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Simple queues with Poisson input and exponential service times are considered to illustrate 
how well-suited Bayesian methods are used to handle the common inferential aims that appear 
when dealing with queue problems. The emphasis will mainly be placed on prediction; in parti- 
cular, we study the predictive distribution of usual measures of effectiveness in an M/M/1 
queue system, such as the number of customers in the queue and in the system, the waiting time 
in the queue and in the system, the length of an idle period and the length of a busy period. 
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1. Introduct ion  

Although the stochastic modeling of  waiting lines has a long history and has 
been the subject of  a considerable body of  research, the statistical analysis ofqueue-  
ing systems has received comparat ively little attention. A good review of  the litera- 
ture on the subject to date can be found in Bhat and Rao [14] (see also Basawa 
and Prakasa Rao [7]). Hence, it is not  all that  surprising that  Bayesian methods  are 
almost  absent in the statistical li terature concerning queues. The most  relevant 
works are those of  Muddapur  [26] (the first one to our knowledge), Reynolds  [27], 
Armero  [3], McGra th  et al. [21], McGra th  and Singpurwalla [22], Armero  [4,5] and 
Armero  and Bayarri  [6]. 

M a n y  reasons have been given in favour of  (and also against) Bayesian metho-  
dology and we shall not  a t tempt  to review them here. (A good in t roductory  account  
of  the Bayesian paradigm applied to queues can be found in the paper by M c G r a t h  
et al. [21].) We shall not  insist on the need to quantify and incorporate prior infor- 
ma t ion  into a statistical analysis, nor shall we make it necessary to be coherent  in 
our  main  point for using Bayesian methods.  We shall instead take a pragmat ic  
point  of  view and show how Bayesian methodology can handle in a natural  way 
some statistical issues of  special relevance in the analysis of  queueing systems, 
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namely those of prediction of observable quantities, and the incorporation of 
restrictions in the parameter space. 

In this paper we deal with a very simple queueing system, namely an M/M/1  
queue. Accordingly, we assume that there is a single server, that the customers 
arrive according to a Poisson process with mean t and that service times are inde- 
pendent of the arrivals and follow an exponential distribution with mean 1/#. We 
shall also assume that the queue is in steady-state or equilibrium. This is a strong 
requirement. There are, of course, many systems for which such an assumption is 
very natural (maybe because the system has been functioning for a long period of 
time, basically in equilibrium, or because the interest lies in the average of some 
aspects of the system over a long period of time), but even if this assumption is not 
entirely appropriate studying the steady-state performance of the queue is always 
worthwhile, if only as an exploratory tool. 

For an M/M/1 system to be in equilibrium, the parameter p = )~/# (the traffic 
intensity) has to be strictly less than one. Hence this restriction has to be explicitly 
incorporated into the analysis. Also, for a steady-state M/M/1 queue, the quanti- 
ties of practical interest are usually not the parameters governing the queue (,k 
and/z), but the so-called measures of performance of the queue. There are many of 
these measures, sometimes also called measures of congestion, but the three main 
ones are the number of customers in the system (and in the queue), the waiting time 
in the queue (and in the system), and the length of busy periods (and of idle peri- 
ods). Notice that all these quantities are observable quantities; inferences concern- 
ing observable quantities are usually referred to as problems of prediction. Thus, 
when facing inferences on a steady-state M/M/1 queue, restrictions in the para- 
meter space as well as problems of prediction, have to be addressed. 

Contrary to what happens with classical methods of inference, Bayesian meth- 
ods do handle in a very natural way the restrictions in the parameter space. Also, 
they are specially well suited to prediction problems. (Recall that there is not a sin- 
gle, generally agreed upon, method of prediction in the classical approach to infer- 
ence.) 

The parametric Bayesian paradigm can be described in a succinct, informal 
way, as follows: let Z be the random variable (or random vector) to be observed, 
whose distribution is not completely known but depends on the unknown value 0 of 
some parameter (or parameter vector) with parameter space O, so that for each 
value of 0, Z is distributed according to p(zlO ). Usually, but not always, Z is 
assumed to be a random sample, X1,. �9 �9 Xn so thatp(zlO ) = I-lp(xiiO). To simplify 
the notation, here and in the rest of the paper, p will denote a generic density (with 
respect to Lebesgue or counting measure) with no implications that it is the same 
density. (We shall not make any attempts to distinguish among the different densi- 
ties that appear by using different symbols unless it becomes necessary.) From a 
Bayesian point of view 0 is also considered a random variable whose distribution 
gets updated, via Bayes' theorem, as information is obtained. Before Z is observed, 



C. Armero, M.J. Bayarri / Bayesian prediction in M /  M/1 queues 403 

the a priori information about 0 is quantified by the so-called prior distribution 
p(0); after Z = z is obtained, the posterior distribution of 0 is given by 

p(OIz) -P(ZIO)p(O) for 0~O,  (1.1) 
p(z) 

where for the observed z,p(z) = fp(zlO)p(O) dO is a constant, andp(z[O) is the like- 
lihood function L(O) of 0. Hencep(OJz) is most usually computed as 

p(OI z) oc L(O)p(O) for 0~O,  (1.2) 

where the proportionality constant is the one that makesp(O]z) integrate to one. 
Restrictions in the possible values of 0 are incorporated in a natural way as part 

of the prior information. Thus, if 0 is restricted to lie in O0 ~ O, say, then the prior 
information would be such that Pr(O~) = 0, and the prior densityp(0) would inte- 
grate to one over O0. This is just the usual way to handle any prior information. 
What makes restrictions on the values of/9 a speciaUy easy information to incorpo- 
rate is the fact that the analysis with the prior incorporating the restriction is 
equivalent to the usual, unrestricted analysis in which the restriction is incorpo- 
rated at the end by makingp(OJz) integrate to 1 over O0. To see this, letp(0) denote 
an unrestricted prior density over O. If we were to incorporate the restriction 
0 e O0 directly in the prior, then 0 would be distributed over O0 according to the den- 
sity 

_ p(O) for 0~O0, (1.3) p*(O) Pr(0~O0) 

andp* (/9) -- 0 otherwise. Hence, the posterior density would be computed as 

p*(O[z) oc L(O)p*(O) for 0cO0. (1.4) 

But since Pr (0 ~ O0) in (1.3) is a constant, (1.4) can be equivalently expressed as 

p*(Olz) c(L(O)p(O) for 0~O0, (1.5) 

andp* (O]z) = 0 otherwise. It can be seen from (1.5) that this is equivalent to carry- 
ing out the analysis in the unrestricted problem, compute p(O[z) c~ L(O)p(O) on 
0 ~ O, and then restrict it to take positive values only on O0, computing the normal- 
izing constant accordingly. 

Problems of prediction can also be dealt with in a trivial way. Suppose that we 
wish to make predictions (point predictors, performance of the predictor, predic- 
tive regions, etc.) about an observable Y with distribution given byp(ytO ). Usually 
Y is some simple function of the future observations, as the first observation, or 
the average, but it can also depend on the observations in more complicated ways, 
as when we wish to predict waiting times. All the predictive aims can be attained 
from theposteriorpredictive distribution of Y, as given by 

p(y]z) = [ p(y[O)p(O[z) dO. (1.6) 
d 
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This formulation for prediction assumes, as it is most often the case, that Y is inde- 
pendent of Z given 0, but it can trivially be modified to accommodate the lack of 
independence. Notice thatp(y[z) does explicitly incorporate the uncertainty about 
0; contrast this to the usual approach in whichp(y]O) is used instead, 0 being some 
estimate of 0. 

The paper is organized in 6 sections of which this introduction constitutes the 
first one. Section 2 is devoted to the computation of the posterior distributions 
needed to derive the desired predictive distributions in the following sections. Sec- 
tion 3 derives the predictive distributions for the steady-state number of customers 
in the system and for the steady-state number of customers in the queue; probabil- 
ities of interest (such as the steady-state probability that the system is empty and/ 
or the steady-state probability that the system is busy) can be directly computed 
from the former one. Section 4 deals with prediction about the steady-state waiting 
time of a customer in the queue and the steady-state waiting time of a customer in 
the system; the former allows prediction about the steady-state probability of not 
queueing at all. Section 5 derives the predictive distributions of the length of busy 
periods and the length of idle periods of the queue at steady-state. Section 6 is 
devoted to illustrate some of the results in a numerical example. 

2. Inferences on the parameters  o f  an M / M / 1  queue 

Suppose that we want to make inferences about the arrival rate A, and service 
rate #, of an M / M ~  1 queue system. If there are no restrictions in the observability 
of the system, we can use a number of different experimental designs. (For simpli- 
city, we shall assume that we do not observe the initial system size.) Among the 
designs providing complete information about the queue, the most usual ones con- 
sist in observing arrival and service times over a continuous period of time (0, T], 
where T can be either a fixed value determined in advance (Benes [10]; Cox [16]) or 
determined by a suitable stopping rule. For instance, the system can be observed 
until the busy time reaches some preassigned fixed value (as in Clarke [15]), until a 
fixed number of customers have departed from the system (as in Basawa and 
Prabhu [8,9]), until a fixed number of transitions (arrivals and departures) have 
been recorded (as in Moran [24,25]), and so on. For various types of designs provid- 
ing only incomplete information see, for instance, Cox [16], Basawa and Prakasa 
Rao [7], and Keiding [20]. 

A very simple and easy experiment that provides complete information about 
the system consists in observing na interarrival times and ns service completions 
(the observation of the arrival and service processes do not need to be simulta- 
neous), for fixed na and ns. (This experiment has also been used in Armero [3-5], 
Armero and Bayarri [6] and Thiruvaiyaru and Basawa [28].) Let X/denote the ser- 
vice time of the ith customer, i = 1,2,. ~. ,ns, and let Yj denote the time elapsed 
between the arrivals of customers j and j -  1,j = 1,2, . . . ,na (as a notational 
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device, assume the customer 0 is the first one entering the queue during the observa- 
tion period). Then, according to the hypothesis of an M / M / 1  queue, Y1,. �9 Yna 
are i.i.d, random variables having an exponential distribution with parameter )~, 
and X1, . . . ,  Xn~ are i.i.d, random variables, independent of the Ys, having an expo- 
nential distribution with parameter #. Here, and in the rest of the paper, we shall 
let z = ( Y l , . . .  ,Yn, ,Xl , . . . ,  Xn,) t the vector of all the observations in the queue. 
Hence, when z is observed the likelihood function of ~, # is given by 

L( ~, #) =/~n"e-'~t"Izn~e-~ts , (2.1) 

where ta = ~ y j  and ts = ~ xi are the observed values of the sufficient statistics. 
It should be noted that many different experimental designs for observing the 

queue system result in likelihoods that are proportional to (2.1) (see Armero [5], 
McGrath and Singpurwalla [22]). Hence, since the Bayesian paradigm is compati- 
ble with the likelihood principle (for a through investigation of this principle, see 
Berger and Wolpert [13]), it follows that all of the analyses, and posterior and pre- 
dictive distributions given in this paper do apply also to these other experimental 
designs. 

Bayesian analysis requires the specification of a prior distribution which quanti- 
fies the prior information about the unknowns A and #. Here, we shall use a mem- 
ber of the natural conjugate family o f  prior distributions (see, i.e. DeGroot  [17]). 
Accordingly, we assume that A and # are a priori independent having distributions 
Ga(a0,/30) and Ga(a0, b0), respectively. Hence, their joint prior density is given by 

p(A, #) = Ga(Al~0,/3o)" Ga0zla0, b0), (2.2) 

where Ga(xia,/3) denotes the density at x of a Gamma distribution with para- 
meters a,/3 as given by 

3 Ot - -  __ 

Ga(x[~,/3) = F ( ~ ) x  ~ le ~x x > 0 .  (2.3) 

From (2.1) and (2.2) the joint posterior distribution for ~ and # is easily calculated 
to be 

p(A,#lz) oc p(A,#)L(A,#) oc Ga(Ala,/3) .Ga(#[a,b),  (2.4) 

where a = s0 + na,/3 =/3o + ta, a = ao + ns, b = bo + ts. Hence, A and # are also 
independent a posteriori with marginal distributions Ga(Ala,/3) and Ga(#la, b), 
respectively. 

Sometimes investigators wish to avoid the quantification of a prior distribution 
such as (2.2). Most often this is due to the fact that prior information is little and it 
is thought not to be worth the time and effort spent in its quantification, but other 
reasons are also adduced (as the need for an "objective" inference, or a multi-user 
prior, etc.). In these cases, an approximate Bayesian analysis is still possible by 
using what is called non-informativeprior distributions. Although the term is some- 
how misleading (since they are usually improper, and hence not really probability 



406 C. A rmero, M,3". Bayarri / Bayesian prediction in M/  M/1 queues 

distributions, as well as they cannot be non-informative about every unknown fea- 
ture of the model at hand), they are functions of the parameters developed to play 
the role of the prior distributions in the derivation of the posteriors, and that have 
been obtained with the aim of representing approximately a very vague prior infor- 
mation about the parameters. An excellent discussion of non-informative priors 
can be found in Berger [11] and Berger and Bernardo [12]. 

In our problem, the (improper) non-informative 

results in the posterior distribution 

7r(A, #l z) = Ga(Alna, ta)" Ga(#lns, ts). (2.6) 

It can immediately be seen from (2.6) and (2.4) that the posterior (2.6) is a limit- 
ing case of the conjugate posterior (2.4) when the hyperparameters of the prior dis- 
tribution go to zero. Hence, statistical analyses with the non-informative prior 
can be deduced from the corresponding analyses with the conjugate posterior by 
simply taking c~0, rio, a0 and b0 to be zero. It should also be noted that the usual 
Bayes estimators, the posterior means of ~ and # are, in this case, E(AIz) --- na/t~ 
E(#lz) = ns/t~, the MLE's of A and #, respectively. 

A parameter of special importance for M/M/1 queues is the traffic intensity 
p = A/#. Marginal inferences about p will be based on the posteriorp(p!z), which 
can be easily deduced from (2.4). Indeed, if X2(u) denotes a chi-square distribution 
with u degrees of freedom, then it follows from (2.4) that 2fl)~ ~ Xz(2a) and 
2b# ~ X2(2a). Thus, given z, the posterior distribution of the ratio p/R, 

(p/R) ,,~ F(2c~,2a), p > 0 ,  (2.7) 

is an F distribution with 2a and 2a degrees of freedom, where 

ab E[AIz ] (2.8) 

Hence, an estimator ofp would be (for a > 1) 
a 

E[plz ] = ~ R. (2.9) 

A non-informative analysis results in p/R z F(2na,2n~) so that E(plz) 
= Rns/(ns - 1) (assuming n~ > 1), where here R = A//2 is the ratio of the MLE's 

In the same way as we are using the means of the posterior distributions as esti- 
mators, natural measures of the accuracy of the estimates are provided by the var- 
iance of the posterior distributions. (As a matter of fact, these elections can be 
justified on decision theory grounds.) Thus, when desired, they can easily be com- 
puted from (2.4) and (2.7). 

The posterior distribution for p, (2.7), allows inferences about the stationarity 
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of the queue. Thus, for instance, a test for stationarity H0 : p < 1 versus H1 : p/> 1 
can be carried out (Armero [5]), or the probability that the queue is stationary can 
be computed as 

[ ' r(a + ~)/~ f '  p~-' Pr(p < l lz ) = ao ! p(plz) dp - ~(~)~(a)  Jo (1 -~ Bp---'-) a+a dp 

-V(a+a)B~F(a+a,c~;a+ 1 ; -B) ,  (2.10) 

where B = fl/b, and F(a, b; c; z) is the hypergeometric function with integral repre- 
sentation 

r(c) f' -- t b-1 (1 -- t) c-b-1 (1 -- tz) -a dr, V(a,b;c;z) r ( b ) F ( c - b )  

c > b > 0 .  (2.11) 

F(a, b; c;z) is also called Gauss' hypergeometric function, and sometimes it is 
denoted by 2F1 (a, b; c; z) (see Abramowitz and Stegun [ 1, chap. 15]). 

In this paper we assume that the queue is in equilibrium (so that p < 1). As men- 
tioned in the previous section, this restriction on the values of p can easily be incor- 
porated into the analysis. Indeed, in a stationary M / M / 1  queue, the posterior 
distribution of the traffic intensity p is computed from (2.7) and (2.10) as 

pC~-I 
P(;Iz) = C for p < l ,  (2.12) P(Plz 'P<I)=Pr(p<l l z )  (1 +Bp) "+~ 

and p(p[z,p< 1 ) =  0 otherwise, where the proportionality constant C can be 
expressed as 

Ol 
C = F ( a + a , a ; 1  + a ; - B )  " (2.13) 

The posterior expected value of p when p < 1 can also be expressed in terms of 
the hypergeom6tric function as follows: 

f0 1 pa a F ( a + a , l + a ; 2 + a ; - B )  
E(ptz, p < l  ) = C (1 + Bp) a+~ dp = - -  (2.14) a + l F(a + a, a; l + a; -B)  

To compute the predictive distributions in the next sections, we shall find it con- 
venient to reparameterize in terms of (p, #) instead of working with (A,/~). The 
joint posterior density of (p, #) in a stationary queue is given, for any p < 1, # > 0, 
by 

p(p, I.tlz , p < 1) = p(l_t[z, p)p(plz, p < 1), (2.15) 

where p(p]z, p< 1) is given by (2.12). The conditional p(#[z, p) is p(#, p[z)/p(p]z), 
where p (#, p I z) can easily be computed from (2.4) and p (plz) is given in (2.7), result- 
ing in 
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p(#lz, p) = Ga(#la + a, b +/3p).  (2.16) 

From now on, we shall always assume that the M / M / 1  queue is in steady-state 
and hence that p < 1. Thus, even though we shall not explicitly display p <  1, it 
should always be understood thatp(p[z) refers top(ptz, p < 1) as given by (2.12) and 
thatp(/zlz, p) is only defined for values ofp < 1. 

3. Number  o f  customers in the system and in the queue 

Let N denote the steady-state number of customers in the system. Then, for an 
M / M / 1  queue in steady-state, the distribution of N is geometric with parameter 
(1 - p), that is 

p(N  = nip ) = (1 - p)pn, n = 0, 1 ,2 , . . .  (3.1) 

for any p < 1 (See, for instance, Medhi [23, pp. 72-74]). 
The predictive distribution of N is 

p(N  = ntz ) = p (N  = nlp)p(plz ) dp 

{1Pn+a'l(1 - P )  d 
= c j0 ~-~-~p)a-~ P, n = 0 , 1 , 2 , . . . ,  (3.2) 

where B = /3 /b  as in the previous section and C is given in (2.13). An expression in 
terms of the hypergeometric function can also be given. Indeed, since the integral 
appearing in (3.2) canbe  expressed as F ( a + a,n + a ;2  + n + a; -B )  / [ (n + c~ + 1) 
(n + a)], it follows that an alternative expression for (3.2) is 

a F(a + a, n + a; 2 + n + a; - B )  
P ( U = n l z ) = ( n + a + l ) ( n + a )  F ( a + a , a ; l + a ; - B )  

for n = 0, 1,2, . . . .  

A non-informative analysis results in 

na 
p ( N = n [ z )  = ( n + n a  + 1)(n +na)  

for n = 0, 1,2, . . . .  

F(ns + na, n + na; n + 2 + na; -ta/ts) 
F(ns + na, na; 1 + na; -ta/ts) 

(3.3) 

Probabilities of  interest can be computed from (3.3) and (3.4). Thus, for 
instance, the steady-state probability that the system is empty is given by 

1 F(a + o~, a; 2 + a; - B )  
p(N=Olz )  = (a+  1)F(a+o~,a;1 + a ; - B )  " (3.5) 

Alternatively, notice that this probability can also be directly computed as 

p(N  = 0[z) = EPlZ[p(N = 01p)] -- 1 - g(p[z), (3.6) 

(3.4) 
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where E(p[z) is given by (2.14). Thus, another probability of interest, Pr(N/> 11z), 
the steady-state probability that the system is busy, is nothing but E(plz) the poster- 
•or expected value of the traffic intensity p. 

A striking property of this predictive distributions is that it has no moments. 
To see this, notice that 

E[NIz] -- ePlz[S(Nlp, z)] = Eplz[p/(1- p)]. (3.7) 

But the integral 

f0 
1 p (1 - ; ) k  

(-i + 'Bp~  ~-~ dp (3.8) 

converges only if k >  - 1, so that E(NIz ) as given by (3.7) does not exist, and hence 
higher order moments do not exist either. Notice that this will be true no matter 
how many observations na, ns we take and no matter how large the ratio ta/ts is. 
(For na = ns, the ratio ta/h is the ratio of the mean interarrival time to the mean 
service time.) 

The posterior predictive distribution of the steady-state number of customers 
in the queue, Nq, can easily be expressed in terms ofp(Nlz  ). Indeed, for any given 
value ofp(p < 1), the distribution of Nq is given by 

p(Nq = 0lp ) =p(N~<llp ) = 1 - p2, 

p(Nq = nip) = p(N = n + lip ) = (1 - p)pn+l, n = 1,2, . . . .  (3.9) 

Since the posterior predictive distribution p(Nq =nip  ) is computed as 
EplZ[p(Nq = nip)] , it follows that 

f p (N  <~ llz) for n --- 0, 

p(Nq = n[z) = iL P(N = n + l[z) for n = 1,2, . . .  , 
(3.10) 

where p (N  = nlz) is given in (3.3) (or in 3.4) if a non-informative analysis is 
desired). It follows from (3.10) that this predictive distribution does not have any 
moments either. The lack of moments of the predictive distributions in this section 
(as well as most predictive distributions that will appear in the following sec- 
tions), is due to the special form of the prior distribution for p (which is the same as 
the form of the posterior distribution, as given by (2.12)), whose right tail does 
not go to 0 as p goes to 1. This (maybe undesirable) property does not hold when 
priors with different tail behaviors are used (see Armero and Bayard [6]). 

4. Wait ing times 

Other measures of performance of the queue in steady-state that are often of 
interest are the waiting time in the system and the waiting time in the queue. We 
now proceed to derive their posterior predictive distributions. 
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First, let T denote the waiting time in the system. Then, for any given values of 
p (p < 1) and # (# > 0) the distribution of T is exponential with parameter # (1 - p) 
(see for instance Medhi [23, pp. 74-78]). Hence its density, usually denoted by 
w(t), is given by 

w(tl#,p)  = #(1 - p)e -#(1-p)t, t > 0 .  (4.1) 

The posterior predictive density is given by 

w( tlz ) = EP[ZEiZlP'Z[w( t[#, p)]. (4.2) 

Let's compute first the conditional w(t[p, z). Recall from (2.16) that #iz, p ,-~ Ga 
(tzla + a, b + tip). Then 

/? w(tlp, z)=E~'lP,~[w(tll~,p)]= Ex( t l# ( l -p ) ) .aa(~ la+a ,b+p/3)d#  

_ (a + a)(1 - p)(b + p/3)a+a 

- -  I t ( 1  -- p) + (b "1- pfl)]a+a+l 

[b(1 +_p__B).] a+a [b(1 + pB) + t] -(a+~+l) 

J L . 
(4.3) 

Denote by Gg(xJa, /3, k) with a > 0 , / 3 > 0 , k > 0  the density of a Gamma-  
Gamma distribution with parameters a,/3, k (see for instance, Ferr~ndiz and Sen- 
dra [18]) also called an inverse beta distribution (see Aitchison and Dunsmore [2]) 
as given by 

/3a F(O~ q- k) X k-1 

Gg(xla'/3'k) =F(a)  r(k) (/3+x) k+~' x > 0 .  (4.4) 

Notice that, if X ~ Gg(xla,/3, k) then X//3 is distributed according to a standard 
form of Pearson Type VI distribution (Johnson and Kotz, [19]). 

It can be seen from (4.3) and (4.4), that for any value ofp (p < 1), the conditional 
predictive distribution of T is a Gg(tla + a,b(1 + pB) / (1-  p), 1). Its expected 
value is 

b(1 + pB) (4.5) 
E[TIP'Z] - ( a + a -  1)(1 - p ) '  

which is finite for every value ofp (p < 1). 
We compute now the predictive distribution of the waiting time in the system. 

From (4.3) and (2.12), 

f0 
1 Pa-l( 1 _ p) 

w(t[z) = EPlZ[w(t[p,z)] = C(a + a)b a+a [(t + b) + p(Bb - t)] a+~+l dp, (4.6) 

and using (2.11) and (2.13), we finally get 
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aA! -O~ I b ] a+a+lF(a  -~- ~ 1, c~; t~ "+" 2; - bb~tt ) 
w(tlz) = b ( a +  1 ) L ( t - - ~ ]  F - ( a + a , - a ~ a + T ; - - - ~  " (4.7) 

Here again, as in section 3, the predictive distribution w(t[z) has no expectation 
even though the conditional predictive distribution w(tlp , z) does have finite expec- 
tation (4.5) for every value p < 1. To see this, notice that 

bc f' E[TIz] = EPlZE[TIP'Z] = ( a ~ a - -  1) __ (1 q- Bp) a+c~-I dp, (4.8) 

which does not converge. Hence, the posterior predictive distribution (4.7) has no 
moments, no matter how many observations we get. 

A waiting time of special interest is the time spent in the queue, Tq, whose distri- 
bution for any values of p (p< 1) and # (#>0)  is such that assesses probability 
1 - p of no queueing at all (Tq = 0), and distributes the remaining probability p on 
the positive real line according to a density Wq(t) proportional to an Ex(#(1 - p)) 
density (see, for instance, Medhi [23, pp. 74-78]). That is, 

Pr(Tq = 0[p,/~) = 1 - p, 

Wq(t[#,p) = #p(1 - p)e -"(1-p)t, t > 0 .  (4.9) 

The predictive probability of not having to wait in line is simply 

Pr(Tq = 0]z) = 1 - E(plz), (4.10) 

where E(plz) is given in (2.14). Obviously, this probability is equal to the probabil- 
ity Pr(N = 0[z) that the system is idle. 

Notice also from (4.9) and (4.1) that, for t > 0, 

Wq(tl#,p) = pw(tl#,p ) , (4.11) 

so that the conditional (on p) predictive density of Tq on Tq >0  can easily be 
deduced from the one for T and (4.11). Indeed, 

( a b ( l + p B )  1 ) .  (4.12) Wq(tlp, z) = pw(t[p,z) = p Gg t]a + , - 1 - p  ' 

Finally, the (marginal) predictive posterior density of Tq on Tq > 0 is 

Wq(tlz ) = Wq(tlp, z)p(plz ) dp 

( a + a ) a  [ l a + ~ + l F ( a + a +  a , a +  1 ; a +  3 ; - ~ + ~  t) 
(4.13) 

b ( a +  1)(a +2)  [(J + b)J F ( a + a , a ; a + l ; - B )  " 

Again, since E[Tqlp, z ] = pb(1 + pB)/[(a + a - 1)(1 - p)], it follows that the pre- 
dictive distribution of Tq has no moments. 
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5. Idle and busy periods 

Sometimes, inferences concerning busy and/or  idle periods are desired. In this 
section we find the predictive distributions on which these inferences are based. 

Let Td denote the length of an idle period, and let d(tlA ) denote its density. Since 
Td ~ Ex(A) (see, for instance, Medhi [23, pp. 126]), it follows that, for any values 
ofp (p< 1) and#  (#>0) ,  

d(tlp, lz) = p#e -put, t>~O. (5.1) 

Following a line of reasoning similar to that in section 4, we compute first the 
conditional predictive density 

d(t lp,#)=E~lp'~[d(t[#,p)t= E x ( t { # p ) . G a ( # l a + a , b + p / 3 ) d #  

= (a+a)[b(l~pB)]a+a[t-~- . b ( I + p B ) ]  , (5.2) 

so that Td {P, # ~ Gg(a + a, b (1 + pB)/p, 1 ), and hence its expected value is 

b(1 + pB) (5.3) 
E[Td]p,z] ---- (a + a - 1)p" 

The predictive distribution of Td, the length of an idle period, is 

js l p~ 
d(t[z)=EPbZ[d(tlz, p)]=C(a+a)b(a+~)  [b+p(t+B)]a+~+ 1 dp, (5.4) 

or, using again (2.11) and (2.13), we can express it in terms of the hypergeometric 
function as 

d(tlz) - ( a + a ) ~ F ( a + c ~ +  l ' a +  l ; a + 2 ; - ( B + t / b ) )  (5.5) 
b(a + 1) F(a + a, a; a + 1, -B)  

It is noteworthy that this predictive does have expectation. Indeed 

�9 Cb f l  pa-2 
e[Tdlz] = EPI~[E(TdIp, z)] - (a + - a -  1) au (1 + pB) a+a-1 dp 

: ab F(a + ~ - 1, a - 1; a ; - B )  (5.6) 
( a - 1 ) ( a + a - 1 )  F ( a + a , a ; a + l ; - B )  

As a matter of fact, it can be shown that E[Z~lz] exists for k = 1 ,2 , . . . ,  a - 2. 
Finally, let's derive the posterior predictive distribution of the length of a busy 

period, Tb. For any values of p (p > 1) and # (# > 0), the conditional distribution of 
Tb is given by the density 

e-#(l+p)t I1 (2tlzp 1/2) (5.7) 
b(tlp,#) -- tpl/2 
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where 11 (y) is a modified Bessel function of first order (Abramowitz and Stegun 
[1, chap. 9]), given by 

We shall again 
= 

p (p< l ) ,  

s (y/2)(~+1) (5.8) 
II(y) = k! ( k +  1)' " k=0 

compute the predictive b(t[z) by first computing b(t]p,z) 
and then computing b(t]z)= EPlZ[b(tlp, z)]. For any value of 

f0 ~ 
b(t[p, z) = b(t]#, p). Ga(#la + a, b + p/~) d#. (5.9) 

But the modified Bessel function 11 (y) can be expressed in terms of a confluent 
hypergeometric function M(a, b, y) as follows: 

11 (y) = y e-YM(3/2,  3, 2y), (5.10) 

where Kummer's function M(a, b,y) (sometimes denoted lF1 (a; b;y) and also 
�9 (a; b; y)) admits, for b > a, the following integral representation (see Abramowitz 
and Stegun [1, chap. 13]): 

F(b) 
~01Ct~-l(1 - t) b-a-1 dt. (5.11) M(a,b ,y )  = F(b - a)F(a) 

Substituting (5.11), (5.10) and (5.7) into (5.9) and using the hypergeometric func- 
tion F(a, b; c; z) in (2.13) to integrate (5.9) gives 

b(t[p,z) - (a + a)(b + p~3) a+~ 1 �9 �9 4tpl /2  (5.12) 
[A(t,p)]a+~+ 1 F ( a + a +  , 3/2, 3, A - ~ ,  p)), 

whereA(t, p) = [(b + p/3) + t(1 + pl/2)2]. 
Finally, we numerically compute 

fo e b(tlz) = b(tlp, z)p(plz)dp, (5.13) 

which cannot be given a simplified, closed expression. 
To compute the expected value of Tb, notice that, for any given values of # and 

p (p< 1), E[Tb[#, p] = g[r[#,  p] = 1/[#(1 - p)], so that the conditional (on p) pos- 
terior expected length of the busy period, E[Tb]p,z] is also equal to E[T[p,z] as 
given in (4.5). It follows that the predictive distribution b(tlz ) has no moments 
either. 

6. A numerical example 

In this section we illustrate some of the results obtained in previous sections 



414 C. Armero, M.J. Bayarri / Bayesian prediction in M /  M/1 queues 
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N 

Fig. 1. Predictive distribution of N, number of customers in the system. 

with a hypothetical queueing experiment in which n~ = ns = 100, and the observed 
f~ = ( n a / t a ) / ( n s / t s )  = t s / t a  equal 0.8. We use a non-informative prior. 

Figure 1 shows the predictive distribution of N, the number of customers in the 
system. Probabilities of interest can easily be computed from this distribution; 
thus, the probability that the system is empty, which is also the probability of not 
having to wait in line, is Pr(N = 0lz ) = 0.2076 (and that the system is busy is 
0.7924), and the probability of no customers in the queue is Pr(N = 0, l lz ) 
= 0.3625. Some typical quantiles are given in table 1. 

Table 1 
Quantiles of p(Nlz). 

Order 0.25 0.50 0.75 0.95 
Quantiles 1 3 7 25 

i 

0.21 

0.15- 

0.i" 

0.05 

5 I0 15 20 25 30 

Fig. 2. Predictive distribution of standardized T, time spent in the system. 
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Fig. 3. Predictive distribution of standardized Ta, length of an idle period. 

Figure 2 shows the predictive distr ibut ion of  T, the t ime a cus tomer  spends in 
the system. The dis tr ibut ion that  appears in not  actually tha t  of  T, bu t  the one of  
U = Ti t s ,  where ts is the average t ime required to serve a cus tomer  in the con- 
duc ted  experiment.  Hence,  the units in the figure correspond to ts each. We th ink 
this to be a better description of  the way the queue behaves. (Beside, the distribu- 
t ion of  U depends only on the samples sizes and t3.) Some quanti les of  interest  of  the 
dis t r ibut ion of  U are given in table 2. 

We finally exemplify the only predictive distr ibution among  the ones c o m p u t e d  
tha t  has moments .  Figure 3 shows the predictive distr ibut ion of  the length of  an idle 
period,  Td. Again,  we have s tandardized the distr ibution in exactly the same way 
as the one for T; hence, the units correspond to ts and  the density shown is tha t  of  
Ua = Td/ts. The mean  can be computed  to be E[ToIz] = 1.2725ts and Var[Tdlz] 
-- 1.6496ts 2. Table 3 shows some quantiles of  interest. 

Table 2 
Quantiles of the standarized p(Tlz). 

Order 0.25 0.50 0.75 0.95 
Q uantiles 1.392 ts 3.583 ts 8.206 t~ 29.10 ts 

Table 3 
Quantiles o f the standarized p (Td [z). 

Order 0.25 0.50 0.75 0.95 
Quantiles 0.3632ts 0.8767& 1.759ts 3.8293ts 
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