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Queueing networks are an adequate model type for the analysis of complex system beha- 
vior. Most of the more realistic models are rather complex and do not fall into the easy solvable 
class of product form networks. Those models have to be analyzed by numerical solution of 
the underlying Markov chain and/or approximation techniques including simulation. In this 
paper a class of hierarchically structured queueing networks is considered and it is shown that 
the hierarchical model structure is directly reflected in the state space and the generator matrix 
of the underlying Markov chain. Iterative solution techniques for stationary and transient ana- 
lysis can be modified to make use of the model structure and allow an efficient numerical analy- 
sis of large, up to now not solvable queueing networks. 
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1. Introduction 

Performance analysis of  dynamic systems (computer  systems, communicat ion 
networks,  manufactur ing plants, etc.) is often done by means of  extended queueing 
networks  (QNs),  which can be mapped  on Markov  chains. Based on extended 
QNs  various software tools have been developed (e.g., MiiUer-Clostermann [17], 
Miil ler-Clostermann and Sczittnick [18], Sauer and McNai r  [22], Veran and Potier 
[23]) allowing a comfor table  and often graphical specification and subsequent  ana- 
lysis o f  Q N  models. However ,  often a single flat model  is not  adequate  to describe 
a highly s tructured system. Therefore techniques have been developed and inte- 
grated in different tools to specify hierarchical models (e.g., by Beilner et al. [2] and 
G o r d o n  et al. [12]). 

QNs  are the only paradigm permitting an efficient product  form solution for a 
well-defined subclass of  models  (see Baskett  et al. [1] and later extensions). Never-  
theless, many  realistic models  cannot  be solved by means of  product  form techni- 
ques; simulative, approximative or numerical techniques have to be used. 
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Simulation requires a highly methodological and computational effort and as for 
approximative solution techniques the results are only approximations, whereas 
numerical techniques are faced with an explosive growth of the state space, which 
prohibits the analysis of larger models. 

Although hierarchical model specification techniques have become available, 
the hierarchical structure is normally not used for model analysis. Recently it has 
been noticed that the model structure influences directly the structure of the state 
space and the generator matrix of the underlying Markov chain and that this struc- 
ture can be used for numerical solution purposes (see Buchholz [4--6]). These new 
techniques are very efficient, especially for the analysis of large models, and extend 
the class of solvable models on a given hardware significantly. Nevertheless, the 
solution is still performed using well-established iterative solution methods from 
linear algebra, which have been proved to be successful for the analysis of QNs 
(e.g., in the overview papers by Cao and Stewart [8], Kaufman [15], Krieger et al. 
[16] for stationary analysis and in Reibman and Trivedi [21] for transient analysis). 
The difference from the conventional approach computing the overall generator 
matrix of the model is due to the structure of the model that allows the use ofitera- 
tire techniques without computing the huge generator. Therefore the memory 
requirements are much smaller than in the conventional case. The number of states 
which has been handled on a contemporary workstation is approximately 
2000000 (compared with around 200000 using conventional techniques) and addi- 
tionally, a speed-up of the solution for models with 50000 or more states can be 
observed. 

The balance of this paper is outlined as follows. In section 2 the class of hierarch- 
ical QNs is introduced. Section 3 describes the state space and the generator matrix 
structure. Afterwards, in section 4, numerical solution techniques for stationary 
and transient analysis, making direct use of the model structure, are presented. In 
section 5 the advantages of the new approach are shown by means of an example. 
The paper ends with some conclusions. 

Throughout the paper vectors are denoted by boldface italic letters, matrices 
by boldface italic capital letters. All vectors are row vectors, a 1" (A T) describes the 
transposed vector a (matrix A). I is the identity matrix, e the vector with 1 in every 
position and ei a vector with 1 in position i and 0 elsewhere. N... II denotes the car- 
dinality of a set. 

2. A hierarchical description of QNs 

Models are described by a two level hierarchy. Y low level submodels (LLMs) 
are specified as ordinary (extended) QNs and are numbered from 1 to J. The LLMs 
are connected via a high level model (HLM), specifying routing of entities between 
different LLMs. Although the hierarchy includes only two levels, it is, of course, 
straightforward to extend the description to an arbitrary number of levels. The 
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technique can be used as long as the models are tree-like structured and submodels 
with an"  autonomous" behavior can be separated. 

A H L M  specifies the connection between LLMs. The dynamic behavior of the 
model is realized by the movement of entities belonging to classes k from a set K. 
Subsets of communicating classes are combined to chains. Let C be the set of chains 
and Kc be the set of classes belonging to chain c (i.e., K = t_JKc, Kc fq Ke = 0 for all 
c # d). Since the overall model will be analyzed by numerical solution of the global 
balance equations, the state space has to be finite, which implies a finite population 
~c for each chain c e C in the model. 

The H L M  specifies the routing of entities between LLMs. As common in QNs 
the movement of entities is timeless. Since one goal of hierarchical modelling is the 
hiding of information among the levels, the H L M  is not aware of the internal 
L L M  structure, which can be a complex QN or a single station. The only available 
information about the state of a specific L L M j  is the population of entities in this 
L L M  described by a vector nj e N Ilgll. m state of the H L M  is given by a vector n, as 
specified in the following equation: 

n = ( n l . . . n j ) ,  nj~N I[KI[ (l~<j~<J), 

J 

~ nj (k)= Nc for all c ~ C .  (1) 
j= l  k~Kc 

Let Z0 be the set of all possible states of the HLM,  which will be further 
described below. The movement of entities in the H L M  is quantified with routing 
probabilities, which are allowed to depend on the whole information available in 
the H L M  (i.e., the state vector n). r( i, k,j, l, n) (1 <~ i,j <~ J, k, l, e Kc, c e C, n ~ 7-,0) is 
the routing probability of a class k entity leaving L L M  i and entering immediately 
L L M j  as class l entity, if the H L M  is in state n. 

J 

Z r ( i ' k ' j ' l ' n ) = l ' O  for a l l i e { 1 . . . J } , c e C ,  k~Kc, nEZ0. (2) 
j= l  leKc 

The specification of routing probabilities between LLMs  completes the H L M  
specification. LLMs  are specified as extended QNs. The possible specification ele- 
ments depend on the used tool. We have practical experience with QNAP2 (Veran 
and Potier [23]) and MACOM (Mfiller-elostermann and Sczittnick [ 18]), both pro- 
viding a very general class of QNs. 

A L L M j  has to provide a clearly defined interface to its environment realized 
by sets of input and output ports, one input and one output port belong to exactly 
one entity type. When j is embedded in a HLM,  the entity types of the L L M  are 
related to the classes of the HLM.  One entity class is mapped exclusively on exactly 
one entity type (i.e., the behavior of an entity inside a L L M  is determined by its 
type identity, the behavior in the H L M  is determined by its class identity). Inside j ,  
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an entity type k is interpreted as an entity chain including the classes {kx... kx}. 
After leaving the L L M  an entity is characterized only by its class identity in the 
HLM. Obviously the class identity of an entity in the H L M  does not change during 
its sojourn in a LLM. Let k be one entity type in L L M j .  For the isolated specifica- 
tion ofj  and the generation of the state space,j is combined with a pseudo environ- 
ment. The pseudo environment consists, independent of the real environment, of 
a finite capacity source per entity type. Entities are generated by the source with 
exponentially distributed interarrival times with rate A > 0.0, as long as the number 
of entities does not exceed the capacity Nj,k for type k. I f j  includes Nj.,k type k enti- 
ties, the source for k is switched off, until a type k entity leavesj. After leaving, enti- 
ties are absorbed by a sink. 

If the H L M  state space Z0 is known during specification of L L M  j, the capacity 
Nj,k is calculated as shown in eq. (3). Otherwise Nj,k is set to an arbitrary value 
andj  can be embedded in any environment, where the possible population of type k 
entities inj  does not exceed Nj,k. 

Nj,k = max(nj(k) ) . (3) 

Additionally, j might include internal entity types (resp. chains for the isolated 
LLM), which do not leave j and contain a finite number of entities. The internal 
description ofj  might include all constructs provided by the used tool. Two restric- 
tions are made here for notational convenience; first, only a single entity departs 
at one time from j; second, an entity is not allowed to arrive and depart instanta- 
neously inj .  We assume that the state space of j, in combination with the pseudo 
environment, generated starting with the empty LLM, is irreducible. 

3. State space and generator matrix structures 

The state space of a hierarchical model is, like the model itself, structured in the 
state space of the H L M  and the J state spaces of the LLMs. The dynamic behavior 
of the H L M  and each L L M  can be described by several isolated transition matrices 
including transition rates or conditional probabilities. These isolated transition 
matrices provide a complete specification of the generator matrix of the Markov 
chain underlying the complete hierarchical QN, which is necessary for the analysis 
of the model. The sequel of this section describes the state spaces and transition 
matrices of the isolated model parts and introduces the structure of the generator 
matrix. 

The H L M  is specified by the routing probabilities between LLMs. The state 
space Z0 can be constructed starting from any initial state n E Z0 by generation of 
all successor states defined by the routing probabilities. One state of the H L M  
describes a fixed distribution of entities over the LLMs. To generate all possible 
successor states, it has to be known which entities can depart from each LLM; how- 
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ever, this information depends on the local L L M  state in general, which is not trans- 
parent in the H L M .  A necessary condition for a class k entity to depart is, of 
course, nj (k) > 0. This condition is obviously not sufficient. There are two ways to 
generate Z0; the first is to use information about the internal L L M  structure for 
H L M  state space generation; the second is to assume that, whenever nj(k)> O, a 
class k entity can possibly depart. In the latter case states might be generated which 
are never reached in the overall model (e.g., if the L L M  is a single station with prior- 
ity preemptive scheduling, only entities with the highest priority can depart; assum- 
ing that all entities can possibly depart might yield non-reachable H L M  states). 
This does not matter much, since usually not many of these states are generated and 
an efficient algorithm for the functional analysis of hierarchical models has been 
developed (see Buchholz [7]) and can be used to delete non-reachable states. We 
assume here that Z0 forms an irreducible state space. 

Transitions between states of the H L M  are quantified with routing probabil- 
ities. Two states n and n ~ from Z0 can potentially communicate via one transition, if 
they are equal or distinct in two positions by one entity. This is expressed by a mea- 
sure A(n,  n~). 

(0,0,0,0) if n = n I, 

A(n, n') = (i, k, j ,  I) if n = n' + ei,k - ej,l, (4) 

(~ ,  c~, c~, ~ )  else, 

where ei,k describes the situation with one additional entity of class k in i. 
States from Z0 should be ordered in a well-defined way (e.g., lexicographi- 

cally), le tf(n)  be a function assigning a unique number from { 1 . . .  I IZ011} to state n. 
For notational convenience we define p ( f ( n ) , f ( n ' ) )  as r( i ,k , j , l ,n )  if 
zS(n, n') = ( i, k, j ,  l) and 0.0 else. Furthermore, pi,k( f (n) ) is defined as r( i, k, i, k, n). 
For each state n E Z0 the following sets of successor states are needed: 

F(n) = {n'lZX(n,n') = ( i ,k , j , l )  or (0,0,0,0)}, 

F~:(n) = {n'lA(n,n') = ( i ,k , j , l )  and i = j , k  r  

F_(n) = {n'lA(n,n') = ( i ,k , j , l )  and i< j } ,  

r+(n)  = {n'lA(n, n') = (i, k , j ,  l) and i> j } ,  

F<(n)  = {n'ln' eF(n)  and f ( n ' ) < f ( n ) ) ,  

F>(n)  = {n'ln' ~F(n) and f ( n t ) > f ( n ) } .  (5) 

The state space and transition matrices of L L M j  are generated from a mode l j  
and the finite capacity source defined in section 2. Let N) = (Nj,1 . . .  Nj.tl~tl ) be the 
vector of maximum populations per entity type and Zj the state space of this model. 
The set of possible populations insidej is given by 
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NMj = {nj e Nllgll [O <~ nj <~ Nj ) . (6) 

According to the population in j, the state space Zj is decomposed into disjoint 
subspaces Zj (nj) (nj e NMj),  including all states with population nj inj. 

zj= U zj(,,j). (7) 
njENMj 

Let Qj be the generator matrix o f j  in combination with the pseudo environ- 
ment, where the states of one subspace are grouped together and the subspaces are 
ordered according to the lexicographical ordering of the population vector nj. For 
a single type L L M  with maximum population N, Qj has the following structure: 

O~j 

(Qo_. 
s) -1 a)- I )ku 2-1 

~'J'~(N-1)-I QjVj -1  _ A I  ),U N-1 

S N-x 

(s) 

where A is the service rate of the finite capacity source. 
For L L M s  including more than one type, the matrix is no longer block tridiago- 

nal, but the structure is quite similar�9 All Q-submatrices are situated in the main 
diagonal, the S-submatrices are located in the lower triangle and the U-subma- 
trices in the upper triangle. The three different types of matrices define the behavior 
of L L M  j. 

Matrices Q~J include all transitions insidej (e.g., an entity travels from one sta- 
tion to another without leaving j) and in the main diagonal the negative rates out of 
a state caused by transitions originated inj. 

Q7 j ePJIZA'OIIxlIZA"J )11, QT~e r ~0  r . (9) 

Matrices S~ j-k include the departure rates of type k entities fromj. 

,~nj_k ~ ~l[+Zj(nj)llxllZj(nj-ek)l[ for all nj, nj - eke NMj  , (10) ~,j 

where ~+ is the set of non-negative real numbers. 
The third matrix type U~ j~ describes the arrival of type k entities. The arrival 

of an entity is something passive from the LLMs  viewpoint. Therefore we cannot 
define arrival rates independently from the environment. However, the behavior of 
j under the condition of a type k arrival can be quantified by conditional probabil- 
ities included in the following matrix: 

ujnj_k ~llG.(ny-e~)llxllZj(ny)[I ,,nj_k T e + , u j  e = e r, for all nj, n j -  e k e N M j .  (11) 

Let Z6 be the state space of the overall model, a single state z e ZG is given by 
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the states of  all LLMs according to one state of  the HLM (i.e., one distribution of  
the entities among the LLMs). ZG can be decomposed into subspaces 
Z a  (n) (n e Z0), which include all states with population nj in LLM j. 

Y 
ZG = U ,  ezoZG(n), Zc(n) = ~  j=lZj(nj). (12) 

Z c  has a structure that  is defined by the structure of  the model,  the same holds 
for the generator  matr ix  of  the overall model  QG- Before we investigate the struc- 
ture of  Qa, tensor operations, building a base for matr ix generation, have to be 
int roduced briefly. Complementary  information can be found in Davio [1 1] and 
Plateau [1 9]. 

D E F I N I T I O N  1 

The tensor product  of  two matrices A1 ~IW 1• and A2 ~1W 2xC2 is defined as 
C = A ! @ A 2 ,  C ~ N  r l r2xc l c2 ,  

where 

C ( ( i l  - 1) * r2 + i2, ( j l  - 1) �9 c2 +j2)  = Al(i!,jl)A2(i2,j2) 
(1 <<.ix<<.rx, 1 <<. jx<~Cx, X~{1,2}). 

The tensor sum of  two matrices B1 ~ R nl xnl and B2 e 1I~ n2 xn2 is defined as 

D = B1 ~B2 = B1 | + In1 | 

where In is the n x n identity matrix. 

D E F I N I T I O N  2 

The generalized tensor product  is defined as C = | = (| 
J A The generalized tensor sum is defined as C = @j=l J = (@J-1Aj)@A:, where 

1 1 A @j=laj = (~j=l J = A1. 

Transit ions in the overall model  are distinguished by being internal or external 
to a LLM. Internal transitions describe the movement  of  one entity inside one 
LLM and are collected in a matr ix QIG. External transitions describe the move- 
ment  of  an entity leaving one LLM and entering another  or the same one. Only 
external transitions can potentially change the HLM state. 

~ , E G  �9 " �9 K E G  

Q6 = ".. + " �9 . (13) 

r~llZ01[ nllZ011,x •llZoll,llZ01l 
~,~IG / ~,~EG �9 �9 �9 K E G  

Qro includes all transitions inside LLMs with a fixed populat ion in each 
LLMj .  Since transitions inside LLMs are independent of  one another  by assump- 
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tion, each submatrix of QIG can be expressed by the tensor sum of the LLM- 
matrices describing internal transitions. 

o f ( n )  •J t~nJ (14) 
1(7, : j=l ~,~j " 

QEa includes transition rates between LLMs. Submatrix •f(")f(") contains the EG 
transition rates between states from Z(n) and Z(n'). The matrix only contains non- 
zero entries if n can be transformed into n' by an entity leaving one LLM and enter- 
ing another or the same one immediately. All non-zero submatrices have similar 
structures. A S-matrix describes the transition in the LLM where the entity 
departs, a U-matrix describes the transition in the LLM where the entity arrives, 
and identity matrices show that the states of the remaining LLMs do not change. 
Since the departure and arrival of an entity are directly dependent, the resulting 
submatrices are built using the tensor product (resp. the ordinary product if the 
source and destination LLM are identical) for submatrix construction (see 
Buchholz [4,5]). In particular the order of the different matrix operations depends 
on the numbers of the involved LLMs. 

Q f(n), f(n') 
EG 

~--~ I~.(,,)| Pj,k(f(n)) ,,jA ,j_k | if n = n' ,  
j= l  \ k~K / 

p(f(n),  f(nt))It,(,,)QST'A|174 if n~ eF_(n), 
(15) 

p(f(n) ,  f(nt))Ib(,,)QUs3-i|174174 if nr ~F+(n), 

p(f(n) ,  f(nt))Itd,,)|174 if n ~  F• 

0 else, 

where 

i-1 J 

le(n) = H IIZj(nj)[[, ui(n) -- H ]]Zi(n])[], do.(n ) = le(n) - l]+l(n). 
j=l  j=i+l 

Q~ has, indeed, a structure, which is related to the model structure and easy 
operations to generate the matrix from the isolated descriptions of the LLMs and 
the HLM are available. We assume Qa to be irreducible. 

4. Numerical  solution techniques 

The numerical analysis of non-product form QNs is performed by analyzing 
the set of global balance equation defined in QG- Since the matrix is normally rather 
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large and sparse, direct solution techniques, modifying the non-zero structure dur- 
ing the solution process, are not usable for the analysis of even moderate sized mod- 
els. More appropriate are iterative techniques leaving the sparse matrix structure 
as it is. Nevertheless, the space requirement rather than the time requirement is the 
most limiting factor during analysis. This is true even for machines with virtual 
memory, since the access time to secondary memory often exceeds primary mem- 
ory access time by the order of a magnitude, causing a non- acceptable solution 
time for models that do not fit into primary memory. For hierarchical QNs itera- 
rive solution techniques can be modified to make use of the special structure of gen- 
erator matrix by avoiding the generation of Qc, which yields a significant 
reduction in the space requirements for the solution and enlarges therefore the class 
of solvable models. 

Various iterative techniques for the calculation of stationary or transient results 
in QNs exist, for an overview see the papers by Kaufman [15], Krieger et al. [16] 
or Reibman and Trivedi [21]. We introduce in the remainder of this section only a 
few techniques in the context of hierarchical QNs. However, these techniques are 
very efficient, from our experience, and the integration of other techniques in the 
framework is straightforward as shown by Buchholz [4,5]. 

Let ~r be the stationary solution vector of the Markov chain described by the hier- 
archical QN (i.e., nQ6 --- 0, ne :v = 1.0). From n the means of all stationary perfor- 
mance quantities like throughputs, populations, sojourn times, etc., can be 
computed easily, r~ is unique since QG is an irreducible generator. According to the 
structure of the model and the state space, n can be decomposed into subvectors 
r~f(n) including the stationary probabilities of states from subset ZG (n). 

The idea of all iterative solution methods for stationary analysis is to start with 
an arbitrary initial vector r~ ~ > 0 and to multiply this vector with an iteration matrix 
TG, which can be easily determined from Qc, until the iteration vector n -~ is suffi- 
ciently near to n. Of course, the difference In m - n] can only be estimated using 
assumptions about the convergence behavior. The convergence behavior and esti- 
mation of the convergence for different iterative solution algorithms has been con- 
sidered in various papers (e.g., by Cao and Stewart [8], Gross et al. [13], Kaufman 
[15], and Krieger et al. [16]) and will not be further investigated here. 

One of the most efficient iterative techniques is the Gauss-Seidel method (see 
Krieger et al. [16]), which will be used to describe the integration of iterative solu- 
tion techniques with the structured generator matrices of hierarchical QNs. For 
our purposes Gauss-Seidel has to be modified slightly, yielding a method between 
point and block Gauss-Seidel. Let (2 be the matrix Q with the diagonal elements 
set to zero and let D6 be a diagonal matrix including the diagonal elements of Qc. 
In the modified Gauss-Seidel method a subvector rff(n ) is determined from n m-1 
and ~ as 



68 P. Buehholz / Hierarchical queueing networks 

~f(n) ~--- ( , E .,ln-l l'lf(n'),f(n) "f(n') ~. EG 
n eV>(n) 

+ " :a:(.) a:(->:(->,) 
"*'f(nt)},g~ EG @ ~f(nr k ~ IG "~ ~ eO ' (D . (16) 

n' e V < (n) 

Before we include the structure of the matrices in the iteration steps, the compat- 
ibility of tensor sums/products with regular matrix sums/products is introduced 
in (17) (see also Buchholz [5], Davio [11], or Plateau [19]). 

J J 

�9 J - -1Qj :  E I c , - , | 1 7 4  | --= Hlcj-,|174 (17) 
j=l j=l 

where 

j o r 
= 1-[  oZ(ej), r,-- H 

i=1 i=j 

col(Qj)(row(Qj)) is the number of columns (rows) of Qj~ 

A single matrix It | QQIu can be determined easily from Q, since 
�9 it contains l non-zero diagonal blocks, 
�9 each diagonal block consists of the modified matrix Q, where every element 

Q(z, z) is substituted by a diagonal matrix of order u • u, with Q(z, z) in the main 
diagonal, and 

�9 all other elements are zero. 
Using the above properties and the structure of the matrices given in (14) and 

(15), the multiplication of the iteration vector with the submatrices from Qm and 
QE~ in (16) becomes 

y 
~.,jf(n) ~ nj 

f(n)~$, IG = ~f~n: E Ib(n)eQ)  | , 
j=l  

f )  f (n) , f(n')  
~f(n) I~ EG = 

~f(.)p(f(n),f(n'))(Ii,(.)|174174 | if n' ~F_(n) UF• 

l~;~ p(f(,,),f(,,'))(x,~(.) | ~,-'|174174 if ,,' ~ r+(n), 
1 ~ n i . . k  (18) 

] ~f('~)~i.kPi,ldf(n))(Ih(.)| |  if n=n', 

k 0 ' else, 

where SU~ '-~ = S~. '~ U ni-k. 
The matrices De and SU'] '-~ can be either generated before the iteration, or the 
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elements are computed directly in each iteration step, which needs more effort but 
less space. In any case the iteration is performed by the repeated use of a function 
mult(rt, Q, l, u) calculating rt(Ii|174 without generating the matrix resulting 
from the tensor product. This approach is possible, since all elements of the result- 
ing matrix are determined by the elements of Q and the integers l and u. A specifica- 
tion of such a procedure for sparse matrix structures is given in the appendix, the 
implementation needs less than 20 lines of code. The solution procedure is not chan- 
ged through the tensor operations, therefore the results of the analysis are exact 
and the convergence behavior of the algorithms is not affected by the tensor opera- 
tions. The advantage of the tensor based multiplication concerning the amount of 
storage is significant as shown below. 

The structure of the model can be used for further improvements of the solution 
technique by integrating aggregation steps to determine an a priori guess of the 
initial vector or to speed up to convergence of the solution technique as pointed out 
by Cao and Stewart [8]. The initial vector rc ~ is normally chosen as a uniform distri- 
bution, since no other a priori information is available. However, the initial vector 
has a significant influence on the number of iterations and the time needed for the 
solution. In hierarchical models a priori information can be gained by introduction 
of an aggregation step to determine ~0. An aggregation step consists of two parts; 
first, the distribution inside each LLMj  for each population nj is approximated, 
afterwards an aggregated generator matrix QA6 is computed and used for the deter- 
mination of the distribution between the aggregated states. This approach is 
known from decomposition and aggregation techniques by Courtois [9]. 

The distribution inside the LLMs can be calculated by short-circuiting the 
LLMs for all population vectors. Let yjg be the approximated distribution ofj  with 
population nj, which is determined from the following equation: 

Y~'J(Q~f+~EK~S~'J-kU~'J-k) = 0 ,  y~Jer= 1.0. (19) 

If some of the LLMs are product form networks, the short circuit vectors are cal- 
culated more efficiently using a product form algorithm. The vector yTJ for LLMs 
with a non- reasonable short circuit behavior (e.g., the above equation is not 
uniquely solvable) is chosen as a uniform distribution or any distribution which can 
be derived from the isolated LLM matrices. The aggregated system is constructed 
by substituting each subset of states ZG(n) by a single aggregate state yielding 
values for the aggregated transition rates as given in the following equation: 

QAc(f(n),f(n')) = ~P (f(n)'f(n'))yn'S~''-ker if n'~F(n)/n, (20) 
(0 else, 

QAa(f(n), f(n)) = - Z aaa(f(n), f(n')). 
n' e r (n ) /n  
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The stationary distribution of the aggregated system is calculated from the fol- 
lowing equation: 

xQA a =0,  xe r = 1.0. (21) 

From a higher view, the aggregated system equals the HLM, where every 
L L M j  is substituted by an exponential station with population dependent service 
rate &k(nj) for class k entities. The initial vector n ~ of the whole system is deter- 
mined by multiplying the conditional distribution inside the subset Z~(n) with the 
probability to be in that subset. 

*t~ ) = x(f(n))(| ) . (22) 

It is known (see Courtois [9,10]) that n ~ is the exact stationary distribution, if 
the whole model is a product form network, and a good approximation, if the 
model violates only slightly product form or the coupling between the LLMs is 
loose. To speed up the convergence of iterative solution techniques in models with 
loosely coupled LLMs, aggregation steps can also be used. The underlying methods 
are known as aggregation/disaggregation (a/d) algorithms described in Cao and 
Stewart [8] or Krieger et al. [!6]. However, a /d  algorithms have been described on 
the level of the generator matrix without taking care of the model structure. In hier- 
archical QNs a natural interpretation for these techniques is given. 

Aggregation steps can be combined with any iterative solution technique. Let 
~f(~ be the actual solution vector for the states in Z6 (n) reached during iteration 
an'd" ~,~ (= ~f(~/(ff~,, er)) its normalized version Before performing the next f( ) ( ) f( ) 
iteration step, the iteration vector can be redirected by an aggregation step. The ele- 
ments of the aggregated matrix are calculated as shown in the following equation: 

QA~(f(n), f(n'))  = {Po0 ( f (n) '  f(n'))nmff(")li'(')|174 elseif n'~F(n)/n,, 

(23) 

QAG(f(n), f (n))  = -  E QAa(f(n), f (n ' ) ) .  
n, e r (n ) / n  

The stationary distribution of the aggregated system is computed using eq. (21) 
and a new iteration vector ~f(,,) is given by 

~f(n) = x(f(n))~f(.) ; (24) 

~f(~) can then be used for further iteration steps. 
The aggregation step has an interpretation in the HLM, since the aggregated sys- 

tem describes the H L M  where every L L M j  is substituted by an exponential sta- 
tion with service rate #jk(nl, . . . ,  n j) depending on the whole state of the HLM. The 
idea of a /d  steps can be extended by using subnets of LLMs instead of single 
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L L M s  yielding an improvement, if the subnets are loosely couple. However, the 
approach is very similar and need not be described here in detail. 

The goal of a transient analysis of a hierarchical QN is the determination of 
n(t), the state vector at time t ~> 0, which, of course, depends on the initial state dis- 
tribution ~t(0). The vector it(t) is described by the Kolmogorov differential equa- 
tions ns(t) = it(t) Qo, with the general solution it(t) = it(O)eQt. However, instead of 
using standard differential equation solvers, it is often preferable to exploit the spe- 
cial structure of the system for the solution. The most efficient solution method is 
the so-called "randomization" or "uniformization" method as pointed out by 
Gross and Miller [14], or Reibman and Trivedi [21]. The method is described in the 
following equation: 

oo (cd)m 
it(t) = ~ lSne -at m-----~ ' (25) 

m=0 

where 

"t xn = z  m-1 +lrm-lQa, c~)maxlQo(z,z)J, T o = i t ( 0 ) .  
O~ ze Za 

The idea behind "randomization" is to reduce the continuous time Markov 
chain to a chain in discrete time and a subordinated Poisson process. The evalua- 
tion of the discrete time chain is realized by the vectors ~", specifying the state after 
m steps. For practical implementations the infinite sum of the above equation has 
to be truncated after a finite number M of summations. The vector it(t) then can be 
bounded as shown in (26) and by Gross and Miller [14]. 

M (ogt)m it(t)~itmax(t)=itmin(t) itmin(t) = ~ iw'ne-Cd m! 
m=l  

+e(1.O--e-at~-~(--~ (26) 

The structure of the generator matrix is used for the computation of the vector 
z m as described in (27) for a subvector z'fl_f_(=). The tensor sums/products in the equa- 
tion can be transformed similarly to (i8), the only difference is that the diagonal 
elements need not be skipped (i.e., the operator ,,~ is not needed). 

- - (  -l#'if(n')'f(n)~EG / = + + , .  (27 )  
c~ n' e r(n) 

Although transient solutions have been introduced here on the original genera- 
tor, it should be obvious that the approach works in exactly the same way when 
modifying the matrix by making some states absorbing. Such a modification is used 
to calculate quantities like first passage time distributions and probability flows 
(see Gross and Miller [14], or Reibman and Trivedi [21] for applications). 
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Like in the stationary case, aggregation can be introduced for QNs with loosely 
coupled LLMs yielding a method similar to the one introduced by Bobbio and Tri- 
vedi [3]. However, since this approach is an approximative method, we will not 
introduce it in detail here. 

In the remainder of this section a brief comparison of the space and time require- 
ments of the new technique and the conventional approach on the overall genera- 
tor is given. To simplify the analysis we assume that the cycle probabilities 
r(i, k, i, k, n) are all zero. However, non-zero cycle probabilities normally have only 
minor effects. 

Since the generator matrices of Markov chains resulting from QNs are normally 
very large and sparse, the use of sparse matrix storage schemes is necessary. There- 
fore the number of non-zero elements is proportional to the storage needed for 
the matrix. Let nz(Q) be the number of non-zero elements of Q. The number of 
non-zeros of Qa (nz(Qa)) equals 

((nz(Q  .j) -IlZj(nj)ll) I[Zj(nj)lt + 
neZo \ j = l  i=l,i#j 

J 

I I  IIZA )ll + 
i=1 

J 

(nz(Sn'-~)nz(V~ ''j-l) 1-I II/~(n~)ll)), (28) 
n' e T(n) ~= 1,Lr 

where T(n) = (din' ~ F(n)andp( f (n'), f ( n ) ) >  0.0}. 
The first term in the above equation includes the non-zeros of Q/a, the second 

the diagonal elements of Q/~ and the third the non-zeros of QEG. The number of 
elements to be stored for the isolated matrices is given by 

) Z nz(Q~/) + ~ (nz(S~/A) + nz(U;JA)) . (29) 
j = l  nj k,nj(k)>O 

Additionally, the routing probabilities r(i, k,j, l, n) have to be stored, but the 
number of routing probabilities between the LLMs is normally negligible com- 
pared with the storage of the LLM matrices. Comparing (28) and (29), one can 
notice that the memory needed for the isolated matrices is only a fraction of the 
memory for the generator matrix. In both cases additionally the iteration and solu- 
tion vectors have to be stored. For the new techniques the memory for these vec- 
tors becomes the limiting factor, whereas conventional techniques are limited by 
the memory for the generator matrix. This difference allows the handling of models 
which are larger, approximately by the order a magnitude, of course, depending 
on the concrete model structure. 

The number of operations needed for a vector matrix multiplication is in the con- 
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ventional case proportional to the number of non-zeros in QG. The number of 
operations for a tensor based vector matrix multiplication is proportional to 

(nz(Q~/) I-[ IIZj(nj)ll + 
n~Zo k,j=l i=l,i~j 

J 
n'j _l ((nz(ST'-k)llZj(n )ll+nz(U))HZi(ni)l[) I-[ tlZ,(n,)ll)). (30) 

n I e T(n) t=l ,~r 

The number of operations is not reduced by the new approach and a single opera- 
tion is slightly more complex since address transformations are performed. There- 
fore we cannot expect faster solutions for small models. However, for larger 
models the time for solution is largely influenced by the time needed for paging and 
the new techniques allow much larger models to be held in primary memory, yield- 
ing a significant faster solution. Additionally, the structure of the matrices and vec- 
tors allows a natural parallelization of the solution. The conventional and the new 
approach can be combined by constructing the generator matrix only partially 
untilprimary memory is occupied. This technique provides the possibility of choos- 
ing an optimal relation between the available space and the efficiency of the 
solution. 

5. An example 

In this section we report the analysis of an example model to compare the new 
solution approach with the conventional one. The example model used here is a 
modified version of a multi-echelon repairable item inventory system, which had 
been analyzed in great detail by Gross et al. [13], results are documented in the cited 
paper and the references therein. It should be noticed that the model is analyzed 
by Gross et al. [13] using software which is particularly designed for this special 
kind of problem, and the analysis is performed on very powerful machines like 
Cray 1.0 or Cyber 1.9. Our techniques are implemented in standard C on a worksta- 
tion to handle a general class of submodels, which are defined using the MACOM 
package [18]. Of course, matrices are all stored as sparse matrices (i.e., only non- 
zero elements are considered), but the structure of a particular model is not further 
used. To get comparison results we analyze each configuration of the model with 
the new techniques and by building Qa (of course, using also sparse matrix storage 
schemes) and analyzing the system with a conventional Gauss-Seidel solver. 

Before results are documented the example should be explained "in some detail 
(see also Gross et al. [13] for the slightly different original version of the model). 
The HLM contains two bases and a depot with a central repair facility (see fig. 1). 
Items in one of the bases fail and might need a repair in the depot; in this case the 
failed item leaves the base and enters the depot. Gross et al. [13] assume zero travel 
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base2 

in repaJr ~ .  

from repair . . ~  

depot 

Fig. 1. High level model structure. 

time between depot and bases and vice versa, here we assume that traveling from 
a base to the depot and from the depot to a base takes time and that there exists one 
channel from each base to the depot and from the depot to each base. Notice that 
this assumption enlarges the state space of the model significantly. We assume that 
channels to a L L M  are modeled inside the LLM. If a failed item reaches the 
depot, it goes into repair and is immediately substituted by a spare, if one is avail- 
able at the depot. If no spare is available, a backorder is established, which is filled 
after an item comes out of depot repair. Thus, the behavior of the H L M  is charac- 
terized by two classes of entities traveling between one base and the depot. Items 
going from the base to the depot are failed and need a depot repair. Items from the 
depot to the base are repaired and can be used in the base. 

We now consider in some more detail the LLMs. basel and base2 only differ 
through the parameter values (see fig. 2). Each base includes three stations with 
FCFS scheduling. Station work is a multiserver station with Ob server (b = 1, 2), 
the items actually in service describe the working items in the base (i.e., Ob is the 
number of operating times at base b). Items waiting at work are local sparse. The 
termination of a service in work equals the failing of an item. With probability Pb 

base b repair 

channel 

work 

Fig. 2. base submodel. 
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the failed item can be repaired locally in the station repair, with probability 
1.0 - pb a repair at the depot is necessary; the item leaves the base LLM. The prob- 
ability Pb can depend on the state of the base, however, in the examples documen- 
ted here we assume a state independent probability. The station repair is also a 
multiserver with Cb server, describing the number of local repair facilities. The 
third station channel is entered by items immediately after entering the LLM, the 
station is a single server and models the communication channel between the depot 
and base b. All service times are assumed to be exponential. 

The depot LLM is shown in fig. 3. Items entering the depot first enter one of the 
single server stations channel-b (b -- 1, 2) depending on their type identity (i.e., 
from which base they come). After leaving channel-b an item puts a resource in the 
resource pool failed and tries to get a resource from the pool repaired. If  repaired 
is empty, the item has to wait until a resource in repaired becomes available. The 
repairing of items is done by the entities from the closed chain in depot. We assume 
that Ca entities are available (Ca is the number of depot repair facilities). Entities 
of this type perform a closed loop in the depot, by getting a resource from failed run- 
ning through an infinite server repair modelling the time needed for repair and put- 
ting a resource in repaired. If no resources in failed are available, entities wait for 
the next failed item. I fa  resource in repairedbecomes available and items from both 
bases are waiting, the base with the largest percent deficit (i.e., largest value wait- 
ing items/Nb) gets the resource. We assume that depot has Na spares (i.e., at the 
beginning repaired contains Na resources). The service times in the depot are all 
exponentially distributed. 

Various configurations of the model with state spaces ranging from 112 to 
2212210 states have been analyzed. The definition of the model parameters is given 
in table 1. Table 2 includes the configurations which have been analyzed. In all con- 

depot 

. m .  

channeL1 

channel_2 

, repaired ) 

Fig. 3. depot submodel. 
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Table 1 
Parameter definitions. 

1". Buchholz / Hierarchical queueing networks 

Nb 
Ob 
Cb 
Na 
Cd 
pb 
Ab 
#b 
Wb 
Na 
Cd 
#a 

number of items in base b (b = 1, 2) 
number of operating items in base b 
number of repair channels in base b 
number of depot sparse 
number of depot repair channels 
probability that a failed item at base b is locally repairable 
failure rate base b 
repair rate base b 
transfer rate base b -  depot and vice versa 
number of depot sparse 
number of depot repair channels 
depot repair rate 

figurations the following values are fixed: #b ----- 1.0, #d = 0.5, wb = 10.0, Pb = 0.6, 
Ab = 0.2 (b = 1,2). 

The last three columns of table 2 include the number of states (= #states), the 
number of non-zeros of the generator Qa (= #nzl)  and the number of non-zeros of 
the L L M  and HLM matrices (= #nz2). With the conventional approach only the 
configurations 1 to 6 can be handled, in the remaining configurations the size of the 
generator and the vectors exceeds the capacity of virtual memory. All configura- 
tions except the last have been analyzed on a standard workstation with 32MB vir- 
tual memory and 16MB primary memory, for the last configuration a machine 
with 48MB virtual memory has been used. If we compare #states, #nzl  and #nz2, 
it can be noticed that for larger models #nzl  >>states >> #nz2. This, of course, 
confirms our theoretical results from the previous section, that the limiting factor 
in the conventional analysis is #nzl ,  whereas the limiting factor in the structured 
analysis is #states. '~ 

Apart from the memory requirements of a solution we are interested in the time 
requirements. Table 3 compares the conventional solution approach with the struc- 

Table 2 
Analyzed configurations. 

c N1 01 C1 N2 02 C2 Nd Ca #states #nzl  #nz2 

1 2 1 1 1 1 1 1 1 1.15e+2 5.20e+2 1.39e+2 
2 5 3 2 4 2 2 2 2 1.27e+4 9.35e+4 2.25e+3 
3 6 4 3 5 3 3 3 3 4.06e+4 3.20e+5 4.27e+3 
4 7 5 3 5 3 3 3 3 6.17e+4 4.98e+5 5.44e+3 
5 7 5 3 6 4 3 3 3 9.95e+4 8.24e+5 7.06e+3 
6 8 5 3 6 3 3 4 4 1.59e+5 1.35e+6 9.10e+3 
7 9 6 4 6 3 3 3 3 2.06e+5 - 1.07e+4 
8 10 6 4 8 4 4 4 4 6.84e+5 - 2.03e+4 
9 11 9 2 9 7 2 3 4 1.22e+6 - 2.80e+4 

10 12 10 2 10 8 2 3 3 2.21e+6 - 3.88e+4 



P. Buchholz / Hierarchical queueing networks 77 

Table 3 
Solver performance. 

c Conventional Structured 

timel time2 timel time2 iterations timel time2 

1 5.00e-1 1.00e+0 6.00e-1 1.00e+0 40 6.67e-1 1.00e+0 
2 7.70e+1 7.90e+1 8.93e+1 9.10e+l 110 9.93e+1 1.01e+2 
3 2.40e+2 2.47e+2 2.91e+2 2.96e+2 110 3.23e+2 3.29e+2 
4 3.62e+2 3.90e+2 4.44e+2 4.50e+2 130 5.77e§ 5.86e+2 
5 1.81e+3 5.46e+3 7.40e+2 7.49e+2 140 1.04e+3 1.06e+3 
6 2.99e+3 1.65e+4 1.19e+3 1.20e+3 110 1.32e+3 1.34e+3 
7 - - 1.55e+3 1.56e+3 160 2.47e+3 2.50e+3 
8 - - 6.82e+3 1.42e+4 150 1.02e+4 2.05e+4 
9 - - 1.28e+4 3.25e+4 110 1.41e+4 3.63e+4 
10 - - 1.54e+4 4.75e+4 150 2.26e+4 7.23e+4 

tured solution. Columns 2-5 include the times needed to perform 100 iteration 
steps using the conventional and the new approach plus the time for the set up of the 
program. The set up time includes the time for reading the LLM and HLM 
matrices and in the conventional case also the time to generate Qa from the isolated 
matrices. It should be noticed that, even with a conventional approach, it is prefer- 
able to start with the hierarchical model and the isolated matrices. Since the time 
needed for the generation of the isolated matrices and the generation of Qa from 
these matrices using tensor operations is for larger models much smaller than the 
time needed for a straightforward generation of Qa from a flat model specification. 
There are two times given in the table, time1 is the CPU time the process needs, 
including the time needed for paging, time2 is the elapsed time of the process run- 
ning exclusively on the workstation. It should be noticed that the elapsed time is 
often the more important measure, since the machine is not usable when a process 
occupying nearly all the memory is running and it is simply the time a user has to 
wait until he gets results. 

Columns 6-8 include the number of iterations and times needed to compute ~r 
with an estimated accuracy of 1.0e -5 starting from the short-circuit initial vector. 
The estimator for the solution accuracy is based on an estimation of the reduction 
factor and the assumption of geometrical convergence behavior. 

The results show that conventional techniques are faster for small models; how- 
ever, increasing the size of the model, the new approach becomes more efficient in 
terms of CPU time and much more efficient in terms of elapsed time. Comparing 
the results for model 6, the largest one solvable with the conventional approach, we 
get a speed-up of 2.5 and 15.3 in terms of CPU time and elapsed time, respec- 
tively. But the analysis of large models still takes a lot of time, although all config- 
urations analyzed here can be solved during a night, which is often acceptable. Of 
course, the concrete solution time depends on the number of iterations needed, 
which depend on the concrete model structure. 
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Gross et al. [13] state that the bi-conjugate gradient method is more efficient 
than Gauss-Seidel used here. It should be mentioned that our experiences do not 
give this impression, especially if Gauss-Seidel is combined with a /d  steps. Never- 
theless, also bi-conjugate gradient can be used in the given framework, but needs 
more space, since some additional vectors have to be stored. In the particular 
example here, the use of the short circuit initial vector yields between 20-40% less 
iterations than the initial vector with a uniform distribution. The additional inte- 
gration of a /d  steps has only minor effects on the solution effort. However, if the 
LLMs are loosely coupled, a / d steps significantly increase the convergence rate. 

We do not give here examples for a transient analysis, since it is obvious that 
the comparison of the conventional with the new approach yields the same results 
as in the stationary case. 

6. Conclusion 

We have presented a new approach for the analysis of hierarchical QNs based 
on tensor operations and their integration in iterative numerical solution techni- 
ques. Such an approach enlarges the size of models which can be solved on a given 
hardware significantly, since the space requirements of the new approach are 
mainly influenced by the memory needed to store the iteration and solution vector, 
rather than the generator matrix. Nevertheless, the solution of QNs with a large 
number of states is still very time consuming, but it has been shown by means of a 
large example that even models with more than a million states can be solved dur- 
ing a night or weekend with an acceptable accuracy. The performance of the solu- 
tion algorithms can often be increased by a priori aggregation or a /d  steps during 
the solution, which are integrated naturally in the structured description. 

The class of hierarchical QNs is rather large and of practical importance. Of 
course, not all models can be transformed into hierarchical models, but it is known 
from system sciences that many natural and well-designed artificial systems are 
hierarchically structured, yielding naturally hierarchically structured models. 

The presentation of solution techniques in this paper is restricted to one techni- 
que for stationary and one for transient analysis. However, other iterative techni- 
ques can be and partially have been integrated in the hierarchical model world. 
Especially we believe that the structure of the matrices and vectors provide a base 
for the integration of highly parallel solution techniques. 

Appendix 

A procedure for tensor-based vector matrix multiplication 
The following procedure mult(~r, Q, l, u) performs the multiplication 

~rIt| Q| without generating the matrix resulting from the tensor product. Let: 
prob_vector be an array of an appropriate dimension 
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sparse_matr ix  a s t ruc tu re  including on ly  no n -ze ro  elements ,  e lements  are  l inked 

co lumn-wise  
mat_elern is one  e lement  o f  a sparse -mat r ix  
r ow(Q) ,  co l (Q)  the  n u m b e r  o f  rows  / co lumns  o f  Q 

T h e  desc r ip t ion  is in C-like pseudo-code :  

s t ruc tp rob -vec to rmu l t  (rt, Q, l, u)  
s t ruc t  p rob_vec to r  rt; s t ruc t  sparse_matr ix  { Q}; int  1, u; 

{ 
int  i l ,  i2, c, row_base,  col_base, d i m =  l �9 u �9 col(Q);  
s t ruc t  mat_e lem q; 
s t ruc t  p r o b _ v e c t o r p ;  

fo r  (c = 1; c<<,col(Q); c + +) 
fo r  (q = Q[c] - > first_element;  q <<, Q[c] - > last_element;  

q --- q - > successor)  { 
row_base = (q - > row_index - 1 )  �9 u 
row_base = (q - > column_index - 1 )  �9 u 

for  (i l  = 1; il ~<l; il  + + ){  
for  (i2 = 1; i2 ~< u ; /2  + + )  

re turn(p) ;  

p [ + + c o l _ b a s e ] +  = r t [++row_base]  �9 q - > v a l u e  
col_base+ = (col (Q)  - i )  �9 u; 
row_base+ -- ( row(Q)  - 1) �9 u; )} 
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