Projective resolution of identity in C(K) spaces

By

M. VALDIVIA*)

For a certain class \mathscr{A} of compact spaces, which is biger than the class of Corson compact spaces, it is proved that if K belongs to \mathscr{A} , the Banach space C(K) admits a projective resolution of identity constructed through a family of linear extension operators.

The vector spaces we shall use here are defined over the field H of real or complex numbers. If H is the real field R, we denote by L the field of rational numbers; if H is the complex field C, we mean by L the field of complex numbers a + bi where a and b are rational numbers.

Given a set A, |A| denotes its cardinal number. If α is an ordinal number, $|\alpha|$ is its cardinal number. If E is a topological space, the density character of E, dens E, is the first cardinal α such that E has a dense subset A with $|A| = \alpha$. As it is usual, ω denotes the first infinite ordinal.

Unless the contrary would be specifically stated, $\|.\|$ is the norm in any Banach space X. If T denotes the identity operator on X and μ is the first ordinal with $|\mu| = \text{dens } X$, a projective resolution of identity is a well ordered family

$$\{P_{\alpha}: \omega \leq \alpha \leq \mu\}$$

of projections in X which satisfies the following conditions:

(i) $||P_{\alpha}|| = 1, \omega \leq \alpha \leq \mu.$

(ii) dens $P_{\alpha}(X) \leq |\alpha|, \omega \leq \alpha \leq \mu$.

(iii) $P_{\alpha} \circ P_{\beta} = P_{\beta} = P_{\beta} \circ P_{\alpha}, \ \omega \leq \beta \leq \alpha \leq \mu.$

- (iv) $\overline{\bigcup \{P_{\beta}(X) : \omega \leq \beta < \alpha\}} = P_{\alpha}(X)$ whenever α is an ordinal limit.
- (v) $P_{\mu} = T.$

If K is a compact topological space, C(K) denotes the Banach space of continuous functions from K into H endowed with the norm

$$||f|| = \sup \{|f(x)| : x \in K\} \text{ for } f \in C(K).$$

If K is a compact subset of the cube $[0, 1]^I$, we write K(I) to denote the subset of K formed with the elements $(x_i : i \in I)$ such that

$$\{i \in I : x_i \neq 0\}$$

^{*)} Support in part by CAICYT.

is countable. Let us denote by e_i the projection of K on the *i*-th coordinate. If P is a subset of K, \overline{P} denotes its closure and we write I(P) to denote the subset of I formed by the elements j of I such that for some $(x_i : i \in I)$ in P we have $x_i \neq 0$. If B is a subset of C(K), $(B)^*$ is the self conjugate linear algebra on L generated by B together with the constant functions over K valued on L. $(B)^*$, the closure of $(B)^*$ in C(K) is a self conjugate closed subalgebra of C(K).

We shall say that a compact topological space D belongs to the class \mathscr{A} if it is homeomorphic to a compact subset K of $[0, 1]^I$ for some set I and such that K(I) is dense in K.

A compact topological space is a Corson compact if it is homeomorphic to a compact subset of $\sum (R^{I})$, [2]. Obviously, the class \mathscr{A} contains the class of Corson compact spaces. Using Theorem 2 it is easy to prove the following result, [1] and [3]: If K belongs to \mathcal{A} there are a set Γ and an one-to-one bounded operator $T: C(K) \to c_0(\Gamma)$ that is also pointwise to pointwise continuous.

Lemma. Let K be a compact subset of $[0, 1]^I$ such that K(I) is dense in K. Let A_0 and B_0 be two infinite subsets of K (I) and C (K) respectively. If λ is a cardinal number such that $|A_0| \leq \lambda$ and $|B_0| \leq \lambda$ there exist a subset M of K (I) and a linear extension operator T from $C(\overline{M})$ into C(K) such that

- 1) $M \supset A_0$, $|M| \leq \lambda$, 2) ||T|| = 1, dens $C(\overline{M}) \leq \lambda$, $T(C(\overline{M})) = \overline{(B_0 \cup \{e_i : i \in I(M)\})^*}$.

Proof. We are going to describe the process of construction by recurrence. So, let us start by supposing that for a given nonnegative integer n we have found

$$B_n \subset C(K), \quad A_n \subset K(I), \quad |A_n| \leq \lambda, \quad |B_n| \leq \lambda.$$

For each $f \in B_n$ we choose some point x(f) of K(I) such that |f| attains its supremum on it. We set

$$A_{n+1} = A_n \cup \{x(f) \colon f \in B_n\}.$$

Obviously $|A_{n+1}| \leq \lambda$. We write

$$B_{n+1} = (B_0 \cup \{e_i : i \in I(A_{n+1})\})^*.$$

Let $M := \bigcup_{n=0}^{\infty} A_n$ and let E be the closure of $\bigcup_{n=0}^{\infty} B_n$ in C(K). We obviously have $M \supset A_0, \quad |M| \leq \lambda, \quad E = \overline{(B_0 \cup \{e_i : i \in I(M)\})^*}.$

Let us denote by $||| \cdot |||$ the norm on $C(\overline{M})$. We set

$$Sf = f \mid_{\bar{M}}, \quad f \in E.$$

Given $\varepsilon > 0$ and f in E, we find a positive integer n together with $g \in B_n$ such that $||f - g|| < \varepsilon$. Since x(g) is a point in A_{n+1} where |g| attains its supremum it now follows that

$$||f|| \le ||g|| + ||f - g|| \le |g(x(g))| + \varepsilon = |||Sg||| + \varepsilon$$
$$\le |||Sg - Sf||| + |||Sf||| + \varepsilon \le |||Sf||| + 2\varepsilon$$

Vol. 54, 1990

from where we have

 $\|f\| \leq |||Sf|||$

and we deduce that S is a linear isometry from E into $C(\overline{M})$. Let us observe that S(E) is a closed and self conjugate subalgebra of $C(\overline{M})$ which contains the constants. Moreover, if $x = (x_i : i \in I)$ and $y = (y_i : i \in I)$ are different points of \overline{M} there is some $j \in I$ such that $x_j \neq y_j$ and so for some positive integer m and $(u_i : i \in I)$ in A_m we see that $u_j \neq 0$. It follows that $e_j \in E$ and $e_j(x) = x_j \neq y_j = e_j(y)$. Consequently, S(E) separates points of \overline{M} and the Stone-Weierstrass theorem assures that $S(E) = C(\overline{M})$. Obviously, dens $C(\overline{M}) \leq \lambda$. The operator $T = S^{-1}$ is the linear extension operator we are looking for. \Box

Theorem 1. Let K be an infinite compact subset of [0, 1]I such that K(I) is dense in K. Let μ be the first ordinal number such that its cardinal number coincides with dens K(I). Then there exists a family

$$\{K_{\alpha}: \omega \leq \alpha \leq \mu\}$$

of compact subsets of K with $K_{\alpha}(I)$ dense in K_{α} together a family

$$\{T_{\alpha}: \omega \leq \alpha \leq \mu\}$$

of linear extension operators from $C(K_{\alpha})$ into C(K) such that

- (i) $||T_{\beta}|| = 1, \omega \leq \beta \leq \mu.$
- (ii) dens $C(K_{\beta}) \leq |\beta|, \omega \leq \beta \leq \mu$.
- (iii) $K_{\beta} \subset K_{\gamma}$ and $T_{\beta}(C(K_{\beta})) \subset T_{\gamma}(C(K_{\gamma})), \omega \leq \beta \leq \gamma \leq \mu$.
- (iv) $K_{\alpha} = \overline{\bigcup \{K_{\beta} : \omega \leq \beta < \alpha\}}$ and $T_{\alpha}(C(K_{\alpha})) = \overline{\bigcup \{T_{\beta}(C(K_{\beta}) : \omega \leq \beta < \alpha\}}$ whenever α is an ordinal limit.

(v)
$$K_{\mu} = K$$

Proof. If dens $K(I) = \aleph_0$, we write $K_{\omega} = K$ and T_{ω} for the identity mapping on C(K). Let us now suppose that dens $K(I) > \aleph_0$. Let $\{x_v : v < \mu\}$ be a dense subset of K(I). We can apply the lemma dealing with

$$A_{0} = \{x_{v} : v < \omega\}, \quad B_{0} = \{e_{i} : i \in I(A_{0})\}, \quad \lambda = \aleph_{0}$$

to obtain a subset A_{ω} of K(I) and a linear extension operator T_{ω} from $C(\bar{A}_{\omega})$ into C(K) such that

$$A_{\omega} \supset A_0, \quad |A_{\omega}| = \aleph_0, \quad ||T_{\omega}|| = 1, \quad \text{dens } C(\overline{A}_{\omega}) = \aleph_0$$

and if we write

$$B_{\omega} = (\{e_i : i \in I(A_{\omega})\})^*$$

then

$$T_{\omega}(C(\bar{A}_{\omega})) = \bar{B}_{\omega}.$$

We set $K_{\omega} = \overline{A}_{\omega}$. Let us proceed by transfinite induction. Let us take $\omega < \alpha \leq \mu$ and suppose we have determined the family

$$\{A_{\beta}: \omega \leq \beta < \alpha\}$$

of subsets of K(I) together with the family

$$\{T_{\beta}: \omega \leq \beta < \alpha\}$$

of linear extension operators from $C(K_{\beta})$ into C(K), where $K_{\beta} = \overline{A}_{\beta}$, and the family

$$\{B_{\beta}: \omega \leq \beta < \alpha\}$$

of subsets of C(K) such that

$$\begin{split} A_{\beta} &\supset \{x_{\nu} \colon \nu < \beta\}, \quad |A_{\beta}| = |\beta|, \quad \|T_{\beta}\| = 1, \quad \text{dens } C(K_{\beta}) \leq |\beta|, \\ B_{\beta} &= (\{e_i \colon i \in I(A_{\beta})\})^*, \quad T_{\beta}(C(K_{\beta})) = \overline{B}_{\beta}. \end{split}$$

We can now distinguish two cases. If α is not an ordinal limit, we have $\alpha = \gamma + 1$. The idea would be to apply the lemma for the sets

$$A_0 = A_{\gamma} \cup \{x_{\nu} : \nu < \alpha\}, \quad B_0 = \{e_i : i \in I(A_0)\}$$

and the cardinal number $\lambda = |\gamma| = |\alpha|$. We would obtain a subset A_{α} of K(I) and a linear extension operator T_{α} from $C(\overline{A}_{\alpha})$ into C(K) such that

$$A_{\alpha} \supset A_0, \quad |A_{\alpha}| = |\alpha|, \quad ||T_{\alpha}|| = 1, \quad \text{dens } C(\overline{A}_{\alpha}) \leq |\alpha|,$$

and if we write

$$B_{\alpha} = (\{e_i \colon i \in I(A_{\alpha})\})^*$$

then

$$T_{\alpha}(C(\overline{A}_{\alpha}))=\overline{B}_{\alpha}.$$

We set $K_{\alpha} = \overline{A}_{\alpha}$ that finishes the construction for the first case. If α is an ordinal limit we put

$$\begin{aligned} A_{\alpha} &:= \cup \{A_{\beta} : \omega \leq \beta < \alpha\}, \quad K_{\alpha} = \overline{A}_{\alpha}, \\ B_{\alpha} &:= \cup \{B_{\beta} : \omega \leq \beta < \alpha\} = (\{e_{i} : i \in I(A_{\alpha})\})^{*} \end{aligned}$$

Let us denote by $\|.\|_{\beta}$ the norm on $C(K_{\beta}), \omega \leq \beta \leq \alpha$. We set

$$S_{\alpha}f = f|_{K_{\alpha}}, \quad f \in \overline{B}_{\alpha}.$$

Given any $\varepsilon > 0$, and $f \in B_{\alpha}$, we find an ordinal $\beta, \omega \leq \beta < \alpha$, and $g \in B_{\beta}$ such that $||f - g|| < \varepsilon$. Then

$$\begin{split} \|f\| &\leq \|g\| + \|f - g\| = \|T_{\beta}(g|_{K_{\beta}})\| + \|f - g\| \leq \|g|_{K_{\beta}}\|_{\beta} + \varepsilon \\ &\leq \|g|_{K_{\alpha}}\|_{\alpha} + \varepsilon = \|S_{\alpha}g\|_{\alpha} + \varepsilon \leq \|S_{\alpha}g - S_{\alpha}f\|_{\alpha} + \|S_{\alpha}f\|_{\alpha} + \varepsilon \\ &\leq \|S_{\alpha}f\|_{\alpha} + 2\varepsilon. \end{split}$$

Therefore

 $\|f\| \leq \|S_{\alpha}f\|_{\alpha}$

from where it follows that S_{α} is a linear isometry from \overline{B}_{α} into $C(K_{\alpha})$. Moreover, $S_{\alpha}(\overline{B}_{\alpha})$ is a closed subalgebra of $C(K_{\alpha})$ which is self conjugated and contains the constants. On the other hand, if $x = (x_i : i \in I)$ and $y = (y_i : i \in I)$ are different points of K_{α} , there is some

ARCH. MATH.

496

 $j \in J$ with $x_j \neq y_j$ from where it follows that for some ordinal number β and $(u_i: i \in I)$ in A_β we have $u_j \neq 0$. Thus, we see that e_j belongs to \overline{B}_α and $e_j(x) = x_j \neq y_j = e_j(y)$. Consequently, $S_\alpha(\overline{B}_\beta)$ separate points of K_α and the Stone-Weierstrass theorem assures that $S_\alpha(\overline{B}_\alpha) = C(K_\alpha)$. We take $T_\alpha = S_\alpha^{-1}$. We now have

$$\begin{split} A_{\alpha} &\supset \{x_{\nu} \colon \nu < \alpha\}, \quad |A_{\alpha}| = |\alpha|, \quad \|T_{\alpha}\| = 1, \quad \text{dens } C(K_{\alpha}) \leq |\alpha|, \\ B_{\alpha} &= (\{e_i \colon i \in I(A_{\alpha})\})^*, \quad T_{\alpha}(C(K_{\alpha})) = \overline{B}_{\alpha}. \end{split}$$

We have finished the construction because

 $\{K_{\alpha}: \omega \leq \alpha \leq \mu\}$ and $\{T_{\alpha}: \omega \leq \alpha \leq \mu\}$

verifies the conclusion of our theorem. \Box

Theorem 2. Let K be an infinite compact of the class \mathscr{A} . Let μ be the first ordinal with $|\mu| = \text{dens } K$. Then there is a family

$$\{K_{\alpha}: \omega \leq \alpha \leq \mu\}$$

of compact subsets of K with K_{α} in the class \mathcal{A} , together with a family

$$\{T_{\alpha}: \omega \leq \alpha \leq \mu\}$$

of linear extension operators from $C(K_{\alpha})$ into C(K) such that if

$$P_{\alpha}f = T_{\alpha}(f|_{K_{\alpha}}), \quad f \in C(K),$$

then

$$\{P_{\alpha}: \omega \leq \alpha \leq \mu\}$$

is a projective resolution of identity in C(K).

Proof. We can suppose that K is compact in some cube $[0, 1]^{I}$. Let

$$\{K_{\alpha} : \omega \leq \alpha \leq \mu\}$$
 and $\{T_{\alpha} : \omega \leq \alpha \leq \mu\}$

be the families of compact subsets of K and linear extension operators constructed in the former theorem. Let us take f in C(K) and $\omega \leq \beta \leq \alpha \leq \mu$. Then

$$||P_{\alpha}f|| = ||T_{\alpha}(f|_{K_{\alpha}})|| \le ||f||_{K_{\alpha}}||_{\alpha} \le ||f||$$

and so, $||P_{\alpha}|| = 1$. We also gave

$$(P_{\alpha} \circ P_{\beta}) f = P_{\alpha}(T_{\beta}(f|_{K_{\beta}})) = T_{\alpha}(T_{\beta}(f|_{K_{\beta}})|_{K_{\alpha}}) = T_{\beta}(f|_{K_{\beta}}) = P_{\beta}f,$$

$$(P_{\beta} \circ P_{\alpha}) f = P_{\beta}(T_{\alpha}(f|_{K_{\alpha}})) = T_{\beta}(T_{\alpha}(f|_{K_{\alpha}})|_{K_{\beta}}) = T_{\beta}(f|_{K_{\beta}}) = P_{\beta}f$$

and thus

$$P_{\alpha} \circ P_{\beta} = P_{\beta} = P_{\beta} \circ P_{\alpha}.$$

 P_{μ} obviously coincides with the identity in C(K). Since

$$P_{\alpha}(C(K)) = T_{\alpha}(C(K_{\alpha}))$$

we have

dens
$$P_{\alpha}(C(X)) = \text{dens } C(K_{\alpha}) \leq |\alpha|$$
.

Archiv der Mathematik 54

M. VALDIVIA

Finally, if α is a ordinal limit, $\omega \leq \alpha \leq \mu$, it follows that

$$\overline{\cup \{P_{\beta}(C(K)): \omega \leq \beta < \alpha\}} = \overline{\cup \{T_{\beta}(C(K_{\beta})): \omega \leq \beta < \alpha\}}$$
$$= T_{\alpha}(C(K_{\alpha})) = P_{\alpha}(C(K))$$

and everything in the definition of projective resolution of identity has been checked. \Box

If we apply a result of Troyanski [4] and Zizler [5] on renorming theory, from the former theorem we obtain:

Corollary. If K is the continuous image of a compact space of the class \mathcal{A} , then C(K) admits an equivalent norm which is locally uniformly rotund. Particularly, the diadic compact spaces satisfies this property.

References

- S. ARGYROS, S. MERCOURAKIS and S. NEGREPONTIS, Functional-analytic properties of Corsoncompact spaces. Studia Math. 89, 197–229 (1988).
- [2] H. H. CORSON, Normality in subsets and product spaces. Amer. J. Math. 81, 785-796 (1959).
- [3] S. P. GUL'KO, On properties of function spaces (in Russian). In: Seminar on General Topology, P. S. Aleksandrov (ed.), Izdat. Moscow Univ., 8-41, Moscow 1981.
- [4] S. TROYANSKI, On locally uniformly convex and differentiable norms. Studia Math. 37, 173–180 (1971).
- [5] V. ZIZLER, Locally uniformly rotund renorming and decomposition of Banach spaces. Bull. Australian Math. Soc. 29, 259–265 (1984).

Eingegangen am 13. 10. 1988*)

Anschrift des Autors:

M. Valdivia Facultad de Matemáticas Dr. Moliner 50 46100 Burjasot/Valencia Spain

498

^{*)} Eine Neufassung ging am 19. 5. 1989 ein.