Projective resolution of identity in $C(K)$ spaces

By

M. VALDIVIA *)

For a certain class $\mathscr A$ of compact spaces, which is biger than the class of Corson compact spaces, it is proved that if K belongs to \mathscr{A} , the Banach space $C(K)$ admits a projective resolution of identity constructed through a family of linear extension operators.

The vector spaces we shall use here are defined over the field H of real or complex numbers. If H is the real field R, we denote by L the field of rational numbers; if H is the complex field C, we mean by L the field of complex numbers $a + bi$ where a and b are rational numbers.

Given a set A, |A| denotes its cardinal number. If α is an ordinal number, | α | is its cardinal number. If E is a topological space, the density character of E, dens E, is the first cardinal α such that E has a dense subset A with $|A| = \alpha$. As it is usual, ω denotes the first infinite ordinal.

Unless the contrary would be specifically stated, $\|\cdot\|$ is the norm in any Banach space X. If T denotes the identity operator on X and μ is the first ordinal with $|\mu| =$ dens X, a projective resolution of identity is a well ordered family

$$
\{P_{\alpha} : \omega \leq \alpha \leq \mu\}
$$

of projections in X which satisfies the following conditions:

(i) $||P_{\alpha}|| = 1, \omega \leq \alpha \leq \mu$.

(ii) dens $P_{\alpha}(X) \leq |\alpha|, \omega \leq \alpha \leq \mu$.

(iii) $P_{\alpha} \circ P_{\beta} = P_{\beta} = P_{\beta} \circ P_{\alpha}, \omega \leq \beta \leq \alpha \leq \mu.$

- (iv) $\overline{\bigcup \{P_{\beta}(X): \omega \leq \beta < \alpha\}} = P_{\alpha}(X)$ whenever α is an ordinal limit.
- (v) $P_u = T$.

If K is a compact topological space, $C(K)$ denotes the Banach space of continuous functions from K into H endowed with the norm

$$
||f|| = \sup \{|f(x)| : x \in K\} \quad \text{for} \quad f \in C(K).
$$

If K is a compact subset of the cube $[0, 1]^I$, we write $K(I)$ to denote the subset of K formed with the elements $(x_i : i \in I)$ such that

$$
\{i\in I: x_i\neq 0\}
$$

^{*)} Support in part by CAICYT.

is countable. Let us denote by e_i the projection of K on the *i*-th coordinate. If P is a subset of K, \overline{P} denotes its closure and we write $I(P)$ to denote the subset of I formed by the elements *j* of *I* such that for some $(x_i : i \in I)$ in *P* we have $x_i \neq 0$. If *B* is a subset of $C(K)$, $(B)^*$ is the self conjugate linear algebra on L generated by B together with the constant functions over K valued on L. $(B)^*$, the closure of $(B)^*$ in $C(K)$ is a self conjugate closed subalgebra of $C(K)$.

We shall say that a compact topological space D belongs to the class $\mathscr A$ if it is homeomorphic to a compact subset K of [0, 1]^T for some set I and such that $K(I)$ is dense in K.

A compact topological space is a Corson compact if it is homeomorphic to a compact subset of $\sum (R^I)$, [2]. Obviously, the class $\mathcal A$ contains the class of Corson compact spaces. Using Theorem 2 it is easy to prove the following result, [1] and [3]: *If K belongs to* $\mathscr A$ *there are a set* Γ *and an one-to-one bounded operator* $T: C(K) \rightarrow c_0(\Gamma)$ *that is also pointwise to pointwise continuous.*

Lemma. Let K be a compact subset of $[0, 1]^I$ such that $K(I)$ is dense in K. Let A_0 and B_0 be two infinite subsets of K(I) and C(K) respectively. If λ is a cardinal number such that $|A_0| \leq \lambda$ and $|B_0| \leq \lambda$ there exist a subset M of K(I) and a linear extension operator T from $C(\overline{M})$ into $C(K)$ such that

- 1) $M \supset A_0$, $|M| \leq \lambda$,
- 2) $||T|| = 1$, dens $C(\overline{M}) \leq \lambda$, $T(C(\overline{M})) = \overline{(B_0 \cup \{e_i : i \in I(M)\})^*}.$

P r o o f. We are going to describe the process of construction by recurrence. So, let us start by supposing that for a given nonnegative integer n we have found

$$
B_n \subset C(K), \quad A_n \subset K(I), \quad |A_n| \leq \lambda, \quad |B_n| \leq \lambda.
$$

For each $f \in B_n$ we choose some point $x(f)$ of $K(I)$ such that $|f|$ attains its supremum on it. We set

$$
A_{n+1} = A_n \cup \{x(f) : f \in B_n\}.
$$

Obviously $|A_{n+1}| \leq \lambda$. We write

$$
B_{n+1} = (B_0 \cup \{e_i : i \in I(A_{n+1})\})^*.
$$

Let $M := \bigcup_{n=0} A_n$ and let E be the closure of $\bigcup_{n=0} B_n$ in $C(K)$. We obviously have $M \supseteq A_0$, $|M| \leq \lambda$, $E = \overline{(B_0 \cup \{e_i : i \in I(M)\})^*}.$

Let us denote by $||| \cdot |||$ the norm on $C(\overline{M})$. We set

$$
Sf = f |_{\overline{M}}, \quad f \in E.
$$

Given $\varepsilon > 0$ and f in E, we find a positive integer n together with $g \in B_n$ such that $|| f - g || < \varepsilon$. Since $x(g)$ is a point in A_{n+1} where | g| attains its supremum it now follows that

$$
||f|| \le ||g|| + ||f - g|| \le |g(x(g))| + \varepsilon = |||Sg||| + \varepsilon
$$

\n
$$
\le |||Sg - Sf|| + |||Sf||| + \varepsilon \le |||Sf||| + 2\varepsilon
$$

from where we have

$$
||f|| \leq |||Sf|||
$$

and we deduce that S is a linear isometry from E into $C(\overline{M})$. Let us observe that $S(E)$ is a closed and self conjugate subalgebra of $C(\overline{M})$ which contains the constants. Moreover, if $x = (x_i : i \in I)$ and $y = (y_i : i \in I)$ are different points of \overline{M} there is some $i \in I$ such that $x_i + y_j$ and so for some positive integer m and $(u_i: i \in I)$ in A_m we see that $u_j + 0$. It follows that $e_i \in E$ and $e_i(x) = x_i + y_i = e_i(y)$. Consequently, $S(E)$ separates points of \overline{M} and the Stone-Weierstrass theorem assures that $S(E) = C(\overline{M})$. Obviously, dens $C(\overline{M}) \leq \lambda$. The operator $T = S^{-1}$ is the linear extension operator we are looking for. \Box

Theorem 1. Let K be an infinite compact subset of $[0, 1]$ such that $K(I)$ is dense in K. Let μ be the first ordinal number such that its cardinal number coincides with dens $K(I)$. *Then there exists a family*

$$
\{K_{\alpha} : \omega \leq \alpha \leq \mu\}
$$

of compact subsets of K with $K_{\alpha}(I)$ dense in K_{α} together a family

$$
\{T_a\colon\omega\leqq\alpha\leqq\mu\}
$$

of linear extension operators from $C(K_{\alpha})$ *into* $C(K)$ *such that*

- (i) $\|T_{\beta}\|=1, \omega \leq \beta \leq \mu$.
- (ii) dens $C(K_{\beta}) \leq |\beta|$, $\omega \leq \beta \leq \mu$.
- (iii) $K_{\beta} \subset K_{\gamma}$ and $T_{\beta}(C(K_{\beta})) \subset T_{\gamma}(C(K_{\gamma}))$, $\omega \leq \beta \leq \gamma \leq \mu$.
- (iv) $K_{\alpha} = \overline{\cup \{K_{\beta}: \omega \leq \beta < \alpha\}}$ and $T_{\alpha}(C(K_{\alpha})) = \overline{\cup \{T_{\beta}(C(K_{\beta}): \omega \leq \beta < \alpha\}}$ *whenever a is an ordinal limit.*

$$
(v) \quad K_{\mu} = K.
$$

P r o o f. If dens $K(I) = N_0$, we write $K_{\omega} = K$ and T_{ω} for the identity mapping on *C(K).* Let us now suppose that dens $K(I) > N_0$. Let $\{x_v : v < \mu\}$ be a dense subset of *K (I).* We can apply the lemma dealing with

$$
A_0 = \{x_v : v < \omega\}, \quad B_0 = \{e_i : i \in I(A_0)\}, \quad \lambda = \aleph_0
$$

to obtain a subset A_{ω} of $K(I)$ and a linear extension operator T_{ω} from $C(\overline{A}_{\omega})$ into $C(K)$ such that

$$
A_{\omega} \supset A_0, \quad |A_{\omega}| = \aleph_0, \quad ||T_{\omega}|| = 1, \quad \text{dens } C(\overline{A}_{\omega}) = \aleph_0
$$

and if we write

$$
B_{\omega} = (\{e_i : i \in I(A_{\omega})\})^*
$$

then

$$
T_{\omega}(C(\overline{A}_{\omega})) = \overline{B}_{\omega}.
$$

We set $K_{\omega} = \overline{A}_{\omega}$. Let us proceed by transfinite induction. Let us take $\omega < \alpha \leq \mu$ and suppose we have determined the family

$$
\{A_\beta : \omega \leq \beta < \alpha\}
$$

of subsets of $K(I)$ together with the family

$$
\{T_{\beta}: \omega \leq \beta < \alpha\}
$$

of linear extension operators from $C(K_\beta)$ into $C(K)$, where $K_\beta = \overline{A}_\beta$, and the family

$$
\{B_{\beta}\colon \omega \leq \beta < \alpha\}
$$

of subsets of $C(K)$ such that

$$
A_{\beta} \supset \{x_{\nu} : \nu < \beta\}, \quad |A_{\beta}| = |\beta|, \quad \|T_{\beta}\| = 1, \quad \text{dens } C(K_{\beta}) \leq |\beta|,
$$
\n
$$
B_{\beta} = (\{e_i : i \in I(A_{\beta})\})^*, \quad T_{\beta}(C(K_{\beta})) = \overline{B}_{\beta}.
$$

We can now distinguish two cases. If α is not an ordinal limit, we have $\alpha = \gamma + 1$. The idea would be to apply the lemma for the sets

$$
A_0 = A_{\gamma} \cup \{x_{\gamma} : \nu < \alpha\}, \quad B_0 = \{e_i : i \in I(A_0)\}
$$

and the cardinal number $\lambda = |\gamma| = |\alpha|$. We would obtain a subset A_{α} of $K(I)$ and a linear extension operator T_{α} from $C(\overline{A}_{\alpha})$ into $C(K)$ such that

$$
A_{\alpha} \supset A_0, \quad |A_{\alpha}| = |\alpha|, \quad ||T_{\alpha}|| = 1, \quad \text{dens } C(\overline{A}_{\alpha}) \leq |\alpha|,
$$

and if we write

$$
B_{\alpha} = (\{e_i : i \in I(A_{\alpha})\})^*
$$

then

$$
T_{\alpha}(C(\overline{A}_{\alpha}))=\overline{B}_{\alpha}.
$$

We set $K_{\alpha} = \overline{A}_{\alpha}$ that finishes the construction for the first case. If α is an ordinal limit we put

$$
A_{\alpha} := \cup \{ A_{\beta} : \omega \le \beta < \alpha \}, \quad K_{\alpha} = \overline{A}_{\alpha},
$$

$$
B_{\alpha} := \cup \{ B_{\beta} : \omega \le \beta < \alpha \} = (\{ e_i : i \in I(A_{\alpha}) \})^*.
$$

Let us denote by $\| \cdot \|_{\beta}$ the norm on $C(K_{\beta})$, $\omega \leq \beta \leq \alpha$. We set

$$
S_{\alpha} f = f \big|_{K_{\alpha}}, \quad f \in \overline{B}_{\alpha}.
$$

Given any $\varepsilon > 0$, and $f \in B_\alpha$, we find an ordinal $\beta, \omega \le \beta < \alpha$, and $g \in B_\beta$ such that $||f - g|| < \varepsilon$. Then

$$
||f|| \le ||g|| + ||f - g|| = ||T_{\beta}(g|_{K_{\beta}})|| + ||f - g|| \le ||g|_{K_{\beta}}||_{\beta} + \varepsilon
$$

\n
$$
\le ||g|_{K_{\alpha}}||_{\alpha} + \varepsilon = ||S_{\alpha}g||_{\alpha} + \varepsilon \le ||S_{\alpha}g - S_{\alpha}f||_{\alpha} + ||S_{\alpha}f||_{\alpha} + \varepsilon
$$

\n
$$
\le ||S_{\alpha}f||_{\alpha} + 2\varepsilon.
$$

Therefore

 $|| f || \leq || S_{\alpha} f ||_{\alpha}$

from where it follows that S_{α} is a linear isometry from \overline{B}_{α} into $C(K_{\alpha})$. Moreover, $S_{\alpha}(\overline{B}_{\alpha})$ is a closed subalgebra of $C(K_{\alpha})$ which is self conjugated and contains the constants. On the other hand, if $x = (x_i : i \in I)$ and $y = (y_i : i \in I)$ are different points of K_α , there is some

 $j \in J$ with $x_i + y_j$ from where it follows that for some ordinal number β and $(u_i : i \in I)$ in A_β we have $u_j \neq 0$. Thus, we see that e_j belongs to \overline{B}_α and $e_j (x) = x_j + y_j = e_j (y)$. Consequently, $S_{\alpha}(\vec{B}_{\beta})$ separate points of K_{α} and the Stone-Weierstrass theorem assures that $S_{\alpha}(\bar{B}_{\alpha}) = C(K_{\alpha})$. We take $T_{\alpha} = S_{\alpha}^{-1}$. We now have

$$
A_{\alpha} \supset \{x_{\nu}: \nu < \alpha\}, \quad |A_{\alpha}| = |\alpha|, \quad \|T_{\alpha}\| = 1, \quad \text{dens } C(K_{\alpha}) \leq |\alpha|,
$$
\n
$$
B_{\alpha} = (\{e_i : i \in I(A_{\alpha})\})^*, \quad T_{\alpha}(C(K_{\alpha})) = \overline{B}_{\alpha}.
$$

We have finished the construction because

 ${K_\alpha : \omega \leq \alpha \leq \mu}$ and ${T_\alpha : \omega \leq \alpha \leq \mu}$

verifies the conclusion of our theorem. \Box

Theorem 2. Let K be an infinite compact of the class \mathcal{A} . Let μ be the first ordinal with $|\mu|$ = dens *K*. Then there is a family

$$
\{K_{\alpha} : \omega \leq \alpha \leq \mu\}
$$

of compact subsets of K with K_a *in the class* A *, together with a family*

$$
\{T_{\alpha} : \omega \leq \alpha \leq \mu\}
$$

of linear extension operators from $C(K_a)$ *into* $C(K)$ *such that if*

$$
P_{\alpha}f=T_{\alpha}(f|_{K_{\alpha}}),\ \ f\in C(K),
$$

then

$$
\{P_{\alpha} : \omega \leq \alpha \leq \mu\}
$$

is a projective resolution of identity in $C(K)$ *.*

P r o o f. We can suppose that K is compact in some cube $[0, 1]^I$. Let

$$
\{K_{\alpha} : \omega \leq \alpha \leq \mu\} \quad \text{and} \quad \{T_{\alpha} : \omega \leq \alpha \leq \mu\}
$$

be the families of compact subsets of K and linear extension operators constructed in the former theorem. Let us take f in $C(K)$ and $\omega \leq \beta \leq \alpha \leq \mu$. Then

$$
||P_{\alpha} f|| = ||T_{\alpha} (f||_{K_{\alpha}}) || \leq ||f||_{K_{\alpha}} ||_{\alpha} \leq ||f||
$$

and so, $||P_{\alpha}|| = 1$. We also gave

$$
(P_{\alpha} \circ P_{\beta}) f = P_{\alpha}(T_{\beta}(f|_{K_{\beta}})) = T_{\alpha}(T_{\beta}(f|_{K_{\beta}})|_{K_{\alpha}}) = T_{\beta}(f|_{K_{\beta}}) = P_{\beta}f,
$$

\n
$$
(P_{\beta} \circ P_{\alpha}) f = P_{\beta}(T_{\alpha}(f|_{K_{\alpha}})) = T_{\beta}(T_{\alpha}(f|_{K_{\alpha}})|_{K_{\beta}}) = T_{\beta}(f|_{K_{\beta}}) = P_{\beta}f
$$

and thus

$$
P_{\alpha}\circ P_{\beta}=P_{\beta}=P_{\beta}\circ P_{\alpha}.
$$

 P_μ obviously coincides with the identity in $C(K)$. Since

$$
P_{\alpha}(C(K))=T_{\alpha}(C(K_{\alpha}))
$$

we have

$$
\text{dens } P_{\alpha}(C(X)) = \text{dens } C(K_{\alpha}) \leq |\alpha|.
$$

Archiv der Mathematik 54 32

498 M. VALDIVIA ARCH. MATH.

Finally, if α is a ordinal limit, $\omega \leq \alpha \leq \mu$, it follows that

$$
\overline{\bigcup \{P_{\beta}(C(K)) : \omega \leq \beta < \alpha\}} = \overline{\bigcup \{T_{\beta}(C(K_{\beta})) : \omega \leq \beta < \alpha\}}
$$
\n
$$
= T_{\alpha}(C(K_{\alpha})) = P_{\alpha}(C(K))
$$

and everything in the definition of projective resolution of identity has been checked. \Box

If we apply a result of Troyanski [4] and Zizler [5] on renorming theory, from the former theorem we obtain:

Corollary. *If* K is the continuous image of a compact space of the class \mathcal{A} , then $C(K)$ *admits an equivalent norm which is locally uniformly rotund. Particularly, the diadic compact spaces satisfies this property.*

References

- [l] S. ARGYROS, S. MERCOURAKIS and S. NEGREPONTIS, Functional-analytic properties of Corsoncompact spaces. Studia Math. 89, 197-229 (1988).
- [2] H. H. CORSON, Normality in subsets and product spaces. Amer. J. Math. 81, 785-796 (1959).
- [3] S. P. GUL'KO, On properties of function spaces (in Russian). In: Seminar on General Topology, P. S. Aleksandrov (ed.), Izdat. Moscow Univ., 8-41, Moscow 1981.
- [4] S. TROYANSKI, On locally uniformly convex and differentiable norms. Studia Math. 37, 173-180 (1971).
- [5] V. ZIZLER, Locally uniformly rotund renorming and decomposition of Banach spaces. Bull. Australian Math. Soc. 29, 259-265 (1984).

Eingegangen am13.10.1988")

Anschrift des Autors:

M. Valdivia Facultad de Matemáticas Dr. Moliner 50 46100 Burjasot/Valencia Spain

^{*)} Eine Neufassung ging am 19. 5. 1989 ein.