
Algorithmica (1993) 9:!68-183 Algorithmica
�9 1993 Springer-Ver~ag New York Inc~

Fast Linear Expected-Time Algorithms for
Computing Maxima and Convex Hulls

Jon L. Bentley, 1 Kenneth L. Clarkson, 1 and David B. Levine 2

Abstract. This paper examines the expected complexity of boundary problems on a set of N points
in K-space. We assume that the points are chosen from a probability distribution in which each
component of a point is chosen independently of all other components. We present an algorithm to
find the maximal points using K N + O(N ~ IlK logl/K N) expected scalar comparisons, for fixed K >_ 2.
A lower bound shows that the algorithm is optimal in the leading term. We describe a simple maxima
algorithm that is easy to code, and present experimental evidence that it has similar running time. For
fixed K > 2, an algorithm computes the convex hull of the set in 2 K N + O (N ~ - 1/~ logtm N) expected
scalar comparisons. The history of the algorithms exhibits interesting interactions among consulting,
algorithm design, data analysis, and mathematical analysis of algorithms.

Key Words. Maxima, Convex hulls, Computational geometry, Algorithms.

1. Introduction. This paper examines the expected complexity of two problems
in K-dimensional computational geometry: computing the maximal points and
the convex hull of a point set. These problems arise in a variety of applications:
we sketch some examples later in this paper. Because the maxima and the convex
hull provide natural representations of the boundary of the point set S, both objects
play a fundamental role in computational geometry.

All the algorithms in this paper exploit a single insight: for these problems, a
certificate of exclusion typically can quickly demonstrate that most of the N input
points are not in the final output. For maxima, a particular point usually
dominates all but o(N) of the points in S (assuming that each component of a
point is chosen independently of all other components). For convex hulls, a
particular hyperrectangle typically contains all but o(N) points in S but contains
no points on the hull. These certificates are used in a sieve approach: a first phase
sieves out points not in the output structure, and a second phase constructs the
final output. Previous papers present algorithms for these problems with O(N)
expected time; our certificate-based algorithm show that the constant factors
hidden in the big-ohs can be quite small. For instance, the best previous algorithm
for convex hulls has a leading term of 2K(K + 1)N while our algorithms has a
leading term of 2KN.

1 AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.
2 Department of Computer Science, Williams College, Williamstown, MA 01267, USA. This work was
performed while this author was visiting AT&T Bell Laboratories.

Received February 12, 1990; revised May t0, !991. Communicated by C. K. Wong.

Fast Linear Expected-Time Algorithms for Computing Maxima and Convex Hulls 169

Section 2 of this paper describes maxima, and Section 3 describes convex hulls.
Conclusions are then offered in Section 4.

2. Maxima. In this section we study the problem of computing the maximal
points in a point set. The first subsection provides definitions and reviews previous
work. The second subsection presents "theoretical" algorithms and proofs of their
run time, while the third subsection presents a related "practical" algorithm and
experiments and conjectures regarding its run time. The final subsection describes
the history of the algorithms.

2.1. Preliminaries. Throughout this paper we deal with a set S of N points in
K-space. Point P is said to dominate point Q if each coordinate of P is greater
than the corresponding coordinate of Q. A point in S that is not dominated by
any other point in S is a maximal point; the undominated points in S are the
maxima of the point set. Maxima problems and algorithms are often discussed in
terms of N vectors of length K; we phrase our discussion in the equivalent language
of points for consistency with the description of convex hulls in Section 3.

The problem of computing maxima is basic in computational geometry because
the maxima are an interesting characterization of the boundary of a point set.
Maxima also arise in diverse applications. Bentley et al. (1978) descril~e how
maxima are useful in determining the run time of dynamic programming algo-
rithms. Preparata and Shamos (1985) use maxima to solve the "floating currency
problem" of economics. In the next section we see how maxima are useful in
computing convex hulls.

Becker et al. (1987) use maxima to analyze the data in Boyer and Savageau's
(1985) Places Related Almanac. The almanac rates 329 metropolitan areas within
the United States on nine different dimensions (climate, housing, cost, health care,
etc.). Each value is assigned a numerical value, so the data may be viewed as 329
points in 9-space. The almanac ranked the cities by summing the variables, with
equal weight assigned to each of the nine dimensions. By assigning different weights
to the variables, 134 cities can hold first place, and 150 cities can be ranked last.
Becker et al. use the domination relationship as a more'natural comparison of
cities, both with the nine original variables and several subsets of eight variables.

Kung et al. (1975) describe an algorithm for computing the maxima of N points
in K-space in O(NloglC-2N + N logN) time. Bentley (1980) gives a simpler
description of their algorithm using the paradigm of multidimensional divide-and-
conquer; he also develops a corresponding data structure for maxima searching
(to determine whether a new query point is maximal in the set). Monier (1980)
presents a general scheme for analyzing the run time of multidimensional divide-
and-conquer algorithms; he shows that, for fixed K >_ 3, the number of basic
operations to build a maxima search tree is (N lg K- 2 N)/(K - 2)! + | log K- 3 N).

Bentley et al. (1978) study the maxima problem under the assumption that the
input point set is drawn from a distribution with Component Independence, which
we abbreviate as the C! property. A distribution has the CI property if the K
components in each point are chosen independently from continuous distributions.

170 J.L. Bentley, K. L. Clarkson, and D. B. Levine

Points uniform over the K-dimensional hypercube display the CI property, as do
points chosen uniformly from any rectilinearly oriented hyperrectangle. CI dis-
tributions can be more complex: the first component might be chosen from a
normal distribution, the second from an exponential distribution, the third from
a beta distribution, etc. With probability 1, all components in a point set will be
distinct. To study a maxima algorithm that operates by comparing components,
a CI point set may be combinatorially modeled by a random selection from the
(N !)K K-tuples of permutations of 1, 2 , N. If we let E(M) denote the expected
number of maxima in a CI set of N points in K-space, Bentley et al. (1978) show
that E(M)= O(logK-IN); they use that fact to construct a maxima algorithm
with O(N) expected time for any fixed K _> 1.

Bentley and Shamos (1978) generalize that technique to yield linear expected-
time divide-and-conquer algorithms for other problems and other input distribu-
tions. The key fact in their proofs is that if the input is of size N, then the expected
size of the output is O(N p) for some P < 1 ~ we use their result later in this paper.

Devroye (1980) generalizes the results of Bentley et aL (1978) regarding the
expected number of maxima to higher moments. In particular, he shows that, for
any CI distribution and any positive real p, E(M p) < g~)(E(M))< He observes that
his paper can lead to an effective convex hull algorithm; we see his argument later
in this paper.

A fundamental operation in some maxima algorithms is to compare the two
points A and B for domination. There are four possible outcomes: A dominates
B, B dominates A, A equals B, and A and B are incomparable (none of the three
previous results hold). Algorithm C reports that A dominates B if it is greater in
some components and equal in the remainder; it could easily be changed to be
strict. The code determines that outcome using at most K + 1 scalar comparisons;
that could be reduced to K comparisons by saving the ternary state of the first
comparisons of A[I] and B[I].

Algorithm C. Compare points A and B for domination.

I := i
while I <= K and All] = B[I] do

! := I + 1
if I > K then

return A equals B
if A[I] > B[I] then

for J := I+l to K do
if B[J] > A[J] then

return that A and B
return A dominates B

else
for I :: I+l to K do

if A[J] > B[J] then
return that A and B

return B dominates A

are incomparable

are incomparable

2.2. Provably Fast Algorithms. We first study a maxima algorithm specifically
designed for input that is known to be N points distributed uniformly over the
unit square. As we progress through this subsection, we generalize the algorithm

Fast Linear Expected-Time Algorithms for Computing Maxima and Convex Hulls 171

to higher dimensions and then to general CI distributions. The idea underlying
Algorithm M1 is illustrated in this picture:

(0,0)

. . . . D

A B

(1,1)

The point P at (1 - ~ N/N, 1 - x / ~ N/N) is not necessarily a member of the
set S. It partitions the unit square into four rectangles: P dominates points in A,
is dominated by points in C, and is incomparable to points in B and D. We will
soon see that with high probability, rectangle C contains at least one point. Because
that point dominates all points in A, it certifies that none of the points in A can
possibly be maxima. We therefore sieve out those points and compute the maxima
by examining the other three sets. The details of this approach are given as
Algorithm M1.

Algorithm M 1 uses the sieve approach that is employed by all later algorithms
in this paper (with the exception of Algorithm M3). A first step sieves out most
of the points in the set using a quick test that certifies that they are not maximal.
We then pass the small subset of possible maxima on to a later maxima algorithm,
with acceptable running time.

We now analyze the run time of Algorithm M1. Step 1 requires constant time,
and Step 2 requires exactly N point comparisons, or 2N scalar comparisons. We
must now compute the probability that no points fall in square C. Because each

side of the square is of length ~ N/N, its area is In N/N. The probability of a
particular input point not lying in C is one minus that area. The probability that
none of the N points is in C is therefore (1 - in N/N) N, which is at most
e -~nN = 1/N since, for any X, (1 + X/N) u < e x. The probability that set C is empty
in Step 3 is therefore at most 1/N.

Algorithm M1. Finding maxima on the unit square.

!. Initialize the sets A, C, and BD to empty. Let P denote the point
(1 - x/ln N / ~ 1-- x / ~ N/N).

2. Compare each point Q in the set S to P. If P dominates (2, place (2 in set A;
if (2 dominates P, place (2 in set C; otherwise place (2 in set BD.

3. If the set C is empty, then compute the maxima of set S by some other algorithm
and return.

4. Because C is not empty, no maxima are in set A. Compute the maxima of
C ~ BD by some other algorithm.

172 J.L. Bentley, K. L. Clarkson, and D. B, Levine

If set C is empty in Step 3 of Algorithm MI, then we use an O(NiogN)
worst-case algorithm to compute the maxima; because the probability of this event
is bounded above by 1/N, the contribution to the expected time of the algorithm
is O(log N). If Step 4 is executed, then the expected size of the set C ~ BD is
bounded above by N times the area of B, C, and D (plus one because we know

that set C contains at least one element), which is tess than 1 + 2Nxlf(n N/N =

O(xfN log N). The points in the subset C u BD do not have the CI property
assumed by Bentley et al. (1978), but they do have the N v property of Bentley and
Shamos (1978) (the subset can be partitioned into two rectangles, B ~ C and D,
each of which exhibits the CI property). We can therefore apply Bentley and
Shamos's (1978) linear expected-time maxima algorithm to the set C u BD. The

expected running time of Step 4 of the algorithm is therefore O(,~,N/~og N)i The
time of the algorithm is summarized in this theorem.

THEOREM 2.1. Algorithm M l finds the maxima of N points chosen uniformly from

the unit square in O(N) expected time, using N + O(,,/N log N) expected point
comparisons.

It is straightforward to extend Algorithm M1 to K-space, when the N input
points are chosen uniformly over the K-dimensional hypercube. The algorithm
uses a point P in which each component has the value 1 - (ln N/N) 1/K. Point P
dominates all points in the hypercube A, and is in turn dominated by all points
in the hypercube C. The hypercube C has edge length (ln N/N) tm and volume
In N/N. The probability that C is empty is bounded above by 1/N; in that event,
we use the worst-case algorithm of Kung et al. (1975). The expected number of
undominated points (conditional on the fact that C is not empty) is bounded above
by 1 + KN(ln N/N) 1/K or 1 + K(N ~ -I/K ln~/K N). The undominated points do not
have the CI property, but they can be partitioned into K hyperrectangles that do,
so the subset has the N v property of Bentley and Shamos (1978) and the maxima
can be computed in expected time linear in the size of the subset. This analysis
yields the following theorem,

THEOREM 2.2. Algorithm Ml finds the maxima of N points chosen uniformly from
the K-dimensional hypercube in O(N) expected time, using N + O(N 1 - 1/K 1ogl/K N)
expected point comparisons, for any fixed K.

The analysis of the run time of Algorithm M1 relies on the fact that its input
is known to be distributed uniformly over the K-dimensional hypercube. The next
algorithm we study, M2, assumes only that its input is from a CI distribution.
The role played by the fixed real number 1 - (I n N/N) 1/K in Algorithm M1 is
replaced in Algorithm M2 by an order statistic. The order statistic is computed
using Floyd and Rivest's (1975) selection algorithm, which selects the .Mth largest

element in a set of size N in N + min(M, N - M) + O(x/N) expected comparisons.
Step 1 of the algorithm uses K N + O(,,fN) scalar comparisons between point

components, and Step 2 also requires O(KN) time. By the CI property, the
probability of any particular input point dominating P is In N/N, so the analysis

Fast Linear Expected-Time Algorithms for Computing Maxima and Convex Hulls 173

Algorithm M2. Finding maxima from a CI distribution.

i. Compute the N (1 - (In N/N)~/K)th largest element in each dimension; con-
struct the point P to consist of those values in the appropriate dimensions.

2. Using the scalar comparisons made in Step 1, partition S into three sets: A
contains points dominated by P, C contains points that dominate P, and B
contains points incomparable to P.

3. If set C is empty, then compute the maxima of S and return.
4. Because C is not empty, no maxima are in set A. Compute the maxima of

B u C .

of Steps 3 and 4 is exactly the same as in Algorithm M 1. Thus we have the following
theorem.

THEOREM 2.3. Algorithm M2 finds the maxima of N points chosen from a
K-dimensional CI distribution in O(N) expected time, using

K N + O(N ~ - 1/K 1ogl/K N)

expected scalar comparisons, for any f ixed K >_ 2.

We will now see a lower bound that shows that the leading term in Theorem
2.3 is optimal. Any correct maxima algorithm must examine all K coordinates of
all nonmaximal (undominated) points; otherwise, one of the unexamined compo-
nents could contain a value large enough to make it maximal. Bentley et al. (1978)
show that on the averge there are O(log ~:- 1 N) maxima in a CI set of N points in
K-space. These facts combine to yield the following theorem.

THEOREM 2.4. A correct maxima algorithm must examine at least

N K - O(log ~- 1 N)

point components, on the average, for a CI set of N points in K-space.

We suspect that this bound can be tightened to show that Algorithm M2 is near
optimal in its second-order term.

CONJECTURE 2.5. A correct maxima algorithm must examine at least

K N + ~'I(N 1-1/g)

point components, on the average, for a CI set of N points in K-space.

Notice that correct maxima algorithms need not necessarily examine all compo-
nents of all points: for instance, if the first two components of all points satisfy
the constraint A 1 + A 2 = 1, then those components alone establish that all N
points are incomparable.

2.3. An Effective Heuristic Algorithm. The algorithms in the previous subsection
were designed to be efficient for CI inputs and easy to analyze for that case, but
they are not necessarily robust for real inputs. We now study an algorithm that

174 J.L. Bentley, K. L. Clarkson, and D. B. Levine

is easy to implement, very efficient for CI distributions, and somewhat robust for
point sets from other distributions.

Algorithm M3 is an on-line algorithm that augments sequential search with a
move-to-front heuristic. Its primary data structure is the sequence T o f (indexes
of) current maxima. Sequence Tis originally empty, and at the conclusion of the
algorithm it contains the maxima of S. The algorithm examines all input points
in random order. As the algorithm examines the input point Q, it compares Q
with every point R in T. If Q dominates R, then R is removed from T. If Q is
dominated by no R in T, then Q is appended to the end of T. If R dominates Q,
then Q cannot be maximal; in this case R is also moved to the front of Z The
move-to-front tends to keep near the front of T maxima that are '~powerful"
dominators (like point P in the analysis of Algorithm M1)? Algorithm M3 gives
the details of the algorithm in pseudocode; it implements the sequence T in the
array Max [1 . . TopMax].

We turn now to an analysis of the run time of Algorithm M3. The expected
size of the sequence T after M elements have been examined is precisely the
expected number of maxima in a set of M points, which is monotone increasing
in M. The expected size of Tis therefore O(log K- ~ N), and the expected total cost
of the N searches is O(N log K- t N). To understand the constants in the big-oh, a
series of experiments investigated the average number of maxima. Ten point sets
were generated for N at each power of two fi-om 32 to 65,536 and for each K
from 2 to 5. The N points were uniformly distributed over the K-dimensional
hypercube. Figure 1 plots the number of maxima observed (averaged over the ten
point sets), using the dimension as the plot symbol

Algorithm M3. A heuristic maxima algorithm.

TopMax := i
Max[TopMax] := 1
for I := 2 to N do

J:=l
while J <= TopMax do

if point Max[J] dominates point I then
move Max[J] to front of Max[l,..J]
J := TopMax + 2

else if point I dominates point Max[JI then
shift Max[J+l..TopMax] to Max[J..TopMax-ll
TopMax := TopMax - 1

else if point I equals point Max[J]
J := TopMax + 2

else // points I and Max[J] are incomparable
J := J+l

if J = TopMax + i then
TopMax := TopMax + I
Max[TopMax] := I

3 We conducted a simple experiment to test the importance of the move to front. We used' the algorithm
as described on ten random point sets with K = 2 and N = 100,000; the mean number of point
comparisons was 1.0253N. We ran the experiment again using random insertion into a sequence that
is not reorganized, and the mean number of comparisons rose to 1.341N: All later experiments therefore
used move-to-front.

Fast Linear Expected-Time Algorithms for Computing Maxima and Convex Hulls 175

1000 -

1 0 0 - -

1 0 - -

5
5 4

5 4
4 3

3 3 3

2 2 2
2

5 5
5

5
5 5 4

5 4 4 4
5 4 4

4
4 3 3 3 3 3

3 3
3

2 2 2 2 2 2

I Y - - I - -
100 1000 10000 100000

N

Fig. 1. The number of maxima.

Maxima

The distribution of the maxima and the move-to-front heuristic might, however,
make the algorithm substantially faster than the O(N log K- 1 N) expected bound.
We examined the running time in the same series of experiments shown in Figure
1. Figure 2 shows the average number of point comparisons used, divided by N.
The plot symbol is the dimension; the lines denote mean values.

The average number of point comparisons per point is substantially less than
the number of maxima in the set. At N = 65,536, the mean ratios were 1.037, 1.33,
4.00, and 20.5, for D = 2, 3, 4, and 5, while the mean number of maxima were
13.2, 61.6, 268.9, and 881.6. When we first ran the experiments, we expected the
ratios to increase with N (though we hoped not quite as quickly as the O(log K- 1 N)
bound). When we examined Figure 2, however, we conjectured that the number
of comparisons per point is approaching a different constant for each dimension K.

In Figure 2, though, each curve appears to grow to a peak and then to decrease
again. After running a handful of large experiments (N up to 1,000,000), we
conjectured that the ratio approaches 1 for all values of K. To test this hypothesis,
we re-expressed the data in Figure 2 by plotting the number of point comparisons

5 0 - - -

20--

10--

5 -

2 -

1 -

I t [
100 1000 I0000 100000

N

Fig. 2. Comparisons per point.

Comparisons
per

Point

176 J.L. Bentley, K. L. Clarkson, and D. B, Levine

1000000 -~ 5 5 5

100000-.-1 5 5 4 4 ! 5 4 4
5 4 4 3 3

10000 -~ 5 5 4 ~ 3 3
! �9 5 4 4 3 3 . - 2

1000~ 5 4 3 3

I [I
100 1000 10000

N

Fig. 3. Surplus point comparisons.

Surpius
Point

Comparisons

100000

beyond N, which we refer to as the surplus comparisons, 4 The means of surplus
comparisons are shown in Figure 3.

A weighted least-squares regression shows that for K = 2 the number of surplus
comparisons grows as 7.589N ~ 27.74; the regression yields well-behaved
residuals (apparently normal ly distributed)�9 We have therefore plotted that func-
t ion on Figure 3, which is a close fit to the experimental data. Algori thm M1 helps

to explain why Algori thm M3 might behave this way: a single point very near
(1, 1) tends to stay near the front of the sequence, and dominates all but roughly

x//N of the other inputs. Regressions for the other surplus values yield 37 . tN ~
237 for K = 3, 31.8N ~ 333 for K = 4, and 32.1N ~ 733 for K = 5

(though the residuals are not part icularly well behaved)�9 This data and the heuristic
arguments support the following:

CONJECTURE 2.6. Algorithm M3 finds the maxima of N points chosen from a
K-dimensional CI distribution in O(N) time, using N + o(N) point comparisons, for
any fixed dimension K.

We suspect that it might even be possible to tighten the n u m b e r of surplus
comparisons to near O(N t- 1/K) 5

Our discussion so far has concentrated on C1 distributions, which are known
to have few maxima, on the average. We turn now to a dis t r ibut ion that tends to

have many maxima. Points in K-space from the Ball distr ibut ion are chosen

4 Our first attempt to examine the surplus comparisons resulted in a warning from the regression/plot-
ting package that it had tried to take the logarithms of a negative number. Investigation showed that
on one set of N = 32 points in K = 2-space, Algorithm M3 found two maxima using 31 point
comparisons. We first feared that this was evidence of a program bug, but examining the input point
set showed us how it happened. We leave the explanation as a puzzle for the reader..(Hint: This is
not an artifact of the random number generator; the probability of Algorithm M3 finding the maxima
of a planar set in exactly N - 1 point comparisons is at least 1/N2.)
5 After reading a preliminary version of this paper, Mordecai Golin proved the planar version of this
conjecture. His proof appears in his 1990 Ph.D. thesis from Princeton University, and has been
submitted for publication.

1000 --

100-

lO-

m ,

t t I
100 1000 10000 100000

N

Fast Linear Expected-Time Algorithms for Comput ing Maxima and Convex Hulls 177

Maxima

Comparisons
per

Point

Fig. 4. Performance on Ball input, K = 3.

uniformly from the positive orthant of the unit-radius sphere centered at the origin.
When applied to Ball inputs, both Algorithms M t and M2 find that point P is
undominated and call the worst-case algorithm in Step 3, with probability
approaching 1. Figure 4 shows the results of experiments running Algorithm M3
on the Ball distribution for K = 3 and N between 32 and 65,536; the circles show
the number of maxima computed and the crosses show the number of comparisons
per point.

A weighted least-squares regression on the number of maxima shows that the
expected number is 1.72N ~ We conjecture that the expected number of maxima
in a K-dimensional Ball distribution is | ~- lm). Algorithm M3 compares every
maximal point to every maximal point; if a set has M maxima, then the algorithm
makes at least M (M - 1)/2 point comparisons. Assuming the | I-t/K) con-
jecture, the algorithm therefore makes at least O(N 2-2/K) comparisons for K-
dimensional Ball distributions. Regression shows that the average number of
comparisons per point grows as 2.51N ~ so most of the nonmaximal points
are apparently discarded with relatively little computation. We ran a similar set
of experiments for the Ball distribution with K --- 2; the number of maxima grew

as xfN and the number of comparisons per point grew as log N, or slower. We
do not contend that the Ball distribution models inputs for any particular
application, but these experiments show that Algorithm M3 remains reasonably
efficient even when there are many maximal points.

2.4. History. Our attention was drawn to the maxima problem by Urgel (1989)
in April of 1989. He needed to compute maxima in a program that automates
aspects of contract negotiation: N potential contracts (as many as 10,000) are
evaluated in various dimensions (K varies between 5 and 10), and dominated points
(inferior contracts) can be excluded from later (expensive) processing. He called
one of the authors regarding Bentley's (1980) description of the multidimensional
divide-and-conquer maxima algorithm. He was interested in obtaining software
that implemented the algorithm; we told him that we knew of no implementation.
During our discussion, he stated that he was interested in solving problems of size

178 J.L. Bentley, K. L. Clarkson, and D. B. Levine

up to N = 10,000 with K between 5 and 10. He added that the straightforward
O(KN 2) algorithm was too slow on his machine, and that the data appeared to
be roughly modeled by a CI distribution. He desired an algorithm that was simple
to code and reasonably efficient on his input sets; he was not connected with
worst-case behavior.

That afternoon we designed Algorithm M3 and implemented it in about 100
lines of C + + code. Besides the algorithm itself, the code included routines for
generating random input data, gathering and printing statistics, and providing a
simple animation of the algorithm. The animation helped us to understand the
algorithm's behavior on planar inputs. Later that evening we conducted simple
experiments that indicated that Algorithm M3 might have linear running time,
and communicated the algorithm to Urgel. He subsequently reported that he had
used the algorithm in experiments and that its performance was satisfactory, and
far superior to the quadratic algorithm.

Over the next couple of days we tried to prove that Algorithm M3 had linear
running time, but we could make no progress. We returned to perform more data
analysis (roughly as presented in the last subsection), and eventually conjectured
that Algorithm M3 uses N + o(N) point comparisons. With that conjecture and
some insight from watching algorithm animations, we derived and analyzed
Algorithms M1 and M2.

The paradigm of "divide-and-conquer for linear expected time" was originally
developed by Bentley et aL (1978) for the maxima problem. Bentley and Shamos
(1978) then extended the paradigm to several other problems, including convex
hulls. By conscious analogy to that effort, we attempted to apply the idea of a
quick certificate of exclusion to computing convex hulls. That is the topic of the
next section.

3. Convex Hulls. The convex hutl of the point set S is the smallest convex set
containing the points in S. Preparata and Shamos (1985) describe in detail the
history of algorithms for computing hulls, which we now sketch briefly. Graham
(1972) shows that the hull of N planar points can be computed in O(N log N)
worst-case time; Preparata and Hong (1977) extend that time bound to K =
3-space. Bentley and Shamos (1978) show that the hull can be computed to O(N)
time for K = 2 and K = 3 for a number of input distributions, including all CI
distributions. Golin and Sedgewick (1988) describe a sieve algorithm for computing

a superset of the extreme points of the hull that has size O(x/-N) in O(N) time, if
the points are chosen uniformly from a rectilinearly oriented hypercube. Their
algorithm is simple to code and efficient.

Convex hulls of K-dimensional point sets become more expensive to compute
when K > 4. Seidel (1981) shows that O(N L(K+W2j) worst-case time suffices for
any K > 3; because the convex hull can have that many facets, his algorithm is
optimal in the worst case for even K. Clarkson and Shor (1989) describe a Las
Vegas algorithm optimal for both even and odd K. Golin and Sedgewick (1988)
extend their planar algorithm to K-space with a coefficient in the leading term of
2t~N; we sketch their method shortly.

Fast Linear Expected-Time Algorithms for Computing Maxima and Convex Hulls 179

Bentley et al. (1978) observed that every convex hull point is maximal under at
least one of the 2 K possible assignments of K plus and minus signs to the K
components of the input points. For CI distributions, that implies that by
computing the maxima under all 2 K assignments, O(N) time suffices to find a
superset of the extreme points with expected size O(log K- 1 N) for any fixed K.
(Thus the algorithms in Section 2 allow the superset to be computed in 2KN + o(N)
point comparisons, for fixed K.) Devroye (1980) shows that higher moments of
maxima are well behaved: if E(M) denotes the expected number of maxima in a
CI set, then E(M p) <_ g(p)(E(M)) p. Devroye uses that observation to yield a linear
expected-time algorithm for any CI distribution: he first computes all oriented
maxima to find a superset of the hull of size O(log K- 1 N), and then uses a
worst-case O(N K) algorithm to find the hull of that superset. By his theorem,
the run time of the second step will be O(log K~K- 1) N).

We now describe two certificate-based convex hull algorithms, H1 and H2,
which correspond to Algorithms M1 and M2 in Section 2. Both are sieve
algorithms; they compute a small superset of the hull points, and pass them on
to a worst-case hull algorithm. We start with the planar version of Algorithm HI,
which assumes that its input consists of N points uniform over the unit square.

It uses a square A whose sides are distance x / in N / N from the sides of the unit
square; square A defines the four corner squares C1, C2, C3, and C4. These objects
are shown in this picture:

~ n N / N

(0,0)

-C21

C3

A

C1

C4

(1,1)

Just as point P in algorithm M1 certifies that most points are not maxima, so
square A will certify that most points are not on the boundary of the convex hull.
Those points can be sieved out of later processing. With very high probability,
there is at least one point in each of C1, C2, C3, and C4. If each of those squares
is occupied, then we know that square A is probably contained in the convex hull
of S, because square A is within the hull of those four points. Thus all points in
A can be ignored in further processing. 6 The details of this approach are given as
Algorithm H1.

6 A similar result is implicit in the Voronoi diagram of Bentley et al. (1980). In Step 2 in Section 3,
they show that with probability 8N 1 -ctgN, no point further than lg N/N from the boundary of the unit
square is on the convex hull.

180 J, L. Bentley, K. L. Clarkson, and D. B. Levine

Algorithm H1. Finding the convex hull on the unit hypercube (planar version).

1. Initialize the set B to empty. Let A denote the square centered within the unit

square with edge length (1 - 2.vl/lnN/N).
2. Test each point in the set S for inclusion in A. If it is not contained in A, then

insert it in set B.
3. Initialize the counts C[1..4] to zero. Examine each point in the set B; if both

of its components lie outside both ranges of A, increment the appropriate C[i]
counter. If any of the C[i] counters is zero, then compute the convex hull of
set S and return.

4. Because the counters are all nonzero, no extreme points are in set A. Compute
the hull of B.

We now analyze the run time of Algorithm HI. Step 1 requires constant time,
and Step 2 requires at most 4N scalar comparisons. We must now compute the
probability that no points fall in any of the corner squares. We first consider
square C1; the proof of Theorem 2.1 showed that the probability that it is empty
is at most 1/N. We turn next to square C2, with the complication that we now
know that C1 is not empty. Fortunately, we know only that C1 contains at least
one point, so the probability that none of the remaining N - 1 points is in C2 is
(1 - In N/N) ~- 1, which is bounded above by 1/[N(1 - In N/N)] = I/[(N - In N)].
Set C3 is similar, and the probability that C4 is empty given that CI, C2
and C3 are not is bounded above by 1/[N(1 - In N/N)3]. Thus the probability
that any one of the four squares is empty is bounded above by the sum of these
four values, which is in turn bounded above by 4 / [N (1 - In N/N)3], which is
O(1/U).

If one of the C[i] counters is zero in Step 3 of Algorithm H1, then we use an
O(N log N) worst-case algorithm to compute the hull; because the probability of
this event is bounded above by O(1/N), the contribution to the expected time of
the algorithm is O(log N). If Step 4 is executed, then the expected size of the set
B is bounded above by N times the area outside of A (plus four for the points

known to be in each corner), or 4 + 4Nx/in N/N = O(x/rN log N). The points in
the subset B have the N P property of Bentley and Shamos (1978), so we can apply
their linear-time hull algorithm to the set B. The expected running time of Step 4 of

the algorithm is therefore 0 (~ log N). The run time of the algorithm is summar-
ized in this theorem.

THEOREM 3.1. Algorithm HI finds the convex hull of N points chosen uniformly
from the unit square in O(N) expected time, using 4N + O (x ~ o g N) expected
scalar comparisons.

It is interesting to compare Algorithm H1 to a similar hull algoritl~m of Golin
and Sedgewick (1988), which we refer to as Algorithm GS. Algorithm H1 uses

~ 4 N scalar comparisons to sieve out all but O(x/N log N) points from considera-
tion. Algorithm GS uses more computation to produce a smaller set: the sieve stage
uses 8N scalar comparisons and 4N arithmetic operations to produce a subset of

Fast Linear Expected-Time Algorithms for Computing Maxima and Convex Hulls 181

size O(xfN). In K-space the sieve in Algorithm GS uses 2 r + * N scalar compar-
isons and 2K(K -- 1)N arithmetic operations (or 2~(K + 1)N total primitive opera-
tions) to produce a subset of size O(Nt-lm). The analysis of algorithm GS
assumes that the input point set is chosen uniformly over a rectilinearly oriented
hyperrectangle.

We now extend Algorithm H1 to K-space, for input uniform over the K-
dimensional hypercube. The algorithm uses a hypercube A centered in the unit
hypercube with edge length 1 - 2(ln N/N) 1/K. In 2K scalar comparisons all points
within A can be discarded. With probability 1 - O(1/N), there is at least one point
in each of the 2 r corners defined by A, so no points in A are extreme points. (If
one of the corners is empty, we immediately call Devroye's (1980) algorithm and
return.) The expected number of remaining points (conditional on the fact that
the corner squares are not empty) is bounded above by 2 ~ + 2KN(ln N/N) lm, or
O(N 1 - 1/K inl/r N) for fixed K.

We are now left with a (relatively) small subset of the points that is in turn a
superset of the convex hull points. Even though the conditioning of the algorithm
destroys the CI property, the inputs retain the N P property because they can be
partitioned into 0(3 K) hyperrectangles, each of which is CI. We use Bentley and
Shamos's (1978) linear-time algorithm to find the maxima under all orientations,
and then call a worst-case algorithm on that subset. Devroye's (1980) analysis
yields the following theorem:

THEOREM 3.2. For fixed K >_ 3, Algorithm H1 finds the convex hull of N points
chosen uniformly from the K-dimensional hypercube in O(N) expected time, using
2KN + O(N 1 - ~/i~ logl/K N) expected scalar comparisons.

We turn next to Algorithm H2, which corresponds to Algorithm M2 in the last
section. Its input is a set of N points from a K-dimensional CI distribution. The
details of this approach are given as Algorithm H2. Its analysis combines the
techniques used in the analysis of Algorithm H1 and Algorithm M2. The result
is the following theorem.

THEOREM 3.3. Algorithm H2 computes the hull of N points chosen uniformly
from the K-dimensional CI distribution in O(N) expected time, using 2KN +
O(N 1 - 1/~ 1ogl/K N) expected scalar comparisons.

Algorithm H2. Finding a convex hull superset for a CI set.

1. Initialize the set B to empty. Compute the N((lnN/N)~/K)th and
N(1 - (l n N/N)lm)th largest element in each dimension; construct the hyper-
rectangle A to consist of those values in the appropriate dimensions.

2. Test each point in the set S for inclusion in A. If it is not contained in A, then
insert it in set B.

3. Initialize the counts C[i] to zero. Examine each point in the set B; if all of its
components lie outside all ranges of A, increment the appropriate C[i] counter.
If any of the C[i] counters is zero, then compute the hull of set S and return.

4. Because the counters are all nonzero, no extreme points are in set A. Compute
the hull of set B.

182 J.L. Bentley, K. L. Clarkson, and D. B. Levine

Algorithm H2 represents a substantial improvement over the sieve time of Golin
and Sedgewick's (1988) algorithm, which uses 2 K + 1 D N scalar comparisons. The
expected number of remaining points is only slightly higher than the O (N ~ - ~jK) of
Algorithm GS.

Like a maxima algorithm, a correct convex hull algorithm must necessarily
inspect all K components of all points within the hull. Algorithm H2 is therefore
within a factor of two of optimal in the leading term. Tightening the bound will
require a precise model of computation.

4. Conclusions. Rectangles have long been used as certificates in computational
geometry. The bounding box of a polygon, for instance, is the smallest rectitinearly
oriented rectangle that contains the polygon. If a point is outside a polygon's
bounding box, that certifies that the point is not contained in the polygon. If two
polygons have bounding boxes that do not intersect, that certifies that the polygons
do not intersect. The certificates in this paper are, however, fundamentally
different: they are known to be valid only after a significant amount of processing.
If they are found to be invalid, then a standard algorithm is called.

The certificate-based sieve algorithms of this paper yield efficient expected-time
algorithms for boundary problems. A certifying point is able to show that most
points are not maximal, and a certifying hyperrectangle is able to show that most
points are not on the boundary of the convex hull. All those points may be removed
by a sieving step. These algorithms are applicable to all distributions with
Component Independence. The expected run time of the maxima Algorithm M2
is optimal in the leading term; Algorithm M3 is simple to implement and we
conjecture that it is also optimal in the leading term. The expected run time of
convex hull Algorithm H2 is within a factor of two of optimal, and its leading
coefficient of 2 K N is a substantial improvement over the previous best result of
2 K + 1 K N . The history at the end of Section 2 exhibits interesting interactions
among consulting, algorithm design, data analysis, and mathematical analysis of
algorithms.

We conclude by mentioning several problems that merit further research.

Prove Conjecture 2.5, which raises the lower bound on the run time of maxima
algorithms. Is it possible to tighten the lower bound and the upper bound to
match in second-order terms?

Prove Conjecture 2.6, which states the expected number of point comparisons
used by maxima Algorithm M3 is N + o(N). (Golin has already shown this for
the planar case.)

Design a simple convex hull algorithm corresponding to maxima Algorithm M3.
Extend certificate technique to other problems. Consider, for instance, the

problem of intersecting half-planes under the probabilistic model used by
Bentley and Shamos (1978): a small circle centered at the origin certifies that
half-planes that do not intersect it are, with high probability, not in the final
polygon.

Fast Linear Expected-Time Algorithms for Computing Maxima and Convex Hulls 183

Acknowledgments. We are grateful for the helpful comments of Rick Becker,
Mordecai Golin, Brian Kernighan, Julio Urgel, Chris Van Wyk, and the
anonymous referees.

References

Becker, R. A., L. Denby, R. McGill, and A. R. Wilks, Analysis of data from the Places Rated Almanac,
The American Statistician, 41(3) (1987), 169-186.

Bentley, J. L., Multidimensional divide-and-conquer, Communications of the Association for Computing
Machinery, 23(4) (1980), 214~229.

Bentley, J. L., and M. I. Shamos, Divide and conquer for linear expected time, Information Processing
Letters, 7(2) (1978), 87-91.

Bentley, J. L., H. T. Kung, M. Schkolnick, and C. D. Thompson, On the average number of maxima
in a set of vectors and applications, Journal of the Association for Computing Machinery, 25(4)
(1978), 536-543.

Bentley, J. L., B. W., Weide, and A. C. Yao, Optimal exptected-time algorithms for closest point
problems, ACM Transactions on Mathematical Software, 6(4) (1986), 563-580.

Boyer, R., and D. Savageau, Places Related Almanac (Revised Edition), Rand McNally, 1985.
Clarkson, K. L., and P. W. Shor, Applications of random sampling in computational geometry, II,

Discrete and Computational Geometry, 4(5) (1989), 387-421.
Devroye, L. A note on finding convex hulls via maximal vectors, Information Processin 9 Letters, 11(1)

(1980), 53-56.
Floyd, R. W., and R. L. Rivest, Expected time bounds for selection, Communications of the ACM,

18(9) (1975), 165-172.
Golin, M., and R. Sedgewick, Analysis of a simple yet efficient convex hull algorithm, Proceedings of

the Fourth Annual Symposium on Computational Geometry, 1988, pp. 153-t63.
Graham, R. L., An efficient algorithm for determining the convex hull of a finite planar point set,

Information Processing Letters, 1 (1972), 132-133.
Kung, H. T., F. Luccio, and F. P. Preparata, On finding the maxima of a set of vectors, Journal of

the Association for Computing Machinery, 22(4) (1975), 469-476.
Monier, L., Combinatorial solutions of multidimensional divide-and-conquer recurrences, Journal of

Algorithms, 1(1) (1980), 60-74.
Preparata, F. P., and S. J. Hong, Convex hulls of finite sets of points in two and three dimensions,

Communications of the Association for Computing Machinery, 20(2) (1977), 87-93.
Preparata, F. P., and M. I. Shamos, Computational Geometry, Springer-Verlag, t985.
Seidel, R., A convex hull algorithm optimal for points in even dimensions, M.Sc. Thesis, Technical

Report 81-14, Department of Computer Science, University of British Columbia, Vancouver, !981.
Urgel, J., Private communication, Harvard Business School, April-May 1989.

