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Projective resolution of identity in C(K) spaces 

By 

M. VALDIVIA *) 

For  a certain class d of compact spaces, which is biger than the class of Corson 
compact  spaces, it is proved that if K belongs to d ,  the Banach space C(K) admits a 
projective resolution of identity constructed through a family of linear extension opera- 
tors. 

The vector spaces we shall use here are defined over the field H of real or complex 
numbers. If H is the real field R, we denote by L the field of rational numbers; if H is the 
complex field C, we mean by L the field of complex numbers a + b i where a and b are 
rational numbers. 

Given a set A, I AI denotes its cardinal number. If ~ is an ordinal number, I~1 is its 
cardinal number. If E is a topological space, the density character of E, dens E, is the first 
cardinal a such that E has a dense subset A with I AI = ~. As it is usual, o9 denotes the 
first infinite ordinal. 

Unless the contrary would be specifically stated, II. II is the norm in any Banach space 
X. If T denotes the identity operator on X and # is the first ordinal with I#[ = dens X, 
a projective resolution of identity is a well ordered family 

{P~: o2 -< ~ -< fl} 

of projections in X which satisfies the following conditions: 

(i) lIP~Ll = I, o2__< ~__< #. 
(ii) dens P~(X) <= ]~], co <__ ~ ~ #. 

(iii) p op~=pp=ppop~,o2<=fl<=~<=#. 
(iv) u {P~(X): co __< fl < ~} -- P~(X) whenever a is an ordinal limit. 
(v) Pu = T. 

If K is a compact  topological space, C(K) denotes the Banach space of continuous 
functions from K into H endowed with the norm 

I I f N = s u p { I f ( x ) l : x e K  } for f e e ( K ) .  

I f K  is a compact  subset of the cube [0, 1] x, we write K (I) to denote the subset of K formed 
with the elements (x~: i ~ I)  such that 

{ ie I :x i+O}  

*) Support in part by CAICYT. 
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is countable. Let us denote by e i the projection of K on the i-th coordinate. I f P  is a subset 
of K , /5  denotes its closure and we write I (P) to denote the subset of I formed by the 
elements j o f / s u c h  that for some (xi: i ~ I) in P we have xj 4: 0. I f B  is a subset of C(K),  
(B)* is the self conjugate linear algebra on L generated by B together with the constant 
functions over K valued on L. (B)*, the closure of (B)* in C (K) is a self conjugate closed 
subalgebra of C(K). 

We shall say that a compact topological space D belongs to the class ~r if it is 
homeomorphic  to a compact  subset K of [0, 1] I for some set I and such that K (I) is dense 
in K. 

A compact topological space is a Corson compact if it is homeomorphic to a compact 
subset of Y~ (RZ), [2]. Obviously, the class ~r contains the class of Corson compact spaces. 
Using Theorem 2 it is easy to prove the following result, [1] and [3]: I f  K belongs to ~r 
there are a set F and an one-to-one bounded operator T: C ( K ) ~  co(F ) that is also 
pointwise to pointwise continuous. 

Lemma. Let K be a compact subset o f  [0, 1] I such that K ( I )  is dense in K. Let  A o and 
Bo be two infinite subsets of  K (I) and C (K) respectively. I f  2 is a cardinal number such that 
]Ao I < 2 and ]Bo] ___ 2 there exist a subset M of  K (I) and a linear extension operator T from 
C (M) into C (K) such that 

1) M ~ no,  IMI < 2, 
2) II Z II = 1, dens C(~t)  < 2, T(C(M))  = (Bow {e , : iE I(M)})*. 

P r o o f. We are going to describe the process of construction by recurrence. So, let us 
start by supposing that for a given nonnegative integer n we have found 

B,, c C(K) ,  An c K( I ) ,  I A n l < 2 ,  IBnl<,~. 

For  each f ~ B n we choose some point x ( f )  of K (I) such that I f  l attains its supremum 
on it. We set 

An+ 1 = A n u { x ( f ) : f  eBn} .  

Obviously I An + 11 < 2. We write 

Bn+ 1 = (B o w {ei: i~I(An+l)})* .  

Let M:= An and let E be the closure of 0 Bn in C(KI. We obviously have 
n = 0  n = 0  

M = Ao, I MI < 2, E = (Bo u {e,: i ~ I(M)})*. 

Let us denote by III. I11 the norm on C (.~t). We set 

S f = f l ~ ,  f E E .  

Given e > 0 and f in E, we find a positive integer n together with g e B n such that 
[1 f - g II < ~. Since x (g) is a point in An + 1 where [ g[ attains its supremum it now follows 
that 

Ilf  II < II gll + Ilf - gll < Ig(x(g))l + e = IIISgrll + e 

=< I I I a g -  Sfl l l  + IIIafll l  + e < IIISflll + 2~ 
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from where we have 

IlflF < I l i a / I l l  

and we deduce that S is a linear isometry from E into C(M). Let us observe that S(E) 
is a closed and self conjugate subalgebra of C (3~r) which contains the constants. More- 
over, if x = (xi: i E 1) and y = (Yi: i ~ I) are different points of )~ there is some j E I such 
that x~ 4= yj and so for some positive integer m and (ui: i ~ I )  in A,, we see that uj 4: 0. 
It follows that ej ~ E and ej (x )=  xj + yj = %(y). Consequently, S(E) separates points 
of M and the Stone-Weierstrass theorem assures that S (E)=  C(M). Obviously, 
dens C 0 ~ )  < 2. The operator T = S -  1 is the linear extension operator we are looking 
for. [ ]  

Theorem 1. Let K be an infinite compact subset of [0, 111 such that K (I) is dense in K. 
Let # be the first ordinal number such that its cardinal number coincides with dens K (I). 
Then there exists a family 

of compact subsets of K with K~(I) dense in K~ together a family 

of linear extension operators from C (K~) into C(K) such that 

(i) IlVall = / ,  co__< fl__< #. 
(ii) dens C(Kts ) < Ifll, co =< fi _-< ~. 

(iii) Ka c K s and Tp(C(Kp)) ~ T~(C(K~)), co < fl < 7 </z.  

(iv) K~ = u {K~: ~o < fl < a} and T~(C(K~)) = w {T~(C(Kp): r < fl < a} 
whenever a is an ordinal limit. 

(v) K ,  = K. 

P r o o f. If dens K (I) = No, we write Ko, = K and To, for the identity mapping on 
C(K). Let us now suppose that dens K(I)  > N o. Let {x~: v < p} be a dense subset of 
K (I). We can apply the lemma dealing with 

A o = { x , : v < c o } ,  B o = { e i : i r  2 = - N  o 

to obtain a subset A~ of K (1) and a linear extension operator To, from C (A~) into C(K) 
such that 

A ~ A o ,  ] A ~ [ = N o ,  [[T,o[[=l,  d e n s C ( g o , ) = N o  

and if we write 

Bo) = ({ei:i ~ I (Ao~)})* 
then 

T,~ (C (-~,o)) =/~,o. 

We set Ko, = A,o- Let us proceed by transfinite induction. Let us take co < ~ < # and 
suppose we have determined the family 

{Ate: Co _--< fl < a} 
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of subsets of K (I) together  with the family 

{Tp:to__</~ < ~} 

of linear extension operators  f rom C(Kp) into C(K), where Kp = .4p, and  the family 

{Bp: to < fi < 0~} 

of subsets of C(K) such that  

Ap~{xv :v<f l } ,  [A~l= l f l [ ,  [ [ T p [ [ = l ,  densC(K~)<lfl[, 

Bp = ({e,: i~I(Ap)})*, Tp(C(K~)) = B~. 

We can now distinguish two cases. If  a is not  an ordinal  limit, we have a = 7 + 1. The idea 
would  be to apply the l emma for the sets 

A o = A ~ w { x v : v < ~ } ,  S o = { e i : i E I ( A o )  } 

and  the cardinal  number  2 = [7[ = [a[. We would  obta in  a subset A,  of K (I) and a linear 
extension opera tor  T~ from C (A~) into C (K) such that  

A ~ D A 0 ,  [ A ~ [ = [ a [ ,  [[T~I[ = 1 ,  densC(A~)=<]~[ ,  

and if we write 

B~ = ({el  : i ~ I (A~)})* 
then 

L ( c ( ~ , ) )  = ~ .  

We set K~ = A~ that  finishes the const ruct ion for the first case. If  ~ is an ordinal  limit we 
put  

A~:= w {Ap: to < fl < a}, K~ = A~, 

B~:= w {Bp : to < fi < ~} = ({e, : i ~ I (A~)})*. 

Let us denote  by n. lip the n o r m  on C(K~),  ~o ____ fl =< ~. We set 

S~f =flK., f eB~. 

Given any e > O, and f E B~, we find an ordinal  fi, to _-< fl < a, and 9 ~ B~ such that  
Ilf - g 1[ < ~. Then  

II f II _-< 11 g II + II f - g 1[ = I I Tp (g Iro)ll + II f - g II _-< II g [K~ lip + 

< IlglK=ll~ + ~ = IlS~gl[~ + ~ < I lS~g-S~f l l~+ IlS~fll~ + ~ 

< IIS~fll~ + 2~. 

Therefore 

11 f 11 < [[ S~ f [I 

f rom where it follows that  S~ is a linear isometry from B~ into C(K~). Moreover ,  S~(/3~) 
is a closed subalgebra of C(K~) which is self conjugated  and contains  the constants.  On  
the other  hand, if x = (xi : i ~ I )  and  y = (Yi : i ~ I )  are different points  of K~, there is some 
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j e J with xj 4 = yj from where it follows that  for some ordinal number  fl and (ui: i e I) in 
Ap we have uj 4= 0. Thus, we see that ej belongs to /~,  and e~ (x) = xj 4: yj = ej (y). Conse- 
quently, S~(Ba) separate points of K~ and the Stone-Weierstrass theorem assures that  
S~ (B,) = C (K,). We take T~ = S~-1. We now have 

A ~ { x ~ : v < ~ } ,  IA~[=[c~[, [ IT~II=I ,  densC(K~)__<[c~[, 

B= = ({e, : i e I (A~)}) *, T~ (C (K~)) = B~. 

We have finished the construction because 

{K~ : co _< ~ _< y} and {T~:o<__c~_<#} 

verifies the conclusion of our theorem. [ ]  

Theorem 2. Let K be an infinite compact of the class s~. Let # be the first ordinal with 
I~1 = dens K. Then there is a family 

{K~:m _< c~_< p} 

of compact subsets of K with K~ in the class d ,  together with a family 

of linear extension operators from C(K~) into C(K) such that if 

P~f  = T~(fIK~), f ~C(K) ,  
then 

(L: o -< - p} 

is a projective resolution of identity in C(K). 

P r o o f. We can suppose that K is compact  in some cube [0, 1] I. Let 

{K~:r and {T~:co_<c~_<#} 

be the families of compact  subsets of K and linear extension operators constructed in the 
former theorem. Let us take f in C(K) and co __< fl __< cr </~. Then 

IIP~fll = II T~(flK.)II _--< I[fl~ll~ _--__ Ilfll 

and so, II P~ II = 1. We also gave 

(G ~ Pp) f = P~(T~(flK~)) = T~(T~(fIK~)I~) = T~(flK~) = Pp f  , 

(Pp~ P ~ ) f  = P~ (T~(f IK~))= Tp (T~(f I / ~ ) I ~ ) =  Tp( f  IK~)= Pp f  
and thus 

P~o P~ = Pp = P~o P~. 

P~ obviously coincides with the identity in C (K). Since 

P~ (C (K)) = T~ (C (K~)) 

we have 
dens P~(C (X)) = dens C (K~) ~ ]o: I . 

Archlv der Mathematlk 54 32 
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Finally, if e is a ordinal  limit, o -< c~ _< #, it follows that  

w {P~(C(K)): co __< fl < e} = w {Tp(C(Kp))" o =< fl < a} 

= T~(C(K~))  = P ~ ( C ( K ) )  

and everything in the definition of projective resolution of 
checked. []  

identity has been 

If  we apply  a result of Troyanski  [4] and Zizler [5] on renorming theory, from the former 
theorem we obtain:  

Corollary. I f  K is the continuous image of a compact space of the class d ,  then C(K) 
admits an equivalent norm which is locally uniformly rotund. Particularly, the diadic com- 
pact spaces satisfies this property. 
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