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Upward Drawings of Triconnected Digraphs 1 

P. Bertolazzi ,  2 G. D i  Battista, 3 G. Liotta, 3 and C. Mannino  2 

Abstract. A polynomial-time algorithm for testing if a triconnected directed graph has an upward 
drawing is presented. An upward drawing is a planar drawing such that all the edges flow in a common 
direction (e.g., from bottom to top). The problem arises in the fields of automatic graph drawing and 
ordered sets, and has been open for several years. The proposed algorithm is based on a new 
combinatorial characterization that maps the problem into a max-flow problem on a sparse network; 
the time complexity is O(n + r2), where n is the number of vertices and r is the number of sources and 
sinks of the directed graph. If the directed graph has an upward drawing, the algorithm allows us to 
construct one easily. 

Key Words. Planarity, Automatic graph drawing, Hierarchical structures, Max-flow, st-Digraphs, 
Acyclic digraphs, Ordered sets. 

1. Introduction. Planarity has been deeply investigated both in combinatorics 
and in graph-algorithms research [20]. Concerning undirected graphs, there are 
elegant characterizations of the graphs that have a planar representation and 
efficient algorithms for testing planarity (see, e.g., [17], [12], 1-21 [41 and [7]). 

For acyclic directed graphs (in the following digraphs) the concept of planar 
drawing is naturally replaced by the concept of upward drawing, that is, a planar 
drawing with the additional constraint that all the edges are represented by curves 
increasing monotonically in the vertical direction. Figure 1 shows an example of 
upward drawing. 

In practice (see, e.g., [25] and [10]) upward drawings are extensively used 
to display hierarchical structures such as PERT networks, ISA hierarchies in 
knowledge-representation diagrams, and subroutine call charts. Notice also that 
the construction of upward drawings can be viewed as computing "geometric 
realizations" of planar digraphs as monotone subdivisions. 

Upward drawings have been investigated in the fields of ordered sets and 
automatic graph drawing (surveys on the automatic-graph-drawing problems can 
be found in [27] and [9]). 
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Fig. 1. An example of upward drawing. 

Kelly and Rival [16] provided a characterization of planar lattices, i.e., lattices 
whose covering digraph admits an upward drawing, in terms of a family of 
forbidden subposets. Platt [21] showed that a lattice has an upward drawing if 
and only if the undirected graph obtained from the covering digraph by adding 
an edge between its source and its sink and by ignoring edge directions is planar. 
Other results on upward drawings in the field of ordered sets can be found in 
[30], [22], [14], [24], and [23]. 

Combinatorial characterizations of the digraphs that have an upward drawing 
are given in [15] and [6] (for general directed graphs) and in [29] (for single-source 
digraphs). In [15] and [6] a digraph is shown to have an upward drawing if and 
only if it is a subgraph of a planar st-digraph; in [29] a characterization is given 
in terms of forbidden circuits. 

In [8] a lower bound on the area of upward drawings and an algorithm for 
constructing straight-line drawings that display the symmetries of a digraph are 
presented. 

Recent results on the problem of testing if a given digraph has an upward 
drawing can be found in [5] and [13]. In [5] it is shown that a bipartite digraph 
has an upward drawing if and only if its underlying undirected graph is planar. 
In [13] an O(nZ)-time algorithm is given for upward-drawing testing in single- 
source digraphs with n vertices. 

In this paper we provide an O(n + rZ)-time algorithm for testing if a triconnected 
digraph G has an upward drawing, where n is the number of vertices of G and r 
is the number of its sources and sinks. The algorithm can decide within the same 
time bound if G is a subgraph of a planar st-digraph and in this case can produce 
a planar st-digraph G', with n + 2 vertices, that includes G. This has several 
implications; in fact G' can be used for constructing: 

1. An upward drawing of G that maps each edge to a straight-line segment in 
O(n log n) time [6]. 

2. An upward drawing of G that maps each edge to a polygonal line, such that 
the total number of bends in the drawing is at most 2n - 5, in O(n) time [8]. 

3. An upward drawing of G that maps each edge to a straight-line segment in 
O(n) time, if G' has no transitive edges [6], [8]. 

4. A directed visibility representation of G in O(n) time [28], [6]. 
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Our approach consists of two main phases. 
First, we tackle the problem of testing if a planar digraph with a given planar 

embedding has an upward drawing that preserves the embedding. The problem 
is restated as a max-flow problem on a sparse network by using a new combinator- 
ial characterization. This characterization is based on some geometric properties 
of the upward drawings of circuits. 

Second, we exploit the fact that triconnected planar digraphs have a unique 
planar embedding. 

The proposed approach allows us to represent implicitly all the possible upward 
embeddings of G, obtaining, for triconnected digraphs, a result that is similar to 
the one of Chiba et al. [-3] on the planar embeddings of a planar biconnected graph. 

The paper is organized as follows. In Section 2 we recall some basic definitions. 
In Section 3 we deal with the upward drawings of circuits. Section 4 contains the 
above-mentioned characterization. Section 5 Contains the algorithm. In Section 6 
we present related open problems. 

2. Preliminaries. We assume familiarity with planar graphs, say from [11] and 
[-20]. In the following some terminology and basic results are summarized. 

We review some definitions on graph connectivity. A separating k-set of a graph 
G is a set of k vertices whose removal increases the number of connected 
components of G. Separating 1-sets and 2-sets are called cutvertices and separation 
pairs, respectively. A connected graph is said to be biconnected if it has no 
cutvertices. A graph is triconnected if it is biconnected and has no separation pairs. 
In the following, unless otherwise specified, we deal with biconnected graphs that 
do not have self-loops and multiple edges. 

Let F be a drawing of a graph G; F maps each vertex of G to a distinct point 
of the plane and each edge (u, v) to a simple Jordan curve with endpoints u and 
v. If each edge is mapped to a straight-line segment, F is a straight-line drawing. 
Graph G has a planar drawing if it has a drawing such that no two edges intersect, 
except at common endpoints. A graph is planar if it has a planar drawing. 

Two planar drawings of a planar graph are equivalent when, for each vertex v, 
they have the same circular clockwise ordering of the edges incident on v. In this 
way the planar drawings of a planar graph are grouped into equivalence classes. 
In Figure 2 we show three planar straight-line drawings of a graph. The second 

Fig. 2. Planar drawings of a graph. 
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and third drawings are equivalent. A triconnected planar graph has a unique 
equivalence class of planar drawings, up to a reflection [32]. 

Given a graph G, an embedding of G associates to each vertex v of G a circular 
clockwise ordering of the incidence list of v. A graph with a given embedding is 
an embedded graph. In other words, an embedded graph is such that, for each 
vertex v, the edges that have v as an endpoint are circularly clockwise sorted in 
the incidence list of v. 

Given a planar graph G, we associate with each equivalence class F of planar 
drawings of G a planarly embedded graph, i.e., graph G with the embedding (planar 
embedding) that is given by the circular clockwise ordering of the edges incident 
around each vertex of F. A triconnected planar graph has a unique planar 
embedding, up to a reflection. 

A planar drawing F divides the plane into connected regions called facial 
components. Each facial component is identified by the clockwise circular list of 
the vertices and the edges of its boundary. These lists are simple cycles of the 
planarly embedded graph that corresponds to F and are called faces. All the 
drawings of a given planarly embedded graph have the same set of faces. The face 
that is the boundary of the unbounded facial component is usually called the 
external face. 

Let G be a digraph; the underlying graph of G is the undirected graph obtained 
from G by considering its edges as undirected. We define the planarity and 
connectivity properties of a digraph as the planarity and connectivity properties 
of its underlying graph. 

An upward drawing of a digraph G is a planar drawing of G, with the additional 
constraint that all the edges are represented by curves increasing monotonically 
in the vertical direction, according to which all the tangents to the curves 
representing edges make an angle 0 with the horizontal satisfying 0 ~ < 0 < 180 ~ 
A trivial necessary condition for a digraph to have an upward drawing is to be 
acyclic. 

An st-digraph is an acyclic digraph that has exactly one source (vertex without 
incoming edges) s, exactly one sink (vertex without outgoing edges) t, and contains 
the edge (s, t). A characterization of the class of digraphs that have an upward 
drawing is given in [15] and [6] where the following two theorems are shown. 

THEOREM 1. Let G be a digraph, the following statements are equivalent: 

G has an upward drawing; 
G has a straight-line upward drawing; 
G is a subgraph of a planar st-digraph. 

THEOREM 2. Let �9 be a planarly embedded st-digraph. Let F be the class of 
equivalent planar drawings associated with ~. Class F contains upward drawings. 

According to Theorem 1, in the following we consider only straight-line upward 
drawings. 



480 P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino 

3. Upward Drawings of Circuits. We call an acyclic digraph whose underlying 
graph is a simple cycle a circuit. Let C be a circuit and let S (T) be the set of 
sources (sinks) of C. We have that I Sl  = I T I. We call switches the vertices of S • T; 
also, we call source-switches (sink-switches) the vertices of S (T). 

We observe that a circuit always has an upward drawing, in fact it can be 
trivially included into a planar st-digraph. Consider an upward drawing F of C; 
F is a simple polygon (i.e., a polygon such that no pair of nonconsecutive edges 
share a point) that divides the plane into two connected regions; we call the 
unbounded region external, the other one internal. 

We focus on the drawing of a switch v of C. Vertex v is mapped into a vertex 
of the polygon. The two segments incident on v define two angles, one in 
the internal region and one in the external region. Concerning the angle in the 
internal region there are two possibilities: if it is convex, we say that it is a small 
angle, else we say that it is a big angle. Figure 3 shows an upward drawing of a 
circuit. In the following we denote with S B (Ss) the set of source-switches that are 
drawn with a big (small) angle in the internal region. Analogously, we denote with 
T B (Ts) the set of sink-switches that are drawn with a big (small) angle in the internal 
region. We characterize F by means of the following lemmas. 

LEMMA 1. I Ssl > 1 and lTsl > 1. 

LEMMA 2. I f  lSI ~ 2, then [SBI + I TBI ~ 1. 

PROOF. (By contradiction.) Suppose [SB[ + I TB] = 0. Suppose that switches are 
labeled sl, tl . . . . .  s,, t, following F in clockwise order, where si and ti (i = 1, . . . ,  n) 
denote source-switches and sink-switches, respectively. Let y(v) be the y-coordinate 
of vertex v in F. We denote with [a, b] a polygonal line connecting vertices a and 
b. Suppose, without loss of generality, that y(sO <_ y(s2). See the example in Figure 
4. Due to the fact that the angle in s2 is a small angle, vertex t2 has to be placed 
inside the region defined by the horizontal line through s2, the polygonal line 

\ 

small 
angles 

big 
angles 

Fig. 3. Small and big angles in the internal region of an upward drawing of a circuit. 
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Fig. 4. An example for the proof of Lemma 2. 
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[-$2, t l ' ]  , and the polygonal line [sl, t l ] .  It follows that vertex sa has to be into the 
region delimited by the horizontal line through t2, the polygonal line [q ,  s2], and 
the polygonal line [s2, t2]; hence y(s2) < y(s3). Repeating the argument, visiting 
vertices in clockwise order we obtain y(sl) _< y(s2) < y(s3) < .'- < y(s,) < y(sl). This 
is a contradiction. []  

For  small and big angles in the external region we give the same definition we 
have given for small and big angles in the internal region. 

LEMMA 3. An upward drawing of a circuit with 2n switches has exactly n - 1 big 
angles in the internal region and exactly n + 1 big angles in the external region. 

PROOF. (By induction on n.) The proof is trivial for n -- 1 and n -- 2. Suppose 
now that the thesis holds for n, we show that it holds for n + 1. Consider a drawing 
F of C. Due to Lemma 2, F has at least one big angle in the internal region. Let 
h be the switch associated with such big angle; suppose t~ is a sink-switch (the 
proof is analogous if t i is a source-switch). There is at least one vertex v of F, over 
the horizontal line through ti that ~an be joined with t~ by using a segment, without 
crossing F (see Figure 5). Let C 1 be the circuit ti, Si+ 1 . . . . .  V and let C2 be the 
circuit t~, v , . . . ,  s~. Suppose v is a sink-switch with a small angle (the other cases 

V' 

Fig. 5. Decomposition of F in the proof of Lemma 3. 
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are analogous). Consider the two upward drawings F1 and F 2 of C1 and C 2 

obtained with the above construction. Let 2nl and 2n2 be the number of switches 
of C1 and C2, respectively; n 1 ~ 0 and n2 ~ 0. We have that 2n = 2nl + 2n2, in 
fact, ti is not a sink-switch in C~ and C2, but v is a sink-switch in both of them. 
Due to the inductive hypothesis, the number of big angles in F~ (F2) is equal to 
n 1 - 1 (n2 - 1). Now F can be obtained by gluing F~ and F 2 and by removing 
segment ti, v. So, the number of big angles of F is given by the number of big 
angles of F~ plus the number of big angles of F 2 plus the big angle associated 
with t i, i.e., n~ + n 2 - -  1. Since n = nl + n2, it follows the first part of the thesis. 
The second part is trivially proved by observing that big angles in the internal 
region correspond to small angles in the external region and vice versa. [] 

From Lemma 3 we can derive the following, purely geometrical, corollary. Let 
P be a simple polygon and let d be any oriented straight line of the plane. We 
call a vertex v of P such that its incident segments are both over or both under 
the line through v orthogonal to d a peak with respect to d. [] 

COROLLARY 1. The number of peaks with respect to d that have a convex angle in 
the internal region of P is equal to the number of peaks with respect to d that have 
a concave angle in the internal region of P plus 2. 

4. Upward Drawings and Upward Embeddings. Let F be an upward drawing of 
a digraph G. Consider a face f of F. Since f is a circuit, we have that the drawing 
F I obtained from F by deleting all points and segments that do not belong to f 
is an upward drawing of a circuit. 

Let 2n I be the number of switches of f ,  due to Lemma 3 we have that the 
number of big angles in the internal region of F f  is equal to nf - 1. Moreover, 
the same condition holds for any simple circuit of G. So, it raises naturally the 
question whether the condition of Lemma 3 can be used in some way to decide 
if a digraph has an upward drawing. In order to answer that question we give a 
deeper characterization of the upward drawings. Moreover, we introduce the 
new concepts of upward embedding and upward embedded digraph, the directed 
couterparts of the concepts of planar embedding and a planarly embedded graph 
for undirected planar graphs. 

4.1. Properties of Upward Drawings. Let F be an upward drawing of a digraph 
G. Let v be a vertex of G. We have the following properties (see Figure 6): 

PROPERTY 1. The outgoing (incoming) edges of v are drawn in F entirely over (under) 
the horizontal line through v. (See vertex 1 in Figure 6.) 

PROPERTY 2. Suppose v is a source or a sink and consider the faces ofF that share 
v; we have that v is a switch in all of them. (Vertex 2 in Figure 6 is a switch in faces 
A, B, and C.) 
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D C B 

Fig. 6. An example for Properties 1-4. 
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PROPERTY 3. Let v be an internal vertex (a vertex which is not a source or a sink) 
with total degree n; v is a switch in exactly n - 2faces. (Vertex 1 in Figure 6 is a 
switch in face D and is not a switch in faces A and B.) 

PROPERTY 4. Consider the angles defined by pairs of consecutive outgoing (incom- 
ing) edges of v. I f  v is a source (sink) exactly one of  them is a big angle; if v is an 
internal vertex all of them are small. (Vertex 2 in Figure 6 has exactly one big angle 
in face B while vertex 1 has no big angles.) 

Given an upward drawing, Property 1 allows us to identify for each vertex v 
two linear lists of edges, obtained by visiting from left to right the outgoing and 
the incoming edges. If v is a source, the list of incoming edges is empty. If v is a 
sink, the list of outgoing edges is empty. 

Let v be a source or a sink of G and let f be one of the faces of F that share 
v. We say that v is assigned to f if v has a big angle in f .  We say that v is not 
assigned to all the other faces. Observe that if v is a source (sink), the first and the 
last element of the list of the outgoing (incoming) edges belong to the face to which 
v is assigned. 

An upward face of an upward drawing is a face where a label in {B, S} is 
associated with each switch. Label B is associated with switches that are sources 
or sinks of G assigned to f ;  label S is associated with all the other switches, namely, 
to switches that are sources or sinks of G that are not assigned to f and to switches 
that are internal vertices of G. The upward faces of the upward drawing of Figure 
1 are shown in Figure 7. 

The upward face that is the boundary of the unbounded region is called the 
external upward face. 

4.2. Upward Embeddinos. Two upward drawings of a digraph are equivalent if, 
for each vertex, they define the same two linear lists of incoming and outgoing 
edges. In this way the upward drawings of a digraph are grouped into equivalence 
classes. 

Given a digraph G, a 2-lists-embedding arranges the incident edges of each vertex 



484 P. Bertolazzi, G. Di Battista, G. Liotta, and C. Manning 

B B 

S S S S 

B 

Fig. 7. Labels B and S in the upward faces of the upward drawing of Figure 1. 

of G into two linear ordered lists: a list of incoming edges and a list of outgoing 
edges. A digraph with a given 2-lists-embedding is a 2-lists-embedded digraph. 

Given a digraph G that has at least one upward drawing, we associate to each 
equivalence class F of upward drawings of G an upward embedded digraph, i.e., 
digraph G with the 2-lists-embedding (upward embedding) that is given by the two 
linear lists of edges incident on each vertex of F. 

It is easy to show that all the upward drawings of an upward embedded digraph 
have the same set of upward faces. Moreover, all the upward drawings of an 
upward embedding have the same external upward face. 

The planarly embedded digraph resulting from an upward embedded digraph 
�9 by considering the clockwise ordering obtained concatenating the two lists of 
edges defined on each vertex is called the underlying planarly embedded digraph 
of O. 

We now rephrase Lemma 3 in the framework of upward embeddings as follows. 
Let tI) be an upward embedded digraph, let h be its external upward face, and 

let f be an internal upward face. Denote with 2n h and 2ny the number of switches 
of h and f,  respectively. 

LEMMA 4. The number of sources and sinks of �9 assigned to f is equal to ny - 1. 
The number of sources and sinks of ap assigned to h is equal to n h -[- 1. 

From Property 4 and from Lemma 4 we have that if �9 is an upward embedded 
digraph, then: 

(a) Each source or sink is assigned to exactly one of the faces it belongs to. 
(b) For each face the condition of Lemma 4 is satisfied. 

4.3. Candidate Embeddings. Another important step toward our characteriza- 
tion of upward embeddings is the concept of candidate embedding. A planarly 
embedded acyclic digraph W is a candidate embedded digraph if, for each vertex v, 
we have that all the outgoing (incoming) edges appear consecutively in the list of 
the edges incident on v. In this case we say that the planar embedding of ud is a 
candidate embedding. See the example in Figure 8. 
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Fig. 8. Two planar drawings of the digraph of Figure 1: the one on the left corresponds to a 
candidate embedding, while the one on the right does not correspond to any candidate embedding. 

Given a candidate embedded digraph we choose one of its faces as the candidate 
external face and call the remaining faces internal. 

Let W be a candidate embedded digraph and let h be a candidate external face 
of qL We define the capacities of the faces of q~. According to Lemma 4 we define 
the capacity c I of a face f r h as 

c f =  nf - 1  = [Sfl - 1  = ITf[ - 1 ,  

where S I (TI) is the set of source-switches (sink-switches) of f .  Similarly, we define 
the capacity c h of the candidate external face h as 

Ch = nh + 1 = IShl + 1 = I T hi + 1. 

It is interesting to observe that candidate embedded digraphs have Properties 
2 and 3 that have been shown for upward drawings. Another property of candidate 
embedded digraphs is given in the following lemma. 

LEMMA 5. Let tp be a candidate embedded digraph. Let S and T be the sets of 
sources and sinks of  tF. Let F be the set of  faces of  ud and let h ~ F be a candidate 
external face. We have that 

cf  = ISI + I T I .  
f e F  

PROOF. 

X cs= X (n s - 1 ) + n h + l = y ,  n I - I F I + 2 ,  
f eF  f e(F-{h}) f eF  
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where 2n: is the number of switches of face f .  By applying Properties 2 and 3 we 
have 

2 ~ n: = IEsI + lET[ + [E,I -- 2111 = 21El - 21II, 
f 6F  

where E is the set of edges of G, E s (Er) is the set of edges outgoing (incoming) 
from (into) the sources (sinks) of G, E; is the set of edges incident on the internal 
vertices of G, and I is the set of the internal vertices. 

From Euler's theorem we have 

2(IEI - I I I )  = 2(PSI + [TI + IFI - 2) 

and, hence, 

c f =  lSl + lTl + lFI -- 2--1Fl  + 2 =  lSl + lTI. [] 
fEF 

As an example of Lemma 5, consider the candidate embedded digraph on the 
left of Figure 8. If we consider face B as the candidate external face we have c A = 2, 
cB = 3, Cc = 1, and cD = 0; the number of sources and sinks is six. 

4.4. Upward-Consistent Assignments. Given a candidate embedded digraph, a 
candidate external face, and an assignment of sources and sinks to faces, and 
consequently an assignment of labels S and B to switches of faces, we call this 
assignment upward-consistent if it satisfies conditions (a) and (b) of Section 4.2. See 
the three examples of upward-consistent assignments for the same candidate 
embedded digraph, where face B is choosen as the candidate external face, shown 
in Figure 9. 

It is clear that an upward-consistent assignment forces a candidate embedded 
digraph in a 2-lists-embedded digraph. 

The concept of an upward-consistent assignment can be generalized in terms 
of an assignment of sources and sinks to any circuit of the candidate embedded 
digraph by means of the concept of a derived assignment. Let W be a candidate 

' ~ ! ' ~ ~  

:;iliiii~: 
Fig. 9. Three upward-consistent assignments. 
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embedded digraph and let h be a candidate external face of W. Let A be an 
upward-consistent assignment for W. Consider any simple circuit 7 of tp. 

Circuit 7 splits W into two parts. One of them contains h. Consider the planarly 
embedded digraph ~r  obtained from W by removing edges and vertices of W that 
are in the part of tp that does not contain h. Observe that 7 is a face of W~ and 
observe that W~ is itself a candidate embedded digraph. Moreover, all the faces of 
Wr, that were faces of tp, have the same capacity they had in W and all the new 
sources and sinks created by the removal of edges lie on face 7- 

We define for W~ the derived assignment A~ "based" on A and show that it is 
an upward-consistent assignment for W~. Let s be a source or a sink of tP r We 
call the derived assignment for W~, and denote if by A~, the assignment obtained 
from A in the following way: 

1. If s was assigned in A to a face still appearing in Wr it is assigned to the same 
face in A~. 

2. Otherwise s is assigned to 7. 

LEMMA 6. Let �9 be a candidate embedded digraph and let A be an upward- 
consistent assignment for tp. Let 7 be a circuit of tp. The derived assignment A~ is 
an upward-consistent assignment for tpr. 

PROOF. From the definition of an upward-consistent assignment we have to show 
the following condition: for each face f of W~ the number of sources and sinks 
assigned to f is equal to c I. 

The capacity c s of a face f ~ 7 of tp~ is the same as in �9 and the same number 
of sources (sinks) as in A is assigned to f in A~; hence, for such faces, the condition 
is satisfied. 

Observe that all the sources and sinks not assigned in A~ to a face f ~ 7 lie on 
7. The number of such sources and sinks is exactly IS~l +IT~I- ~I*~ cl, where 
S~ and T~ are the set of sources and sinks of W~. Moreover, such sources and sinks 
are all assigned to 7. 

Since Wr is a candidate embedded digraph, by Lemma 5 we have that 
c~ = IS~l + IT~I- ~I*~ cl- [] 

4.5. A Characterization of  Upward Embeddings. The following theorem gives a 
complete characterization of the upward embeddings and is the key for the 
algorithms of Section 5. 

THEOREM 3. Given a candidate embedded biconnected digraph �9 and a candidate 
external face h of ~ ,  the 2-lists-embedding cb obtained from the assignment A of 
sources and sinks to faces is an upward embedding with external face h if and only 
if A is an upward-consistent assignment. (See, in Figure 10, the three upward 
drawings obtained from the upward-consistent assignments ofFigure 9.) 

PROOF. The only-if-part follows immediately from Lemma 4. 
In the proof of the if-part we use the results of Theorems 1 and 2. Namely, 
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Fig. 10. Three upward drawings obtained from the upward-consistent assignments of Figure 9. 

we exploit the upward-consistent assignment A to construct a planarly embedded 
st-digraph that includes ~g. 

We give a procedure that, for each face f ,  adds edges between pairs of switches 
of f .  We show that each edge insertion preserves planarity and acyclicity. We also 
show that the new planar embedding that we obtain after each edge insertion is 
itself a candidate embedding and we define for it a new assignment that is an 
upward-consistent assignment. Moreover, we show that after all edge insertions 
have been performed, the resulting planarly embedded digraph has exactly one 
source s and one sink t that stay on the same face. Hence, it is possible to add 
the edge (s, t) to obtain a planarly embedded st-digraph that includes qL 

A procedure for inserting edges. We associate to each face f a circular sequence 
a: of symbols obtained by traversing f in clockwise order and assigning sB and 
tB (B-symbols) to source-switches and sink-switches labeled B in f ,  and Ss and ts 
(S-symbols) to source-switches and sink-switches labeled S in f .  If f is an internal 
face, trf contains cy B-symbols and c: + 2 S-symbols. We now concentrate on the 
edge insertions in an internal face. Afterwards we consider the external face. 

The procedure for edge insertion in an internal face works as follows. It looks 
in a: for canonical subsequences. When one such canonical subsequence is found, 
an edge is added to �9 in f ;  f i s  split into two new faces f '  and f", and G: is split 
into two new sequences a:, and trf,,. Figure 11 shows an example of the behavior 
of procedure SaturateFace. Observe that this technique is structurally similar to 
the "symbolic decomposition" of rectilinear polygons given in [26]. 

Procedure SaturateFace(f) 
begin 
If  f has exactly one source-switch and one sink-switch (i.e., [a:[ = 2) 
then stop 
else begin 

Find a canonical subsequence (x, y, z) in tr: composed by one 
B-symbol followed by two consecutive S-symbols 
InsertEdge(f, x, y, z, f ' ) ;  
SaturateFace(f') 

end 
end (procedure SaturateFace) 
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Fig. 11. An example for procedure SaturateFace. 

Procedure InsertEdge(f, x, y, z, f ' )  is defined as follows (observe that such a 
procedure returns only face f ' ,  since f "  does not need further processing). 

Procedure InsertEdge(f, x, y, z, f ' )  
begin 
Let v x, vy, and v~ be the vertices associated with symbols x, y, and z, 
respectively; 
ease (x, y, z) of (in both cases two new faces are created: f "  consists of 

the part of f containing vx, vy, and Vz plus the new edge; f "  has only 
one source and only one sink; the face f '  is described for each case) 

(sB, t s, Ss): Add edge (Vz, vx). f '  consists of the part of f that does not 
contain vy plus the new edge (vz, v~). Observe that v~ is not a source of 
the new digraph and G f, can be obtained from af  by replacing s B, ts, s s 
with Ss; 

(t B, s s, ts): Add edge (v~, vz). f '  consists of the part of f that does not 
contain vy plus the new edge (vx, vz). Observe that v~ is not a sink 
of the new digraph and a f, can be obtained from o-f by replacing t~, 
Ss, ts with ts; 

end (procedure InsertEdge) 

Planar i ty  and acycl ici ty .  As far as planarity is concerned, each edge is inserted 
by procedure InsertEdge inside a face. Hence, it does not originate crossings. 
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Fig. 12. Cycles in the proof of Theorem 3. 

Now we prove that each edge insertion preserves the acyclicity of the digraph. 
The proof is by contradiction and is essentially based on Lemma 6. 

Suppose a simple cycle C is obtained after the insertion of edge (z, x) (see Figure 
12) in the candidate embedded digraph ~P', derived from W after a number of 
sources and sinks have been eliminated by the procedure InsertEdge. Suppose (the 
other case is analogous) that both x and z are source-switches of f .  Let A' be the 
upward-consistent assignment for W', where z is not assigned to f while x is 
assigned to f .  Denote by Po the path of ~g' from x to z that gives rise to the cycle 
after the addition of the edge (z, x). In order to have a cycle through x and z we 
have that z cannot be a source in ~P'. 

Now consider the path Px of f from x to z containing the sink-switch y. Two 
cases are possible. 
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Case 1: Paths Po and Pa are vertex disjoint (except for the endvertices x and 
z). The concatenation of Po and Px is a circuit 7 with zero capacity, since it 
contains only the switches x and y. If 7 "contains" f ( f  is in the part of W' that 
does not contain the candidate external face, see Figure 12(a)), then, in the derived 
assignment A'7, x is assigned to 7, a contradiction. If 7 does not contain f ,  then y 
is assigned to y in A'r, a contradiction (see Figure 12(b)). 

Case 2: Paths Po and Pl share one or more vertices different from x and 
z. Observe that the common vertices lie all on the directed path from x to y, 
otherwise C would not be simple. Let w be the last com0aon vertex on the directed 
path from x to y; w and y are distinct vertices, otherwise a cycle was already 
present before the insertion of the edge (z, x) (see Figure 12(c)). Let p~ be the path 
from w to z on the cycle and let p'~ be the path from w to z on the face f ,  containing 
y (see Figure 12(d)). The concatenation 7 of pb and P'x is a circuit with zero capacity, 
since it contains only the switches w and y. If 7 does not contain f ,  then y is 
assigned to 7 in A'~, a contradiction. If 7 contains f (see Figure 12(e)), then w 
becomes a new source in the embedded graph q2' that has to be assigned to 7 in 
A'~, getting again a contradiction. 

The candidate embedding invariant. After the (z, x) edge insertion, the resulting 
embedding is still a candidate embedding. Suppose (the other ease is analogous) 
that z and x are both source-switches. Edge (z, x) is the only incoming edge in the 
adjacency list of x, so, in the adjacency list of x, all the outgoing (incoming) edges 
appear consecutively. Concerning the adjacency list of z, edge (z, x) is inserted 
between two consecutive outgoing edges, thus not altering the bi-partition of the 
list. 

The upward-consistent assignment invariant. After the (z, x) edge insertion, 
the upward-consistent assignment is modified as follows. All the sources and 
the sinks assigned to f in A that remain sources and sinks after the addition 
of (z, x) are assigned to f ' ;  all the sources and sinks of the rest of the digraph 
are assigned as in A. It is easy to see that the resulting assignment is upward- 
consistent. 

Single-source-single-sink. We have to show that after all edge insertions have 
been performed the resulting digraph has exactly one source and one sink and 
remains planar after the addition of an edge between them. 

To do that we first have to show that after procedure SaturateFace is performed 
on one internal face, all the faces that are obtained from that face contain exactly 
one source-switch and one Sink-switch both labeled S. We prove that if an internal 
face f has more than one source-switch and sink-switch, then it is always possible 
to find in tr s one of the two canonical subsequences of procedure InsertEdge. Due 
to the presence of c I + 2 S-symbols over the 2c I + 2 symbols of tr I it is always 
possible to find a nonempty set of subsequences of contiguous S-symbols com- 
posed by at least two elements. Among such subsequences there is at least one 
that is preceded by one B-symbol. Observe that the canonical subsequences are 
exactly the possible subsequences composed by one B-symbol followed by two 
consecutive S-symbols. 
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t _'~- t40~.  ~ . . . . . . .  

st3 
Fig. 13. The st-digraph that includes the digraph of Figure 8. 

Because of the above discussion no vertex v that does not belong to the external 
face can be a source or a sink after procedure SaturateFace has been performed 
on all the internal faces. In fact, suppose v is a source or a sink. We have that not 
one of the faces surrounding v has a label B on v, thus contradicting property (a) 
of the upward-consistent assignments. Hence, after procedure SaturateFace has 
been performed on all the internal faces all the remaining sources and sinks are 
on the candidate external face. 

When procedure SaturateFace is applied to the candidate external face h, since 
the number of assigned sources and sinks is now c~ = [Sh[ "[- 1, the saturate 
procedure stops when the final circular sequence is composed by k _> 0 S-symbols 
and k + 2 B-symbols. Since no two S-symbols appear consecutively in the 
sequence, the final sequence has the following structure in terms of S- and 
B-symbols: a h = B j, a 1, B2, 0"2, where 0-1 and 0-2 are two alternating sequences of 
S- and B-symbols. Each of 0-1 and 0-2 starts with an S-symbol and ends with a 
B-symbol, and both of them could be empty. 

Observe that the B-symbols of one of the two alternating subsequences refer to 
sources while the B-symbols of the other subsequence refer to sinks. At this point 
all the sinks assigned to the external face can be connected to one new sink with 
edges directed from the original sinks to the new sink. The same can be done for 
the sources, obtaining the st-digraph. It is easy to see that the resulting digraph 
is acyclic. Moreover, s and t are on the same face. Figure 13 shows a planar 
st-digraph that includes the digraph of Figure 8. []  

5. Upward-Drawing Testing. Let G be a planar digraph with n vertices and let 
S and T be the sets of its sources and sinks, respectively. In this section we give 
the algorithm for testing if G has an upward drawing in the case where it is 
triconnected. 

First, we devise an algorithm that, given a digraph with a fixed planar 
embedding �9 and an external face h, allows us to test if an upward embedding 
exists whose underlying planarly embedded digraph is ~? and that has h as an 
external upward face. 
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Second, we exploit such an algorithm and the fact that a triconnected planar 
graph has a unique planar embedding to define the algorithm for triconnected 
graphs. 

Finally, we discuss further applications of our techniques. 

5.1. Upward-drawing Testing for Digraphs with a Fixed Embedding and with a 
Given External Face. The fixed-embedding algorithm returns true or false de- 
pending on the existence of an upward embedding and works as follows. 

Algorithm Fixed-Embedding-Test 

1. Check if ~P is a candidate embedding. If the check is negative, return 
false and stop; 

2. Look for an upward-consistent assignment on W; if one exists, then 
return true, else return false. 

The first step can be trivially performed in linear time. 
Concerning Step 2, Theorem 3 allows us to test if it is possible to obtain an 

upward embedding from a candidate upward embedding by solving the perfect 
c-matching [1] problem defined on the bipartite network N(L1, L 2, A), where L1 
and Lz are the two sets of vertices and A is the set of edges. The vertices of L1 
are in one-to-one correspondence with the sources and sinks of G and are labeled 
1; the vertices of L 2 are in one-to-one correspondence with the faces of W and are 
labeled with their capacities. An edge in A between a vertex v of L1 and a vertex 
f of La exists if and only if v belongs to f in qJ. Observe that, due to Lemma 5, 
I Lll = ~I~L2 cl. The c-matching problem is the following: 

2 Xvf = C f,  Vf ~ L2, 
(v,f)eA 

Xvy = 1, Vv 6 L1, 
(v,f)~A 

where X,y = 1 if vertex v is assigned to face f and xvl = 0 otherwise. 
The c-matching problem has a solution if and only if (see [18]) the st-network 

N' defined below has a flow of value [SI + I T I. Observe that there are other works 
that use flow networks for solving related problems on angles in planar drawings 
[31], [26], [19]. 

Network N' is obtained from N by introducing two new vertices s and t. Vertex 
s is connected to each vertex v of Lx with an edge with capacity 1, directed from 
s to v. Each face f of L2 is connected to t with an edge with capacity c s directed 
from f to t. All the edges of A have capacity 1 and are directed from L 1 to L 2 . 

Now we analyze the time complexity of Algorithm Fixed-Embedding-Test. 

THEOREM 4. Let G be a biconnected digraph with n vertices, let r be the total 
number of sources and sinks of G. Let �9 be a planar embedding of G and let h be 
a face of~P. Algorithm Fixed-Embedding-Test allows us to test if G has an upward 
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embedding whose underlyin O planar embeddin9 is it' and whose external upward 
face is h is O(n + r 2) time. 

PROOF. The number of vertices in L1 is r and the number of vertices in L 2 is 
bounded by r (see Lemma 5 and take into account that the only meaningful vertices 
of L2 are those with capacity different from zero). Moreover, since the bipartite 
network N is planar and since the number of edges added to N to obtain N' is 
O(r) we have that N' is sparse. Also, since the maximum flow value is r, using the 
Ford-Fulkerson algorithm that performs successive flow augmentations the max- 
flow problem can be solved in O(r 2) time. []  

5.2. Upward-Drawin9 Testin9 for Trieonnected Dioraphs. In this section we 
always refer to triconnected digraphs. Theorem 4 allows us to test if a triconnected 
digraph has an upward drawing by simply performing Algorithm Fixed-Embed- 
ding-Test on all the n possible external faces. A trivial implementation of the above 
approach leads to an O~n(n + r2))-time algorithm. 

The performance can be improved by exploiting the following lemmas. 

LEMMA 7. Let q~ be a planarly embedded acyclic triconnected digraph. Let r be 
the number of sources and sinks of ~g. The number of faces of ge that have at least 
one source and one sink is O(r). 

PROOF. Let q2' be the digraph defined as follows. The vertices of W' are the 
sources and sinks of qJ. For  each face f of q~ that contains at least one source 
and one sink, one of the sources and one of the sinks of f are arbitrarily selected 
and an edge between them is inserted in the edge set of ~P'. 

The number of faces of ~P that have at least one source and one sink is equal 
to the number of edges of q~'. 

Since ~g is triconnected, an edge between two vertices x and y of ~P' can be 
inserted only twice, otherwise x and y would result a separating pair of g?. Hence, 
~P' is a multigraph with at most two edges for each pair of vertices and without 
self-loops. 

Moreover, by construction, qJ' is planar, hence, it has at most 6 r -  12 
edges. []  

Observing that the only meaningful external faces are those that have at least 
one source and one sink, we can conclude that the number of candidate upward 
external faces that have to be taken into account by our algorithm is O(r). 

Now we show that, for each possible external face, instead of solving a complete 
max-flow problem, we can simply evaluate an augmenting flow. 

Consider again the max-flow problem stated above. We can define a new 
network N" obtained from N' by a slight modification of the capacities c I,  i.e., 
c~ = ny - 1 for all f ~ L2; intuitively this corresponds to not having yet identified 
an external face. 
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Let maxflow(N") be equal to the flow that is pumped by the solution of the 
maxflow problem in the sink of N". 

LEMMA 8. Ifmaxflow(N") < ]SI + ITI - 2, then G has no upward embedding. 

PROOF. Suppose an upward embedding of G exists and let h be its upward 
external face and suppose that maxflow(N") < I SI + [TI - 2. 

Let N' be the network associated with the feasible embedding, where the capacity 
of face h is Ch = nh + 1. We have that maxflow(N') = I SI + I TI. Now, consider the 
network N"  obtained from N" by changing only the capacity c~, such that 
c~' = c~ + 2 = c h. Obviously N"  = N', and then maxflow(N')= I SI + I TI. How- 
ever, maxflow(N") <_ maxflow(N") + 2 < ]S~ + IT I, a contradiction. [] 

Suppose, now, the above necessary condition is satisfied and let x be the 
optimum flow of N", with value IS[ + IT[ - 2. Clearly, x is also feasible for N' 
which is the network associated with a particular choice of the external face. In 
order to decide if N' corresponds to an upward embedding, we have to prove that 
maxflow(N') = I Sh +ITh.  To do that we can simply try to augment the feasible 
flow x of exactly two units. 

Moreover, for any candidate external face h we have a candidate embedding 
and then a different network N~ (i.e., with different values of the capacities). In 
the worst case, in order to prove that G admits an upward embedding, we have 
to look for the augmenting flow for every possible candidate upward external face, 
whose number is O(r). Since the computation of flow x can be performed in O(r 2) 
time (the argument is analogous to the one of Theorem 4) and since the search 
for a unitary augmenting flow can be performed in O(r) time, we can claim the 
following theorem: 

THEOREM 5. Let G be a triconnected digraph with n vertices and let r be the total 
number of sources and sinks of G. An algorithm exists that allows us to test if G has 
an upward drawing in O(n + r E) time. 

5.3. Applications. Concerning the possibility of using the results of the algorithm 
to produce an upward drawing, we note that the proposed algorithm produces as 
output an upward-consistent assignment. We can exploit procedure SaturateFace 
in the proof of Theorem 3 to produce a planar st-digraph that includes G starting 
from such an assignment. We can use the st-digraph as input to any of the drawing 
algorithms for such kind of digraphs (many such algorithms have been listed in 
the introduction). 

The time complexity of procedure SaturateFace is linear. A trivial way to obtain 
such a linear-time behavior is to traverse the circular sequence of symbols of each 
face by using a stack for the B-symbols. In this way we decompose each internal 
face f into c I + l  faces and the external face h into c h + 3  faces in time 
proportional to the number of B-symbols assigned to the face. From the above 
considerations and by Lemma 5 we have: 
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THEOREM 6. Let �9 be an upward-embedded digraph with n vertices. An algorithm 
exists that allows us to construct an st-digraph that includes �9 in O(n) time. 

As a final remark, we observe that our approach allows us also to represent 
implicitly all the possible upward embeddings of a given triconnected graph. In 
fact, such upward embeddings are in one-to-one correspondence with the solutions 
of the perfect c-matching (max-flow) problem that we have presented. 

6. Open Problems. We have presented a polynomial-time algorithm for testing 
if a triconnected digraph has an upward drawing. Our results are based on an 
algorithm that allows us to test if a biconnected digraph with a given pianar 
embedding has an upward drawing that preserves the embedding. Although this 
is out of the scope of this paper, it is interesting to observe that our algorithm for 
digraphs with a fixed embedding can be extended to the case of connected digraphs 
by slightly changing the definition of an upward-consistent assignment. Related 
problems that remain open are the following: 

1. Find a polynomial-time algorithm for upward-drawing testing in biconnected 
digraphs or prove the NP-completeness. Observe that the problem has been 
solved for digraphs with one source in [13] and that several other problems 
that have been solved for planar graphs with a fixed embedding are still open 
in the case of variable embedding (see, for instance, [26]). 

2. Characterize the class of digraphs that have a unique upward embedding (the 
equivalent of triconnected graphs for planar graphs). 

Acknowledgments. We are very grateful to an anonymous referee for her/his 
useful comments and for having suggested to us how to improve the time 
performance of our algorithm from O(n + r 2 log r) to O(n + r2). 

References 

[1] C. Berge, Graphs, North-Holland, Amsterdam, 1985. 
[-2] K. Booth and G. Lueker, Testing for the Consecutive Ones Property, Interval Graphs, and 

Graph Planarity Using PQ-Tree Algorithms, J. Comput. System Sci., vol. 13, pp. 335-397, 1976. 
[3] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, A Linear Algorithm for Embedding Planar 

Graphs Using PQ-Trees, J. Comput. System Sei., vol. 30, pp. 54-76, 1985. 
[4] H. de Fraysseix and P. Rosenstiehl, A Depth First Characterization of Planarity, Ann. Discrete 

Math., vol. 13, pp. 75-80, 1982. 
[5] G. Di Battista, W. P. Liu, and I. Rival, Bipartite Graphs, Upward Drawings, and Planarity, 

Inform. Process. Lett., vol. 36, pp. 317-322, 1990. 
[-6] G. Di Banista and R. Tamassia, Algorithms for Plane Representations of Acyclic Digraphs, 

Theoret. Comput. Sci., vol. 61, pp. 175-198, 1988. 
[7] G. Di Battista and R. Tamassia, Incremental Planarity Testing, Proe. 30th IEEE Symposium 

on Foundations of Computer Science, pp. 43~441, 1989. 
[8] G. Di Battista, R. Tamassia, and I. G. Tollis, Area Requirement and Symmetry Display 

of Planar Upward Drawings, Discrete Comput. Geom., vol. 7, pp. 381-401, 1992. 



Upward Drawings of Triconnected Digraphs 497 

[9] P. Eades and R. Tamassia, Algorithms for Drawing Graphs: An Annotated Bibliography, Tech. 
Report No. CS-89-09, Brown University, 1989. 

[10] P. Eades and L. Xuemin, How To Draw a Directed Graph, Proc. IEEE Workshop on Visual 
Languages, pp. 13-17, 1989. 

1,11] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, 1979. 
1-12] J. Hopcroft and R. E. Tarjan, Efficient Planarity Testing, J. Assoc. Comput. Mach., vol. 21, 

no. 4, pp. 549-568, 1974. 
[13] M.D. Hutton and A. Lubiw, Upward Planar Drawing of Single Source Acyclic Digraphs, Proc. 

2nd ACM-SIAM Symposium on Discrete Algorithms, pp. 203-211, 1991. 
114] R. J6gan, R. Nowakowski, and I. Rival, The Diagram Invariant Problem for Planar Lattices, 

Acta Sci. Math. (Szeged), vol. 51, pp. 103-121, 1987. 
[15] D. Kelly, Fundamentals of Planar Ordered Sets, Discrete Math., vol. 63, pp. 197-216, 1987. 
116] D. Kelly and I. Rival, Planar Lattices, Canad. J. Math., vol. 27, pp. 636-665, 1975. 
1-17] A. Lempel, A. Even, and I. Cederbaum, An Algorithm for Planarity Testing of Graphs, Theory 

of Graphs (International Symposium, Rome, 1966) (P. Rosenstiehl, ed.), Gordon and Breach, 
New York, pp. 215-232, 1967. 

1,18] L. Lovasz and M. D. Plummer, Matching Theory, Annals of Discrete Mathematics, vol. 29, 
North-Holland, Amsterdam, p. 71, 1986. 

[19] S.M. Malitz and A. Papakostas, On the Angular Resolution of Planar Graphs, Proc. ACM 
Symposium on Theory of Computing, 1992. 

1,20] T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, Annals of Discrete 
Mathematics, North-Holland, Amsterdam, 1988. 

[21] C. Platt, Planar Lattices and Planar Graphs, J. Combin. Theory Ser. B, vol. 21, pp. 30-39, 1976. 
[22] I. Rival, The Diagram, in Graphs and Orders (I. Rival, ed.), Reidel, Dordrecht, pp. 103-133, 1985. 
[23] I. Rival, Graphical Data Structures for Ordered Sets, in Algorithms and Orders (I. Rival, ed.), 

Kluwer, Boston, pp. 3-31, 1989. 
[24] I. Rival and J. Urrutia, Representing Orders on the Plane by Translating Convex Figures, Order, 

vol. 4, pp. 319-339, 1988. 
[25] K. Sugiyama, S. Tagawa, and M. Toda, Methods for Visual Understanding of Hierarchical 

Systems, IEEE Trans. Systems Man Cybernet., vol. 11, pp. 109-125, 1981. 
1,26] R. Tamassia, On Embedding a Graph in the Grid with the Minimum Number of Bends, SlAM 

J. Comput., vol. 16, pp. 421~144, 1987. 
1,27] R. Tamassia, G. Di Battista, and C. Batini, Automatic Graph Drawing and Readability of 

Diagrams, IEEE Trans. Systems Man Cybernet., vol. 18, pp. 61-79, 1988. 
1,28] R. Tamassia andI. G. Tollis, A Unified Approach to Visibility Representations of Planar Graphs, 

Discrete Comput. Geometry, vol. 1, pp. 321-341, 1986. 
[29] C. Thomassen, Planar Acyclic Oriented Graphs, Order, vol. 5, pp. 349-361, 1989. 
130] W. Trotter and J. Moore, Jr., The Dimension of Planar Posets, J. Combin. Theory Set. B, 

vol. 22, pp. 54-67, 1977. 
1,31] G. Vijayan, Geometry of Planar Graphs with Angles, Proc. 2nd ACM Symposium on Computa- 

tional Geometry, pp. 116-124, 1986. 
1,32] H. Whitney, Congruent Graphs and the Connectivity of Graphs, Amer. J. Math., vot. 54, 

pp. 150-168, 1932. 


