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Projective resolution of identity in C(K) spaces

By

M. VALDIVIA *)

For a certain class o/ of compact spaces, which is biger than the class of Corson
compact spaces, it is proved that if K belongs to </, the Banach space C (K) admits a
projective resolution of identity constructed through a family of linear extension opera-
tors.

The vector spaces we shall use here are defined over the field H of real or complex
numbers. If H is the real field R, we denote by L the field of rational numbers; if H is the
complex field C, we mean by L the field of complex numbers a + bi where a and b are
rational numbers.

Given a set 4, |4] denotes its cardinal number. If o is an ordinal number, || is its
cardinal number. If E is a topological space, the density character of E, dens E, is the first
cardinal o such that E has a dense subset A with |A| = a. As it is usual, @ denotes the
first infinite ordinal.

Unless the contrary would be specifically stated, | .| is the norm in any Banach space
X. If T denotes the identity operator on X and u is the first ordinal with |u| = dens X,
a projective resolution of identity is a well ordered family

{PoLasp)
of projections in X which satisfies the following conditions:
@ IPI=1lo<agp
() dens P,(X)=<|a|, 0o Sa<p
(i) P,oPy=Py=PFPeP,0o<pf<La=sp
(ivy U{P;(X):w = B <a} = P,(X) whenever a is an ordinal limit.
v P,=T

If K is a compact topological space, C(K) denotes the Banach space of continuous
functions from K into H endowed with the norm

If It =sup{If (X)[:xeK} for feC(K).

If K is a compact subset of the cube [0, 117, we write K (I) to denote the subset of K formed
with the elements (x;: i € I) such that

{iel:x; +0}

*) Support in part by CAICYT.
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is countable. Let us denote by ¢, the projection of K on the i-th coordinate. If P is a subset
of K, P denotes its closure and we write I(P) to denote the subset of I formed by the
elements j of I such that for some (x;:i e I) in P we have x; # 0. If B is a subset of C(K),
(B)* is the self conjugate linear algebra on L generated by B together with the constant
functions over K valued on L. (B)¥, the closure of (B)* in C(K) is a self conjugate closed
subalgebra of C(K).

We shall say that a compact topological space D belongs to the class o if it is
homeomorphic to a compact subset K of [0, 1]* for some set I and such that K (I) is dense
in K.

A compact topological space is a Corson compact if it is homeomorphic to a compact
subset of 3" (RY), [2]. Obviously, the class .o/ contains the class of Corson compact spaces.
Using Theorem 2 it is easy to prove the following result, [1] and [3]: If K belongs to o/
there are a set I' and an one-to-one bounded operator T:C(K) — co(I') that is also
pointwise to pointwise continuous.

Lemma. Let K be a compact subset of [0, 117 such that K (I) is dense in K. Let A, and
B, be two infinite subsets of K (I) and C(K) respectively. If 4 is a cardinal number such that
|Agl £ Aand |B,| < A there exist a subset M of K (I') and a linear extension operator T from
C(M) into C(K) such that

1) M > A4,, M| £ 4,
2) | T|l =1, dens C(M) < A, T(C(M)) =By {e;:1€ I(M)F.

Proof. We are going to describe the process of construction by recurrence. So, let us
start by supposing that for a given nonnegative integer #» we have found

B,cC(K), A, cK(I), |4,/=4, |B,|=4.

For each f € B, we choose some point x(f) of K () such that | f] attains its supremum
on it. We set

Apry=A4,0{x(f):feB,}.
Obviously |4, ] £ A. We write
B, ;= (Bou{eiel(4,,))*.

Let M:= | 4, and let E be the closure of |} B, in C(K). We obviously have
n=0

n=0

M5 Ay, M1, E=(B,ule:ic (M)
Let us denote by |||. ||| the norm on C(M). We set
Sf=flu feE.

Given ¢ > 0 and f in E, we find a positive integer n together with g € B, such that
| f— gl < e Since x(g) is a point in A4, ; where | g| attains its supremum it now follows
that

I =hgll+1f—gl =lgx(g)l +e=1lISglll + &
SNSg—=SAN+ IS+ e S ISSI+ 2¢



Vol. 54, 1990 Projective resolution of identity 495

from where we have

LA =10ssIl

and we deduce that S is a linear isometry from E into C(M). Let us observe that S(E)
is a closed and self conjugate subalgebra of C (M) which contains the constants. More-
over,if x = (x;:ieI)and y = (y;: i € I) are different points of M there is some j e I such
that x; & y; and so for some positive integer m and (u;: i€ I} in 4,, we see that u, + 0.
It follows that ;e E and ¢,(x) = x; + y, = ¢,(y). Consequently, S(E) separates points
of M and the Stone-Weierstrass theorem assures that S(E) = C(M). Obviously,
dens C(M) < /. The operator T = S ~! is the linear extension operator we are looking
for. [

Theorem 1. Let K be an infinite compact subset of [0, 111 such that K (I) is dense in K.
Let u be the first ordinal number such that its cardinal number coincides with dens K(I).
Then there exists a family

{Ky,oSa=p}

of compact subsets of K with K, (I) dense in K, together a family
{Trosa=<p}

of linear extension operators from C(K,) into C(K) such that

O IGl=L,wospspu
(i) dens C(Kp) = |fl,0o=f=sp
(iii) Kz<cK,and TH(ICKy)c T(CK,)), o<psySu
(ivy K,=U{Kp:w=Zf<a}and T(C(K,)=v{T(CK,):w=Zp<a}
whenever « is an ordinal limit.
(v K,=K.

Proof. If dens K(I) = X,, we write K, = K and T,, for the identity mapping on
C(K). Let us now suppose that dens K(I) > Ng. Let {x,:v < u} be a dense subset of
K (I). We can apply the lemma dealing with

Ag={x,;v<w}, By={e:icl(dy}, A=,
to obtain a subset 4,, of K (I) and a linear extension operator 7, from C(4,) into C(K)
such that

A, D Ay, |A,l=Re, T, =1, densC(4,) =,
and if we write

Bm = ({ei: i€ I(Aa))})*
then

T,(C(4,) = B,.
We set K, = A,. Let us proceed by transfinite induction. Let us take w < o < p and
suppose we have determined the family

{Adgro < p<a}



496 M. VALDIVIA ARCH. MATH.

of subsets of K (I) together with the family
{Tiro<p<al
of linear extension operators from C(K,) into C(K), where Kz = Ay, and the family
{By:w £ <a}
of subsets of C(K) such that
Ao {x, v < B, 14,1 =1Bl, [Tl =1, densC(K,)<Il,
By =({e;:iel(A4)P* T;(C(K,) = B;.

We can now distinguish two cases. If o is not an ordinal limit, we have o = y + 1. The idea
would be to apply the lemma for the sets

Ao =A,ui{x,:v<a}, By={e:iel(4,)}

and the cardinal number A = |y| = |a|. We would obtain a subset A, of K (I) and a linear
extension operator T, from C(4,) into C(K) such that

A, > Ay, Al =lal, IIT] =1, densC(4,) <o,
and if we write

Ba = ({ei: i€ I (A:z)})*
then
T,(C(4,)) = B,.

We set K, = A, that finishes the construction for the first case. If « is an ordinal limit we
put

Ap=v{dp0sp<al, K,=4,
B,;=u{Bgo=<p<a}=({e:icl(4,)D*

Let us denote by ||. ||; the norm on C(K;), @ £ B < o. We set
Sef =flk,» [€B,.

Given any ¢> 0, and feB,, we find an ordinal §,w £ f <«, and ge B, such that
If —gll <e Then

1A =lgl +1f =gl = 1Tl + 1 — gl = llglk,lls + ¢
Slglglla+e=1189la+e= 18,9 =S flla+ 1SSl + &
S8l + 26,
Therefore

1A= 1S S lla

from where it follows that S, is a linear isometry from B, into C(K,). Moreover, S,(B,)
is a closed subalgebra of C(K,) which is self conjugated and contains the constants. On
the other hand, if x = (x;: i e I} and y = (y,: i € I) are different points of K, there is some
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jeJ with x; # y; from where it follows that for some ordinal number f and (y;:ieI)in
Ay we have u; + 0. Thus, we see that ¢; belongs to B, and e;(x) = x, # y; = ¢;(y). Conse-
quently, S,(B;) separate points of K, and the Stone-Weierstrass theorem assures that
8,(B,) = C(K,)- We take T, = S, . We now have

A5 {xv<a), (A=l |TI=1 densC(K,) < lal,
B, =({e;iel(4,))% T.(C(K,)=B,.

We have finished the construction because
{Ky;ofa=sp} and {Tpyo<a<pu}

verifies the conclusion of our theorem. [

Theorem 2. Let K be an infinite compact of the class of. Let u be the first ordinal with

|¢t] = dens K. Then there is a family
Ko S a <y}

of compact subsets of K with K, in the class s/, together with a family
{Tio<aspy

of linear extension operators from C(K,) into C(K) such that if
P.f=T(flk). feC(K),

{P,row < a <y}

then

is a projective resolution of identity in C(K).
Proof. We can suppose that K is compact in some cube [0, 1]. Let
{Ky;o<a<p} and {T;o<aZyu}

be the families of compact subsets of K and linear extension operators constructed in the
former theorem. Let us take f in C(K) and @ < ff £ o < u. Then

1P S =TT =1l e S 151

and so, | P,]| = 1. We also gave
(Pyo Pp) f = P,(Tp(fIx,) = T(Tp(flx,) k) = Ty (f k) = Ps £
(Pge P) f = Py(T,(f Ix,) = T (L(flx,) k) = T(fk,) = Pp f
P,oPy=P,= P, P,.

P, obviously coincides with the identity in C(K). Since
P, (C(K)) = T,(C(K,))

and thus

we have
dens P,(C (X)) = dens C(K,) £ |«].

Archiv der Mathematik 54 32



498 M. VALDIVIA ARCH. MATH.
Finally, if « is a ordinal limit, @ < o < y, it follows that
U{P(CEK): oL p<af=u{TH{CKy):w=f<a}
= T,(C(K,)) = P,(C(K))

and everything in the definition of projective resolution of identity has been
checked. [J

If we apply a result of Troyanski [4] and Zizler [5] on renorming theory, from the former
theorem we obtain:

Corollary. If K is the continuous image of a compact space of the class o, then C(K)
admits an equivalent norm which is locally uniformly rotund. Particularly, the diadic com-
pact spaces satisfies this property.
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