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Abstract. We compute the Hofer distance for a certain class of compactly sup- 
ported symplectic diffeomorphisms of R 2n. They are mainly characterized by the 
condition that they can be generated by a Hamiltonian flow ~ /  which possesses 
only constant T-periodic solutions for 0 < T < 1. In addition, we show that on 
this class Hofer's and Viterbo's distances coincide. 

Subject Classifications: 58F 

1 Hofer's metric 

We consider the standard symplectic vector space (]~2n (a J). By ~ we denote the 
group of time-l-maps ~}/ of a maybe time dependent Hamiltonian system 

/c(t) = J VH (t, x(t)) 

with J : = ( ?  1 10) and 

H E ~ := Cc~([0, 1] x ~2,, R) .  

In [Hol] Hofer defined the energy of ~ c ~ as 

{ /o } E(~):=inf IIHII := supM, - in fHtdt l~p~=(p 

where Ht(x) := I t( t ,x) .  The crucial property of the energy is that 

E(~) = 0 ~ qo = id.  

It follows that 
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d(% ~) := E ( ~ - 1 r  

defines a bi-invariant metric on ~ .  tin tl can be seen as the length of the path 

~[0,1] 
/4 = { v ~ / 1 0 < t < l }  

in ~"  connecting id and T. In this language E(~) = d(id, ~) gives the infimum 
over all lengths of paths ~[o,11 in ~"  with ~b ~ = id and ~b 1 = ~. The following 
definition is therefore natural. 

Definition 1 A path ~b [~ in ~ is called a minimal geodesic if 

length ~,[o,1] = d(~po, ~,1). 

Notice that in this case the infimum d(id, ~) becomes in fact a minimum. 
The actual calculation of d(id, ~) turns out to be a difficult task since it involves 
all Hamiltonians generating ~. In [Ho2] Hofer showed that autonomous Hamil- 
tonians give rise to minimal geodesics provided that all T-periodic solutions of 
the corresponding flow with 0 < T < 1 are constant. Prompted by the work of 
Bialy and Polterovich [B-P] the aim of our paper is to generalize Hofer's result 
to the non-autonomous case. 

Definition 2 A Hamiltonian H E ~ is called admissible if g~(x) = x with some 
T E (0, 1], x E ]~2n implies ~ ( x )  =x for every t E [0, T]. 

H E ~ is said to havefixed extremalpoints if there are two points x• E ~2n 
such that 

infHt = Ht(x_), supHt = Ht(x+) 

for all t E [0, 1]. 
In addition, we call x+ isolated if there are open neighbourhoods U+ C ~2n 

of x• such that 

U~M ( U A critHt) ={ x+} 
\TE(0,1] te[0,T] 

where crit Ht denotes the set of critical points of Hr. 

We emphasize that the extremal values do not have to be fixed at all. The 
notion of fixed extremal points appeared in a preprint by Long [Lo]; Bialy and 
Polterovich [B-P] use the term "quasi-autonomous". 

Theorem 1 Suppose H E ~ is admissible and has isolated fixed extremal points. 
Then H generates a minimal geodesic, i.e. d(id, ~b)  = IIH I]- 

Loosely speaking, this result tells you that you should not move any point if 
you do not have to. By the bi-invariance of d, Theorem 1 translates to general 
(smooth) paths ~t0,11 in ~ .  The following example indicates why the assumption 
on the existence of fixed extremal points is necessary for minimal geodesics; 
actually this was shown in full generality by Lalonde and McDuff [L-M2]. 

Example. We fix an Xo E ~2~ with Ixol = 1 and take as Hamiltonians 
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H(t ,x )  := [p(lx - x0l 2) + p(Ix + xolZ)lt 

and 

g( t , x )  := p(lx - x0lZ)t + P(Ix +xolZ)(1 - t) 

1 where p : IR ~ [0, po] is a bump function with p(0) = Po and p(s) = 0 if tsl > g. 
By choosing Po appropriately we may assume that H and K are admissible; note 
that H has fixed extremal points whereas K has not (cf. figure below). It is an 
elementary calculation to check that ~ = ~ :  and Ilnll = e~ < ~ _- Ilgll. 

H t Kt 

-x 0 x 0 "x 0 

A. 
x 0 

We remark that the set of admissible Hamiltonians has empty interior in the 
normed vector space (~ ' ,  1[ �9 ][). Indeed, given any admissible H we can add a 
perturbation K (t, x) = a (t)p(x) (where p(x) is a bump function whose support is 
disjoint from that of  each Ht) with arbitrarily small IIKII such that K generates 
the identity, i.e. (P~+tc = ~1 .  Then H + K is not admissible. Therefore, also the 
class of  sympletic diffeomorphisms generated by admissible Hamiltonians has 
empty interior in ( ~ ,  d). 

The same argument shows that a minimal geodesic between id and {p ~ id is 
not unique. 

2 The analytical setting 

We are going to study the action functional 

l f01 ~01 all(x) := a(x) + bH(x) := ~ (-J.~(t), x(t))dt - H(t,x(t))dt 

on the space E := WJ/2'2($1, I~ 2n) as it is done in [H-Z]. The elements of  E can 

be written in the form 
x(t) = ~ e2~rtatxk 

kE~ 

where xk E Ii~ 2n such that }--]~E~ Ikl Ix~l 2 < oc. Then E splits orthogonally into 

E = E -  O E  ~ |  + 

according to k < 0, k = 0, k > 0 with the norm 
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Ilxll~lz := Ixo12 + z~ ~--~ Ikl Ix~l 2. 
kr 

The action functional is expressed as 

1 + 2 2 ) _ _ L  1 
a, (x )  = -~(ftx 11~/2 -llx-fl lt2 H(t,x(t))dt. 

Now we consider for H E ~c~ the fixed point set F i x ( ~ )  and the set of  corre- 
sponding actions 

{a. (x)lx(0) ~ Fix(~o 1 ) } .  

We claim that these actions do not depend on H but only on the map ~o := qo~s. 
Indeed, take x(0) c Fix(qo) and xoo such that H(t,xoo) = 0 for all t. Then pick 
any path 9(s) in ~2n from 9(0) = x ~  to 9(1) = x(0). If  we define the surface 

S := {(t, ~tH(9(s)))ts, t E [0, 1]} 

it is an easy calculation to show that 

d(p dq - H dt)lrs : 0 

hence by Stokes' Theorem 

This is equivalent to 

fo  p dq - H dt = O . 
s 

a~(x)= J2(9)pdq - L p d q  

which depends only on p and not on H .  Actually also the choice of 9 is irrelevant. 
Thus we may speak of the action A(x, ~) o f x  E Fix(qa) and define the action 

spectrum of a map ~; C ~-~ as 

~(~)  := {a(x, ~)tx C F ix (p )} .  

This is a compact, nowhere dense set in H and contains the critical values of  aH 
on E (of. [H-Z]). 

In [H-Z] Hofer and Zehnder singled out a special critical value by the mini- 
max 

"y(~) := sup infa/4(x)  
FG,~  xGF 

where the minimax set ~ := {h(E+)ih E G} does not depend on H ;  G stands 
for a certain group of homeomorphisms of E.  This 7(~)  has some remarkable 
properties. 

Theorem 2 ([H-Z]) The following relations hold true: 
1. 7(~o) 6 ~(~o), and 7(qo) >_ 0 
2. ff(~o 1) = 0 i f g  > O, and 7(~o~) > 0 i f g  <_ O, H ~ 0 
3. H _< K ~ 7(qoJ#) _> "y(~oJ~) 
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4. lT(cp) -- 7(r < d(99, ~b) 
5. d(id, ~) > 7(~)  + 7 (~  -1)  

303 

3 P r o o f  o f  T h e o r e m  1 

We make use of  an idea by Bialy and Polterovich [B-P] and consider the "time 
evolution" of  the action spectrum, i.e. the set 

~H : =  {( t ,~r (~) )10  < t < 1} C ~ 2  

By assumption on H no ~ (viewed as a map in ~ ' )  possesses a nontrivial 
1-periodic solution therefore 

{//o / } NH= t , - -  H(s ,x)ds  1 O < t  < 1 ,  a n d x E  ["1 critHs 
sE[O,t] 

where crit Hs is the set of  critical points of Hs. In particular we have the two 
continuous curves 

{( /0 ) ) t , c ~ ( t ) : = -  H(s,x+)ds I O < t  < 1 C Z ~ /  

with 

ch(1) - c ~ ( 1 )  = Ilnll �9 (1 )  

L e m m a  1 I f  H E ~ has fixed extremal points then there exists a t* = t*(H) > 0 
such that 

3,((g~/) +1) _> +c~(t)  (2) 

for 0 < t < t*. I f  in addition, H is admissible equality holds. 

Proof. In order to simplify the notation we set 

H.~(t,x) := H(t , x  - 7-x_) 

Or(x) : = x  + ~ ' x _  

and observe that ~t/~t = 0~-o ~ o O~ -1. Since the action spectrum is invariant under 
symplectic conjugation we obtain "7(~H~)t 6 ' = o-(~H~) ~ r ( ~ )  for all 7- 6 ~ .  But 
7- ~ 7 ( ~ )  is continuous with image in a nowhere dense set. Whence it must 
be constant so that t "Y(~n,) = 7 ( ~ )  for all 7-. This shows that we may assume 
that 

x _ = 0 .  

Let us define 

h(t ,x  ) := 7-H ('rt,x ) . 

Then ~h 1 = ~ r  and for small enough 7- > 0 we can estimate 
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h( t , x )  <_ h(t, 0) + 7rlxl 2 

for all t E [0, 1] and x C ~2n. The monotonicity of "7 implies 

7 ( ~ / )  = sup inf ah(x ) 
FC~" xEF 

/01 /o ] >_ - h(t,  O)dt + inf x~+ ~(llx IIv2-IIx-ll~n)-~ Ix[ 2dt 

- f f -  H(t, O)dt + 0 

= c~(~'). 
In the case of an admissible H the reversed inequality max~r(qo~,) = c~/(~-) _> 
7(r E r  is trivial. 

Analogously one proves the second relation. [] 

Notice that we would be done with the proof of  Theorem 1 if we could show 
(2) for t = 1 because then by Theorem 2 and (1) 

Ilnll >_ d(id, ~P 1)  -> 7 ( ~ r  7 ( ( ~ )  -1)  = lInll �9 

What are the possible obstructions? Since all the action spectra involved come 
from constant solutions the only bad phenomenon is the following. The curve 
{(t, c~(t))}, or {(t, c~(t))},  in ~ , q  is multiply covered (due to different critical 
points to the same critical value) and there is a to c (0, 1) at which one of these 
covering curves branches off. In this case 7(qo~) might follow this latter branch 
and end up at a level smaller than c~ (1). 

We now state a perturbation lemma which allows us to assume that (2) holds 
true even for all t E (0, 1]. 

L e m m a  2 Let H E ~ be admissible with isolated fixed extremal points x+. Then 
given any ~ > 0 there is a modification L c ~ o f  H satisfying 

1. liB - Zll < 
2. L has the same fixed extremal points x+ as H and 

is valid for  all t c (0, 1]. 

From this we conclude that 

"~((~[)• > +c~(t) 

d(id,  ~/~) = IILII 

and 

liB II ~ IlZll + IIH - Zll ~ d(id, ~J4) + d ( ~ ,  ~ )  + e < d(id, ~ / )  + 2e 

with an arbitrary e > 0. Thus the proof of Theorem 1 is reduced to that of 
Lemma 2. 
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4 Proof of  Lemma 2 

The key idea will be to find a procedure which makes x+ the unique fixed 
extremal points without creating new periodic orbits beyond control. In a first 
step we are going to remove all fixed minimal points except x_.  As in the proof 
of  Lemma 1 we may restrict ourselves to the case where x_ = 0. 

We know that 

U supp tit C Bv~(O) 
0<t< l  

for some large R > 0. For a given e > 0 we pick a smooth function 

satisfying 

and 

f " [0, c~) --~ [0, a ]  

0 i fse[O,p]U[R+~,cxO 
f(s) = 

a if s C [2p, R] 

i f s  C (R,R+ ~) as well as 

0 > f ' ( s )  > -Tr 

s 
Ib%,R llc2 < 

Here a E (0, ~) and p E (0, w are constants and we remark that for any given 
p there exists such an f with a suitable a .  

We set 

K(t,x) := H(t,x) + f ( l (~ ) -a (x ) l  2) 

and state some properties of K. First of  all, K C W with I [ H - K  l[ < ~-Moreover, 
one can find 0 < r _< p < 2p _< r '  < R such that K(t,x) = H(t,x) if Ixl 2 < r 
and K(t,x) =H(t ,x )+a whenever r '  < [xl z < R, as well as r '  -+ 0 as p ~ 0. 
This, together with the assumption that X_ = 0 is isolated, implies that K has 0 
as its unique fixed minimal point provided we have taken p small enough. Using 
the fact that 

e min{1 I(~o~/)-l(x)l 2} K(t,x) <_H(t,x)+ ~ 

we then conclude as in the proof of  Lemma 1 that there exists a t* = t*(H, e) > 0 
such that 

7 ( ( ~ ; ) - 1 )  >_ - c ~  (t) (3) 

for 0 < t < t*, regardless what the perturbation f actually looks like. 
Now we are going to prove that ~ r  possesses only constant 1-periodic solu- 

t* tions whenever ~- < T _< 1. Since 0 has become the only minimal point of  K 
this will ensure that (3) holds true for all t C (0, 1] and finish the first part of  the 
proof of  Lemma 2. 

By the transformation law of  Hamiltonian vector fields we obtain 
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with the "rotation matrix" 

R(t, s) := e 2f'(s)Jt = cos 2 f  (s)t - 1 + sin 2 f  (s)t �9 J . 

Note that ~ ( x )  = ~ ( x )  if Ixl 2 r (p ,2p)U(R,R + ~) and t c (0, 1]. Since H is 
admissible this means that ~ .  with 0 < T _< 1 has no non-constant 1-periodic 
solutions starting in that region. Thus we only have to concentrate on the fixed 
point problem 

(~TH )--I (x ) : R(T ,  Ix ]2)x (4) 

for T E [~-, 1] and Ixl 2 c (p, 2p) u (R,R + ~). 
For sufficiently small p > 0 we have 

inf ] ( ~ q ) - a ( x ) - x ]  Ip < [xl 2 -< 2p, -~ < t < 1 > 0 

because 0 is an isolated fixed point of each ~4-  Hence (4) admits no solution 
with [xl 2 E (p, 2p) if we choose I[flE0,Rlllc 2 small enough. If, on the other hand, 
[x] 2 E (R,R + ~) we know that ( ~ r ) - l ( x ) = x  for every T C (0, 1]. In this case 
(4) reads 

x = e2f'(Ixl2)JTx 

with Ixl 2 ~ (R,R + ~) which has obviously no solution since 0 < 2be'(Ixl2)lT < 
27r. 

Just the same considerations applied to 

L(t ,x)  := K(t ,x )  - f ( l (~ : ) - l (x) l  2) 

lead to our final modification which satisfies all requirements, and Lemma 2 is 
completely proven. 

5 Viterbo's metric 

Another approach to defining a bi-invariant metric for the group ~ was found by 
Viterbo [Vi]. He considers the graph of a symplectic diffeomorphism qo = ~ /  c 

as an exact Lagrangian submanifold L(~) of the cotangent bundle T*A 2n of 
the diagonal in (~2n • ~2n, cv | - w ) .  A theorem of Sikorav [Si] guarantees the 
existence of a so-called generating function 

S :~2n )< ]~N ___~]~ 

( x , ~ )  H S(x,~) 

being a quadratic form in the ~-variables outside a compact set, i.e. 

OS = 0 }  
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Yet S is not uniquely determined by ~. Via a homological minimax principle 
Viterbo was able to pick out a critical value c of  S ( - c _  in his original notation) 
which does not depend on the choice of S but only on ~. Moreover, there is an 
analogue to Theorem 2, namely 

T h e o r e m  3 ([Vi]) The following relations hold true: 
1. c(qo) C a(~), and c(~) >>_ 0 
2. c(79 1 )=O if H > O, andc(~ 1) > O i fH < O, H ~:O 
3. n < K  ~ c ( ~  1)>_c(~lr) 
4. fc(~) - c(~b)l < d(~,  •) 
5. dv(~, ~) := c ( ~ - 1 ~ ) +  c(~b-l~)  defines a bi-invariant metric on ~ which 

satisfies d(~, ~b) >_ dv (~, ~b). 

For completeness we give the proofs for the inequalities in 5. and 4. since 
they are not explicitly contained in [Vi]. 

Proof We first prove 
d(id, ~)  >_ dv(id, ~)  

by splitting it up into two parts. We claim that whenever ~1  = ~ we have 

and 

1 

- fo infHt dt >_ c(~) (5) 

f0 1 supHt ~ �9 (6) dt c(~ -1) 

In order to show (5) we choose (a C~-approximat ion  to) the Hamiltonian 

K(t ,x)  := (infHt)p([xl g) < 0 

where p : g ~ [0, 1] has compact support and is identically 1 on a big ball 
containing all the suppHt;  in addition, we take 19 such that K is admissible. 
Then c(~}c ) has to be the action of a constant solution, and since K < H we 
obtain by 2. and 3. that 

/o 1 c ( ~ : )  = - infHt dt >_ c(~) .  

For the proof of (6) we consider 

L(t,x) := -(sup Ht)p(lx[ 2) < 0 

and observe that L(t, x) < - H  (t, ~t n (x)) whence 

fo 
c(~  1) = supHt dt > c(~ -1) . 

Finally we are going to show that 
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Ic( ) - c(r dv((;,  4)  

which implies 4. But this is an immediate consequence of the inequality c (~)  = 

e ( ~ - l ~ b )  <_ e ( ~ - l ~ ) + c ( ~ b )  < dv (~ ,~ )+c(~b) .  [] 

Suppose that ~ = ~}4 for an admissible H E W with isolated fixed extremal 

points x+ as in Theorem 1. For small enough t the diffeomorphism qo~ is C l-  

close to the identity hence L ( ~ )  is a graph over T*A 2n and admits a classical 

generating function S : II~ 2n ~ I~. In this case Viterbo's  minimax yields simply 

sup S thus we have for sufficiently small  t > 0 that 

/0' // c(~p~) = - infH$ ds = - H ( s , x _ ) d s  . 

This argument replaces that given in the proof  of Lemma 1 and shows that 

Lemma 1 holds for Viterbo's  critical value c as well as for Hofer-Zehnder 's  7. 

Now we can proceed exactly as in Sects. 3 and 4 and obtain 

Theo rem 4 I f  H E ~ is admissible and has isolated f ixed extremal points then 

dv(id, ~IH) : liB II- 
In particular, the two metrics d and dv coincide on this class of  symplectic 

diffeomorphisms in ~ ' .  It is still an open question whether they are generally 
the same or not. 

6 Concluding remarks 

There are obvious cases where one may relax the condition of having isolated 

fixed extremal points, e.g. if H has a fixed sign. Theorem 1 generalizes results by 
Hofer [Ho2] and Long [Lo] and gives a virtually ultimate answer to the minimal 
geodesic problem for Hofer ' s  metric as long as no nontrivial fixed points occur. 

Bialy and Polterovich [B-P] showed how to deduce Lemma 1 only from 
an axiomatic description of a critical value like that given in Theorem 2 or 

Theorem 3. Thus our results can be obtained without using the very definition 

of  7 or c. 
Hofer 's  metric was generalized to arbitrary symplectic manifolds by Lalonde 

and McDuff  [L-M1] who also proved an analogue to Theorem 1 in this more 
general framework [La, L-M3]. 
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