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Exact and Approximation Algorithms for Sorting by 
Reversals, with Application to Genome Rearrangement 

J. K e c e c i o g l u  1 a n d  D.  S a n k o f f  2 

Abstract. Motivated by the problem in computational biology of reconstructing the series of 
chromosome inversions by which one organism evolved from another, we consider the problem of 
computing the shortest series of reversals that transform one permutation to another. The permutations 
describe the order of genes on corresponding chromosomes, and a reversal takes an arbitrary substring 
of elements, and reverses their order. 

For this problem, we develop two algorithms: a greedy approximation algorithm, that finds a 
solution provably close to optimal in O(n 2) time and O(n) space for n-element permutations, and a 
branch-and-bound exact algorithm, that finds an optimal solution in O(mL(n, n)) time and O(n 2) space, 
where m is the size of the branch-and-bound search tree, and L(n, n) is the time to solve a linear 
program of n variables and n constraints. The greedy algorithm is the first to come within a constant 
factor of the optimum; it guarantees a solution that uses no more than twice the minimum number 
of reversals. The lower and upper bounds of the branch-and-bound algorithm are a novel application 
of maximum-weight matchings, shortest paths, and linear programming. 

In a series of experiments, we study the performance of an implementation on random permutations, 
and permutations generated by random reversals. For permutations differing by k random reversals, 
we find that the average upper bound on reversal distance estimates k to within one reversal for k < �89 
and n < 100. For the difficult case of random permutations, we find that the average difference between 
the upper and lower bounds is less than three reversals for n < 50. Due to the tightness of these bounds, 
we can solve, to optimality, problems on 30 elements in a few minutes of computer time. This 
approaches the scale of mitochondrial genomes. 

Key Words. Computational biology, Approximation algorithms, Branch-and-bound algorithms, 
Experimental analysis of algorithms, Edit distance, Permutations, Sorting by reversals, Chromosome 
inversions, Genome rearrangements. 
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Fig. 1. Evolution of the pea chloroplast genome by five overlapping inversions. 

comes in large part from computational biology: at the level of individual characters, 
genetic sequences mutate by these operations, so edit distance is a useful measure 
of evolutionary distance. 

At the chromosome level, however, genetic sequences mutate by more global 
genome rearrangements, such as the reversal of a substring (inversion), the deletion 
and subsequent reinsertion of a substring far from its original site (transposition), 
the copying of a substring (duplication), and the exchange of prefixes or suffixes 
of two chromosomes in the same organism (translocation). An inversion, which 
takes a substring of unrestricted size and replaces it by its reverse in one operation, 
has the effect of reversing the order of the genes contained within the substring, 
and is perhaps the most common of these operations [21, pp. 174-175], especially 
in organisms with one chromosome. 

For example, the only major difference between the gene orders of two of the 
most well-known bacteria, Escherichia coli and Salmonella typhimurium, is an 
inversion of a long substring of the chromosomal sequence [17]. In plants, Palmer 
et al. [18] modeled the evolution of part of the pea chloroplast genome, which is 
also a single chromosome, in terms of five successive overlapping inversions, as we 
illustrate in Figure 1. In the fruit fly, genus Drosophila, inversions are a far more 
frequent reflection of differences between and within species than translocation or 
other processes [4, p. 155]. 

The importance of inversion in these examples suggests that algorithmic study 
of genome rearrangement by inversion alone is a worthwhile step in the study of 
evolutionary distance at the level of the chromosome. Once this problem is 
understood, other processes such as transposition [19] and translocation [16] can 
be added to refine the model. 

In the mathematical problem that we consider, we are given the order of n genes 
in two related single-chromosome organisms or two related organelles, which we 
represent by permutations 00 = (a 1 0~ " ' "  00n) and z = (zl T2 " ' "  Zn) -3 (In this 
notation, 00i denotes 00(i).) Such gene orders often come from genetic maps, that are 
the distillation of the work of many experimental geneticists. In current practice, 
the positions of the genes are increasingly found by sequence comparison, or 
DNA hybridization, as opposed to the mapping experiments of traditional 
genetics. 

3 Genes in one organism may be missing in the other. We assume, however, that such genes 
can be removed from the analysis, and that gene insertions and deletions can be analyzed 
separately. 
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We model an inversion by the reversal of an interval of elements. Formally, a 
reversal of interval [i,j] is the permutat ion 4 

i + 1  
P =  j - - 1  "" " 

Applying p to a by the composition s a-  p has the effect of reversing the order of 
genes ai, try+ 1 . . . .  , aj. Our  problem is the following. 

DEFINITION. The reversal distance problem on permutations is, given permuta- 
tions a and z, find a series of reversals pt, P2 . . . . .  pn such that 

f f 'Pl  "Pz ' "Pd  = ~, 

and d is minimum. 

We call d the reversal distance 6 between a and z. Like edit distance, it satisfies 
the axioms of a metric. Reversal distance measures the amount  of evolution that 
must have taken place at the chromosome level, assuming evolution proceeded 

�9 by inversion. 
Notice that the reversal distance between tr and z is equal to the reversal distance 

between z - l ' a  and the identity permutat ion z, where z-1 denotes the inverse of 
z. 7 Hence, we can take as our input the permutat ion n = z-~a,  and compute its 
distance from t. We call this formulation of the problem, sorting by reversals. Note 
also that any algorithm for the reversal distance between two strings that does not 
exploit a bounded-size alphabet must, as a special case, solve the reversal distance 
problem on permutations. 

From an algebraic point of view, reversals generate the group of permutations 
under composition. Given an arbitrary group element n, we seek a shortest product 
of generators PIP2"'" Pn that equals n. 

1.1. Related Work. Little is known about  reversal distance: even its computa-  
tional complexity is open. The only reference to an algorithm appears to be in 
Watterson et al. [24], which gives the first definition of the problem, and a heuristic 
for computing reversal distance that is described in Section 2. Since there are so 
few references, we can give a fairly exhaustive coverage of related work. 

# T h i s  no t a t i on  is s h o r t h a n d  for p( i )=j ,p ( i  + 1 ) = j -  1, etc. Ou t s ide  interval  [i,j], p leaves the 

e lements  unchanged.  
5 The composition of pe rmu ta t i ons  a and  p, ind ica ted  by a .  p, is a pe rmu ta t i on  n where n(i) = a(p(i)). 
6 We  also in formal ly  refer to d as the inversion distance. 
7 The identity p e r m u t a t i o n  t is (1 2 ... n). The  inverse of p e r m u t a t i o n  n is the p e r m u t a t i o n  ~z -1 

sat isfying n -  ~" n = t. 
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From the perspective of edit distance, the work of Wagner [23] is interesting. 
Wagner considers the problem of computing the minimum number of insertions, 
deletions, substitutions, and transpositions of adjacent characters, to convert one 
string to another, and shows that if the operations are restricted to deletion and 
transposition, the problem is NP-complete. If we restrict our problem to reversals of 
length two, in other words the adjacent transpositions of Wagner, the reversal 
distance between a and z reduces to the so-called inversion number of rc = z-  ~cr, 
the number of pairs of i < j such that rc i > re j, which is clearly computable in 
polynomial time (see [13, p. 11]). Tichy [22] also considers a variation of edit 
distance, but it is less closely related to our work. More recently, Sch6niger and 
Waterman [20] present a heuristic for computing edit distance when only 
nonoverlapping inversions are allowed. 

From the perspective of sorting, related work is by Gates and Papadimitriou 
[9]. They consider the problem of sorting a permutation by p r e f i x  reversals,  s which 
are reversals of the form [1, i], and derive bounds on the diameter of the problem. 
The diameter  of the prefix reversal problem, which we denote by dpre~x(n), is the 
maximum of the minimum number of prefix reversals to sort any permutation on n 
elements. Gates and Papadimitriou show that dprefix(n ) __< 35n + 5, and that for 

> 1 7 .  infinitely many n, dpr~fix(n)_ ~n .  Under the requirement that each element is 
reversed an even number of times, which may be appropriate if elements have an 
orientation (see Section 5), they show 3n - 1 < dpr~fix(n ) _< 2n + 3. In other work, 
Aigner and West [1] consider the diameter of sorting when the operation is 
reinsertion of the first element, and Amato et  al. [2] consider a variation inspired 
by the problem of reversing trains on a track. 

For our problem of sorting by unrestricted reversals, it appears tighter bounds 
on the diameter are possible. The heuristic of Watterson et  al. [24] sorts any 
n-element permutation in n - 1 reversals, so, writing d(n) for the diameter of our 
problem, we know d ( n ) <  n -  1. From the other direction, Golan [10] has 
conjectured 9 that a particular n-element permutation, which we denote by ytn), 
requires n - 1 reversals, and has verified this for n up to 12. Recursively, 

((1), n is zero, 
Y~n+l)=~(Y(l") Y~")"'" Y~)-i n + l  ~(~')), nisodd, 

~(y(n) y(2 n) . . .  ~(nn)_2 n + l  y(~)Y~)-l), n iseven. 

Using the lower bound developed in Section 3.2, we have verified the conjecture 
for n up to 200 when n mod 3 = 1 ;  for n mod 3 ~ 1 ,  our computation 
showed 7(n) requires n - 2 reversals. If Golan's conjecture is true, d(n) = n - 1. 

Note that studying the diameter of the problem, and algorithms that meet the 

s This is also known as the pancakeflippin9 problem. 
9 Golan's full conjecture is somewhat stronger: that, for every n, ~,~n) and its inverse are the only 
permutations requiring n - 1 reversals. 
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diameter, does not give a guarantee of quality of approximation. For  
example, �89 + �89 is a lower bound on the diameter of our problem, and as we have 
indicated, the algorithm of Watterson et al. [24] uses no more than n - 1 reversals; 
nevertheless, as we will show, there are permutations for which this algorithm 
performs arbitrarily poorly in ratio. Section 2presents an approximation algorithm 
that does achieve a performance ratio of 2 for unrestricted reversals. 

Finally, from the perspective of group theory, [6] and [11] are interesting. Even 
and Goldreich [6] show that, given a set of generators for a permutation group G, 
and a permutation n, determining the shortest product of generators that equals 

is NP-hard. 1~ Their reduction implies that the problem remains NP-hard even 
when every generator is its own inverse, as is the case in our problem. Jerrum [11] 
established that the problem is PSPACE-complete, and remains so when restricted 
to two generators, it  

In our problem, the generator set is fixed. Thus, while these complexity results 
give us a sense of the problem, they do not imply the intractability of sorting by 
reversals. Nevertheless, we believe sorting by reversals is NP-complete. Section 5 
indicates one possible direction for a proof. 

1.2. Overview. In the next section, we present an approximation algorithm for 
sorting by reversals. We show that it never exceeds the minimum number by more 
than a factor of 2, and has a simple quadratic-time implementation. 

Section 3 develops an exact algorithm using the branch-and-bound technique. 
The lower bound uses a relaxation to maximum-weight matchings, and linear 
programming. 

Section 4 presents results from experiments with these algorithms. We study 
their performance on random permutations, and permutations generated by a 
fixed number of random reversals. 

Section 5 concludes with some open problems and conjectures. 

2. An Approximation Algorithm. Perhaps the most natural algorithm for sorting 
by reversals, suggested by Watterson et al. [24], is to bring element 1 into place, 
then element 2, and so on up to element n. Formally, at step i, perform reversal 
[i, n~- t], if zc i ~ i. Once step n - 1 is completed, element n must be in position n, 

so this sorts any n-element permutation in at most n - 1 reversals. 
While it is likely that permutations exist for every n that require n - 1 reversals 

[10], which, if true, means this algorithm is worst-case optimal, for specific instances 
the algorithm can perform arbitrarily poorly. Consider, for example, the 

10 Even and Goldreich also show that computing the diameter of G is NP-hard. Determining whether 
there is a product equal to n is solvable in polynomial time 17]. 
11 This result is best possible, since the case of a single generator can be solved in polynomial time. 
Jerrum also shows that the problem is polynomial-time solvable for any of the standard sets of 
generators for the symmetric and alternating groups: all transpositions or 2-cycles, all adjacent 
transpositions, all transpositions adjacent on the circle, all 3-cycles, and all 3-cycles with all pairs of 
disjoint transpositions. 
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permuta t ion  (n 1 2 ""  n - 1). Bringing 1 into place, then 2, and so on, uses n - 1 
reversals, yet the permuta t ion  can be sorted in two steps: reverse [-1, n], then 
[1, n - 1]. Thus, this algori thm can produce  a solution ~n  - 1) times longer than 
the shortest  solution, for arbitrari ly large n. Using the idea of a breakpoint ,  also 
in t roduced in [24], we show there is a simple algori thm guaranteed to use no 
more  than twice the minimum number  of  reversals. To  the best of our  knowledge, 
this is the first constant-factor  approximat ion  for sorting by reversals. 

In order  to describe the algorithm, we first define some terminology. 
A breakpoint of a permuta t ion  rc is a pair of adjacent positions (i, i + 1) such 

that  [n~+ 1 - n/I ~ 1. In other  words, (i, i + 1) forms a breakpoint  if values rq and 
n~ + 1 are not  consecutively increasing or decreasing. To  handle the boundaries,  we let 
n o have the value 0, n ,+ l  have the value n + 1, and allow i to range from 0 to n 
in the definition. Thus, (0, 1) is a breakpoint  if nl ~ 1, and (n, n + 1) is a breakpoint  
if n, ~ n. Notice  that  the identity permuta t ion  has no breakpoints ,  any other  
permuta t ion  has some breakpoint ,  and the number  ofbreakpoints  is at most  n + 1. 

When  [n~+ 1 - n l l  = 1, we say values hi+ a and n i are adjacent, and write 

h i +  1 "~ h i .  

A strip of n is an interval I-/,j] such that  (i - 1, i) and (j, j + 1) are breakpoints ,  
and no breakpoint  lies between them. In other  words, a strip is a maximal  run of 
increasing or decreasing elements. 

A reversal p affects the breakpoints  of n only at the endpoints  of p. (In the 
interior, p only makes an increasing pair  (n~, hi+ x) decreasing, and vice versa.) Let  
us write ~(n) for the number  of breakpoints  in n, and, for a given reversal p, let 

A(I)(n)  = r  - ( I ) ( n . p ) .  

Since a reversal [ i , j ]  changes the adjacency of only two points, namely (i - 1, i) 
and (j, j + 1), the only values A~(n) can take on are between - 2  and 2. Since a 
solution must  decrease the number  of breakpoints  from ~(n) to zero, a greedy 
strategy is to choose a reversal of maximum A~(n), which achieves the greatest 
decrease. As any n r t has a reversal with AO(n) > 0, we can always achieve a 
decrease of 2, 1, or 0. 

Figure 2 specifies our  greedy algorithm. The algori thm removes zero break- 
points when there are no reversals that remove one or two, so it is not  obvious 
that  it terminates. With the rule " favor  reversals that  leave decreasing strips," not  
only does the algori thm terminate,  it exceeds the minimum by at most  a factor of 2. 

2.1. Quality of the Approximation. In the following, a strip [ i , j ]  is decreasing if 
n~, n~+ ~ . . . . .  n i is decreasing. We consider a strip of one element to be decreasing, 
except for n o and r~, + ~, which are always increasing. Thus, the identity permuta t ion  
forms one increasing strip, extending from 0 to n + 1. 

LEMMA 1. Every permutation with a decreasing strip has a reversal that removes 
a breakpoint. 
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algorithm GREEDY(~) begin 
i : = 0  
while ~z contains a breakpoint do begin 

i : = i +  1 
Let p~ be a reversal that removes the most breakpoints of n, resolving ties 

among those that remove one breakpoint in favor of reversals that leave a 
decreasing strip. 

: :  7~ �9 Pi 
end 
return i, (Pl, P2 . . . .  , Pi) 

end 

Fig. 2. The greedy algorithm. 

PROOF. Consider  the decreasing strip of  n whose last element, rc~, is smallest .  
Element  n l -  1 mus t  be in an increasing strip (else zc~ is not  smallest), which lies 
either to the left or  to the right of  the strip containing 7q, as shown in Figure 
3. In  either case, the indicated reversal removes  at least one breakpoint .  [ ]  

LEMMA 2. Let  re be a permutation with a decreasing strip. I f  every reversal that 
removes a breakpoint o f  7z leaves a permutation with no decreasing strips, n has a 
reversal that removes two breakpoints. 

PROOF. Again consider the decreasing strip of  rc containing the smallest element 
rc i. Case (b) of  Figure  3 cannot  occur, since p is a reversal that  removes  a b reakpoin t  
and leaves a decreasing strip. Thus,  the increasing strip containing z~i - 1 must  be 
to the left of  the strip containing rc i, as in case (a). Call the reversal of  case (a), Pi. 

Consider  the decreasing strip of  rc whose first element, re j, is greatest.  Element  
rcj + 1 must  be in an increasing strip (else rcj is not  greatest) that  is to the right of 
the strip containing re j, as otherwise, a reversal ana logous  to case (b) removes  a 

~176176 

7[ 

~ri--i 

�9 ., p 

�9 ~ . ~  . . .  ~ . . .  ~ r r i - l - i l T r ~  . . .  

�9 . . I .  I... .I . . .  
,J ~ J 

P p 

(a) (b) 

Fig. 3. A permutat ion n with a decreasing strip has a reversal p that  removes a breakpoint. Element 
n i is the smallest element that is in a decreasing strip. 
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7ri-lfr l  ~rj ~rj+ 1 

�9 . .  I - - - - - - - - I  . . .  - - - - - - -  . . .  

7T 

Pi  Y 
P j  

Fig. 4. If every reversal that removes a breakpoint of n leaves a permutation with no decreasing strips, 
Pl and p~ must overlap. Elements n~ and nj are the smallest and largest in decreasing strips. 

breakpoint  and leaves a decreasing strip. Call pj the reversal for rc~ that is analogous 
to Pi. 

Notice that nj must lie in interval Pi and nj + 1 must lie outside, else p~ 
leaves a decreasing strip. Similarly, ni must lie in pj and n ~ -  1 outside, else pj 
leaves a decreasing strip. The situation is as shown in Figure 4. Intervals p, and pj 
overlap. 

We now argue that not only do p~ and Pi overlap, they must be the same interval. 
For  suppose p~ - pj is not empty. If it contains a decreasing strip, reversal pj 
leaves a decreasing strip, and if it contains an increasing strip, reversal p, 
leaves a decreasing strip. Similarly, interval pj - p~ must be empty, which implies 
p~ = pj. 

Since reversal p~ removes the breakpoint  on its left, and reversal pj removes the 
breakpoint  on its right, and as these breakpoints are distinct, reversal p = pi = pj 
removes two breakpoints. []  

LEMMA 3, The greedy algorithm sorts a permutation n with a decreasing strip in 
at most ~(n) - 1 reversals. 

PROOF. The proof  is by induction on ~(n). If n has a decreasing strip, O(n) > 2. 
When ~(n) = 2, n has a unique reversal p that removes the two breakpoints and 
sorts n. Since GREEDY will choose p, it sorts n in one reversal, and the basis holds. 

Suppose the lemma holds for all n' with less than ~(n) breakpoints. Since n has 
a decreasing strip, by Lemma 1 there is a reversal p that removes at least one 
breakpoint of n. Thus, the first step of GREEDY will transform n into a permutat ion 
n' with at most  qb(n) - 1 breakpoints. If n' has a decreasing strip, GREEDY sorts it 
in at most  ~(n) -- 2 reversals by the induction hypothesis, which sorts n in at most  
�9 ( n ) -  1 reversals. 

Now consider a n '  with no decreasing strips. We argue that ~(n') = ~(n) - 2. 
For  suppose ~(n') = qb(n) -- 1, the only other possibility. Since GREEDY chooses a 
reversal that removes the most  breakpoints, every reversal that removes a 
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breakpoint must remove exactly one breakpoint. Since, in such an event, GREEDY 
chooses a reversal that leaves a decreasing strip whenever possible, every available 
reversal that removes a breakpoint must leave no decreasing strips. However, by 
Lemma 2, this implies r~ has a reversal that removes two breakpoints, a 
contradiction. Thus q)(lr') = ~(Tr) - 2. 

Every reversal on a permutation with no decreasing strips creates a decreasing 
strip, which implies GREEDY will transform 7r' to a permutation 7r" with a decreasing 
strip. Moreover, ~(Tr") < q>(n') = q~(n) - 2. By induction, GREEDY sorts re" in at 
most ~(n) -- 3 reversals. Since GREEDY transformed n to 7r" in two steps, this sorts 
rr in at most ~(Tr) - 1 reversals. []  

THEOREM 1. The greedy algorithm sorts every permutation ~ in at most c~(n) 
reversals. 

PROOF. If ~ has a decreasing strip, by Lemma 3, GREEDY sorts it within ~(r0 
reversals. If rc has no decreasing strip, any reversal chosen by GREEDY transforms 

to a permutation re' with a decreasing strip such that O(rc') < q~(~). By Lemma 
3, GREEDY sorts re' in at most q)(rc') -- 1 reversals, which sorts ~ in at most q~(rc) 
reversals. []  

Since q)(rc) < n + 1, Theorem 1 implies that the greedy algorithm terminates in 
O(n) iterations. In the next section, we consider how to implement an iteration; 
here we simply note that an iteration runs in polynomial time. 

An algorithm for an optimization problem that runs in polynomial time and 
delivers a solution whose value is within a factor a of optimal is known as an 
~-approximation algorithm. An immediate consequence of Theorem 1 is the 
following. 

COROLLARY 1. The greedy algorithm is a 2-approximation algorithm for sorting by 
reversals. 

PROOF. Write OPT(~) for the minimum number of reversals to sort a permutation 
re, and GREEDY(E) for the number taken by the greedy algorithm. Since a solution 
must remove all breakpoints, and any reversal can remove at most two, 

11 OPT(7~) > (I)(7~) > -- GREEDY(/I:). 
- -  - - 2  

[] 

We do not know whether the bound of Corollary 1 is tight. 

2.2. Time and Space. How much time does an iteration of the greedy algorithm 
take? As there are in general (~) reversals to consider, a naive implementation 
could take O(n 2) time per iteration, or O(n a) time in total. By considering the form 
of reversals that remove breakpoints, we can find the greedy reversal for an iteration 
in O(n) time, which yields an O(n2)-time algorithm. 
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~r"" x [ y  ... x'J y '  ... 

Fig. 5. The form of a reversal that removes two breakpoints. Vertical bars denote breakpoints, x ~ x', 
and y ~ y'. 

A reversal that removes two breakpoints must have each endpoint at a break- 
point, and must create two adjacencies. Let us denote the left endpoint by 
(i, i + 1) and the right endpoint by (j, j + 1). Then reversal [i + 1, j ]  removes two 
breakpoints iff (i, i +  1) and ( j , j  + 1) are breakpoints, ni "~ nj, and ~zi+ 1 --~ rcj+ 1. 
This is illustrated in Figure 5. 

We can search for a reversal of this form as follows. Scanning zc, we identify 
each breakpoint (i, i + 1). If this is the left end of such a reversal, there must be a 
position j > i such that ( j , j  + 1) is a breakpoint, nj ,-~/ri, and nj+ 1 ' ~ '  7~i+ 1. There 
are two possible values for n j, namely n i - 1 and ni + 1. Given n-1,  we can find 
the positions where n~ - 1 and n~ + 1 occur in O(1) time. If either position meets 
the criteria above, we have found a reversal that removes two breakpoints. As 
there are O(n) candidates for the left endpoint, and n-1  can be computed in O(n) 
time, this finds a reversal that removes two breakpoints (if one exists) in O(n) time. 

If there is no reversal that removes two breakpoints, the greedy algorithm 
considers reversals that remove one breakpoint. A reversal that removes one 
breakpoint must have an endpoint at the breakpoint it removes; the other 
end may or may not lie at a breakpoint as shown in Figure 6. Given n -  1, we can 
find a reversal of form (a) or (b) in O(1) time per breakpoint, as explained above. 
The only question is how to determine efficiently whether the reversal leaves a 
decreasing strip. ~2 

Consider a reversal of form (a). Reversal I-i, j ]  leaves a decreasing strip iff 

�9 [1, i) contains a decreasing strip other than x, or 
�9 [i,j] contains an increasing strip 13 other than x', or 
�9 (j, n] contains a decreasing strip, or 
�9 xx' is decreasing. 

The only difficulty is in determining whether an interval contains an increasing 
strip, or a decreasing strip, in O(1) time. We can solve this by forming an array, 

. . .   ,jz . . . . . .  ... I ?"l . . .  

(a) (b) 

Fig. 6. The form of a reversal that removes one breakpoint. In the figure, x ~ x '  ~ x"  ~ x "  and y ~ z. 
Mirror images of (a) and (b) are considered to be the same form. 

12 Recall that the greedy algorithm breaks ties among reversals that remove one breakpoint by favoring 
reversals that leave decreasing strips. 
13 A strip is increasing if its elements are strictly increasing, or it contains a single element. Thus, a 
single-element strip is both increasing and decreasing. 
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down[i], that gives the position of the left end of the leftmost decreasing strip 
beginning at, or to the right of, position i. Then interval [a, b] contains a decreasing 
strip iff down[a] < b. Similarly, we can form an array up[i] that gives the left end 
of the leftmost increasing strip at, or to the right of, i. Both arrays can be computed 
from 7c in O(n) time, for example by the recurrence, 

I 
n +  i ,  i > n, 

i, i < n, 7"(,i ~/J ~ i _  l ,  7~i ~/~ 7~i +1, 
down(i)= i, i < n, rci 76 ~zi-x, 7zi~ rci+l, 

down(i + 1), otherwise. 
~i > 7~i+ 1, 

Thus, if there is a reversal of form (a), we can find it in O(n) time, whether or not 
we require that it leave a decreasing strip. We can also search for a reversal of 
form (b) in O(n) time, using the same technique. 

If there is no reversal that removes a breakpoint, the greedy algorithm chooses 
a reversal that does not increase O(n). One such reversal is [i, hi- 1], where i is the 
smallest position such that rcl # i. Notice that this reversal cannot increase O(zc) 
since it always removes breakpoint (i - 1, i). 

To summarize, we find a greedy reversal as follows: 

(1) Compute re-1, down, and up. 
(2) Search for a reversal that removes two breakpoints. 
(3) If none exists, search for a reversal that removes one breakpoint and leaves a 

decreasing strip. 
(4) If none exists, search for a reversal that removes one breakpoint. 
(5) If none exists, bring the smallest out-of-place element into position. 

Each step can be performed in O(n) time; which gives an O(nZ)-time 
implementation of the greedy algorithm (and with more care, O(n + ~2(n)) time 
can be achieved). We suspect that an O(n log n)-time implementation may be 
possible; our experience, however, suggests that the approximation algorithm will 
be far from the dominant step in practice; as we discuss in Section 4. 

3. Exact Algorithm. In the preceding section, we obtained an algorithm that 
comes close to the optimum by applying a greedy strategy: of all reversals, select one 
that removes the most breakpoints. To obtain an algorithm that reaches the 
optimum, we use a branch-and-bound strategy: consider all reversals, and eliminate 
those that cannot lead to an optimal solution. 

Figure 7 shows the form of our branch-and-bound algorithm. We maintain 
three global variables: bound, a dynamic upper bound on the solution value; best, 
an array of reversals that sort the permutation in bound steps; and current, the 
series of reversals currently under consideration. At the start, we initialize bound 
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global bound, current[1., n], best[1., n] 

algorithm BRANCHANDBOUND(~Z) begin 
bound, best := UPPERBOUND(7~) 
SEARCH(TC, 0) 
return bound, best 

end 

algorithm SEARCH(7~, depth) begin 
if n is the identity permutation then 

if depth < bound then bound, best:= depth, current 
else 

for each reversal p in order of decreasing AO(n) do 
if LOWERBOUND(~Z �9 p) d- depth + 1 < bound then begin 

current[depth + 1] := p 
SEARCH(~Z'p, depth + 1) 

end 
end 

Fig. 7. The branch-and-bound algorithm. 

and best to values obtained from an upper-bound algorithm. 14 The algorithm we use 
is essentially GREEDY with a fixed-depth look-ahead, and is described in Section 3.3. 

After obtaining an upper bound, we explore a tree of subproblems depth-first. 
Each invocation of SEARCH corresponds to a node of the tree and is labeled with 
n, a permutat ion to be sorted, and depth, the number  of edges from the root to 
the node. Array current is maintained as a stack by SEARCH, and holds the reversals 
on the path from the root to the current node. We chose a depth-first strategy for 
traversing the tree as this uses a polynomial amount  of space, even when the tree 
is of exponential size, since space, not time, is often the limiting resource. 

Examining all reversals yields a very large tree: with (~) children per node, and 
a height of n - 1, there are O(n2n/2 n) nodes. In Section 5, we state several conjectures 
on the form of a solution, which, if true, reduce the children per node from O(n 2) 
to O(~2(n)). Lacking a proof  of these conjectures, the two means we have to reduce 
the size of the search trees are ordering children, and computing lower bounds. The 
algorithm of Figure 7 orders children by decreasing AO, on the assumption that 
the optimal solution uses reversals of greatest A~. By trying such reversals first, 
we hope to lower our upper bound quickly, to prune subtrees early on. We now 
explain how the lower bound is computed. 

3.1. A Lower Bound f rom Matchings. As stated in the proof  of Corollary 1, 
a simple lower bound on OPT(n) is [-~(n)/27. While this is sufficient to 
prove an approximation factor of 2, i t  is extremely weak. It assumes every 

14 We use Xl, ... , x n : =  el,..., e, as shorthand for the parallel assignments x~:= e~. Function UPPER- 
BOUND, like GREEDY, returns two values: an integer, followed by a list of reversals. 
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breakpoint of rc can be eliminated by a reversal that removes two breakpoints, 
which can rarely be achieved. To obtain a better bound, we ask, for a given 
permutation, how many breakpoints can possibly be eliminated by reversals that 
remove two breakpoints? 

A pair of breakpoints p = (i, i +  1) and q = (j , j  + 1), with values (hi, rq+ l )=  
(x, y) and (Trj, ~rj+ 1) = (x', y'), can be eliminated in one reversal iffx ~ x' and y ~ y'. 
This holds whether p is to the left or to the right of q. The only requirement is 
that x and y occur in the same order as x' and y'. 

Notice that such a reversal also affects other pairs of breakpoints. A pair with 
values (x, y) and (y', x'), which cannot be eliminated immediately because adjacent 
values are not in the same order, can be eliminated in one step if preceded by a 
reversal that contains exactly one breakpoint of the pair. Such a reversal trans- 
forms the pair to the preceding case. 

In general, determining when a collection of 2m breakpoints can be eliminated 
by a sequence of m reversals appears difficult. (In Section 5, we conjecture it is 
NP-complete.) To obtain a lower bound that can be efficiently computed, we 
ignore dynamic information about the order and interaction of reversals. The static 
information we retain is simply the adjacency of values between breakpoints, which 
can be represented by a graph. 

Figure 8 shows the construction. Each breakpoint of n is mapped to a vertex 
of GOt). We place an edge between breakpoints p and q if either of the above two 
cases apply. Effectively, if two breakpoints can be eliminated by one reversal, 
possibly after a sequence of other reversals that eliminate two breakpoints, they 
share an edge. Note that the order of the two values at a breakpoint is not 
important in the construction. 

Since each edge models a reversal, and performing the reversal removes both 
endpoints, a series on reversals on rc that each eliminate two breakpoints 
corresponds to a set of vertex-disjoint edges in G(Ir). A set of vertex-disjoint edges 
is called a matching. The key property of G(rc) is that the most reversals we can 
possibly perform on n that each remove a pair of breakpoints, without performing 
any intervening reversals that remove less than two breakpoints, is the size of a 
maximum-cardinality matching of G(rc). 

Let m be the number of vertices in a maximum-cardinality matching of G(n), 
in other words, twice the number of edges in the matching. How many reversals 
must be performed to remove the remaining O(rc) - m breakpoints of n? The best 
we can do is to expend a reversal that removes one breakpoint to set up a reversal 
that removes two breakpoints. Notice that we cannot remove one breakpoint, 

7C"" xl Y "'" X'I y' ' 

P q 

o r  

... xly ... ~t'l x'..- 
P q 

Fig. 8. Breakpoints {x, y} and {x', y'} share an edge in G(n) iff x ~ x' and y ~ y'. 
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then two, then two again. (A reversal that removes one breakpoint can affect 
only one additional breakpoint. This implies the third reversal must have been 
available from the start, which contradicts that the matching is of maximum 
cardinality.) In short, the best we can do is to remove three breakpoints in two 
reversals. This gives a lower bound of 

(1) [-�89 + ~O(u) -- m)], 

which has the extreme value F-~(n)-]. 
We can construct G(n) from n in O(n) time. (Certainly the O(n) breakpoints of 

n can be determined in O(n) time. Moreover, every breakpoint is incident to a 
constant number of edges, since the only values adjacent to x are x + 1 and x - 1. 
So, with the help of n - t ,  we can determine all edges in O(n) time as well.) A 
maximum-cardinality matching of a graph with V vertices and E edges can be 

computed in O(Ew/V ) time [15]. Thus, since V and E for G(n) are both O(n), we 
can evaluate the lower bound of (1) in O(n 3/2) time. 

3.2. A Family o f  Lower Bounds. We can improve the lower bound further, by 
considering 3-tuples of breakpoints, 4-tuples of breakpoints, and so on. 

Let us call a reversal that eliminates k breakpoints, a k-move. Thus, a 2-move is 
a reversal that eliminates two breakpoints, and a ( -2 ) -move  is a reversal that 
creates two breakpoints. 

In general, for k > 3, we define a k-move as follows. Over all permutations, 
consider all series of reversals that eliminate k breakpoints. A k-move, for k _> 3, 
is a shortest series that eliminates a set of k breakpoints, given that no 2-, 3-, up to 
(k - 1)-moves are available on the set. For  example, a 3-move is a 1-move followed 
by a 2-move. (Notice that this arose in the analysis of lower bound (1).) 

The following lemma characterizes the structure of a k-move. 

LEMMA 4. For k >_ 3, a k-move is a series of k - 1 reversals, that decomposes into 
either 

(i) a 1-move followed by a (k - 1)-move, or 
(ii) a O-move followed by an i-move and a j-move, where i + j = k. 

PROOF. Any series of reversals begins with a 2-, 1-, 0-, ( -1) - ,  or ( -2)-move.  By 
definition, a k-move for k > 3 cannot begin with a 2-move. Furthermore, any series 
that creates breakpoints is not among the shortest. Thus, 1-moves and 0-moves 
are the only candidates for the first reversal in a k-move. 

Consider a series that begins with a 1-move. The 1-move can change the values 
of at most two breakpoints, namely, those at its endpoints. One of the two 
breakpoints is eliminated by the 1-move. The other can at best be eliminated in 
a (k - 1)-move. Note that the k - 1 breakpoints remaining cannot be eliminated 
by two or more higher-order moves, as any second higher-order move would be 
available from the start, contradicting the definition of a k-move. 

Now consider a series that begins with a 0-move. This move can again affect 
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the values of at most two breakpoints, thereby setting up at most two higher-order 
moves. The k breakpoints again cannot be eliminated by three or more higher- 
order moves, after performing the initial 0-move, since a third higher-order move 
would be available initially. That a k-move uses k -  1 reversals follows by 
induction. []  

With this decomposition, we can characterize the breakpoints in a k-move. 

LEMMA 5. For k > 2, the pairs of values at the breakpoints eliminated by a k-move 
have the form 

(2) 

where xi ,,~ x'i for 1 < i <_ k. 

PROOF. Notice that the lemma holds for k = 2, which corresponds to the picture 
of Figure 8. Assume the lemma then for all k' < k. We show it holds for k + 1. 

By Lemma 4, a (k + 1)-move decomposes into a 1-move followed by a k-move, 
or a 0-move followed by an/ -move and a j-move. Consider the case of an initial 
l-move. 

This move eliminates one of the k + 1 breakpoints, and brings the remaining k 
breakpoints into the configuration of a k-move. By induction, the values at these 
k breakpoints have the form of(2). Notice that this form is unchanged by a rotation 
of the breakpoints, i.e., a renaming of the form xi w-, xi .d and x'i ~ x'i.a, for any 
d, where i @ d denotes ((i + d) mod k) + 1. Thus, we may assume without loss of 
generality, that the 1-move affects the values in (2) by bringing Xl, x~ together into 
a breakpoint, and some other pair of values y, y' together to create an adjacency 
y ~ y'. This (k + 1)-move then has the form 

. . .  xl},  

which is the same form as (2). 
Now consider the case of a 0-move that sets up an /-move and a j-move. By 

induction, the/-move has the form 

{x ,xl} {x2 ,x ;}  . - - { x , , x ; } ,  

and the j-move has the form 

{y ,yl} ' {yj, 

Without loss of generality, assume the 0-move brings x 1, x~ together and yl, y~ 
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together. Since the form of (2) is unchanged by renaming xi ~ x'i and x'i ~ xi, we 
may further assume that the 0-move brings these values together by touching 
breakpoints 

{xl, Yl} {xl, yl}. 

The (k + 1)-move then has the form 

{x2, x~} {x3, x~,} "'" {xi, x'l} {xl, yl} {Yj, Y'I} {Yj-~,Y)} "'" {Y2, Y~} {X'z,y'2}. 

As the reader may verify, this is the same form as (2). [] 

We now describe how to construct a graph H(rc) that allows us to effi- 
ciently identify sets of breakpoints of form (2). In the construction, breakpoints 
of n are mapped to vertices of H(rc), and pairs of breakpoints that share an 
adjacency, such as {x, a} {x', b} where x ~ x', are mapped to edges, as shown in 
Figure 9. 

Edges of H(zc) are directed, but not in the standard sense. An edge touching v 
and w contributes to either the in- or out-degree of v and w. In a directed graph, 
an edge (v, w) that contributes to the out-degree of v necessarily contributes to the 
in-degree of w, and vice versa. However, in what we call a bidirected graph, there 
are two more possibilities: (v, w) may contribute to the in-degree of both v and w, 
or to the out-degree of both v and w. 

This gives rise to the four types of edges of Figure 9. We indicate the direction 
of an edge with double-ended arrows. When drawing an edge incident to v, we 
place an arrowhead pointing into v, at the end touching v, if the edge contributes 
to v's in-degree. Otherwise, we direct the arrowhead out of v. 

x[a blx' 
P q 

alx xlb 
P q 

xla x'lb 
P q 

P q 

Fig. 9. Construction of graph H(n). Values x and x' are adjacent, and induce an edge that contributes 
to the in- or out-degree of p, and the in- or out-degree of q, depending on whether the value is to the 
right or to the left of the breakpoint. 



196 J. Kececioglu and D. Sankoff 

The utility of this construction is in the correspondence between cycles in  the 
graph and k-moves on the permutation, as summarized in the following lemma. 
A k-cycle in a bidirected graph is a series of edges 

v2) ---  (vk, vO 

such that the vi are distinct, and every v~ has in- and out-degree 1. 

LEMMA 6. The sets of breakpoints of rc whose values have the form of k-moves 
are in one-to-one correspondence with the k-cycles of H(rc). 

PROOF. By Lemma 5, the values in a k-move have the form 

In the ith breakpoint, {x~, x'i. 1}, value xi~l is adjacent to value xi.1 of the (i �9 1)th 
breakpoint. Whether x'i is to the left or right of x'i** in the ith breakpoint, 
breakpoint i is linked in H(n) to breakpoints i O 1 and i O 1 by edges that 
contribute exactly once to its in- and out-degree. 

Similarly, any k-cycle of H(n) describes a set of k breakpoints with the property 
that every breakpoint in the set has values that are adjacent to the 
preceding and succeeding breakpoints on the cycle. As every vertex of the cycle 
has in- and out-degree 1, these values, by the construction, are distinct. By Lemma 
5, this is the form of a k-move. [] 

We now have the tools to generalize the lower bound of Section 3.1. In outline, 
we construct a hypergraph G~k)(rc) whose vertices correspond to breakpoints, but 
whose edges are sets of up to k vertices that correspond to k'-moves for k' < k. A 
series of moves on rc maps to a matching of G ~k), where a matching of a hypergraph 
is a collection of vertex-disjoint edges. Choosing a k-move corresponds to perform- 
ing a series of k - 1 reversals. We weight edges by the number of reversals they 
represent, and seek, as before, a maximum-weight matching. However, computing 
a maximum-weight matching of a hypergraph is in general NP-complete [8]. 
We express the matching problem as an integer programming problem, and relax 
the integrality constraint to obtain a linear programming problem. This 
gives a somewhat weaker lower bound that is computable in polynomial 
time. 

This approach is summarized in the following theorem. The k-oirth of a graph 
is the length of a shortest cycle of more than k edges. If the graph does not contain 
such a cycle, we define its k-girth to be n + 1, where n is the number of vertices. 
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THEOREM 2. Let (V, E) be the graph G(k)(Tz), let g be the k-girth of H(n), and let 
~k(n) be the solution value of the linear program 

minimize 

subject to 

g - 1 ~ g - l e l  
- -  ( I ) ( ~ )  - -  2.a - -  X e '  

g ~ e  g 

0 <_ x e <_ 1, for all e ~ E, 

Xe <- 1, for all v e F. 
e l w e  

Then O P T ( T Z )  ~ r~k(70]. 

PROOF. As in the lower bound of Section 3.1, the only characteristic of a reversal 
that we consider are the values at its endpoints. This means we ignore the effect 
of a reversal on its interior, namely, that it changes the relative order of 
elements. 

This being the case, we first argue that to demonstrate our lower bound, the 
only series that we have to consider are those that do not create breakpoints. For  
suppose a reversal in a series creates a breakpoint. Eventually this breakpoint  
must be removed, and the best we can possibly do is to eliminate it with a 2-move, 
which allows us to remove one more breakpoint.  The best we can then have 
achieved is to remove one breakpoint  in two reversals. This is worse than any of 
the higher-order moves we consider in the lower bound, which always remove k 
breakpoints in k - 1 reversals. Admittedly, the ( -  1)-move and subsequent 2-move, 
by changing the relative order of elements, may have made some advantageous 
moves possible in an actual series, but we have already accounted for such effects 
by ignoring the order of values at breakpoints in our graph representation. 

Thus, it suffices to consider series that do not create breakpoints. Such a series 
operates only on breakpoints in the original permutation, by moving values from 
one breakpoint  to another, so as to create adjacencies. Decomposing the series 
into higher-order moves, every k'-move, where k' < k, maps to an edge of G (k), no 
matter  where it occurs in the series. Moreover,  the edges so identified in G (k) are 
vertex disjoint, and form a matching M. Thus, the number of reversals taken by 
k'-moves in the series, where k' < k, is 

( l e l -  1). 
eeM 

The remaining moves of the series are k'-moves where k' > k. By Lemma 6, 
every one of these moves maps to a cycle of H(n), so the smallest k' > k for which 
the series contains a k '-move is at least g, the k-girth of H(n). Thus, the number of 
reversals taken by k'-moves in the series, where k' > k, is at least 
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which is 

Thus, the total number of reversals in an optimal series is at least 

minM [~M ~ ( l e l - - 1 ) +  

which is 

g eeM  -~ " 

This is equivalent to finding a matching in G (k) of maximum total weight, where 
the weight of an edge e is (g - l e l ) / g .  We can express this as an integer pro- 
gramming problem. For  each edge e of G tk), we have a variable xe, that takes on 
the values 0 or 1. Selecting e is encoded by assigning xe the value 1. We can ensure 
that the assignment represents a matching by requiring 

x e < 1, 
e]v~e 

for every vertex v. Extending the domain of x e to real values between 0 and 1 
results in the linear programming problem of the theorem. []  

Notice that the lower bound of Theorem 2 has the extreme value 
[-((g-  1)/g)(I)0r)7. When the k-girth g is large (as is the case with the Golan 
permutation y(") even for small k), this can be as great as ~0r), which meets the 
upper bound of Theorem 1. 

How much time does it take to evaluate ~ak? There are three tasks: 

(1) Constructing H and computing its k-girth. 
(2) Constructing G tk~ and its associated linear program. 
(3) Solving the linear program. 

Constructing H takes time O(n). There are O(n) breakpoints, and each break- 
point has at most four in-edges and out-edges, which can be identified in O(1) 
time using zc-1. 

We can compute the k-girth of H in o(4kn 2) time, as follows. A shortest cycle 
of more than k edges, that contains a fixed vertex v, is a path P of k edges from v 
to some vertex w, followed by a shortest path from w to v that does not visit any 
other vertices on P. Paths in a bidirected graph such as H alternate in- and 
out-edges: if we enter a vertex by an in-edge, we must leave by an out-edge, and 
vice versa. As every vertex of H has in- and out-degree at most four, there are at 
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most 4 k paths of length k from a fixed vertex v. For  each path P, we can mark its 
vertices, and compute a shortest return path from its end w back to v, taking care 
not to visit marked vertices. This shortest path can be found by a breadth-first 
search from w in O(n) time. Repeating for all start vertices v, all paths P, and 
recording the minimum over all cycles found, takes time o(4kn2). 

Similarly, we can construct the edges of G ok) in o(4kn) time, by enumerating the 
cycles of H of k or fewer edges in a depth-first search, is Space for all edges is 
O(k4kn). 

The resulting linear program has o(4kn) variables, and O(n) constraints. Writing 
L(a, b) for the time to solve a linear program of a variables and b constraints, the 
linear programming problem takes O(L(4kn, n)) time. This dominates the time to 
compute the lower bound. Thus, for any fixed k, Ae k can be computed in 
O(L(n, n)) time. 

3.3. A Family o f  Upper Bounds. As well as a lower bound on the solution value, 
our exact algorithm requires an upper bound. The simplest approach is to use the 
approximation algorithm of Section 2, but for large n this gives too weak a bound 
to prune away much of the search tree. 

Consider a series of k reversals that removes the most breakpoints among series 
of that length. The greedy strategy of the approximation algorithm is really based 
on the observation that, once we are k reversals away from sorting a permutation, 
such a series is optimal. GREEDY corresponds to the case k = 1. 

Such a series can be found by looking ahead k reversals, and this search can 
be made tractable by again employing branch-and-bound. The basic form of the 
computation is identical to BRANCHANDBOUND, except that the recursion is 
stopped at depth k. The two requirements are a lower bound on the number of 
breakpoints that can be eliminated in a series of k reversals, and a method for 
computing an upper bound on the number eliminated by an optimal extension of 
a partial series. 

We can compute the lower bound by running GREEDY. Computing an upper 
bound is a little more difficult, but can be tackled by the methods of the previous 
section, as summarized in the following theorem. 

THEOREM 3. 
ofthe linear program 

Let (V, E) be the graph G tk+ 1)(Tz), and let qlk(n) be the solution value 

maximize k + ~ xe, 
eeE 

subject to 0 < x e < 1, for all e ~ E, 

~, Xe < 1, for all v ~ V, 
elwe 

(lel - 1)Xe < k. 
e~E 

t5 Note that determining the edges of G (k) by examining all k-sets would take O(n k) time. 
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Then La//k(rOJ is an upper bound on the number of breakpoints of n that can be 
eliminated in k reversals. 

PROOF. The proof is similar to that of Theorem 2. 
Given an allotment of k reversals, we want to eliminate as many breakpoints 

as possible. Suppose we consider all k'-moves for k ' <  k + 1. Packing these 
k'-moves into the k reversals corresponds to finding a matching M of G (k+l) 
satisfying 

Z (lel - 1) ~ k, 
e e M  

since, bY Lemmas 4 and 6, each edge e of M represents [ e l -  1 reversals. The 
number of breakpoints eliminated by these reversals is 

Y~ lel. 
e e M  

Having used ~e~M (lel -- 1) reversals, we have k - 2 e e M  (lel - 1) remaining in 
our allotment. Notice that any unconsidered k'-move, which must have k' > k + 2, 
will not completely fit in our allotment of k reversals, since by Lemma 4 such a 
move takes at least k + 1 reversals. Lemma 4 also implies that any prefix of such 
a k'-move that is packed into our allotment, can on average remove at most one 
breakpoint per reversal. Thus, the number of breakpoints eliminated by the 
reversals remaining in our allotment, is at most 

k -  ~ (lel- 1). 
e ~ M  

Adding the number of breakpoints eliminated by the reversals in M to the 
number of breakpoints eliminated by the remaining reversals, the total number 
eliminated within k reversals is at most 

k + ~  1. 
e e M  

Expressing this matching problem as an integer program, and extending its dom- 
ain to the reals, results in the linear programming problem of the theorem. [] 

For  fixed k, the time and space to compute upper bound G//( k is the same as for 
lower bound &~ k, which is O(L(n, n)) time and O(n) space. 

Given that we can find a series of k reversals that removes the most breakpoints, 
how should we piece together a solution from such a series? One extreme is to 
perform only the first reversal of the series, arrive at a new permutation, and again 
look ahead k reversals. The other extreme is to execute all k of the series. We call 
the number of reversals that are performed from a series, the follow-through of the 
algorithm. 
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It might be predicted that a follow-through of one reversal is best, since this 
retains the maximum flexibility. In our experience, however, this performed 
unexpectedly poorly, in the sense that the final solution tended to degrade as the 
look-ahead was increased beyond some critical value. An experimental analysis of 
this phenomenon would be interesting, but is beyond the scope of our paper. 

We also remark that looking ahead farther does not in general guarantee a 
better solution. After looking ahead k + 1 reversals, we are simply in some state, 
and unless the permutation can be sorted in k + 2 reversals, this state does not 
necessarily lead to a shorter solution than the one we arrive at after looking 
ahead k reversals. 

Nevertheless, choosing a follow-through equal to the look-ahead k did have the 
desired property that the quality of the solution tended to improve as the 
look-ahead was increased, and this is the value that we chose for the experiments 
of the next section. A follow-through of k reversals also has the advantage of 
reducing the number of invocations of the branch-and-bound procedure. It would 
be interesting, however, to investigate other values, such as a follow-through of 
k/2 with a look-ahead of k. 

To summarize, our exact algorithm constructs a solution conceptually in 
three stages, the first two of which are interleaved. The first stage runs the greedy 
algorithm to lower bound the number of breakpoints that can be eliminated within 
the look-ahead. The second stage improves this greedy solution by branch-and- 
bound to a fixed depth, to obtain a series that is optimal within the look-ahead. 
Successive locally optimal series are then concatenated, to obtain a solution that 
upper bounds the global problem. The third and final stage improves this solution 
to a global optimum by a full branch-and-bound computation, now that a good 
upper bound is in hand. 

This bootstrapping approach has proven to be quite effective, as is discussed 
in the next section. 

4. Computational Results. To examine the effectiveness of these ideas, we tested 
a full implementation of the exact and approximation algorithms on biological 
and simulated data. The implementation comprises approximately 9500 lines of 
C, of which roughly 2500 lines are a sparse linear programming package. 

An unusual aspect of the code is the manipulation of the bidirected graphs of 
Section 3.2. These graphs are sufficiently different from standard directed and 
undirected graphs to make the correct implementation of simple computations 
like shortest paths and cycle enumeration surprisingly tricky. Without going into 
detail, we note that a straightforward translation of the standard breadth-first 
search algorithm for single-source shortest paths is not correct, since a vertex can 
be reached in two different ways from the source: once by paths that end with an 
in-edge, and once by paths that end in an out-edge. This means that essentially 
two distances must be maintained for a vertex: an in-edge distance, and an 
out-edge distance. 

We also note that the code enumerates cycles of length at most k using the 
method outlined in Section 3.2, which can spend time exponential in k between 
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Table 1. The number of permutations on n elements at 
distance d from the identity. 

n 

d 2 3 4 5 6 7 8 

0 1 1 1 1 1 1 1 
1 1 3 6 10 15 21 28 
2 2 15 51 127 263 483 
3 2 56 390 1,562 4,635 
4 2 185 2,543 16,445 
5 2 648 16,615 
6 2 2,111 
7 2 

reporting cycles. The algorithm of Johnson [-12] for enumerating the cycles of a 
directed graph spends time linear in the size of the graph between reporting each 
cycle, and it would be interesting to see whether this algorithm can be adapted 
to our application. 

In all, we tested the implementation on four types of data: all permutations on 
a fixed number of elements, published gene order data from the biology literature, 
random permutations, and permutations generated by scrambling the identity with 
a fixed number of random reversals. 

In the first set of experiments, which served as a good test of the program, we 
ran the implementation to optimality on all permutations of up to eight elements. 
The exact distribution of reversal distance from these tests is given in Table 
1. Notice that the data supports Golan's conjecture: for each n > 2, there are 
exactly two permutations requiring n -  1 reversals (and these are ~") and its 
inverse). 

On these experiments, we also measured the Worst-case performance ratio of the 
approximation algorithm. On permutations of up to eight elements, the maximum 
ratio is 8/5, which is achieved on permutation (4 7 2 6 8 5 3 1). 

As an illustration of the algorithm on biological data, we give the example of 
Figure 10. This permutation gives the order of the 36 genes that are common to 
the linearized mitochondrial genomes of mammals I-3] and the flatworm Ascar i s  

suum [25]. While we have been able to solve other permutations arising from 
mitochondria data in a small amount of time, 16 this 36-element permutation has 
proven extremely difficult to solve to optimality. The near-optimal solution of the 
figure was found after 24 s of computation on a 33 Mhz Silicon Graphics Iris 

x6 Computing the inversion distance between the mitochondrial genomes of mammals and the yeast 
Sehizosaceharomyeespombe took 3.5 rain (29 genes and 19 inversions), and between mammals and the 
fly Drosophila yakuba took 1.7 rain (37 genes and 16 inversions). We make no claim for the biological 
significance of the particular solutions found, though the inversion distance tends to reflect evolutionary 
divergence. 
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12 [31 34 28 26 17 2 9 4 9 3 6 1 8 3 5 1 9 1  16 14 32 33 22 1511 2 7 5 2 0 1 3 1 3 0 2 3 1 0 6 3 2 4 2 1 8 2 5 2 7  

12 13 2 0 5 2 7 1 1 1 5 2 2 3 3 3 2 1 4 1 6  119 ~ 36 9 4 2917 26 28 34 3130 2310 6 3 24 218 25 2 7 

12 13 20152711 15 22 33 32 14 16 1 1 9 1 8 3 5 3 6 9 1 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 4 2 1 8 2 5 2 7 "  

12 13 20193635 18 1 9 1 1 6 1 4 3 2 3 3 2 2 1 5  11 2 7 5 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 4 2 1 1 8 2 5 2 7  

12 13 20 21 2413 610 23 30 3134 28 2617 29 4 5 271115 22 33 '3214161  19 18 35 3 6 9 8 2 5 1 2 7  

112 13 20 21 24 2 5 8 9 3 6 3 5  18 191 16 14 32 33 22 15111 2 7 5 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 7  

15122 33 32 14 16 1 19 18 35 36 9 8 25 24121 20 13 12 11 27 5 4 29 17 26 28 34 31 30 23 I0 6 3 2 7 

1!52425893635 18 1 9 1 1 1 6 1 4 3 2 3 3 2 2 2 1 2 0 1 3 1 2 1 1 2 7 5 4 2 9 1 7 2 6 2 8 3 4 3 1 3 0 2 3 1 0 6 3 2 7  

1 19 1 8 1 3 5 3 6 9 8 2 5 2 4  15 16 14 32 33 22 21 20 13 12 11 2 7 5 4 2 9 1 7 2 6 2 8 1 3 4 3 1 3 0 2 3 1 0 6 3 2 7  

1 19 1 8 1 2 8 2 6 1 7 1 2 9 4 5 2 7 1 1 1 2 1 3 2 0 2 1 2 2 3 3 3 2  14 16 15 24 2 5 8 9 3 6 3 5 3 4 3 1 3 0 2 3 1 0 6 3 2 7  

11191817  26 28 29 4 5 27111213120  2122 33 32 14 16 15 24 2 5 8 9 3 6 3 5 3 4 3 1 3 0 2 3 1 0 6 3 2 7  

1 [..13 12 11 27 5 4 29 28 26 17:18 19 20 21 22 33 32] 14 16 15 24 25 g 9 36 35 34 31 30 23 10 6 3 2 7 

1132 33 22 21 20 19 18 17 26 28 29 4 5 27 11 12 13 i4 16 15 24 25 8 9 36 35 34 31 30 23 10 6 3 2] 7 

1 2 3 6 1 1 0 2 3 3 0 3 1 3 4 3 5 3 6 1 9 8 2 5 2 4 1 5 1 6 1 4 1 3 1 2 1 1 2 7 5 4 2 9 2 8 2 6 1 7 1 8 1 9 2 0 2 1 2 2 3 3 3 2 7  

1 2 3 6 1 3 6 3 5 3 4 3 1 3 0 2 3 1 0 9 8 2 5 2 4 1 5  16 14 1312 "1127 5 4 29 28 2 6 1 7 1 8 1 9  20 2122 33 32 71 

1 2 3 1 6 7 3 2 3 3 2 2 2 1 2 0 1 9 1 8 1 7 2 6 2 8 2 9 4 1 5 2 7 1 1 1 2 1 3 1 4  16 15 24 2 5 8 9 1 0 2 3 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 2 9 2 8 2 6 1 1 7 1 8 1 9 2 0 2 1 2 2 3 3 3 2 7 6 5 2 7 1 1 1 2  13 14116 15 24 2 5 8 9 1 0 2 3 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 2 9 2 8 2 6  14 13 12 11127 5 6 7 32 33 22 2 1 2 0 1 9 1 8 1 7 1 6  i5 24 25 8 910123 30 3134 35 36 

1 2 3 4 29 28 26114 13 12 11 I0 9 8 25 24115 16 17 18 19 20 21 22 33 32 7 6 5 27 23 30 31 34 35 36 

1 2 3 4 2 9 2 8 2 6 1 2 4 2 5 8 9 1 0 1 1 1 2  13 14 15 16 17 18'"i9 20 21 22 33 3 2 7 6 5 2 7 1 2 3 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 1 2 9 2 8 2 6 2 7 5 6 7 3 2 3 3 2 2 2 1 2 0 1 9 1 8  17 16 15 14 13 1211 1 0 9 8 2 5 2 4 2 3 1 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 1 2 3 2 4 2 5 8 9 1 0 1 1 1 2  13 14 15 16 17 18 19 20 21 22 33 3 2 7 6 5 [ 2 7 2 6 2 8 2 9 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 5 6 7 L 3 2 3 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2  II  1 0 9 8 1 2 5 2 4 2 3 2 7 2 6 2 8 2 9 3 0 3 1 3 4 3 5 3 6  

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  16 17 18 19 20 21 22133 32 25 24 23 27 26 28 29 30 31134 35 36 

1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 21 2 2 1 3 1 3 0 2 9 2 8 2 6 2 7 2 3 2 4 2 5 1 3 2 3 3 3 4 3 5 3 6  

1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 21 22 ~ 27 26 28 29 30 3132 33 34 35 36 

1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 21:22 23 24 25 ~ 28 29 30 3132 33 34 35 36 

Fig. Ifl, Near-optimal solution for gene orders from the mitchondrial genomes of mammals and the 
flatworm Ascaris suum. This solution of 27 reversals is provably within two reversals of opti- 
mal. 

4D/300GTX. The lower and upper bounds from this run, of 25 and 27 reversals, 
were found using a lower-bound family of six and an upper-bound look-ahead of 
five reversals.~7 The search tree during look-ahead had a maximum size of 2234 
nodes, where this counts all nodes at which a linear programming problem was 
solved (including nodes that were pruned by the lower bound). From the difference 
between the upper and lower bounds, we know that this solution is within two 
reversals of optimal. A family of ten and a look-ahead of eight, which required a 
search of 408,653 nodes and terminated after 7.5 h of computation, failed to 
improve the bounds by one reversal. 

The limit of what we can reliably solve to optimality is around 30 elements. 
Table 2 gives the running time and search-tree size to solve a sample of 10 random 

17 As described in Section 3.3, the follow-through for the upper bound was equal to the look-ahead 
in all experiments. 
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Table 2. Running time and search-tree size for exact solution of random permutations on 30 elements.* 

Running time 

Tree size 

Upper bound algorithm Exact algorithm 

Min. Max.  Med. Ave. Min .  Max. Med. Ave. Min. Max. Med. Ave. 

0: 05 43 : 48 1 : 29 6 : 53 228 372,563 11,419 45,393 0 8,291 29 843 

* The lower-bound family is eight, the upper-bound look-ahead is six reversals, and the sample size is ten 
permutations. The running time is the total time for the exact algorithm in minutes, which includes the time to 
compute the upper bound. The'tree size for the upper-bound algorithm is the maximum size of the search tree during 
look-ahead. The average reversal distance of the sample is 20.6. 

permutations on 30 elements to optimality. Though the lower-bound family and 
upper-bound look-ahead were the same across these runs, the execution time and 
search-tree size varied by three orders of magnitude. Since the average running 
time and tree size are skewed by these outliers, we also give median values, which 
are more representative of the sample. 

That we could solve these instances to optimality is due to the tightness of the 
bounds. Over the ten permutations, the maximum difference between the upper 
and lower bound was two reversals, and in each case, the exact solution value was 
equal to the lower bound. Except for the one permutation on which the exact 
algorithm examined over 8000 nodes, a common picture emerged from these runs. 
Optimal solution involved the upper-bound algorithm exploring a rather large tree 
to find a solution within one or two reversals of optimal; with this solution 
in hand, the exact algorithm hugged the left chain of its search tree to make up the 
difference to the lower bound, which was exact. 

The effect of varying the family and look-ahead is shown in Table 3. On random 
permutations of 50 elements, the average lower bound reached a maximum of 
roughly 36 reversals at family 6, and the average upper bound did not improve 
much on 38 reversals beyond look-ahead 5.18 Consequently, these values, family 
6 and look-ahead 5, were used in the remaining experiments. 

The search tree for these runs was limited to 50,000 nodes. Once this limit was 
exceeded, the best series known within the look-ahead was used to form the upper 
bound. Column T gives the median tree-size for the sample, where the tree size 
of a run is the maximum size of the search tree during look-ahead. For a 
look-ahead of six or more, the majority of runs had a tree size meeting the limit. 
Column C gives the median number of cycle sets on k or few breakpoints, which 
is equivalent to the number of variables in the linear program for the lower bound 
at family k. The number of constraints on these variables is essentially the number 
of breakpoints in the permutation. 

In the third set of experiments, we studied the quality of the approximation 
algorithm and the upper-bound algorithm on random permutations. Results are 

18 Notice that the average upper bound actually increased at look-ahead 8. 



Exact and Approximation Algorithms for Sorting by Reversals 205 

Table 3. Lower bound L, upper bound U, number  of cycle sets C, 
and tree size T, at various families and look-aheads, for random 
permutat ions on 50 elements.* 

L U C T 

k Ave. Ave. Med. Med. 

1 26.0 43.7 0 917 
2 32.1 40.8 4 2,907 
3 34.5 39.5 14 4,312 
4 35.5 39.1 40 24,242 
5 35.7 38.4 119 36,676 
6 35.9 38.2 353 50,000 
7 35.9 38.0 910 50,000 
8 35.9 38.9 2,464 50,000 

* The maximum tree-size is 50,000 nodes, and sample size is 10 permutations. 
Row k gives the lower bound for family k, the upper bound for look-ahead k, 
the number of cycle sets of at most k breakpoints for the lower bound, and the 
maximum tree-size for the upper bound during look-ahead. 

given in Table 4, where Dev. denotes the standard deviation. Note that the 
maximum difference between the upper and lower bound, which is what limits the 
range of optimal solution, was at most two reversals for n up to 30, while the 
average difference between the bounds was around 2.5 reversals for n up to 50. 
This suggests that, while we can find optimal solutions for at most around 30 
elements, we can find near-optimal solutions that may be acceptable quality for 
up to 50 elements. 

Table 4. Lower bound L, upper bound U, approximation A, and  tree size T for random permutat ions 
on n elements.* 

L U U - L A A / L  T 

n Ave. Dev. Ave. Dev. Ave. Max. Ave. Dev. Ave. Max. Med. 

10 6.0 1.1 6.0 1.1 0.0 0 6.1 1.0 1.02 1.20 0 
20 12.6 1.2 13.2 1.5 0.6 2 14.8 1.5 1.18 1.31 517 
30 20.8 0.9 21.8 1.6 1.0 2 24.9 1.5 1.20 1.25 4,615 
40 28.5 1.1 30.3 1.6 1.8 4 33.8 2.0 1.t9 1.24 23,712 
50 35,9 1.4 38.4 1.8 2.5 5 43.7 2.7 1.22 1.31 36,676 
60 43.6 1.1 46.7 1.5 3.1 5 52.6 1.6 1.21 1.26 50,000 
70 51.7 1.3 56.7 2.4 5.0 8 63.4 3.0 1.23 1.30 50,000 
80 58.9 1.0 64.5 2.0 5.6 8 72.3 2.3 1.23 1.26 50,000 
90 67.6 1.4 74.1 2.1 6.5 8 83.2 1.8 1.23 1.25 50,000 

100 74.2 1.1 82.4 2.6 8.2 10 91.9 2.7 1.24 1.27 50,000 

* The lower-bound family is six, the upper-bound look-ahead is five reversals, the maximum tree size is 50,000 nodes, 
and the sample size is ten permutations. Approximation A is the number of reversals from the greedy algorithm. 
Tree size T is the maximum tree-size for the upper bound during look-ahead. 
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Table 5. Upper  bound U and lower bound L for permutations on 
100 elements generated by k random reversals.* 

U L 

k Ave. Dev. Ave. Dev. 

5 5.0 0.0 5.0 0.0 
10 10.0 0.0 10.0 0.0 
15 15.2 0.4 15.0 0.0 
20 19.5 0.9 19.4 1.0 
25 25.0 0.9 24.5 0.9 
30 30.0 1.3 29.3 1.0 
35 34.6 2.1 33.5 1.8 
40 39.0 1.6 37.3 2.0 
45 43.9 2.2 42.5 2.2 
50 47.3 2.0 45.5 1.4 
55 51.8 3.0 48.5 2.8 
60 54.2 2.7 50.7 2.0 
65 58.5 2.6 54.3 2.5 
70 60.0 4.3 56.0 3.1 
75 62.0 2.8 57.7 2.4 
80 64.9 3.9 60.4 2.8 
85 67.0 2.6 61.9 2.0 
90 69.8 3.0 64.9 2.2 
95 72.2 2.2 65.1 1.5 

100 72.0 2.9 65.3 1.7 

* The upper-bound look-ahead is five 
six, the maximum tree-size is 50,000 
permutations. 

reversals, the lower-bound family is 
nodes, and the sample size is ten 

The average performance ratio of the approximation algorithm for the sample 
was around 5/4, while the poorest ratio was less than 4/3. 

In the final set of experiments, we were interested in the following question: How 
well does reversal distance recover the actual number of reversals performed on a 
permutation? To examine this, we generated permutations by scrambling the 
identity with k random reversals, taking care not to reverse single elements. Table 
5 gives upper and lower bounds on the reversal distance, for permutations on 100 
elements with up to 100 random reversals. For  k < �89 the average upper bound 
estimated k to within one reversal, but for k > �89 it increasingly underestimated k. 

Notice that when both endpoints of every reversal in a series of length k fall 
at new positions, the reversal distance for the resulting permutation is precisely 
k. 19 Since a permutation on n elements can have at most n + 1 breakpoints, the 
maximum number of reversals for which this can happen is �89 + 1), which may 
partly explain why we observe a change in behavior around k = �89 

19 This follows because k is a lower bound, as well as an upper bound,  on the reversal distance: the number  
of breakpoints divided by two, which lower bounds  reversal distance, is in this situation equal to k. 
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5. Conclusion. Algorithmic study of the reversal distance between permutations 
is in its earliest stages. We have presented two algorithms: a greedy approximation 
algorithm, and a branch-and-bound exact algorithm. By analyzing the A O  
sequence of the greedy algorithm, we were able to show it achieves a worst-case 
approximation factor of 2, and by applying matchings, shortest paths, and linear 
programming, we derived a class of nontrivial lower bounds for our exact 
algorithm. 

Experiments with the exact algorithm indicate that we can solve random 
permutations up to around 30 elements to optimality, usually in a few minutes, 
and that for permutations generated by k random reversals, the average solution 
value is a good estimate of the number of reversals when k is less than half the 
number of elements. 

We close with some conjectures and lines for future research. 

5.1. Further Research. One question that we would like to resolve is the 
computational complexity of sorting by reversals. We conjecture it is NP-complete, 
and believe the crux of the problem is the following. 

CONJECTURE 1. Deciding whether OvT(n) < �89 is NP-complete. 

Notice that this special case has a lot of additional structure--for instance, every 
breakpoint must be paired with another in G(n)--which should simplify a proof (or 
disproof). On the other hand, a disproof by an efficient algorithm would improve 
our lower bounds of Section 3.2. 

To design a more efficient exact algorithm, we need theorems on the structure 
of a solution. In particular, do we really need to consider all (~) reversals to find 
an optimal solution? 

It is natural to think we can throw out reversals that cut strips, since such a 
reversal separates elements that will have to be joined together later. Un- 
fortunately, this is incorrect. Permutation (3 4 1 2), for example, requires three 
reversals if we do not cut strips, yet it can be sorted in two reversals, as follows: 

1341121 F- 114321 ~- 1 2 3 4 .  

Nevertheless, we believe the following is true. 

CONJECTURE 2. Every permutation has an optimal solution that does not cut strips 
other than at their first or last element. 

If true, this reduces the number of candidate reversals from O(n 2) to O(tI)2(Tz)). 
Our belief in Conjecture 2 is based on the following. 

CONJECTURE 3. Every permutation has an optimal solution that never increases the 
number of breakpoints. 
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Another tempting idea is to decompose the permutation into knots, where a 
knot of x is an interval [a, b] such that 

�9 zr(/)e[1, a) for i e [1 ,  a), 
�9 rr(/) e [a, b] for i ~ [a, b], and 
�9 ~z(i) e (b, n] for i e (b, n], 

and then solve knots independently. This is appealing, since a permutation can 
always be sorted without an element crossing a knot. Perhaps surprisingly, 
it is not optimal. Permutation (2 1 5 6 3 4), for example, has knots [1, 2] 
and I-3, 6], and takes four reversals if we solve the knots separately. Yet, by working 
on the knots together, the permutation can be sorted in three reversals, as shown 
below: 

1211561341  F- 1 6 5 1 1 2 3 4 1  ~- 1 4 3 2 1 1 5 6  F- 1 2 3 4 5 6 .  

Finally, we note that the suboptimality of the greedy algorithm is not due to 
the fact that it chooses arbitrarily among moves that appear equally good. It is 
necessary to consider 1-moves when 2-moves are available. Permutation 
(5 6 2 1 8 7 3 4), for example, has one 2-move, [3, 6], and taking this move 
leads to a solution of four reversals. Yet the permutation can be sorted in three 
reversals, as follows: 

15 612 118 713 41 ~- 1 216 518 713 41 ~- 1 216 5 4 317 8 ~- 1 2 3 4 5 6 7 8. 

Before concluding, we remark that the biological motivation for reversal 
distance suggests several variations. Here we identify five aspects of the problem 
that may be varied: 

(1) The linear~circular variation. Some organisms and organelles have circular 
chromosomes, for which the data is the order of genes around a circle. In this 
case, cyclic shifts of a permutation are isomorphic, which means (zq .-. %) is 
equivalent to (z~i-. �9 ~, nl "'" rci_ 1). A solution is then a series of reversals and 
cyclic shifts that transform one permutation to another, and we seek a solution 
with the fewest reversals. 

(2) The signed/unsioned variation. A gene is not a point on a line or circle; it is a 
region of sequence. The sequence has a reading direction, and a reversal 
reverses not only the order of genes, but their direction as well. 

When two chromosomes are compared, information may be available on 
gene direction, as well as order. We can encode this information by associating 
a sign with each element: positive for the forward direction, and negative for 
the reverse. A reversal then changes the sign of elements it reverses. 

In the signed case, we have two signed permutations, and we seek a shortest 
series of signed reversals that transform one into the other. In some respects, 
this case is easier to analyze. Conjecture 3, for instance, holds. 

(3) The directed~undirected variation. When a chromosome is analyzed, sometimes 
only the adjacency of genes is determined, not their absolute order. In the 
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linear case, this means the given order may be left to right, or right to left, and 
in the circular case, clockwise or counterclockwise. 

(4) The weighted/unweiohted variation. We have assumed that all reversals are 
equally probable, so it is appropriate to count their number. For a first 
approximation this is reasonable, but a finer analysis might weight reversals 
by a function of their length, and find a series of minimum total weight. 

(5) The pairwise/multiple variation. Even though the objective of the reversal 
distance problem is not to find an alignment of the input, as is often the case 
with sequence comparison, we can define a multiple-chromosome comparison 
problem in analogy to multiple alignment. Given a set of orderings of 
the same genes, how can we infer an evolutionary tree, and a set of 
hypothetical ancestral orderings, so as to minimize the total reversal distance 
of the tree? Admittedly, a practical exact solution method appears unlikely, 
but a good approximation method would be useful as well. 

Clearly, there are many possibilities for exploration. 
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Note Added in Proof A shorter version of this paper appeared as [12a], and an 
extension to signed permutations is given in [12b]. For signed permutations, we 
observe an average difference, between the greedy approximation and a 
simplified lower bound, of less than one reversal, for n up to 10,000. Bafna and 
Pevzner [2a] have since improved the performance ratio to 7/4 for unsigned 
permutations, and 3/2 for signed permutations, and have also established Gollan's 
conjecture. 
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