  This net, as the ones in Examples 4 and 5, has 
a limited connection scheme; it is also assumed that S-oo( t / )  C .Af(j) for each 
j = 1 , . . . ,  M.  Initially the weights w(0) are randomly selected values from the 
set {h : h > T},  where T is a finite number satisfying tji > T,  i E S-oo(t j ) .  
Thus, wji(0) _> T for i E .Af(j), and w/i(0) = - c ~  otherwise. The table in 
Figure 8 summarizes the change of  weight rules. 

Rule # 

1 

2 

3 

Condition Satisfied New Value 

wji(k) < T wji(k + 1) = - ~  

-dr)  z0  

( e  + .j,(k) - dr) ( 4  - dr) .< 0 

wji(k + 1) = d k - al k 

wji(k + i) = wji(k) 

Figure 8. Table of rules for network in Example 6. 

This learning rule is reminiscent of  (and motivated by) learning rules for 
neural nets which utilize standard linear algebraic operations. The following 
lemmas will allow us to give these rules a different expression that is easier to 
work with. 

k k k Lemma 2. wji(k)  ~> d~ - a i ~ cj > dj .  
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Proof. Fix i E A/'(j). 

V k +d~ ~ k c~ = k a .k + wji(k) > a i - a i = dj. am +wj~(k) > 
m~AC(j) 

199 

[] 

L e m m a  3. wji(k)  -- djk _ a~ =~ c~k > dj.k 

The proof of  Lemma 3 is similar to the proof of  Lemma 2. 
If we assume that rule 1 is not used in computing Wji(k + 1), then we can 

use these lemmas and the learning rules to consider nine cases: 

Conditions Satisfied Action Taken 
> k q _ d i wj,(k) > q - 4 m,  iy ~," 2 
~, d k wji(k) = d~  - ~k apply rule 3 

i _> d "kl wji(k) -< d k _ aik apply rule 3 

q=d , 

q=d  
wii(k) = d~ 

w~i(k) < d~ 

wji(k) > d k 

wji(k) = d k 

w~(k) < d~ 

- 4  
- 4  

impossible (l~mm= 2) 

apply rule 3 

_ ~k apply rule 3 

_ a.ik impossible (lemma 2) 

_ aik impossible (lemma 3) 

_ u k apply rule 2 

From this table we can see that only the following three cases are possible, 
assuming that rule 1 is not to be used: 

Case 

1 

2 

3 

Conditions Satisfied Action Taken 

q - d k >I 0 and wii(k) ~< d~ - a i  k 

- d~ <_ O; then wii(k ) <. -]dk _ aik must be tree 

q - d ~ > O a n d w j i ( k ) > d  k - a i  k 

apply Rule #3 

apply Rule #2 

apply Rule #2 

With these results we can derive the following equivalent learning rules, 
which we use to prove the convergence results in the rest of  this example: 

Rule # 

1 

2 i f q - d ~ < O o r w i i ( k  )>d~-a k 

3 otherwise  

Conditions Satisfied New Value 

wji(k) < T wji(k + 1) = - ~  

wj~(k + 11 = d]'  - ~k 

wji(k + I) --_ wji(k ) 

Figure 9. Learning rules used for network in Example 6. 
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We will show that number of iterations of the learning rule necessary to 
guarantee convergence to a set of  weights which gives the correct dilated output 

i_klP--I klP--I on all of  the input images is 3P-2.  That is, given any sets tn  J'k=O and {d Jk=O 
as described above, then 

d k = a  k [ ] w ( 3 P - 2 )  for a l l k = O , . . . , P - 1 .  

In fact, this result is sharp in that there exist sets of  input and dilated output 
f_k~P--1 idk~P-1 images t ~. irk= 0 and t Jk=0 such that, for some k �9 {0,.  .. , P -  1}, 

d k ~ a k [] w(3P  - 3). 

The proof of this result will be made easier by first proving a series of  lemmas. 

k k L e m m a  4. ej ~< dj  ~ wji(k)  ~< tji for  some i �9 .hf(j). 

Proof.  If wji(k) >_ tji for all i �9 Af(j), then 

'~ V k V k +t im k cj = a m + wj~ (k )  _> a ~  = d j .  
rn~.~'(j) m~AC(j) 

[] 

k for  some i �9 .hf(j) r c k > d k. Le mma 5. wji (k)  > d~ - a i 

Proof.  (=r This is immediate from Lemmas 2 and 3. 
(r c~ = VmeAC(j) a ~  + wire(k). Let i E .hf(j) be such that a/k + w~, = c~. 

k k k and w~  > k k [] T h e n a  i + w ~ i > d j  _ d j - a  i .  

k k k _ aki for  some i e Af( j )  r cj >. dj .  L e m m a  6. wji (k )  >_ dj 

Proof.  ( 0 )  Follows from Lemma 2. 
(4::) Proof  is similar to that of Lemma 5. [] 

L e m m a  7. wj i ( k  + 1) > wi , (k)  ~ (c~ < d~ and wji(k) < d k - a/k). 

Proof.  According to learning rules 1, 2, and 3 (in Figure 9), and under our 
hypothesis, rule 2 is applied in computing wji(k + 1). Given that wji(k + 1) 

wj~(k), it can't  occur that rule 2 was applied due to the condition wji(k)  > 
d~ - a/k. So if rule 2 was applied it must be that e~ < d~, in which case, by 

k D Lemma 5, we must have wji(k) < d~ - a i . 

L e m m a  8. For all k >_ O, for  all i and j ,  wj~(k+ 1) 5/wji(k)  =r tji  <_ wj i (k+  1). 
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Proof .  wji(k  + 1) ~ w j i ( k )  implies that wj i (k  + 1) results from either rule 1 or 
rule 2. If  it is computed by rule 2, then wji(k + 1) = d~ - ai k, and Lemma 1 
shows that tji  _< wj i (k  + 1). 

If wj i (k  + 1) is computed by rule 1, then wji(k) < T. If i ~ .N'(j) then 
tji  = - c ~ ,  and so tji  <_ wj i (k  + 1). If  i �9 Af(j),  then wji(0) _ T. Let k'  be the 
first iteration (strictly) greater than 0 for which wj i (k  t) < T. Inspection of  the 

learning rules clearly shows that wji(k ' )  = -Jdk'-l --ai-k'--l- t~Ut~ " aj~k'--I _ a  ik'-I ~< T,  
together with Lemma 1, implies that tji  = - c ~ ,  and again we have tji  _< 
wj i (k  + 1). [] 

ko ko L e m m a  9. For a given j,  there is at most one integer ko such that ej <_ dj . 

Proof.  Suppose that for some ko > 0, c k~ < d ? .  Then by the learning rules, 

ko > tjl  (because for all / �9 Af(j)  such that wji(k0) > T, wji(ko + 1) = d k~ - a i _ 
rule 2 and not rule 1 will be used for these i values). If {i : wji(ko) > T}  is 

_ko+l > dko§ by Lemma 5 and the fact, just mentioned, that not empty, then ,.j - -3 
ko > tji for some i �9 Af(j). In fact, under the assumption w j i ( k o  + 1) = d k~ - a i _ 

that c k~ g d~ ~ for some k0 _> 0, {i : wji(k0) _> T}  is not empty. To see 
this, use Lemma 8 together with the initialization rule to show that for all j ,  
{i : wji(ko) _> T}  is empty only if tji = - c ~  for all i �9 Af(j),  in which case 
d k~ = - c ~ ,  contradicting our assumption that c k~ <~ d~ ~ 

Let kl be the smallest integer (strictly) greater than ko+ 1 such that e~ ~ < d~'. 

Then by Lemma 4, wji(kl)  < tji for some i �9 Af(j). By assumption, c~ > d k 
for k = ko + 1 , . . . , k l  - 1, so by Lemma 7, wji(k  + 1) <_ wji(k) for k = 
/co + 1 , . . . ,  kl - 1 for all i �9 .Af(j). By repeatedly applying Lemma 8 to the cases 
k = ko+ 1 , . . . ,  kl - 1, we see that, for all i �9 .hf(j), tji  < wji(kl)  <_ wji(ko + 1), 
contradicting our earlier claim that Wji(kl) <_ tji for some i �9 Af(j). Therefore, 
kl, as described, does not exist. [] 

It is useful to consider what happens to wji when c k~ < d~ ~ for some j ,  for 
some ko. In this case, wji(k0 + 1) > tji  for all i (by rules 1 and 2, and Lemma 
1), and inspection of  the learning rules, together with Lemma 9, shows that if 
wji  ever changes after iteration ko + 1 it can only happen by applying rule 2 
(wj i (k+  1) - k k k This gives us the following - dj  - a ~ )  in the case wji(k)  < dj  - a  i . 
lemma: 

k~ for some ko > O, then for all k > ko + I, and for all i, L e m m a  1 0 . / f  c~ ~ < dj _ _ 
tji <_ wji(k  + 1) _< wji(k). 

L e m m a  11. If  c ?  ~ d~ ~ for some ko >_ O, then for all m such that ko <~ m, 

m--1 

tji  _< wj i (m)  _< A (d~ - a~) for i �9 Af(j)  
k=ko 
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tji = wji(m) = --oo for  i r Af ( j ) .  

Proof. The first part of the conclusion follows from Lemma 10 and rules 1 and 
2. The second part of the conclusion is clear from rule 1. [] 

Lemma 12. If  e~ ~ < d~ 0 for  some ko > O, then for  all m such that ko < m, 

dk = VieAqj) ai k + wji(m) f o r  all k such that ]co < k < m - 1. 

Proof. Using Lemma 11 we get 

m--I / 
dj = V a ~ + t j , <  V ai 

i~Ar(j) icAc(j) i~Af(j) 

k 
-< V 

icAr(j) 

[] 

By applying Lemma 12 to the special case m =/co+P,  we get that for any j ,  
d~ = VieAccj) a~ +wji(ko + P )  for k = k0,. �9 �9 k0 + P -  1, but because a k = a k+P 

and d k = d k+P for all k > 0, this is to say that w j i ( k o + P )  computes the correct 
dilated output on all of the input images. Remember that/Co is just the iteration 
such that, for a given j ,  c~ ~ < d~~ ko might not exist, but, intuitively, we would 
like to show that for any j,/co must be less than some fixed value if/co exists, 
and that we only need to iterate P times beyond that value in order to assure 
convergence to a template which correctly dilates all P of the input images. 
Toward that end, we will now consider situations in which c~ _> d~ for values 
of k over various ranges. 

Lemnm 13. Let c~ >_ d~ for  0 < k < P - 1. Then for  any i: 

_ _ _ ^ m - l a k - a k i f o r  1 < m < P.  (a) / f t j i  < wji(O) then tji < wji(m) < t xk=o uj _ _ 
P--I k (b) l f  wji(O) <~ tji, then wji(m) = wji(O) _< Ak=o dj - a~ f o r  0 <_ m < P. 

Proof. (a) Lemma 8 gives us the left inequality. To prove the right inequality, let 
k k for some k, 0 < k < too. mo be the smallest integer such that wji(m0) > dj - a  i 

It is important to note that actually 0 < k < m o -  1. To show this we will 
suppose that k = m 0 - 1  and arrive at a contradiction, wji(mo) >~ d~ n~ - a ~  ~ 
implies, by Lemma 1, that wji(m0) was not computed by rule 1. Also, under 
our hypothesis that -3e'm~ - -  > d~ n~ the fact that wji(mo) >~ d~ n~ - a m~ 
implies rule 2 was not used to compute wji(mo). But if rule 3 was used to 
compute wji(mo), then wji(mo) = wj i (mo  - 1) ~ d~  ~ - a~ a~ implying 
that rule 2 was used to compute wji(mo), and we have our contradiction. So 
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k is an element of { 0 , . . . ,  m -- 2). the value of k such that wji(mo) > d~ - a i 
By the minimality of too, we have 

mo --2 

wji(m0 - 1) < A d;  - a~" < d~ - a/k < wji(mo). 
r=O 

But then wji(m0) ~> wji(m0 - 1), and Lemma 7 then implies that e~ n~ < 

d~0-1, contrary to our hypothesis. Therefore no such mo exists. 
(b) First we'll verify the equality. Suppose there exists some m E {0, 1, . . . .  

P )  such that wji(m) ~t wji(0) and that m is minimal in this respect (m >_ 1). 
By Lemma 8, tji <:_ wji(m). Because w j i ( m -  1) = wji(0) 5 tji, we know 
that rule 2 was not used to compute wji(m), therefore rule 1 was used, but 
this implies wji(0) < T, contradicting our initialization rule (because i E Af(j) 
implies wji(0) _> T). Therefore, m, as described, does not exist, and we get the 
equality. 

The inequality in part 0a) follows easily from Lemma 1 and the initialization 
rule. [] 

k > k f o r k = O , . . . , 2 P _ 2 .  T h e n w j i ( P + m ) = w j i ( P + l )  L e m m a  14. Let cj _ dj 
for m = 1 , . . . ,  P - 1 for all i, and wj i (P  + 1) 51 wji(P)  only if w j i (P  + 1) 
results from applying rule 1. 

Proof. Let m '  be the smallest element in { 1 , . . . ,  P -  I} such that wj i (P+m' )  51 
wji(P).  Rule 2 was not used to compute wj i (P  + ml): to see this, note that 

P--1 Lemma 13 implies wji(P)  _< /~k---o d~ - a/k, and this fact, together with our 

hypothesis that c~ _> d~ for k = 0 , . . . ,  2 P -  2, shows that the conditions needed 
for applying rule 2 to compute wj i (P+m' )  does not hold. Therefore rule 1 was 
used to compute wj i (P  + m') in the case that - c o  ~ wj i (P  + m' - 1) <~ T. 
But this implies that m' = 1. To prove this, note that by the definition of m',  
w j i (P  + m'  - 1) = wji(P).  But it is clear from rule 1 that wj i (P  + rn ~ - 1) 5t 
w j i ( P  + m '  - 2), so  w j i ( P  + m I - 2) 5~ w j i ( P ) .  N o w  by the definition of m',  
and because m'  - 2 < m', we must have 1 < m'  < 2. But m'  = 2 is impossible 
because wj i (P  + m' - 2) 51wji(P), so m I = 1. 

Let m" be the smallest integer in { 2 , . . . ,  P - 1) such that wj i (P  + m u) 5t 
w j i (P  + 1) for any i. The previous argument shows that m"  exists only if 
wj i (P  + 1) actually differs from wji(P)  due to the application of rule 1. This 
implies that w j i (P  + m")  is computed by rule 2 because wjh(P + 1) >_ T for 
h E S_oo(wj(P + 1)). But the fact that 

P--I 
k wj i (P  + m" - 1) = wj i (P  + 1) < A d~ - a i 

k=O 

together with our hypothesis implies that rule 2 is not used to compute wj i (P  + 
m"),  and we have a contradiction, so m"  does not exist. [] 
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L e m m a  15. l f  e k > dk for  k = 0 , . . . ,  2 P - 2 ,  then e'~ = d T  for  m = P, . . . , 2 P -  
1. 

Proof.  Suppose e ~  > d ?  for some m �9 { P , . . .  , 2 P  - 1}. Then by Lemma 6, 
we have w j i ( m )  > d~ n - a~ n for this m,  for some i, which is false by Lemmas  
13 and 14, as shown by the following equation: 

P--I  2P--1 

w j i ( Z P  - 1) . . . . .  w j , ( P  + 1) < w j i ( P )  < A d~ - a~" = A d ;  - a~'. 

Lemmal4 r=O r= P 

Ler~al3 

[] 

L e m m a  16. I f  c k > d~ for  k = 0 , . . . ,  2 P  - 2, then e k > d k fo r  all k > O. In 

k _  k for  k > 2 P _  l. particular, cj - dj  

Proof .  Lemma 15 says that, under the hypothesis, w j ( 2 P  - 1) (which equals 
w j ( P  + 1)) will produce the correct value d~ for k = P , . . . ,  2 P  - 1. But this is 
to say it works for all of  the images, so wj i (k)  will never change for k > 2 P -  1 
as a result of  rule 2. Also, because w j ( 2 P  - 1) > T on its support, wj i (k)  will 
never change as a result of  rule 1. [] 

L e m m a  17. I f  c~ <_ d~ for  some k >_ 0 then k E { 0 , . . . ,  2 P  - 2}. 

Proof.  Suppose c k < d~ for some k > 0. By Lemma 9, k is unique. I f  k 

{ 0 , . . . ,  2 P  - 2} then by Lemma 16, c~ > d~ for all k > 0, contradicting our 
supposition. [] 

ko f o r  k L e m m a  1 8 . / f  c~ ~ ~< dj some ko > 0 then dj = VieN~)  a/k + w j i ( 3 P  - 2) 
for  all k = O, . . . , P - 1. 

Proof.  By Lemma 17, 0 < k0 < 2 P - 2 .  By Lemma 12, d k = V a ~ + w j i ( 3 P - 2 )  

for all k such that ko < k < 3 P  - 3. But t'fakt3P-31k0 = t ~l-kl3P-3J*2P-2 = {ak}g  -1 

and, similarly, l u~ftlk't3P-3jk0 = t u~ftlk)'3P-3J2P-2 = {dk} P-I '  [] 

k + w j i ( 3 P  - 2) f o r  L e m m a  19. I f  c~ >_ d~ for  all k >_ O, then d~ = VieN'L~) ai 
all k = O , . . . , P -  1. 

Proof. By the proof  of  Lemma 16, w j i ( 3 P  - 2) = w # ( k )  for k > 2 P  - 1. Also 
Lemma  16 says that d k = VieAct j )ak+wj,(k)  (= ck) for k > 2 P -  1. Combining 

results we get d~ = VieAco) ak + w j i ( 3 P  - 2) for 2 P  - 1 < k < 3 P  - 2, but 
this is to say that the same holds true for 0 < k < P - 1. [] 

T h e o r e m  4. d k = a k [] w ( 3 P  - 2) f o r  all k = 0 , . . . ,  P - 1. 
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Proof .  For any j ,  Lemmas  18 and 19 together show that (whether or not e~ < d~ 

+ w j i ( 3 P  - 2) for all k = 0 , . . ,  P - 1. This for all k > 0), d f f =  Vi~(j)ai 
holds for all j ,  so the conclusion follows. [] 

In fact, the proof  of  Lemma  19 shows that if c~ > d~ for all k > 0 for all j ,  

then d k = a k [] w ( P )  because w j i ( P )  = w j i ( 3 P  - 2) in this case. However, in 
actual practice we don' t  know that c~ > d~ for all k > 0 for all j until we have 

computed w ( 2 P  - 2) and c2P-2; Lemma 16 tells us this. So for a given j ,  we 
can perform the training of  wji  for all i for only P iterations beyond the time 
when cjk < dj,k if  there is such a time k such that k <_ 2 P  - 2 (see Lemmas  12 
and 15). Otherwise, only update wji  for 2 P - 2  iterations. Of  course this general 
strategy can result in our needing to compute w j i ( 3 P  - 2) in some cases. 

Our result that d k = a k [] w ( 3 P - 2 )  for k = 0 , . . . ,  P -  1 is sharp in the sense 
that d k 5 /a  k [] w ( 3 P  - 3) for some k is possible, as shown by the following 
example: 

In this example we let P = 3 and j = )'3, and X = Y. Recall that each template 
t C ( ~ o o )  Y consists of  a collection of images on X: ty,,ty~,ty3,ty 4. Thus we 
will be looking at the (possibly variant) template t at location Y3, where X is 
given below. For notational purposes we denote tr3 by t3, wy3 by w3, dy3 by d3, 
and Cy 3 by c3. The neighborhood for each j = Yl,Y2,Y3,Y4, is .A/'(j) = X. Each 
input image a ~ a 1, and a 2, and the corresponding output images d ~ d 1, and d 2 

at location )'3, are shown below. The * values in the d images represent values 
not needed to perform the calculations. The weights are randomly initialized 
to values as shown in Figure 10, where the threshold value T is not relevant 
as it is not used in these calculations. After 3 P  - 3 = 3*3 - 3 = 6 iterations, 
the weights used to calculate the output location Y3 do not recall the correct 
value for d 6 = d ~ However, at the next iteration, 3 P  - 2 = 7, the weights 
w3i(7) correctly calculate d3 k for k = 0, 1, and 2. Hence, calculations show that 
3 = d 6 ~ c 6 = VicAc~) a6 + w3i(6) = 4 but that d3 k = V i ~ o )  ak + w3i(7) for 
k = 0 , 1 , 2 .  

We should note that although w ( 3 P  - 2) computes correct dilated outputs 
for all of  the input images, it may not satisfy the condition that w ( 3 P  - 2) >_ T 
for i E S_oo(wj (3P  - 2)). It may be necessary to apply rule 1 to get weights 
w ( 3 P  - 1), which will satisfy the condition (and which also produces correct 
dilations). 

Intuitively, the proof  of  the convergence results can be viewed as follows. 
We are looking for the worst case which gives us the maximum number of  
iterations needed to provide convergence. What occurs in the worst case is that 
during the first pass through the data, those values of  wji  that are clearly too 
large (>  dj  - a 0 ,  and which are therefore concealing other values wji  which are 
too small (<  tji),  are reduced to the smallest values possible (by rule 2). The 

k k results of  the theorems show that if any j in X and for iteration k, if  cj < d j ,  
then we need only apply the next P - 1 training images once more to arrive at 
weights which recall all training images correctly. Since if any weights change 
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d~ 
w3(0 ) = 

dl= ~ 

tY3= 

d 2 = ~  

Figure 10. Example showing that 3P - 2 is sharp. 

during the first pass, then those weights satisfy wji(m) < wji(k), for k < m, 
we then have the possibility that ej ~< dj will occur during the second pass 
through the data (even though it didn't on the first pass). Thus, the situation 
e j  < dj could occur for any of the P images during the second pass except the 
last image a P-1. This is because (if ej < dj hasn't occurred by that time) the 
last time that weights were changed (or not changed), they were changed (or 
not changed) so that they would "work" on this very image a P-1. But P - 1 
images after a P-1 takes us up to image a 2P-1. So ej < dj can't happen after 
iteration 2 P  - 2. And if ej < dj does happen as late as iteration 2 P  - 2, then 
this image data, a 2P-2, is itself used (rule 2) to "kick up" the weights. Going 
through the rest of the next P - 1 data pairs, for what is essentially the third 
pass, actually only requires us to use data up to 3P  - 3 (and not, say, 3 P  - 1). 
After training on the data a 3P-3, we have weights w(3P - 2), which correctly 
recall all training data. 

We next present an implementation on data for the network given in Example 
6. This network was run on a set of 13 training pairs consisting of 13 natural 
grayscale images (with a range of pixel values of 0 to 255) and their dilations 
computed by the template t shown below. 

1 

20 

I "" I t = -5 ? 0 /  -5 

2O 

Although the template t happens to be invariant, this fact is not used during 
the training of the net. The resulting dilation template w was then used to dilate 
a test image. Comparisons were made between the templates t and w and also 
between dilations of the test image by t and w. The test image was also a natural 
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grayscale image and was not used for training. The weights w(0) were initialized 

as follows: for each j and for each i in the 3 by 3 neighborhood centered at j ,  
wji(0)  was randomly assigned a value between - 5  and 80. The results of  this 
implementation are in Figure 11 and displayed in Figure 12; their presentation 

is similar to the one given in Example 4. 

number of 

training 

images applied 

13 

26 

37 = 3P-2 

number of 

pixels out of the 

36100 in which 

t and w differ 

35798 

24554 

23320 

23299 

number of pixels 

out of the 20224 

pixels in the 

support of t in 

which t and w 

differ 

19922 

11402 

10420 

10399 

column 2 calculated 

as a percentage 

of the 36100 possible 

99% 

68% 

65% 

65% 

ave. absolute 

difference between 

t and w on the 

support of t 

29.8 

14.3 

12.2 

12.1 

(a) 

number of training 

images applied 

0 

13 

26 

37 = 3P-2 

number of pixels out of the 

4096 in which the net dilation 

and the ideal 

dilation differ 

4079 

1728 

1430 

1413 

ave. absolute 

difference between 

the net dilation and 

the ideal dilation 

27.9 

7.7 

6.2 

6.1 

column 3 as a 

percentage of the gray 

value range of 255 

10.9% 

3.0% 

2.4% 

2.4% 

(b) 
Figure U. Results of applying the grayseale dilation learning algorithm. (a) Measures 
of the difference between weight values calculated by the net and ideal weight values. 

(b) Measures of the difference between dilations of the test image by the net and ideal 

weight values. 

We should note that, although the template w(37) does seem to differ con- 
siderably from the template t, it does correctly dilate the 13 training images. 
Also, the absolute difference between the dilations of the test image by w(37) 
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(a) Co) (c) 

(d) (e) (0 (g) 

Figure 12. (a) One of the 13 training input images. (b) Test image. (c) Dilation of the 
test image by t. (d) Dilation of the test image by w(0). (e) Dilation of the test image 
by w(13). (f) Dilation of the test image by w(26). (g) Dilation of the test image by 
w(37) = w(3P - 2). 

and t is smaller than the difference between the templates. This is not surprising 
considering the mathematical properties of the dilation operation. 

Some general remarks. 

The first three examples represent a straightforward implementation of the addi- 
tive maximum rule and as such provide nothing new. The last three Examples, 
4, 5 and 6, each have a learning rule, It is the neighborhood ./V'(j) from which 
the approximation of the template and its weights is made. Due to the nature 
of the learning rules and the fact that .)V'(j) always at least contains the sup- 
port of the template t, the weights determined by the network may be greater 
than or equal to the values that the ideal template t has. In particular, on the 
pixels lying outside the support of t but still in .A/'(j), the weights wji(k) may 
be finite while the template values are - ~ .  Nonetheless, the weights to which 
these networks converge will still allow perfect recall of the training data. In 
this sense, the learning rules presented here allow a very good approximation 
of the template t to be recovered. But just as in the case for classical neural 
networks, these morphology nets cannot generalize to include recovery of in- 
formation which is not present in the data. Different data sets may converge to 
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different sets of weights, especially for the network of Example 6 which recov- 
ers a variant template. Also, the convergence results produce weights based on 
a particular ordering of the data. A different ordering would most likely produce 
convergence at a different iteration number, and perhaps slightly different weight 
values. Thus this network, like many classical ones, will most likely produce 
data-dependent results. 

Practical applications of these networks include the modeling of a template 
or structuring element which produced input-output pairs having a nonlinear 
underlying transformation similar to the additive maximum. A demonstration of 
this type of application to image data was shown in Example 4. Other networks 
remain to be developed which use the additive maximum but perhaps a different 
activation function, and a cascade of the additive maximum and minimum. This 
would allow the modeling of a more complex nonlinear process. The mathemat- 
ical morphology opening operation is an example of a cascade of operations; see 
[5] for a learning rule for that particular network. Convergence for that network 
has not been proven, although all experimental results on data have produced a 
set of converged weights. 

5. Conclusions 

The research presented in this paper has laid the fundamental theoretical foun- 
dations of the theory of artificial morphology neural networks. The origins of 
morphology neural nets, which lie in image algebra, have intrinsic ties to the 
image processing tool called mathematical morphology, and, more generally, to 
the algebra of minimax matrix theory. Several applications in image processing 
have been presented, including three networks (Examples 4, 5, and 6) which 
have learning rules. Convergence of these learning rules to a set of weights has 
been proven mathematically, and the weight values allow perfect recall of any 
of the training data. These results may be very useful for solving additional 
image processing problems; investigation into this area of research is currently 
being pursued. 
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