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Fast Linear Expected-Time Algorithms for 
Computing Maxima and Convex Hulls 

Jon L. Bentley, 1 Kenneth L. Clarkson, 1 and David B. Levine 2 

Abstract. This paper examines the expected complexity of boundary problems on a set of N points 
in K-space. We assume that the points are chosen from a probability distribution in which each 
component of a point is chosen independently of all other components. We present an algorithm to 
find the maximal points using K N  + O(N  ~ IlK logl/K N) expected scalar comparisons, for fixed K >_ 2. 
A lower bound shows that the algorithm is optimal in the leading term. We describe a simple maxima 
algorithm that is easy to code, and present experimental evidence that it has similar running time. For 
fixed K > 2, an algorithm computes the convex hull of the set in 2 K N  + O ( N  ~ - 1/~ logtm N) expected 
scalar comparisons. The history of the algorithms exhibits interesting interactions among consulting, 
algorithm design, data analysis, and mathematical analysis of algorithms. 
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1. Introduction. This paper examines the expected complexity of two problems 
in K-dimensional computational geometry: computing the maximal points and 
the convex hull of a point set. These problems arise in a variety of applications: 
we sketch some examples later in this paper. Because the maxima and the convex 
hull provide natural representations of the boundary of the point set S, both objects 
play a fundamental role in computational geometry. 

All the algorithms in this paper exploit a single insight: for these problems, a 
certificate of exclusion typically can quickly demonstrate that most of the N input 
points are not in the final output. For maxima, a particular point usually 
dominates all but o(N) of the points in S (assuming that each component of a 
point is chosen independently of all other components). For convex hulls, a 
particular hyperrectangle typically contains all but o(N) points in S but contains 
no points on the hull. These certificates are used in a sieve approach: a first phase 
sieves out points not in the output structure, and a second phase constructs the 
final output. Previous papers present algorithms for these problems with O(N) 
expected time; our certificate-based algorithm show that the constant factors 
hidden in the big-ohs can be quite small. For instance, the best previous algorithm 
for convex hulls has a leading term of 2K(K + 1)N while our algorithms has a 
leading term of 2KN. 
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Section 2 of this paper describes maxima, and Section 3 describes convex hulls. 
Conclusions are then offered in Section 4. 

2. Maxima. In this section we study the problem of computing the maximal 
points in a point set. The first subsection provides definitions and reviews previous 
work. The second subsection presents "theoretical" algorithms and proofs of their 
run time, while the third subsection presents a related "practical" algorithm and 
experiments and conjectures regarding its run time. The final subsection describes 
the history of the algorithms. 

2.1. Preliminaries. Throughout this paper we deal with a set S of N points in 
K-space. Point P is said to dominate point Q if each coordinate of P is greater 
than the corresponding coordinate of Q. A point in S that is not dominated by 
any other point in S is a maximal point; the undominated points in S are the 
maxima of the point set. Maxima problems and algorithms are often discussed in 
terms of N vectors of length K; we phrase our discussion in the equivalent language 
of points for consistency with the description of convex hulls in Section 3. 

The problem of computing maxima is basic in computational geometry because 
the maxima are an interesting characterization of the boundary of a point set. 
Maxima also arise in diverse applications. Bentley et al. (1978) descril~e how 
maxima are useful in determining the run time of dynamic programming algo- 
rithms. Preparata and Shamos (1985) use maxima to solve the "floating currency 
problem" of economics. In the next section we see how maxima are useful in 
computing convex hulls. 

Becker et al. (1987) use maxima to analyze the data in Boyer and Savageau's 
(1985) Places Related Almanac. The almanac rates 329 metropolitan areas within 
the United States on nine different dimensions (climate, housing, cost, health care, 
etc.). Each value is assigned a numerical value, so the data may be viewed as 329 
points in 9-space. The almanac ranked the cities by summing the variables, with 
equal weight assigned to each of the nine dimensions. By assigning different weights 
to the variables, 134 cities can hold first place, and 150 cities can be ranked last. 
Becker et al. use the domination relationship as a more'natural comparison of 
cities, both with the nine original variables and several subsets of eight variables. 

Kung et al. (1975) describe an algorithm for computing the maxima of N points 
in K-space in O(NloglC-2N + N logN) time. Bentley (1980) gives a simpler 
description of their algorithm using the paradigm of multidimensional divide-and- 
conquer; he also develops a corresponding data structure for maxima searching 
(to determine whether a new query point is maximal in the set). Monier (1980) 
presents a general scheme for analyzing the run time of multidimensional divide- 
and-conquer algorithms; he shows that, for fixed K >_ 3, the number of basic 
operations to build a maxima search tree is (N lg K- 2 N)/(K - 2)! + |  log K- 3 N). 

Bentley et al. (1978) study the maxima problem under the assumption that the 
input point set is drawn from a distribution with Component Independence, which 
we abbreviate as the C! property. A distribution has the CI property if the K 
components in each point are chosen independently from continuous distributions. 
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Points uniform over the K-dimensional hypercube display the CI property, as do 
points chosen uniformly from any rectilinearly oriented hyperrectangle. CI dis- 
tributions can be more complex: the first component might be chosen from a 
normal distribution, the second from an exponential distribution, the third from 
a beta distribution, etc. With probability 1, all components in a point set will be 
distinct. To study a maxima algorithm that operates by comparing components, 
a CI point set may be combinatorially modeled by a random selection from the 
(N !)K K-tuples of permutations of 1, 2 . . . .  , N. If we let E(M) denote the expected 
number of maxima in a CI set of N points in K-space, Bentley et al. (1978) show 
that E(M)= O(logK-IN); they use that fact to construct a maxima algorithm 
with O(N) expected time for any fixed K _> 1. 

Bentley and Shamos (1978) generalize that technique to yield linear expected- 
time divide-and-conquer algorithms for other problems and other input distribu- 
tions. The key fact in their proofs is that if the input is of size N, then the expected 
size of the output is O(N p) for some P < 1 ~ we use their result later in this paper. 

Devroye (1980) generalizes the results of Bentley et aL (1978) regarding the 
expected number of maxima to higher moments. In particular, he shows that, for 
any CI distribution and any positive real p, E(M p) < g~)(E(M))< He observes that 
his paper can lead to an effective convex hull algorithm; we see his argument later 
in this paper. 

A fundamental operation in some maxima algorithms is to compare the two 
points A and B for domination. There are four possible outcomes: A dominates 
B, B dominates A, A equals B, and A and B are incomparable (none of the three 
previous results hold). Algorithm C reports that A dominates B if it is greater in 
some components and equal in the remainder; it could easily be changed to be 
strict. The code determines that outcome using at most K + 1 scalar comparisons; 
that could be reduced to K comparisons by saving the ternary state of  the first 
comparisons of A[I] and B[I]. 

Algorithm C. Compare points A and B for domination. 

I := i 
while I <= K and All] = B[I] do 

! := I + 1 
if I > K then 

return A equals B 
if A[I] > B[I] then 

for J := I+l to K do 
if B[J] > A[J] then 

return that A and B 
return A dominates B 

else 
for I :: I+l to K do 

if A[J] > B[J] then 
return that A and B 

return B dominates A 

are incomparable 

are incomparable 

2.2. Provably Fast Algorithms. We first study a maxima algorithm specifically 
designed for input that is known to be N points distributed uniformly over the 
unit square. As we progress through this subsection, we generalize the algorithm 
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to higher dimensions and then to general CI distributions. The idea underlying 
Algorithm M1 is illustrated in this picture: 

(0,0) 

. . . .  D 

A B 

(1,1) 

The point P at (1 - ~ N/N, 1 - x / ~  N/N) is not necessarily a member of the 
set S. It partitions the unit square into four rectangles: P dominates points in A, 
is dominated by points in C, and is incomparable to points in B and D. We will 
soon see that with high probability, rectangle C contains at least one point. Because 
that point dominates all points in A, it certifies that none of the points in A can 
possibly be maxima. We therefore sieve out those points and compute the maxima 
by examining the other three sets. The details of this approach are given as 
Algorithm M1. 

Algorithm M 1 uses the sieve approach that is employed by all later algorithms 
in this paper (with the exception of Algorithm M3). A first step sieves out most 
of the points in the set using a quick test that certifies that they are not maximal. 
We then pass the small subset of possible maxima on to a later maxima algorithm, 
with acceptable running time. 

We now analyze the run time of Algorithm M1. Step 1 requires constant time, 
and Step 2 requires exactly N point comparisons, or 2N scalar comparisons. We 
must now compute the probability that no points fall in square C. Because each 

side of the square is of length ~ N/N, its area is In N/N. The probability of a 
particular input point not lying in C is one minus that area. The probability that 
none of the N points is in C is therefore ( 1 -  in N/N) N, which is at most 
e -~nN = 1/N since, for any X, (1 + X/N) u < e x. The probability that set C is empty 
in Step 3 is therefore at most 1/N. 

Algorithm M1. Finding maxima on the unit square. 

!. Initialize the sets A, C, and BD to empty. Let P denote the point 
( 1 -  x/ln N / ~  1-- x / ~  N/N). 

2. Compare each point Q in the set S to P. If P dominates (2, place (2 in set A; 
if (2 dominates P, place (2 in set C; otherwise place (2 in set BD. 

3. If the set C is empty, then compute the maxima of set S by some other algorithm 
and return. 

4. Because C is not empty, no maxima are in set A. Compute the maxima of 
C ~ BD by some other algorithm. 
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If set C is empty in Step 3 of Algorithm MI, then we use an O(NiogN) 
worst-case algorithm to compute the maxima; because the probability of this event 
is bounded above by 1/N, the contribution to the expected time of the algorithm 
is O(log N). If Step 4 is executed, then the expected size of the set C ~ BD is 
bounded above by N times the area of B, C, and D (plus one because we know 

that set C contains at least one element), which is tess than 1 + 2Nxlf(n N/N = 

O(xfN log N). The points in the subset C u BD do not have the CI property 
assumed by Bentley et al. (1978), but they do have the N v property of Bentley and 
Shamos (1978) (the subset can be partitioned into two rectangles, B ~ C and D, 
each of which exhibits the CI property). We can therefore apply Bentley and 
Shamos's (1978) linear expected-time maxima algorithm to the set C u BD. The 

expected running time of Step 4 of the algorithm is therefore O(,~,N/~og N)i The 
time of the algorithm is summarized in this theorem. 

THEOREM 2.1. Algorithm M l  finds the maxima of N points chosen uniformly from 

the unit square in O(N) expected time, using N + O(,,/N log N) expected point 
comparisons. 

It is straightforward to extend Algorithm M1 to K-space, when the N input 
points are chosen uniformly over the K-dimensional hypercube. The algorithm 
uses a point P in which each component has the value 1 - (ln N/N) 1/K. Point P 
dominates all points in the hypercube A, and is in turn dominated by all points 
in the hypercube C. The hypercube C has edge length (ln N/N) tm and volume 
In N/N. The probability that C is empty is bounded above by 1/N; in that event, 
we use the worst-case algorithm of Kung et al. (1975). The expected number of 
undominated points (conditional on the fact that C is not empty) is bounded above 
by 1 + KN(ln N/N) 1/K or 1 + K(N ~ -I/K ln~/K N). The undominated points do not 
have the CI property, but they can be partitioned into K hyperrectangles that do, 
so the subset has the N v property of Bentley and Shamos (1978) and the maxima 
can be computed in expected time linear in the size of the subset. This analysis 
yields the following theorem, 

THEOREM 2.2. Algorithm Ml  finds the maxima of N points chosen uniformly from 
the K-dimensional hypercube in O(N) expected time, using N + O(N 1 - 1/K 1ogl/K N) 
expected point comparisons, for any fixed K. 

The analysis of the run time of Algorithm M1 relies on the fact that its input 
is known to be distributed uniformly over the K-dimensional hypercube. The next 
algorithm we study, M2, assumes only that its input is from a CI distribution. 
The role played by the fixed real number 1 - ( I n  N/N) 1/K in Algorithm M1 is 
replaced in Algorithm M2 by an order statistic. The order statistic is computed 
using Floyd and Rivest's (1975) selection algorithm, which selects the .Mth largest 

element in a set of size N in N + min(M, N - M) + O(x/N) expected comparisons. 
Step 1 of the algorithm uses K N  + O(,,fN) scalar comparisons between point 

components, and Step 2 also requires O(KN) time. By the CI property, the 
probability of any particular input point dominating P is In N/N, so the analysis 
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Algorithm M2. Finding maxima from a CI distribution. 

i. Compute the N ( 1 -  (In N/N)~/K)th largest element in each dimension; con- 
struct the point P to consist of those values in the appropriate dimensions. 

2. Using the scalar comparisons made in Step 1, partition S into three sets: A 
contains points dominated by P, C contains points that dominate P, and B 
contains points incomparable to P. 

3. If set C is empty, then compute the maxima of S and return. 
4. Because C is not empty, no maxima are in set A. Compute the maxima of 

B u C .  

of Steps 3 and 4 is exactly the same as in Algorithm M 1. Thus we have the following 
theorem. 

THEOREM 2.3. Algorithm M2 finds the maxima of  N points chosen from a 
K-dimensional CI distribution in O(N) expected time, using 

K N  + O(N ~ - 1/K 1ogl/K N) 

expected scalar comparisons, for any f ixed K >_ 2. 

We will now see a lower bound that shows that the leading term in Theorem 
2.3 is optimal. Any correct maxima algorithm must examine all K coordinates of 
all nonmaximal (undominated) points; otherwise, one of the unexamined compo- 
nents could contain a value large enough to make it maximal. Bentley et al. (1978) 
show that on the averge there are O(log ~:- 1 N) maxima in a CI set of N points in 
K-space. These facts combine to yield the following theorem. 

THEOREM 2.4. A correct maxima algorithm must examine at least 

N K  - O(log ~-  1 N) 

point components, on the average, for a CI set of  N points in K-space. 

We suspect that this bound can be tightened to show that Algorithm M2 is near 
optimal in its second-order term. 

CONJECTURE 2.5. A correct maxima algorithm must examine at least 

K N  + ~'I(N 1-1/g) 

point components, on the average, for a CI set of  N points in K-space. 

Notice that correct maxima algorithms need not necessarily examine all compo- 
nents of all points: for instance, if the first two components of all points satisfy 
the constraint A 1 + A 2 = 1, then those components alone establish that all N 
points are incomparable. 

2.3. An Effective Heuristic Algorithm. The algorithms in the previous subsection 
were designed to be efficient for CI inputs and easy to analyze for that case, but 
they are not necessarily robust for real inputs. We now study an algorithm that 
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is easy to implement, very efficient for CI distributions, and somewhat robust for 
point sets from other distributions. 

Algorithm M3 is an on-line algorithm that augments sequential search with a 
move-to-front heuristic. Its primary data structure is the sequence T o f  (indexes 
of) current maxima. Sequence Tis originally empty, and at the conclusion of the 
algorithm it contains the maxima of S. The algorithm examines all input points 
in random order. As the algorithm examines the input point Q, it compares Q 
with every point R in T. If Q dominates R, then R is removed from T. If Q is 
dominated by no R in T, then Q is appended to the end of T. If R dominates Q, 
then Q cannot be maximal; in this case R is also moved to the front of Z The 
move-to-front tends to keep near the front of T maxima that are '~powerful" 
dominators (like point P in the analysis of Algorithm M1)? Algorithm M3 gives 
the details of the algorithm in pseudocode; it implements the sequence T in  the 
array Max [ 1 . .  TopMax]. 

We turn now to an analysis of the run time of Algorithm M3. The expected 
size of the sequence T after M elements have been examined is precisely the 
expected number of maxima in a set of M points, which is monotone increasing 
in M. The expected size of Tis therefore O(log K- ~ N), and the expected total cost 
of the N searches is O(N log K- t N). To understand the constants in the big-oh, a 
series of experiments investigated the average number of maxima. Ten point sets 
were generated for N at each power of two fi-om 32 to 65,536 and for each K 
from 2 to 5. The N points were uniformly distributed over the K-dimensional 
hypercube. Figure 1 plots the number of maxima observed (averaged over the ten 
point sets), using the dimension as the plot symbol  

Algorithm M3. A heuristic maxima algorithm. 

TopMax := i 
Max[TopMax] := 1 
for I := 2 to N do 

J:=l 
while J <= TopMax do 

if point Max[J] dominates point I then 
move Max[J] to front of Max[l,..J] 
J := TopMax + 2 

else if point I dominates point Max[JI then 
shift Max[J+l..TopMax] to Max[J..TopMax-ll 
TopMax := TopMax - 1 

else if point I equals point Max[J] 
J := TopMax + 2 

else // points I and Max[J] are incomparable 
J := J+l 

if J = TopMax + i then 
TopMax := TopMax + I 
Max[TopMax] := I 

3 We conducted a simple experiment to test the importance of the move to front. We used' the algorithm 
as described on ten random point sets with K = 2 and N = 100,000; the mean number of point 
comparisons was 1.0253N. We ran the experiment again using random insertion into a sequence that 
is not reorganized, and the mean number of comparisons rose to 1.341N: All later experiments therefore 
used move-to-front. 
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Fig. 1. The number of maxima. 

Maxima 

The distribution of the maxima and the move-to-front heuristic might, however, 
make the algorithm substantially faster than the O(N log K- 1 N) expected bound. 
We examined the running time in the same series of experiments shown in Figure 
1. Figure 2 shows the average number of point comparisons used, divided by N. 
The plot symbol is the dimension; the lines denote mean values. 

The average number of point comparisons per point is substantially less than 
the number of maxima in the set. At N = 65,536, the mean ratios were 1.037, 1.33, 
4.00, and 20.5, for D = 2, 3, 4, and 5, while the mean number of maxima were 
13.2, 61.6, 268.9, and 881.6. When we first ran the experiments, we expected the 
ratios to increase with N (though we hoped not quite as quickly as the O(log K- 1 N) 
bound). When we examined Figure 2, however, we conjectured that the number 
of comparisons per point is approaching a different constant for each dimension K. 

In Figure 2, though, each curve appears to grow to a peak and then to decrease 
again. After running a handful of large experiments (N up to 1,000,000), we 
conjectured that the ratio approaches 1 for all values of K. To test this hypothesis, 
we re-expressed the data in Figure 2 by plotting the number of point comparisons 
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Fig. 2. Comparisons per point. 
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Fig. 3. Surplus point comparisons. 
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beyond N, which we refer to as the surplus comparisons,  4 The means of surplus 
comparisons are shown in Figure 3. 

A weighted least-squares regression shows that for K = 2 the number  of surplus 
comparisons  grows as 7.589N ~  27.74; the regression yields well-behaved 
residuals (apparently normal ly  distributed)�9 We have therefore plotted that  func- 
t ion on Figure 3, which is a close fit to the experimental  data. Algori thm M1 helps 

to explain why Algori thm M3 might behave this way: a single point  very near 
(1, 1) tends to stay near the front of the sequence, and dominates  all but  roughly 

x//N of the other inputs. Regressions for the other surplus values yield 37 . tN ~  
237 for K = 3, 31.8N ~  333 for K = 4, and  32.1N ~  733 for K = 5 

(though the residuals are not  part icularly well behaved)�9 This data and  the heuristic 
arguments  support  the following: 

CONJECTURE 2.6. Algorithm M3 finds the maxima of N points chosen from a 
K-dimensional CI distribution in O(N) time, using N + o(N) point comparisons, for 
any fixed dimension K. 

We suspect that it might even be possible to tighten the n u m b e r  of surplus 
comparisons to near O(N t-  1/K) 5 

Our  discussion so far has concentrated on C1 distributions,  which are known 
to have few maxima, on the average. We turn  now to a dis t r ibut ion that  tends to 

have many  maxima. Points  in K-space from the Ball distr ibut ion are chosen 

4 Our first attempt to examine the surplus comparisons resulted in a warning from the regression/plot- 
ting package that it had tried to take the logarithms of a negative number. Investigation showed that 
on one set of N = 32 points in K = 2-space, Algorithm M3 found two maxima using 31 point 
comparisons. We first feared that this was evidence of a program bug, but examining the input point 
set showed us how it happened. We leave the explanation as a puzzle for the reader..(Hint: This is 
not an artifact of the random number generator; the probability of Algorithm M3 finding the maxima 
of a planar set in exactly N - 1 point comparisons is at least 1/N2.) 
5 After reading a preliminary version of this paper, Mordecai Golin proved the planar version of this 
conjecture. His proof appears in his 1990 Ph.D. thesis from Princeton University, and has been 
submitted for publication. 
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Fig. 4. Performance on Ball input, K = 3. 

uniformly from the positive orthant of the unit-radius sphere centered at the origin. 
When applied to Ball inputs, both Algorithms M t and M2 find that point P is 
undominated and call the worst-case algorithm in Step 3, with probability 
approaching 1. Figure 4 shows the results of experiments running Algorithm M3 
on the Ball distribution for K = 3 and N between 32 and 65,536; the circles show 
the number of maxima computed and the crosses show the number of comparisons 
per point. 

A weighted least-squares regression on the number of maxima shows that the 
expected number is 1.72N ~ We conjecture that the expected number of maxima 
in a K-dimensional Ball distribution is | ~- lm). Algorithm M3 compares every 
maximal point to every maximal point; if a set has M maxima, then the algorithm 
makes at least M ( M -  1)/2 point comparisons. Assuming the | I-t/K) con- 
jecture, the algorithm therefore makes at least O(N 2-2/K) comparisons for K- 
dimensional Ball distributions. Regression shows that the average number of 
comparisons per point grows as 2.51N ~ so most of the nonmaximal points 
are apparently discarded with relatively little computation. We ran a similar set 
of experiments for the Ball distribution with K --- 2; the number of maxima grew 

as xfN and the number of comparisons per point grew as log N, or slower. We 
do not contend that the Ball distribution models inputs for any particular 
application, but these experiments show that Algorithm M3 remains reasonably 
efficient even when there are many maximal points. 

2.4. History. Our attention was drawn to the maxima problem by Urgel (1989) 
in April of 1989. He needed to compute maxima in a program that automates 
aspects of contract negotiation: N potential contracts (as many as 10,000) are 
evaluated in various dimensions (K varies between 5 and 10), and dominated points 
(inferior contracts) can be excluded from later (expensive) processing. He called 
one of the authors regarding Bentley's (1980) description of the multidimensional 
divide-and-conquer maxima algorithm. He was interested in obtaining software 
that implemented the algorithm; we told him that we knew of no implementation. 
During our discussion, he stated that he was interested in solving problems of size 



178 J.L. Bentley, K. L. Clarkson, and D. B. Levine 

up to N = 10,000 with K between 5 and 10. He added that the straightforward 
O(KN 2) algorithm was too slow on his machine, and that the data appeared to 
be roughly modeled by a CI distribution. He desired an algorithm that was simple 
to code and reasonably efficient on his input sets; he was not connected with 
worst-case behavior. 

That afternoon we designed Algorithm M3 and implemented it in about 100 
lines of C + +  code. Besides the algorithm itself, the code included routines for 
generating random input data, gathering and printing statistics, and providing a 
simple animation of the algorithm. The animation helped us to understand the 
algorithm's behavior on planar inputs. Later that evening we conducted simple 
experiments that indicated that Algorithm M3 might have linear running time, 
and communicated the algorithm to Urgel. He subsequently reported that he had 
used the algorithm in experiments and that its performance was satisfactory, and 
far superior to the quadratic algorithm. 

Over the next couple of days we tried to prove that Algorithm M3 had linear 
running time, but we could make no progress. We returned to perform more data 
analysis (roughly as presented in the last subsection), and eventually conjectured 
that Algorithm M3 uses N + o(N) point comparisons. With that conjecture and 
some insight from watching algorithm animations, we derived and analyzed 
Algorithms M1 and M2. 

The paradigm of "divide-and-conquer for linear expected time" was originally 
developed by Bentley et aL (1978) for the maxima problem. Bentley and Shamos 
(1978) then extended the paradigm to several other problems, including convex 
hulls. By conscious analogy to that effort, we attempted to apply the idea of a 
quick certificate of exclusion to computing convex hulls. That is the topic of the 
next section. 

3. Convex Hulls. The convex hutl of the point set S is the smallest convex set 
containing the points in S. Preparata and Shamos (1985) describe in detail the 
history of algorithms for computing hulls, which we now sketch briefly. Graham 
(1972) shows that the hull of N planar points can be computed in O(N log N) 
worst-case time; Preparata and Hong (1977) extend that time bound to K = 
3-space. Bentley and Shamos (1978) show that the hull can be computed to O(N) 
time for K = 2 and K = 3 for a number of input distributions, including all CI 
distributions. Golin and Sedgewick (1988) describe a sieve algorithm for computing 

a superset of the extreme points of the hull that has size O(x/-N) in O(N) time, if 
the points are chosen uniformly from a rectilinearly oriented hypercube. Their 
algorithm is simple to code and efficient. 

Convex hulls of K-dimensional point sets become more expensive to compute 
when K > 4. Seidel (1981) shows that O(N L(K+W2j) worst-case time suffices for 
any K > 3; because the convex hull can have that many facets, his algorithm is 
optimal in the worst case for even K. Clarkson and Shor (1989) describe a Las 
Vegas algorithm optimal for both even and odd K. Golin and Sedgewick (1988) 
extend their planar algorithm to K-space with a coefficient in the leading term of 
2t~N; we sketch their method shortly. 
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Bentley et al. (1978) observed that every convex hull point is maximal under at 
least one of the 2 K possible assignments of K plus and minus signs to the K 
components of the input points. For  CI distributions, that implies that by 
computing the maxima under all 2 K assignments, O(N) time suffices to find a 
superset of the extreme points with expected size O(log K- 1 N) for any fixed K. 
(Thus the algorithms in Section 2 allow the superset to be computed in 2KN + o(N) 
point comparisons, for fixed K.) Devroye (1980) shows that higher moments of 
maxima are well behaved: if E(M) denotes the expected number of maxima in a 
CI set, then E(M p) <_ g(p)(E(M)) p. Devroye uses that observation to yield a linear 
expected-time algorithm for any CI distribution: he first computes all oriented 
maxima to find a superset of the hull of size O(log K- 1 N), and then uses a 
worst-case O(N K) algorithm to find the hull of that superset. By his theorem, 
the run time of the second step will be O(log K~K- 1) N). 

We now describe two certificate-based convex hull algorithms, H1 and H2, 
which correspond to Algorithms M1 and M2 in Section 2. Both are sieve 
algorithms; they compute a small superset of the hull points, and pass them on 
to a worst-case hull algorithm. We start with the planar version of Algorithm HI,  
which assumes that its input consists of N points uniform over the unit square. 

It uses a square A whose sides are distance x / in  N / N  from the sides of the unit 
square; square A defines the four corner squares C1, C2, C3, and C4. These objects 
are shown in this picture: 

~ n N / N  

(0,0) 

-C21 ........ 

C3 

A 

C1 

C4 

(1,1) 

Just as point P in algorithm M1 certifies that most points are not maxima, so 
square A will certify that most points are not on the boundary of the convex hull. 
Those points can be sieved out of later processing. With very high probability, 
there is at least one point in each of C1, C2, C3, and C4. If each of those squares 
is occupied, then we know that square A is probably contained in the convex hull 
of S, because square A is within the hull of those four points. Thus all points in 
A can be ignored in further processing. 6 The details of this approach are given as 
Algorithm H1. 

6 A similar result is implicit in the Voronoi diagram of Bentley et al. (1980). In Step 2 in Section 3, 
they show that with probability 8N 1 -ctgN, no point further than lg N/N from the boundary of the unit 
square is on the convex hull. 
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Algorithm H1. Finding the convex hull on the unit hypercube (planar version). 

1. Initialize the set B to empty. Let A denote the square centered within the unit 

square with edge length (1 - 2.vl/lnN/N ). 
2. Test each point in the set S for inclusion in A. If it is not contained in A, then 

insert it in set B. 
3. Initialize the counts C[1..4] to zero. Examine each point in the set B; if both 

of its components lie outside both ranges of A, increment the appropriate C[i] 
counter. If any of the C[i] counters is zero, then compute the convex hull of 
set S and return. 

4. Because the counters are all nonzero, no extreme points are in set A. Compute 
the hull of B. 

We now analyze the run time of Algorithm HI. Step 1 requires constant time, 
and Step 2 requires at most 4N scalar comparisons. We must now compute the 
probability that no points fall in any of the corner squares. We first consider 
square C1; the proof of Theorem 2.1 showed that the probability that it is empty 
is at most 1/N. We turn next to square C2, with the complication that we now 
know that C1 is not empty. Fortunately, we know only that C1 contains at least 
one point, so the probability that none of the remaining N - 1 points is in C2 is 
(1 - In N/N) ~- 1, which is bounded above by 1/[N(1 - In N/N)] = I/[(N - In N)]. 
Set C3 is similar, and the probability that C4 is empty given that CI, C2 
and C3 are not is bounded above by 1/[N(1 - In N/N)3]. Thus the probability 
that any one of the four squares is empty is bounded above by the sum of these 
four values, which is in turn bounded above by 4 / [ N ( 1 -  In N/N)3], which is 
O(1/U). 

If one of the C[i] counters is zero in Step 3 of Algorithm H1, then we use an 
O(N log N) worst-case algorithm to compute the hull; because the probability of 
this event is bounded above by O(1/N), the contribution to the expected time of 
the algorithm is O(log N). If Step 4 is executed, then the expected size of the set 
B is bounded above by N times the area outside of A (plus four for the points 

known to be in each corner), or 4 + 4Nx/in N/N = O(x/rN log N). The points in 
the subset B have the N P property of Bentley and Shamos (1978), so we can apply 
their linear-time hull algorithm to the set B. The expected running time of Step 4 of 

the algorithm is therefore 0 ( ~  log N). The run time of the algorithm is summar- 
ized in this theorem. 

THEOREM 3.1. Algorithm HI finds the convex hull of N points chosen uniformly 
from the unit square in O(N) expected time, using 4N + O ( x ~ o g N )  expected 
scalar comparisons. 

It is interesting to compare Algorithm H1 to a similar hull algoritl~m of Golin 
and Sedgewick (1988), which we refer to as Algorithm GS. Algorithm H1 uses 

~ 4 N  scalar comparisons to sieve out all but O(x/N log N) points from considera- 
tion. Algorithm GS uses more computation to produce a smaller set: the sieve stage 
uses 8N scalar comparisons and 4N arithmetic operations to produce a subset of 
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size O(xfN ). In K-space the sieve in Algorithm GS uses 2 r + * N scalar compar- 
isons and 2K(K -- 1)N arithmetic operations (or 2~(K + 1)N total primitive opera- 
tions) to produce a subset of size O(Nt-lm). The analysis of algorithm GS 
assumes that the input point set is chosen uniformly over a rectilinearly oriented 
hyperrectangle. 

We now extend Algorithm H1 to K-space, for input uniform over the K- 
dimensional hypercube. The algorithm uses a hypercube A centered in the unit 
hypercube with edge length 1 - 2(ln N/N) 1/K. In 2K scalar comparisons all points 
within A can be discarded. With probability 1 - O(1/N), there is at least one point 
in each of the 2 r corners defined by A, so no points in A are extreme points. (If 
one of the corners is empty, we immediately call Devroye's (1980) algorithm and 
return.) The expected number of remaining points (conditional on the fact that 
the corner squares are not empty) is bounded above by 2 ~ + 2KN(ln N/N) lm, or 
O(N 1 - 1/K inl/r N) for fixed K. 

We are now left with a (relatively) small subset of the points that is in turn a 
superset of the convex hull points. Even though the conditioning of the algorithm 
destroys the CI property, the inputs retain the N P property because they can be 
partitioned into 0(3 K) hyperrectangles, each of which is CI. We use Bentley and 
Shamos's (1978) linear-time algorithm to find the maxima under all orientations, 
and then call a worst-case algorithm on that subset. Devroye's (1980) analysis 
yields the following theorem: 

THEOREM 3.2. For fixed K >_ 3, Algorithm H1 finds the convex hull of N points 
chosen uniformly from the K-dimensional hypercube in O(N) expected time, using 
2KN + O(N 1 - ~/i~ logl/K N) expected scalar comparisons. 

We turn next to Algorithm H2, which corresponds to Algorithm M2 in the last 
section. Its input is a set of N points from a K-dimensional CI distribution. The 
details of this approach are given as Algorithm H2. Its analysis combines the 
techniques used in the analysis of Algorithm H1 and Algorithm M2. The result 
is the following theorem. 

THEOREM 3.3. Algorithm H2 computes the hull of N points chosen uniformly 
from the K-dimensional CI distribution in O(N) expected time, using 2KN + 
O(N 1 - 1/~ 1ogl/K N) expected scalar comparisons. 

Algorithm H2. Finding a convex hull superset for a CI set. 

1. Initialize the set B to empty. Compute the N((lnN/N)~/K)th and 
N(1 - ( l n  N/N)lm)th largest element in each dimension; construct the hyper- 
rectangle A to consist of those values in the appropriate dimensions. 

2. Test each point in the set S for inclusion in A. If it is not contained in A, then 
insert it in set B. 

3. Initialize the counts C[i] to zero. Examine each point in the set B; if all of its 
components lie outside all ranges of A, increment the appropriate C[i] counter. 
If any of the C[i] counters is zero, then compute the hull of set S and return. 

4. Because the counters are all nonzero, no extreme points are in set A. Compute 
the hull of set B. 
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Algorithm H2 represents a substantial improvement over the sieve time of Golin 
and Sedgewick's (1988) algorithm, which uses 2 K + 1 D N  scalar comparisons. The 
expected number of remaining points is only slightly higher than the O ( N  ~ - ~jK) of 
Algorithm GS. 

Like a maxima algorithm, a correct convex hull algorithm must necessarily 
inspect all K components of all points within the hull. Algorithm H2 is therefore 
within a factor of two of optimal in the leading term. Tightening the bound will 
require a precise model of computation. 

4. Conclusions. Rectangles have long been used as certificates in computational 
geometry. The bounding box of a polygon, for instance, is the smallest rectitinearly 
oriented rectangle that contains the polygon. If a point is outside a polygon's 
bounding box, that certifies that the point is not contained in the polygon. If two 
polygons have bounding boxes that do not intersect, that certifies that the polygons 
do not intersect. The certificates in this paper are, however, fundamentally 
different: they are known to be valid only after a significant amount of processing. 
If they are found to be invalid, then a standard algorithm is called. 

The certificate-based sieve algorithms of this paper yield efficient expected-time 
algorithms for boundary problems. A certifying point is able to show that most 
points are not maximal, and a certifying hyperrectangle is able to show that most 
points are not on the boundary of the convex hull. All those points may be removed 
by a sieving step. These algorithms are applicable to all distributions with 
Component Independence. The expected run time of the maxima Algorithm M2 
is optimal in the leading term; Algorithm M3 is simple to implement and we 
conjecture that it is also optimal in the leading term. The expected run time of 
convex hull Algorithm H2 is within a factor of two of optimal, and its leading 
coefficient of 2 K N  is a substantial improvement over the previous best result of 
2 K + 1 K N .  The history at the end of Section 2 exhibits interesting interactions 
among consulting, algorithm design, data analysis, and mathematical analysis of 
algorithms. 

We conclude by mentioning several problems that merit further research. 

Prove Conjecture 2.5, which raises the lower bound on the run time of maxima 
algorithms. Is it possible to tighten the lower bound and the upper bound to 
match in second-order terms? 

Prove Conjecture 2.6, which states the expected number of point comparisons 
used by maxima Algorithm M3 is N + o(N). (Golin has already shown this for 
the planar case.) 

Design a simple convex hull algorithm corresponding to maxima Algorithm M3. 
Extend certificate technique to other problems. Consider, for instance, the 

problem of intersecting half-planes under the probabilistic model used by 
Bentley and Shamos (1978): a small circle centered at the origin certifies that 
half-planes that do not intersect it are, with high probability, not in the final 
polygon. 
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